1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
11 //
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
16 //
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
22 //
23 // ELF defines a large number of complex relocations.
24 //
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
27 //
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
35 //
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
40 //
41 //===----------------------------------------------------------------------===//
42
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "LinkerScript.h"
46 #include "OutputSections.h"
47 #include "SymbolTable.h"
48 #include "Symbols.h"
49 #include "SyntheticSections.h"
50 #include "Target.h"
51 #include "Thunks.h"
52 #include "lld/Common/ErrorHandler.h"
53 #include "lld/Common/Memory.h"
54 #include "lld/Common/Strings.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60
61 using namespace llvm;
62 using namespace llvm::ELF;
63 using namespace llvm::object;
64 using namespace llvm::support::endian;
65 using namespace lld;
66 using namespace lld::elf;
67
getLinkerScriptLocation(const Symbol & sym)68 static Optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69 for (BaseCommand *base : script->sectionCommands)
70 if (auto *cmd = dyn_cast<SymbolAssignment>(base))
71 if (cmd->sym == &sym)
72 return cmd->location;
73 return None;
74 }
75
getDefinedLocation(const Symbol & sym)76 static std::string getDefinedLocation(const Symbol &sym) {
77 std::string msg = "\n>>> defined in ";
78 if (sym.file)
79 msg += toString(sym.file);
80 else if (Optional<std::string> loc = getLinkerScriptLocation(sym))
81 msg += *loc;
82 return msg;
83 }
84
85 // Construct a message in the following format.
86 //
87 // >>> defined in /home/alice/src/foo.o
88 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89 // >>> /home/alice/src/bar.o:(.text+0x1)
getLocation(InputSectionBase & s,const Symbol & sym,uint64_t off)90 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91 uint64_t off) {
92 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93 std::string src = s.getSrcMsg(sym, off);
94 if (!src.empty())
95 msg += src + "\n>>> ";
96 return msg + s.getObjMsg(off);
97 }
98
reportRangeError(uint8_t * loc,const Relocation & rel,const Twine & v,int64_t min,uint64_t max)99 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100 int64_t min, uint64_t max) {
101 ErrorPlace errPlace = getErrorPlace(loc);
102 std::string hint;
103 if (rel.sym && !rel.sym->isLocal())
104 hint = "; references " + lld::toString(*rel.sym) +
105 getDefinedLocation(*rel.sym);
106
107 if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
108 hint += "; consider recompiling with -fdebug-types-section to reduce size "
109 "of debug sections";
110
111 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
112 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
113 ", " + Twine(max).str() + "]" + hint);
114 }
115
reportRangeError(uint8_t * loc,int64_t v,int n,const Symbol & sym,const Twine & msg)116 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
117 const Twine &msg) {
118 ErrorPlace errPlace = getErrorPlace(loc);
119 std::string hint;
120 if (!sym.getName().empty())
121 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
122 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
123 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
124 Twine(llvm::maxIntN(n)) + "]" + hint);
125 }
126
127 namespace {
128 // Build a bitmask with one bit set for each RelExpr.
129 //
130 // Constexpr function arguments can't be used in static asserts, so we
131 // use template arguments to build the mask.
132 // But function template partial specializations don't exist (needed
133 // for base case of the recursion), so we need a dummy struct.
134 template <RelExpr... Exprs> struct RelExprMaskBuilder {
build__anonbec1af6b0111::RelExprMaskBuilder135 static inline uint64_t build() { return 0; }
136 };
137
138 // Specialization for recursive case.
139 template <RelExpr Head, RelExpr... Tail>
140 struct RelExprMaskBuilder<Head, Tail...> {
build__anonbec1af6b0111::RelExprMaskBuilder141 static inline uint64_t build() {
142 static_assert(0 <= Head && Head < 64,
143 "RelExpr is too large for 64-bit mask!");
144 return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
145 }
146 };
147 } // namespace
148
149 // Return true if `Expr` is one of `Exprs`.
150 // There are fewer than 64 RelExpr's, so we can represent any set of
151 // RelExpr's as a constant bit mask and test for membership with a
152 // couple cheap bitwise operations.
oneof(RelExpr expr)153 template <RelExpr... Exprs> bool oneof(RelExpr expr) {
154 assert(0 <= expr && (int)expr < 64 &&
155 "RelExpr is too large for 64-bit mask!");
156 return (uint64_t(1) << expr) & RelExprMaskBuilder<Exprs...>::build();
157 }
158
159 // This function is similar to the `handleTlsRelocation`. MIPS does not
160 // support any relaxations for TLS relocations so by factoring out MIPS
161 // handling in to the separate function we can simplify the code and do not
162 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
163 // Mips has a custom MipsGotSection that handles the writing of GOT entries
164 // without dynamic relocations.
handleMipsTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,uint64_t offset,int64_t addend,RelExpr expr)165 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
166 InputSectionBase &c, uint64_t offset,
167 int64_t addend, RelExpr expr) {
168 if (expr == R_MIPS_TLSLD) {
169 in.mipsGot->addTlsIndex(*c.file);
170 c.relocations.push_back({expr, type, offset, addend, &sym});
171 return 1;
172 }
173 if (expr == R_MIPS_TLSGD) {
174 in.mipsGot->addDynTlsEntry(*c.file, sym);
175 c.relocations.push_back({expr, type, offset, addend, &sym});
176 return 1;
177 }
178 return 0;
179 }
180
181 // Notes about General Dynamic and Local Dynamic TLS models below. They may
182 // require the generation of a pair of GOT entries that have associated dynamic
183 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
184 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
185 // symbol in TLS block.
186 //
187 // Returns the number of relocations processed.
188 template <class ELFT>
189 static unsigned
handleTlsRelocation(RelType type,Symbol & sym,InputSectionBase & c,typename ELFT::uint offset,int64_t addend,RelExpr expr)190 handleTlsRelocation(RelType type, Symbol &sym, InputSectionBase &c,
191 typename ELFT::uint offset, int64_t addend, RelExpr expr) {
192 if (!sym.isTls())
193 return 0;
194
195 if (config->emachine == EM_MIPS)
196 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
197
198 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC>(
199 expr) &&
200 config->shared) {
201 if (in.got->addDynTlsEntry(sym)) {
202 uint64_t off = in.got->getGlobalDynOffset(sym);
203 mainPart->relaDyn->addReloc(
204 {target->tlsDescRel, in.got, off, !sym.isPreemptible, &sym, 0});
205 }
206 if (expr != R_TLSDESC_CALL)
207 c.relocations.push_back({expr, type, offset, addend, &sym});
208 return 1;
209 }
210
211 bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
212 config->emachine != EM_HEXAGON &&
213 config->emachine != EM_RISCV;
214
215 // If we are producing an executable and the symbol is non-preemptable, it
216 // must be defined and the code sequence can be relaxed to use Local-Exec.
217 //
218 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
219 // we can omit the DTPMOD dynamic relocations and resolve them at link time
220 // because them are always 1. This may be necessary for static linking as
221 // DTPMOD may not be expected at load time.
222 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
223
224 // Local Dynamic is for access to module local TLS variables, while still
225 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
226 // module index, with a special value of 0 for the current module. GOT[e1] is
227 // unused. There only needs to be one module index entry.
228 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
229 expr)) {
230 // Local-Dynamic relocs can be relaxed to Local-Exec.
231 if (toExecRelax) {
232 c.relocations.push_back(
233 {target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type, offset,
234 addend, &sym});
235 return target->getTlsGdRelaxSkip(type);
236 }
237 if (expr == R_TLSLD_HINT)
238 return 1;
239 if (in.got->addTlsIndex()) {
240 if (isLocalInExecutable)
241 in.got->relocations.push_back(
242 {R_ADDEND, target->symbolicRel, in.got->getTlsIndexOff(), 1, &sym});
243 else
244 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got,
245 in.got->getTlsIndexOff(), nullptr);
246 }
247 c.relocations.push_back({expr, type, offset, addend, &sym});
248 return 1;
249 }
250
251 // Local-Dynamic relocs can be relaxed to Local-Exec.
252 if (expr == R_DTPREL && toExecRelax) {
253 c.relocations.push_back({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE),
254 type, offset, addend, &sym});
255 return 1;
256 }
257
258 // Local-Dynamic sequence where offset of tls variable relative to dynamic
259 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
260 if (expr == R_TLSLD_GOT_OFF) {
261 if (!sym.isInGot()) {
262 in.got->addEntry(sym);
263 uint64_t off = sym.getGotOffset();
264 in.got->relocations.push_back(
265 {R_ABS, target->tlsOffsetRel, off, 0, &sym});
266 }
267 c.relocations.push_back({expr, type, offset, addend, &sym});
268 return 1;
269 }
270
271 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
272 R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
273 if (!toExecRelax) {
274 if (in.got->addDynTlsEntry(sym)) {
275 uint64_t off = in.got->getGlobalDynOffset(sym);
276
277 if (isLocalInExecutable)
278 // Write one to the GOT slot.
279 in.got->relocations.push_back(
280 {R_ADDEND, target->symbolicRel, off, 1, &sym});
281 else
282 mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, in.got, off, &sym);
283
284 // If the symbol is preemptible we need the dynamic linker to write
285 // the offset too.
286 uint64_t offsetOff = off + config->wordsize;
287 if (sym.isPreemptible)
288 mainPart->relaDyn->addReloc(target->tlsOffsetRel, in.got, offsetOff,
289 &sym);
290 else
291 in.got->relocations.push_back(
292 {R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
293 }
294 c.relocations.push_back({expr, type, offset, addend, &sym});
295 return 1;
296 }
297
298 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
299 // depending on the symbol being locally defined or not.
300 if (sym.isPreemptible) {
301 c.relocations.push_back(
302 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type, offset,
303 addend, &sym});
304 if (!sym.isInGot()) {
305 in.got->addEntry(sym);
306 mainPart->relaDyn->addReloc(target->tlsGotRel, in.got, sym.getGotOffset(),
307 &sym);
308 }
309 } else {
310 c.relocations.push_back(
311 {target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type, offset,
312 addend, &sym});
313 }
314 return target->getTlsGdRelaxSkip(type);
315 }
316
317 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
318 // defined.
319 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
320 R_TLSIE_HINT>(expr) &&
321 toExecRelax && isLocalInExecutable) {
322 c.relocations.push_back({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
323 return 1;
324 }
325
326 if (expr == R_TLSIE_HINT)
327 return 1;
328 return 0;
329 }
330
getMipsPairType(RelType type,bool isLocal)331 static RelType getMipsPairType(RelType type, bool isLocal) {
332 switch (type) {
333 case R_MIPS_HI16:
334 return R_MIPS_LO16;
335 case R_MIPS_GOT16:
336 // In case of global symbol, the R_MIPS_GOT16 relocation does not
337 // have a pair. Each global symbol has a unique entry in the GOT
338 // and a corresponding instruction with help of the R_MIPS_GOT16
339 // relocation loads an address of the symbol. In case of local
340 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
341 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
342 // relocations handle low 16 bits of the address. That allows
343 // to allocate only one GOT entry for every 64 KBytes of local data.
344 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
345 case R_MICROMIPS_GOT16:
346 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
347 case R_MIPS_PCHI16:
348 return R_MIPS_PCLO16;
349 case R_MICROMIPS_HI16:
350 return R_MICROMIPS_LO16;
351 default:
352 return R_MIPS_NONE;
353 }
354 }
355
356 // True if non-preemptable symbol always has the same value regardless of where
357 // the DSO is loaded.
isAbsolute(const Symbol & sym)358 static bool isAbsolute(const Symbol &sym) {
359 if (sym.isUndefWeak())
360 return true;
361 if (const auto *dr = dyn_cast<Defined>(&sym))
362 return dr->section == nullptr; // Absolute symbol.
363 return false;
364 }
365
isAbsoluteValue(const Symbol & sym)366 static bool isAbsoluteValue(const Symbol &sym) {
367 return isAbsolute(sym) || sym.isTls();
368 }
369
370 // Returns true if Expr refers a PLT entry.
needsPlt(RelExpr expr)371 static bool needsPlt(RelExpr expr) {
372 return oneof<R_PLT_PC, R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PLT>(expr);
373 }
374
375 // Returns true if Expr refers a GOT entry. Note that this function
376 // returns false for TLS variables even though they need GOT, because
377 // TLS variables uses GOT differently than the regular variables.
needsGot(RelExpr expr)378 static bool needsGot(RelExpr expr) {
379 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
380 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT>(
381 expr);
382 }
383
384 // True if this expression is of the form Sym - X, where X is a position in the
385 // file (PC, or GOT for example).
isRelExpr(RelExpr expr)386 static bool isRelExpr(RelExpr expr) {
387 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
388 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
389 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
390 }
391
392 // Returns true if a given relocation can be computed at link-time.
393 //
394 // For instance, we know the offset from a relocation to its target at
395 // link-time if the relocation is PC-relative and refers a
396 // non-interposable function in the same executable. This function
397 // will return true for such relocation.
398 //
399 // If this function returns false, that means we need to emit a
400 // dynamic relocation so that the relocation will be fixed at load-time.
isStaticLinkTimeConstant(RelExpr e,RelType type,const Symbol & sym,InputSectionBase & s,uint64_t relOff)401 static bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
402 InputSectionBase &s, uint64_t relOff) {
403 // These expressions always compute a constant
404 if (oneof<R_DTPREL, R_GOTPLT, R_GOT_OFF, R_TLSLD_GOT_OFF,
405 R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOTREL, R_MIPS_GOT_OFF,
406 R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC, R_MIPS_TLSGD,
407 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
408 R_PLT_PC, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC, R_PPC32_PLTREL,
409 R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD, R_TLSDESC_CALL,
410 R_TLSDESC_PC, R_AARCH64_TLSDESC_PAGE, R_TLSLD_HINT, R_TLSIE_HINT>(
411 e))
412 return true;
413
414 // These never do, except if the entire file is position dependent or if
415 // only the low bits are used.
416 if (e == R_GOT || e == R_PLT || e == R_TLSDESC)
417 return target->usesOnlyLowPageBits(type) || !config->isPic;
418
419 if (sym.isPreemptible)
420 return false;
421 if (!config->isPic)
422 return true;
423
424 // The size of a non preemptible symbol is a constant.
425 if (e == R_SIZE)
426 return true;
427
428 // For the target and the relocation, we want to know if they are
429 // absolute or relative.
430 bool absVal = isAbsoluteValue(sym);
431 bool relE = isRelExpr(e);
432 if (absVal && !relE)
433 return true;
434 if (!absVal && relE)
435 return true;
436 if (!absVal && !relE)
437 return target->usesOnlyLowPageBits(type);
438
439 assert(absVal && relE);
440
441 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
442 // in PIC mode. This is a little strange, but it allows us to link function
443 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
444 // Normally such a call will be guarded with a comparison, which will load a
445 // zero from the GOT.
446 if (sym.isUndefWeak())
447 return true;
448
449 // We set the final symbols values for linker script defined symbols later.
450 // They always can be computed as a link time constant.
451 if (sym.scriptDefined)
452 return true;
453
454 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
455 toString(sym) + getLocation(s, sym, relOff));
456 return true;
457 }
458
toPlt(RelExpr expr)459 static RelExpr toPlt(RelExpr expr) {
460 switch (expr) {
461 case R_PPC64_CALL:
462 return R_PPC64_CALL_PLT;
463 case R_PC:
464 return R_PLT_PC;
465 case R_ABS:
466 return R_PLT;
467 default:
468 return expr;
469 }
470 }
471
fromPlt(RelExpr expr)472 static RelExpr fromPlt(RelExpr expr) {
473 // We decided not to use a plt. Optimize a reference to the plt to a
474 // reference to the symbol itself.
475 switch (expr) {
476 case R_PLT_PC:
477 case R_PPC32_PLTREL:
478 return R_PC;
479 case R_PPC64_CALL_PLT:
480 return R_PPC64_CALL;
481 case R_PLT:
482 return R_ABS;
483 default:
484 return expr;
485 }
486 }
487
488 // Returns true if a given shared symbol is in a read-only segment in a DSO.
isReadOnly(SharedSymbol & ss)489 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
490 using Elf_Phdr = typename ELFT::Phdr;
491
492 // Determine if the symbol is read-only by scanning the DSO's program headers.
493 const SharedFile &file = ss.getFile();
494 for (const Elf_Phdr &phdr :
495 check(file.template getObj<ELFT>().program_headers()))
496 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
497 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
498 ss.value < phdr.p_vaddr + phdr.p_memsz)
499 return true;
500 return false;
501 }
502
503 // Returns symbols at the same offset as a given symbol, including SS itself.
504 //
505 // If two or more symbols are at the same offset, and at least one of
506 // them are copied by a copy relocation, all of them need to be copied.
507 // Otherwise, they would refer to different places at runtime.
508 template <class ELFT>
getSymbolsAt(SharedSymbol & ss)509 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
510 using Elf_Sym = typename ELFT::Sym;
511
512 SharedFile &file = ss.getFile();
513
514 SmallSet<SharedSymbol *, 4> ret;
515 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
516 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
517 s.getType() == STT_TLS || s.st_value != ss.value)
518 continue;
519 StringRef name = check(s.getName(file.getStringTable()));
520 Symbol *sym = symtab->find(name);
521 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
522 ret.insert(alias);
523 }
524 return ret;
525 }
526
527 // When a symbol is copy relocated or we create a canonical plt entry, it is
528 // effectively a defined symbol. In the case of copy relocation the symbol is
529 // in .bss and in the case of a canonical plt entry it is in .plt. This function
530 // replaces the existing symbol with a Defined pointing to the appropriate
531 // location.
replaceWithDefined(Symbol & sym,SectionBase * sec,uint64_t value,uint64_t size)532 static void replaceWithDefined(Symbol &sym, SectionBase *sec, uint64_t value,
533 uint64_t size) {
534 Symbol old = sym;
535
536 sym.replace(Defined{sym.file, sym.getName(), sym.binding, sym.stOther,
537 sym.type, value, size, sec});
538
539 sym.pltIndex = old.pltIndex;
540 sym.gotIndex = old.gotIndex;
541 sym.verdefIndex = old.verdefIndex;
542 sym.exportDynamic = true;
543 sym.isUsedInRegularObj = true;
544 }
545
546 // Reserve space in .bss or .bss.rel.ro for copy relocation.
547 //
548 // The copy relocation is pretty much a hack. If you use a copy relocation
549 // in your program, not only the symbol name but the symbol's size, RW/RO
550 // bit and alignment become part of the ABI. In addition to that, if the
551 // symbol has aliases, the aliases become part of the ABI. That's subtle,
552 // but if you violate that implicit ABI, that can cause very counter-
553 // intuitive consequences.
554 //
555 // So, what is the copy relocation? It's for linking non-position
556 // independent code to DSOs. In an ideal world, all references to data
557 // exported by DSOs should go indirectly through GOT. But if object files
558 // are compiled as non-PIC, all data references are direct. There is no
559 // way for the linker to transform the code to use GOT, as machine
560 // instructions are already set in stone in object files. This is where
561 // the copy relocation takes a role.
562 //
563 // A copy relocation instructs the dynamic linker to copy data from a DSO
564 // to a specified address (which is usually in .bss) at load-time. If the
565 // static linker (that's us) finds a direct data reference to a DSO
566 // symbol, it creates a copy relocation, so that the symbol can be
567 // resolved as if it were in .bss rather than in a DSO.
568 //
569 // As you can see in this function, we create a copy relocation for the
570 // dynamic linker, and the relocation contains not only symbol name but
571 // various other information about the symbol. So, such attributes become a
572 // part of the ABI.
573 //
574 // Note for application developers: I can give you a piece of advice if
575 // you are writing a shared library. You probably should export only
576 // functions from your library. You shouldn't export variables.
577 //
578 // As an example what can happen when you export variables without knowing
579 // the semantics of copy relocations, assume that you have an exported
580 // variable of type T. It is an ABI-breaking change to add new members at
581 // end of T even though doing that doesn't change the layout of the
582 // existing members. That's because the space for the new members are not
583 // reserved in .bss unless you recompile the main program. That means they
584 // are likely to overlap with other data that happens to be laid out next
585 // to the variable in .bss. This kind of issue is sometimes very hard to
586 // debug. What's a solution? Instead of exporting a variable V from a DSO,
587 // define an accessor getV().
addCopyRelSymbol(SharedSymbol & ss)588 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
589 // Copy relocation against zero-sized symbol doesn't make sense.
590 uint64_t symSize = ss.getSize();
591 if (symSize == 0 || ss.alignment == 0)
592 fatal("cannot create a copy relocation for symbol " + toString(ss));
593
594 // See if this symbol is in a read-only segment. If so, preserve the symbol's
595 // memory protection by reserving space in the .bss.rel.ro section.
596 bool isRO = isReadOnly<ELFT>(ss);
597 BssSection *sec =
598 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
599 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
600
601 // At this point, sectionBases has been migrated to sections. Append sec to
602 // sections.
603 if (osec->sectionCommands.empty() ||
604 !isa<InputSectionDescription>(osec->sectionCommands.back()))
605 osec->sectionCommands.push_back(make<InputSectionDescription>(""));
606 auto *isd = cast<InputSectionDescription>(osec->sectionCommands.back());
607 isd->sections.push_back(sec);
608 osec->commitSection(sec);
609
610 // Look through the DSO's dynamic symbol table for aliases and create a
611 // dynamic symbol for each one. This causes the copy relocation to correctly
612 // interpose any aliases.
613 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
614 replaceWithDefined(*sym, sec, 0, sym->size);
615
616 mainPart->relaDyn->addReloc(target->copyRel, sec, 0, &ss);
617 }
618
619 // MIPS has an odd notion of "paired" relocations to calculate addends.
620 // For example, if a relocation is of R_MIPS_HI16, there must be a
621 // R_MIPS_LO16 relocation after that, and an addend is calculated using
622 // the two relocations.
623 template <class ELFT, class RelTy>
computeMipsAddend(const RelTy & rel,const RelTy * end,InputSectionBase & sec,RelExpr expr,bool isLocal)624 static int64_t computeMipsAddend(const RelTy &rel, const RelTy *end,
625 InputSectionBase &sec, RelExpr expr,
626 bool isLocal) {
627 if (expr == R_MIPS_GOTREL && isLocal)
628 return sec.getFile<ELFT>()->mipsGp0;
629
630 // The ABI says that the paired relocation is used only for REL.
631 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
632 if (RelTy::IsRela)
633 return 0;
634
635 RelType type = rel.getType(config->isMips64EL);
636 uint32_t pairTy = getMipsPairType(type, isLocal);
637 if (pairTy == R_MIPS_NONE)
638 return 0;
639
640 const uint8_t *buf = sec.data().data();
641 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
642
643 // To make things worse, paired relocations might not be contiguous in
644 // the relocation table, so we need to do linear search. *sigh*
645 for (const RelTy *ri = &rel; ri != end; ++ri)
646 if (ri->getType(config->isMips64EL) == pairTy &&
647 ri->getSymbol(config->isMips64EL) == symIndex)
648 return target->getImplicitAddend(buf + ri->r_offset, pairTy);
649
650 warn("can't find matching " + toString(pairTy) + " relocation for " +
651 toString(type));
652 return 0;
653 }
654
655 // Returns an addend of a given relocation. If it is RELA, an addend
656 // is in a relocation itself. If it is REL, we need to read it from an
657 // input section.
658 template <class ELFT, class RelTy>
computeAddend(const RelTy & rel,const RelTy * end,InputSectionBase & sec,RelExpr expr,bool isLocal)659 static int64_t computeAddend(const RelTy &rel, const RelTy *end,
660 InputSectionBase &sec, RelExpr expr,
661 bool isLocal) {
662 int64_t addend;
663 RelType type = rel.getType(config->isMips64EL);
664
665 if (RelTy::IsRela) {
666 addend = getAddend<ELFT>(rel);
667 } else {
668 const uint8_t *buf = sec.data().data();
669 addend = target->getImplicitAddend(buf + rel.r_offset, type);
670 }
671
672 if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
673 addend += getPPC64TocBase();
674 if (config->emachine == EM_MIPS)
675 addend += computeMipsAddend<ELFT>(rel, end, sec, expr, isLocal);
676
677 return addend;
678 }
679
680 // Custom error message if Sym is defined in a discarded section.
681 template <class ELFT>
maybeReportDiscarded(Undefined & sym)682 static std::string maybeReportDiscarded(Undefined &sym) {
683 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
684 if (!file || !sym.discardedSecIdx ||
685 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
686 return "";
687 ArrayRef<Elf_Shdr_Impl<ELFT>> objSections =
688 CHECK(file->getObj().sections(), file);
689
690 std::string msg;
691 if (sym.type == ELF::STT_SECTION) {
692 msg = "relocation refers to a discarded section: ";
693 msg += CHECK(
694 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
695 } else {
696 msg = "relocation refers to a symbol in a discarded section: " +
697 toString(sym);
698 }
699 msg += "\n>>> defined in " + toString(file);
700
701 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
702 if (elfSec.sh_type != SHT_GROUP)
703 return msg;
704
705 // If the discarded section is a COMDAT.
706 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
707 if (const InputFile *prevailing =
708 symtab->comdatGroups.lookup(CachedHashStringRef(signature)))
709 msg += "\n>>> section group signature: " + signature.str() +
710 "\n>>> prevailing definition is in " + toString(prevailing);
711 return msg;
712 }
713
714 // Undefined diagnostics are collected in a vector and emitted once all of
715 // them are known, so that some postprocessing on the list of undefined symbols
716 // can happen before lld emits diagnostics.
717 struct UndefinedDiag {
718 Symbol *sym;
719 struct Loc {
720 InputSectionBase *sec;
721 uint64_t offset;
722 };
723 std::vector<Loc> locs;
724 bool isWarning;
725 };
726
727 static std::vector<UndefinedDiag> undefs;
728
729 // Check whether the definition name def is a mangled function name that matches
730 // the reference name ref.
canSuggestExternCForCXX(StringRef ref,StringRef def)731 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
732 llvm::ItaniumPartialDemangler d;
733 std::string name = def.str();
734 if (d.partialDemangle(name.c_str()))
735 return false;
736 char *buf = d.getFunctionName(nullptr, nullptr);
737 if (!buf)
738 return false;
739 bool ret = ref == buf;
740 free(buf);
741 return ret;
742 }
743
744 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
745 // the suggested symbol, which is either in the symbol table, or in the same
746 // file of sym.
747 template <class ELFT>
getAlternativeSpelling(const Undefined & sym,std::string & pre_hint,std::string & post_hint)748 static const Symbol *getAlternativeSpelling(const Undefined &sym,
749 std::string &pre_hint,
750 std::string &post_hint) {
751 DenseMap<StringRef, const Symbol *> map;
752 if (auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file)) {
753 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
754 // will give an error. Don't suggest an alternative spelling.
755 if (file && sym.discardedSecIdx != 0 &&
756 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
757 return nullptr;
758
759 // Build a map of local defined symbols.
760 for (const Symbol *s : sym.file->getSymbols())
761 if (s->isLocal() && s->isDefined())
762 map.try_emplace(s->getName(), s);
763 }
764
765 auto suggest = [&](StringRef newName) -> const Symbol * {
766 // If defined locally.
767 if (const Symbol *s = map.lookup(newName))
768 return s;
769
770 // If in the symbol table and not undefined.
771 if (const Symbol *s = symtab->find(newName))
772 if (!s->isUndefined())
773 return s;
774
775 return nullptr;
776 };
777
778 // This loop enumerates all strings of Levenshtein distance 1 as typo
779 // correction candidates and suggests the one that exists as a non-undefined
780 // symbol.
781 StringRef name = sym.getName();
782 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
783 // Insert a character before name[i].
784 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
785 for (char c = '0'; c <= 'z'; ++c) {
786 newName[i] = c;
787 if (const Symbol *s = suggest(newName))
788 return s;
789 }
790 if (i == e)
791 break;
792
793 // Substitute name[i].
794 newName = std::string(name);
795 for (char c = '0'; c <= 'z'; ++c) {
796 newName[i] = c;
797 if (const Symbol *s = suggest(newName))
798 return s;
799 }
800
801 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
802 // common.
803 if (i + 1 < e) {
804 newName[i] = name[i + 1];
805 newName[i + 1] = name[i];
806 if (const Symbol *s = suggest(newName))
807 return s;
808 }
809
810 // Delete name[i].
811 newName = (name.substr(0, i) + name.substr(i + 1)).str();
812 if (const Symbol *s = suggest(newName))
813 return s;
814 }
815
816 // Case mismatch, e.g. Foo vs FOO.
817 for (auto &it : map)
818 if (name.equals_lower(it.first))
819 return it.second;
820 for (Symbol *sym : symtab->symbols())
821 if (!sym->isUndefined() && name.equals_lower(sym->getName()))
822 return sym;
823
824 // The reference may be a mangled name while the definition is not. Suggest a
825 // missing extern "C".
826 if (name.startswith("_Z")) {
827 std::string buf = name.str();
828 llvm::ItaniumPartialDemangler d;
829 if (!d.partialDemangle(buf.c_str()))
830 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
831 const Symbol *s = suggest(buf);
832 free(buf);
833 if (s) {
834 pre_hint = ": extern \"C\" ";
835 return s;
836 }
837 }
838 } else {
839 const Symbol *s = nullptr;
840 for (auto &it : map)
841 if (canSuggestExternCForCXX(name, it.first)) {
842 s = it.second;
843 break;
844 }
845 if (!s)
846 for (Symbol *sym : symtab->symbols())
847 if (canSuggestExternCForCXX(name, sym->getName())) {
848 s = sym;
849 break;
850 }
851 if (s) {
852 pre_hint = " to declare ";
853 post_hint = " as extern \"C\"?";
854 return s;
855 }
856 }
857
858 return nullptr;
859 }
860
861 template <class ELFT>
reportUndefinedSymbol(const UndefinedDiag & undef,bool correctSpelling)862 static void reportUndefinedSymbol(const UndefinedDiag &undef,
863 bool correctSpelling) {
864 Symbol &sym = *undef.sym;
865
866 auto visibility = [&]() -> std::string {
867 switch (sym.visibility) {
868 case STV_INTERNAL:
869 return "internal ";
870 case STV_HIDDEN:
871 return "hidden ";
872 case STV_PROTECTED:
873 return "protected ";
874 default:
875 return "";
876 }
877 };
878
879 std::string msg = maybeReportDiscarded<ELFT>(cast<Undefined>(sym));
880 if (msg.empty())
881 msg = "undefined " + visibility() + "symbol: " + toString(sym);
882
883 const size_t maxUndefReferences = 3;
884 size_t i = 0;
885 for (UndefinedDiag::Loc l : undef.locs) {
886 if (i >= maxUndefReferences)
887 break;
888 InputSectionBase &sec = *l.sec;
889 uint64_t offset = l.offset;
890
891 msg += "\n>>> referenced by ";
892 std::string src = sec.getSrcMsg(sym, offset);
893 if (!src.empty())
894 msg += src + "\n>>> ";
895 msg += sec.getObjMsg(offset);
896 i++;
897 }
898
899 if (i < undef.locs.size())
900 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
901 .str();
902
903 if (correctSpelling) {
904 std::string pre_hint = ": ", post_hint;
905 if (const Symbol *corrected = getAlternativeSpelling<ELFT>(
906 cast<Undefined>(sym), pre_hint, post_hint)) {
907 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
908 if (corrected->file)
909 msg += "\n>>> defined in: " + toString(corrected->file);
910 }
911 }
912
913 if (sym.getName().startswith("_ZTV"))
914 msg +=
915 "\n>>> the vtable symbol may be undefined because the class is missing "
916 "its key function (see https://lld.llvm.org/missingkeyfunction)";
917
918 if (undef.isWarning)
919 warn(msg);
920 else
921 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
922 }
923
reportUndefinedSymbols()924 template <class ELFT> void elf::reportUndefinedSymbols() {
925 // Find the first "undefined symbol" diagnostic for each diagnostic, and
926 // collect all "referenced from" lines at the first diagnostic.
927 DenseMap<Symbol *, UndefinedDiag *> firstRef;
928 for (UndefinedDiag &undef : undefs) {
929 assert(undef.locs.size() == 1);
930 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
931 canon->locs.push_back(undef.locs[0]);
932 undef.locs.clear();
933 } else
934 firstRef[undef.sym] = &undef;
935 }
936
937 // Enable spell corrector for the first 2 diagnostics.
938 for (auto it : enumerate(undefs))
939 if (!it.value().locs.empty())
940 reportUndefinedSymbol<ELFT>(it.value(), it.index() < 2);
941 undefs.clear();
942 }
943
944 // Report an undefined symbol if necessary.
945 // Returns true if the undefined symbol will produce an error message.
maybeReportUndefined(Symbol & sym,InputSectionBase & sec,uint64_t offset)946 static bool maybeReportUndefined(Symbol &sym, InputSectionBase &sec,
947 uint64_t offset) {
948 if (!sym.isUndefined())
949 return false;
950 // If versioned, issue an error (even if the symbol is weak) because we don't
951 // know the defining filename which is required to construct a Verneed entry.
952 if (*sym.getVersionSuffix() == '@') {
953 undefs.push_back({&sym, {{&sec, offset}}, false});
954 return true;
955 }
956 if (sym.isWeak())
957 return false;
958
959 bool canBeExternal = !sym.isLocal() && sym.visibility == STV_DEFAULT;
960 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
961 return false;
962
963 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
964 // which references a switch table in a discarded .rodata/.text section. The
965 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
966 // spec says references from outside the group to a STB_LOCAL symbol are not
967 // allowed. Work around the bug.
968 //
969 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
970 // because .LC0-.LTOC is not representable if the two labels are in different
971 // .got2
972 if (cast<Undefined>(sym).discardedSecIdx != 0 &&
973 (sec.name == ".got2" || sec.name == ".toc"))
974 return false;
975
976 bool isWarning =
977 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
978 config->noinhibitExec;
979 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
980 return !isWarning;
981 }
982
983 // MIPS N32 ABI treats series of successive relocations with the same offset
984 // as a single relocation. The similar approach used by N64 ABI, but this ABI
985 // packs all relocations into the single relocation record. Here we emulate
986 // this for the N32 ABI. Iterate over relocation with the same offset and put
987 // theirs types into the single bit-set.
getMipsN32RelType(RelTy * & rel,RelTy * end)988 template <class RelTy> static RelType getMipsN32RelType(RelTy *&rel, RelTy *end) {
989 RelType type = 0;
990 uint64_t offset = rel->r_offset;
991
992 int n = 0;
993 while (rel != end && rel->r_offset == offset)
994 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
995 return type;
996 }
997
998 // .eh_frame sections are mergeable input sections, so their input
999 // offsets are not linearly mapped to output section. For each input
1000 // offset, we need to find a section piece containing the offset and
1001 // add the piece's base address to the input offset to compute the
1002 // output offset. That isn't cheap.
1003 //
1004 // This class is to speed up the offset computation. When we process
1005 // relocations, we access offsets in the monotonically increasing
1006 // order. So we can optimize for that access pattern.
1007 //
1008 // For sections other than .eh_frame, this class doesn't do anything.
1009 namespace {
1010 class OffsetGetter {
1011 public:
OffsetGetter(InputSectionBase & sec)1012 explicit OffsetGetter(InputSectionBase &sec) {
1013 if (auto *eh = dyn_cast<EhInputSection>(&sec))
1014 pieces = eh->pieces;
1015 }
1016
1017 // Translates offsets in input sections to offsets in output sections.
1018 // Given offset must increase monotonically. We assume that Piece is
1019 // sorted by inputOff.
get(uint64_t off)1020 uint64_t get(uint64_t off) {
1021 if (pieces.empty())
1022 return off;
1023
1024 while (i != pieces.size() && pieces[i].inputOff + pieces[i].size <= off)
1025 ++i;
1026 if (i == pieces.size())
1027 fatal(".eh_frame: relocation is not in any piece");
1028
1029 // Pieces must be contiguous, so there must be no holes in between.
1030 assert(pieces[i].inputOff <= off && "Relocation not in any piece");
1031
1032 // Offset -1 means that the piece is dead (i.e. garbage collected).
1033 if (pieces[i].outputOff == -1)
1034 return -1;
1035 return pieces[i].outputOff + off - pieces[i].inputOff;
1036 }
1037
1038 private:
1039 ArrayRef<EhSectionPiece> pieces;
1040 size_t i = 0;
1041 };
1042 } // namespace
1043
addRelativeReloc(InputSectionBase * isec,uint64_t offsetInSec,Symbol * sym,int64_t addend,RelExpr expr,RelType type)1044 static void addRelativeReloc(InputSectionBase *isec, uint64_t offsetInSec,
1045 Symbol *sym, int64_t addend, RelExpr expr,
1046 RelType type) {
1047 Partition &part = isec->getPartition();
1048
1049 // Add a relative relocation. If relrDyn section is enabled, and the
1050 // relocation offset is guaranteed to be even, add the relocation to
1051 // the relrDyn section, otherwise add it to the relaDyn section.
1052 // relrDyn sections don't support odd offsets. Also, relrDyn sections
1053 // don't store the addend values, so we must write it to the relocated
1054 // address.
1055 if (part.relrDyn && isec->alignment >= 2 && offsetInSec % 2 == 0) {
1056 isec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1057 part.relrDyn->relocs.push_back({isec, offsetInSec});
1058 return;
1059 }
1060 part.relaDyn->addReloc(target->relativeRel, isec, offsetInSec, sym, addend,
1061 expr, type);
1062 }
1063
1064 template <class PltSection, class GotPltSection>
addPltEntry(PltSection * plt,GotPltSection * gotPlt,RelocationBaseSection * rel,RelType type,Symbol & sym)1065 static void addPltEntry(PltSection *plt, GotPltSection *gotPlt,
1066 RelocationBaseSection *rel, RelType type, Symbol &sym) {
1067 plt->addEntry(sym);
1068 gotPlt->addEntry(sym);
1069 rel->addReloc(
1070 {type, gotPlt, sym.getGotPltOffset(), !sym.isPreemptible, &sym, 0});
1071 }
1072
addGotEntry(Symbol & sym)1073 static void addGotEntry(Symbol &sym) {
1074 in.got->addEntry(sym);
1075
1076 RelExpr expr = sym.isTls() ? R_TLS : R_ABS;
1077 uint64_t off = sym.getGotOffset();
1078
1079 // If a GOT slot value can be calculated at link-time, which is now,
1080 // we can just fill that out.
1081 //
1082 // (We don't actually write a value to a GOT slot right now, but we
1083 // add a static relocation to a Relocations vector so that
1084 // InputSection::relocate will do the work for us. We may be able
1085 // to just write a value now, but it is a TODO.)
1086 bool isLinkTimeConstant =
1087 !sym.isPreemptible && (!config->isPic || isAbsolute(sym));
1088 if (isLinkTimeConstant) {
1089 in.got->relocations.push_back({expr, target->symbolicRel, off, 0, &sym});
1090 return;
1091 }
1092
1093 // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that
1094 // the GOT slot will be fixed at load-time.
1095 if (!sym.isTls() && !sym.isPreemptible && config->isPic && !isAbsolute(sym)) {
1096 addRelativeReloc(in.got, off, &sym, 0, R_ABS, target->symbolicRel);
1097 return;
1098 }
1099 mainPart->relaDyn->addReloc(
1100 sym.isTls() ? target->tlsGotRel : target->gotRel, in.got, off, &sym, 0,
1101 sym.isPreemptible ? R_ADDEND : R_ABS, target->symbolicRel);
1102 }
1103
1104 // Return true if we can define a symbol in the executable that
1105 // contains the value/function of a symbol defined in a shared
1106 // library.
canDefineSymbolInExecutable(Symbol & sym)1107 static bool canDefineSymbolInExecutable(Symbol &sym) {
1108 // If the symbol has default visibility the symbol defined in the
1109 // executable will preempt it.
1110 // Note that we want the visibility of the shared symbol itself, not
1111 // the visibility of the symbol in the output file we are producing. That is
1112 // why we use Sym.stOther.
1113 if ((sym.stOther & 0x3) == STV_DEFAULT)
1114 return true;
1115
1116 // If we are allowed to break address equality of functions, defining
1117 // a plt entry will allow the program to call the function in the
1118 // .so, but the .so and the executable will no agree on the address
1119 // of the function. Similar logic for objects.
1120 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
1121 (sym.isObject() && config->ignoreDataAddressEquality));
1122 }
1123
1124 // The reason we have to do this early scan is as follows
1125 // * To mmap the output file, we need to know the size
1126 // * For that, we need to know how many dynamic relocs we will have.
1127 // It might be possible to avoid this by outputting the file with write:
1128 // * Write the allocated output sections, computing addresses.
1129 // * Apply relocations, recording which ones require a dynamic reloc.
1130 // * Write the dynamic relocations.
1131 // * Write the rest of the file.
1132 // This would have some drawbacks. For example, we would only know if .rela.dyn
1133 // is needed after applying relocations. If it is, it will go after rw and rx
1134 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1135 // complicates things for the dynamic linker and means we would have to reserve
1136 // space for the extra PT_LOAD even if we end up not using it.
1137 template <class ELFT, class RelTy>
processRelocAux(InputSectionBase & sec,RelExpr expr,RelType type,uint64_t offset,Symbol & sym,const RelTy & rel,int64_t addend)1138 static void processRelocAux(InputSectionBase &sec, RelExpr expr, RelType type,
1139 uint64_t offset, Symbol &sym, const RelTy &rel,
1140 int64_t addend) {
1141 // If the relocation is known to be a link-time constant, we know no dynamic
1142 // relocation will be created, pass the control to relocateAlloc() or
1143 // relocateNonAlloc() to resolve it.
1144 //
1145 // The behavior of an undefined weak reference is implementation defined. If
1146 // the relocation is to a weak undef, and we are producing an executable, let
1147 // relocate{,Non}Alloc() resolve it.
1148 if (isStaticLinkTimeConstant(expr, type, sym, sec, offset) ||
1149 (!config->shared && sym.isUndefWeak())) {
1150 sec.relocations.push_back({expr, type, offset, addend, &sym});
1151 return;
1152 }
1153
1154 bool canWrite = (sec.flags & SHF_WRITE) || !config->zText;
1155 if (canWrite) {
1156 RelType rel = target->getDynRel(type);
1157 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1158 addRelativeReloc(&sec, offset, &sym, addend, expr, type);
1159 return;
1160 } else if (rel != 0) {
1161 if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1162 rel = target->relativeRel;
1163 sec.getPartition().relaDyn->addReloc(rel, &sec, offset, &sym, addend,
1164 R_ADDEND, type);
1165
1166 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1167 // While regular ABI uses dynamic relocations to fill up GOT entries
1168 // MIPS ABI requires dynamic linker to fills up GOT entries using
1169 // specially sorted dynamic symbol table. This affects even dynamic
1170 // relocations against symbols which do not require GOT entries
1171 // creation explicitly, i.e. do not have any GOT-relocations. So if
1172 // a preemptible symbol has a dynamic relocation we anyway have
1173 // to create a GOT entry for it.
1174 // If a non-preemptible symbol has a dynamic relocation against it,
1175 // dynamic linker takes it st_value, adds offset and writes down
1176 // result of the dynamic relocation. In case of preemptible symbol
1177 // dynamic linker performs symbol resolution, writes the symbol value
1178 // to the GOT entry and reads the GOT entry when it needs to perform
1179 // a dynamic relocation.
1180 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1181 if (config->emachine == EM_MIPS)
1182 in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1183 return;
1184 }
1185 }
1186
1187 // When producing an executable, we can perform copy relocations (for
1188 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1189 if (!config->shared) {
1190 if (!canDefineSymbolInExecutable(sym)) {
1191 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1192 getLocation(sec, sym, offset));
1193 return;
1194 }
1195
1196 if (sym.isObject()) {
1197 // Produce a copy relocation.
1198 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1199 if (!config->zCopyreloc)
1200 error("unresolvable relocation " + toString(type) +
1201 " against symbol '" + toString(*ss) +
1202 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1203 getLocation(sec, sym, offset));
1204 addCopyRelSymbol<ELFT>(*ss);
1205 }
1206 sec.relocations.push_back({expr, type, offset, addend, &sym});
1207 return;
1208 }
1209
1210 // This handles a non PIC program call to function in a shared library. In
1211 // an ideal world, we could just report an error saying the relocation can
1212 // overflow at runtime. In the real world with glibc, crt1.o has a
1213 // R_X86_64_PC32 pointing to libc.so.
1214 //
1215 // The general idea on how to handle such cases is to create a PLT entry and
1216 // use that as the function value.
1217 //
1218 // For the static linking part, we just return a plt expr and everything
1219 // else will use the PLT entry as the address.
1220 //
1221 // The remaining problem is making sure pointer equality still works. We
1222 // need the help of the dynamic linker for that. We let it know that we have
1223 // a direct reference to a so symbol by creating an undefined symbol with a
1224 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1225 // the value of the symbol we created. This is true even for got entries, so
1226 // pointer equality is maintained. To avoid an infinite loop, the only entry
1227 // that points to the real function is a dedicated got entry used by the
1228 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1229 // R_386_JMP_SLOT, etc).
1230
1231 // For position independent executable on i386, the plt entry requires ebx
1232 // to be set. This causes two problems:
1233 // * If some code has a direct reference to a function, it was probably
1234 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1235 // * If a library definition gets preempted to the executable, it will have
1236 // the wrong ebx value.
1237 if (sym.isFunc()) {
1238 if (config->pie && config->emachine == EM_386)
1239 errorOrWarn("symbol '" + toString(sym) +
1240 "' cannot be preempted; recompile with -fPIE" +
1241 getLocation(sec, sym, offset));
1242 if (!sym.isInPlt())
1243 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1244 if (!sym.isDefined()) {
1245 replaceWithDefined(
1246 sym, in.plt,
1247 target->pltHeaderSize + target->pltEntrySize * sym.pltIndex, 0);
1248 if (config->emachine == EM_PPC) {
1249 // PPC32 canonical PLT entries are at the beginning of .glink
1250 cast<Defined>(sym).value = in.plt->headerSize;
1251 in.plt->headerSize += 16;
1252 cast<PPC32GlinkSection>(in.plt)->canonical_plts.push_back(&sym);
1253 }
1254 }
1255 sym.needsPltAddr = true;
1256 sec.relocations.push_back({expr, type, offset, addend, &sym});
1257 return;
1258 }
1259 }
1260
1261 if (config->isPic) {
1262 if (!canWrite && !isRelExpr(expr))
1263 errorOrWarn(
1264 "can't create dynamic relocation " + toString(type) + " against " +
1265 (sym.getName().empty() ? "local symbol"
1266 : "symbol: " + toString(sym)) +
1267 " in readonly segment; recompile object files with -fPIC "
1268 "or pass '-Wl,-z,notext' to allow text relocations in the output" +
1269 getLocation(sec, sym, offset));
1270 else
1271 errorOrWarn(
1272 "relocation " + toString(type) + " cannot be used against " +
1273 (sym.getName().empty() ? "local symbol" : "symbol " + toString(sym)) +
1274 "; recompile with -fPIC" + getLocation(sec, sym, offset));
1275 return;
1276 }
1277
1278 errorOrWarn("symbol '" + toString(sym) + "' has no type" +
1279 getLocation(sec, sym, offset));
1280 }
1281
1282 template <class ELFT, class RelTy>
scanReloc(InputSectionBase & sec,OffsetGetter & getOffset,RelTy * & i,RelTy * start,RelTy * end)1283 static void scanReloc(InputSectionBase &sec, OffsetGetter &getOffset, RelTy *&i,
1284 RelTy *start, RelTy *end) {
1285 const RelTy &rel = *i;
1286 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1287 Symbol &sym = sec.getFile<ELFT>()->getSymbol(symIndex);
1288 RelType type;
1289
1290 // Deal with MIPS oddity.
1291 if (config->mipsN32Abi) {
1292 type = getMipsN32RelType(i, end);
1293 } else {
1294 type = rel.getType(config->isMips64EL);
1295 ++i;
1296 }
1297
1298 // Get an offset in an output section this relocation is applied to.
1299 uint64_t offset = getOffset.get(rel.r_offset);
1300 if (offset == uint64_t(-1))
1301 return;
1302
1303 // Error if the target symbol is undefined. Symbol index 0 may be used by
1304 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1305 if (symIndex != 0 && maybeReportUndefined(sym, sec, rel.r_offset))
1306 return;
1307
1308 const uint8_t *relocatedAddr = sec.data().begin() + rel.r_offset;
1309 RelExpr expr = target->getRelExpr(type, sym, relocatedAddr);
1310
1311 // Ignore R_*_NONE and other marker relocations.
1312 if (expr == R_NONE)
1313 return;
1314
1315 if (sym.isGnuIFunc() && !config->zText && config->warnIfuncTextrel) {
1316 warn("using ifunc symbols when text relocations are allowed may produce "
1317 "a binary that will segfault, if the object file is linked with "
1318 "old version of glibc (glibc 2.28 and earlier). If this applies to "
1319 "you, consider recompiling the object files without -fPIC and "
1320 "without -Wl,-z,notext option. Use -no-warn-ifunc-textrel to "
1321 "turn off this warning." +
1322 getLocation(sec, sym, offset));
1323 }
1324
1325 // Read an addend.
1326 int64_t addend = computeAddend<ELFT>(rel, end, sec, expr, sym.isLocal());
1327
1328 if (config->emachine == EM_PPC64) {
1329 // We can separate the small code model relocations into 2 categories:
1330 // 1) Those that access the compiler generated .toc sections.
1331 // 2) Those that access the linker allocated got entries.
1332 // lld allocates got entries to symbols on demand. Since we don't try to
1333 // sort the got entries in any way, we don't have to track which objects
1334 // have got-based small code model relocs. The .toc sections get placed
1335 // after the end of the linker allocated .got section and we do sort those
1336 // so sections addressed with small code model relocations come first.
1337 if (isPPC64SmallCodeModelTocReloc(type))
1338 sec.file->ppc64SmallCodeModelTocRelocs = true;
1339
1340 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1341 // InputSectionBase::relocateAlloc().
1342 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1343 cast<Defined>(sym).section->name == ".toc")
1344 ppc64noTocRelax.insert({&sym, addend});
1345
1346 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1347 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1348 if (i == end) {
1349 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1350 "relocation" +
1351 getLocation(sec, sym, offset));
1352 return;
1353 }
1354
1355 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1356 // so we can discern it later from the toc-case.
1357 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1358 ++offset;
1359 }
1360 }
1361
1362 // Relax relocations.
1363 //
1364 // If we know that a PLT entry will be resolved within the same ELF module, we
1365 // can skip PLT access and directly jump to the destination function. For
1366 // example, if we are linking a main executable, all dynamic symbols that can
1367 // be resolved within the executable will actually be resolved that way at
1368 // runtime, because the main executable is always at the beginning of a search
1369 // list. We can leverage that fact.
1370 if (!sym.isPreemptible && (!sym.isGnuIFunc() || config->zIfuncNoplt)) {
1371 if (expr != R_GOT_PC) {
1372 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1373 // stub type. It should be ignored if optimized to R_PC.
1374 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1375 addend &= ~0x8000;
1376 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1377 // call __tls_get_addr even if the symbol is non-preemptible.
1378 if (!(config->emachine == EM_HEXAGON &&
1379 (type == R_HEX_GD_PLT_B22_PCREL ||
1380 type == R_HEX_GD_PLT_B22_PCREL_X ||
1381 type == R_HEX_GD_PLT_B32_PCREL_X)))
1382 expr = fromPlt(expr);
1383 } else if (!isAbsoluteValue(sym)) {
1384 expr = target->adjustGotPcExpr(type, addend, relocatedAddr);
1385 }
1386 }
1387
1388 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1389 // uses their addresses, we need GOT or GOTPLT to be created.
1390 //
1391 // The 4 types that relative GOTPLT are all x86 and x86-64 specific.
1392 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1393 in.gotPlt->hasGotPltOffRel = true;
1394 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC64_TOCBASE, R_PPC64_RELAX_TOC>(
1395 expr)) {
1396 in.got->hasGotOffRel = true;
1397 }
1398
1399 // Process some TLS relocations, including relaxing TLS relocations.
1400 // Note that this function does not handle all TLS relocations.
1401 if (unsigned processed =
1402 handleTlsRelocation<ELFT>(type, sym, sec, offset, addend, expr)) {
1403 i += (processed - 1);
1404 return;
1405 }
1406
1407 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1408 // direct relocation on through.
1409 if (sym.isGnuIFunc() && config->zIfuncNoplt) {
1410 sym.exportDynamic = true;
1411 mainPart->relaDyn->addReloc(type, &sec, offset, &sym, addend, R_ADDEND, type);
1412 return;
1413 }
1414
1415 // Non-preemptible ifuncs require special handling. First, handle the usual
1416 // case where the symbol isn't one of these.
1417 if (!sym.isGnuIFunc() || sym.isPreemptible) {
1418 // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol.
1419 if (needsPlt(expr) && !sym.isInPlt())
1420 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel, sym);
1421
1422 // Create a GOT slot if a relocation needs GOT.
1423 if (needsGot(expr)) {
1424 if (config->emachine == EM_MIPS) {
1425 // MIPS ABI has special rules to process GOT entries and doesn't
1426 // require relocation entries for them. A special case is TLS
1427 // relocations. In that case dynamic loader applies dynamic
1428 // relocations to initialize TLS GOT entries.
1429 // See "Global Offset Table" in Chapter 5 in the following document
1430 // for detailed description:
1431 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1432 in.mipsGot->addEntry(*sec.file, sym, addend, expr);
1433 } else if (!sym.isInGot()) {
1434 addGotEntry(sym);
1435 }
1436 }
1437 } else {
1438 // Handle a reference to a non-preemptible ifunc. These are special in a
1439 // few ways:
1440 //
1441 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1442 // a fixed value. But assuming that all references to the ifunc are
1443 // GOT-generating or PLT-generating, the handling of an ifunc is
1444 // relatively straightforward. We create a PLT entry in Iplt, which is
1445 // usually at the end of .plt, which makes an indirect call using a
1446 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1447 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1448 // which is usually at the end of .rela.plt. Unlike most relocations in
1449 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1450 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1451 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1452 // .got.plt without requiring a separate GOT entry.
1453 //
1454 // - Despite the fact that an ifunc does not have a fixed value, compilers
1455 // that are not passed -fPIC will assume that they do, and will emit
1456 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1457 // symbol. This means that if a direct relocation to the symbol is
1458 // seen, the linker must set a value for the symbol, and this value must
1459 // be consistent no matter what type of reference is made to the symbol.
1460 // This can be done by creating a PLT entry for the symbol in the way
1461 // described above and making it canonical, that is, making all references
1462 // point to the PLT entry instead of the resolver. In lld we also store
1463 // the address of the PLT entry in the dynamic symbol table, which means
1464 // that the symbol will also have the same value in other modules.
1465 // Because the value loaded from the GOT needs to be consistent with
1466 // the value computed using a direct relocation, a non-preemptible ifunc
1467 // may end up with two GOT entries, one in .got.plt that points to the
1468 // address returned by the resolver and is used only by the PLT entry,
1469 // and another in .got that points to the PLT entry and is used by
1470 // GOT-generating relocations.
1471 //
1472 // - The fact that these symbols do not have a fixed value makes them an
1473 // exception to the general rule that a statically linked executable does
1474 // not require any form of dynamic relocation. To handle these relocations
1475 // correctly, the IRELATIVE relocations are stored in an array which a
1476 // statically linked executable's startup code must enumerate using the
1477 // linker-defined symbols __rela?_iplt_{start,end}.
1478 if (!sym.isInPlt()) {
1479 // Create PLT and GOTPLT slots for the symbol.
1480 sym.isInIplt = true;
1481
1482 // Create a copy of the symbol to use as the target of the IRELATIVE
1483 // relocation in the igotPlt. This is in case we make the PLT canonical
1484 // later, which would overwrite the original symbol.
1485 //
1486 // FIXME: Creating a copy of the symbol here is a bit of a hack. All
1487 // that's really needed to create the IRELATIVE is the section and value,
1488 // so ideally we should just need to copy those.
1489 auto *directSym = make<Defined>(cast<Defined>(sym));
1490 addPltEntry(in.iplt, in.igotPlt, in.relaIplt, target->iRelativeRel,
1491 *directSym);
1492 sym.pltIndex = directSym->pltIndex;
1493 }
1494 if (needsGot(expr)) {
1495 // Redirect GOT accesses to point to the Igot.
1496 //
1497 // This field is also used to keep track of whether we ever needed a GOT
1498 // entry. If we did and we make the PLT canonical later, we'll need to
1499 // create a GOT entry pointing to the PLT entry for Sym.
1500 sym.gotInIgot = true;
1501 } else if (!needsPlt(expr)) {
1502 // Make the ifunc's PLT entry canonical by changing the value of its
1503 // symbol to redirect all references to point to it.
1504 auto &d = cast<Defined>(sym);
1505 d.section = in.iplt;
1506 d.value = sym.pltIndex * target->ipltEntrySize;
1507 d.size = 0;
1508 // It's important to set the symbol type here so that dynamic loaders
1509 // don't try to call the PLT as if it were an ifunc resolver.
1510 d.type = STT_FUNC;
1511
1512 if (sym.gotInIgot) {
1513 // We previously encountered a GOT generating reference that we
1514 // redirected to the Igot. Now that the PLT entry is canonical we must
1515 // clear the redirection to the Igot and add a GOT entry. As we've
1516 // changed the symbol type to STT_FUNC future GOT generating references
1517 // will naturally use this GOT entry.
1518 //
1519 // We don't need to worry about creating a MIPS GOT here because ifuncs
1520 // aren't a thing on MIPS.
1521 sym.gotInIgot = false;
1522 addGotEntry(sym);
1523 }
1524 }
1525 }
1526
1527 processRelocAux<ELFT>(sec, expr, type, offset, sym, rel, addend);
1528 }
1529
1530 template <class ELFT, class RelTy>
scanRelocs(InputSectionBase & sec,ArrayRef<RelTy> rels)1531 static void scanRelocs(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1532 OffsetGetter getOffset(sec);
1533
1534 // Not all relocations end up in Sec.Relocations, but a lot do.
1535 sec.relocations.reserve(rels.size());
1536
1537 for (auto i = rels.begin(), end = rels.end(); i != end;)
1538 scanReloc<ELFT>(sec, getOffset, i, rels.begin(), end);
1539
1540 // Sort relocations by offset for more efficient searching for
1541 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1542 if (config->emachine == EM_RISCV ||
1543 (config->emachine == EM_PPC64 && sec.name == ".toc"))
1544 llvm::stable_sort(sec.relocations,
1545 [](const Relocation &lhs, const Relocation &rhs) {
1546 return lhs.offset < rhs.offset;
1547 });
1548 }
1549
scanRelocations(InputSectionBase & s)1550 template <class ELFT> void elf::scanRelocations(InputSectionBase &s) {
1551 if (s.areRelocsRela)
1552 scanRelocs<ELFT>(s, s.relas<ELFT>());
1553 else
1554 scanRelocs<ELFT>(s, s.rels<ELFT>());
1555 }
1556
mergeCmp(const InputSection * a,const InputSection * b)1557 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1558 // std::merge requires a strict weak ordering.
1559 if (a->outSecOff < b->outSecOff)
1560 return true;
1561
1562 if (a->outSecOff == b->outSecOff) {
1563 auto *ta = dyn_cast<ThunkSection>(a);
1564 auto *tb = dyn_cast<ThunkSection>(b);
1565
1566 // Check if Thunk is immediately before any specific Target
1567 // InputSection for example Mips LA25 Thunks.
1568 if (ta && ta->getTargetInputSection() == b)
1569 return true;
1570
1571 // Place Thunk Sections without specific targets before
1572 // non-Thunk Sections.
1573 if (ta && !tb && !ta->getTargetInputSection())
1574 return true;
1575 }
1576
1577 return false;
1578 }
1579
1580 // Call Fn on every executable InputSection accessed via the linker script
1581 // InputSectionDescription::Sections.
forEachInputSectionDescription(ArrayRef<OutputSection * > outputSections,llvm::function_ref<void (OutputSection *,InputSectionDescription *)> fn)1582 static void forEachInputSectionDescription(
1583 ArrayRef<OutputSection *> outputSections,
1584 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1585 for (OutputSection *os : outputSections) {
1586 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1587 continue;
1588 for (BaseCommand *bc : os->sectionCommands)
1589 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1590 fn(os, isd);
1591 }
1592 }
1593
1594 // Thunk Implementation
1595 //
1596 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1597 // of code that the linker inserts inbetween a caller and a callee. The thunks
1598 // are added at link time rather than compile time as the decision on whether
1599 // a thunk is needed, such as the caller and callee being out of range, can only
1600 // be made at link time.
1601 //
1602 // It is straightforward to tell given the current state of the program when a
1603 // thunk is needed for a particular call. The more difficult part is that
1604 // the thunk needs to be placed in the program such that the caller can reach
1605 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1606 // the program alters addresses, which can mean more thunks etc.
1607 //
1608 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1609 // The decision to have a ThunkSection act as a container means that we can
1610 // more easily handle the most common case of a single block of contiguous
1611 // Thunks by inserting just a single ThunkSection.
1612 //
1613 // The implementation of Thunks in lld is split across these areas
1614 // Relocations.cpp : Framework for creating and placing thunks
1615 // Thunks.cpp : The code generated for each supported thunk
1616 // Target.cpp : Target specific hooks that the framework uses to decide when
1617 // a thunk is used
1618 // Synthetic.cpp : Implementation of ThunkSection
1619 // Writer.cpp : Iteratively call framework until no more Thunks added
1620 //
1621 // Thunk placement requirements:
1622 // Mips LA25 thunks. These must be placed immediately before the callee section
1623 // We can assume that the caller is in range of the Thunk. These are modelled
1624 // by Thunks that return the section they must precede with
1625 // getTargetInputSection().
1626 //
1627 // ARM interworking and range extension thunks. These thunks must be placed
1628 // within range of the caller. All implemented ARM thunks can always reach the
1629 // callee as they use an indirect jump via a register that has no range
1630 // restrictions.
1631 //
1632 // Thunk placement algorithm:
1633 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1634 // getTargetInputSection().
1635 //
1636 // For thunks that must be placed within range of the caller there are many
1637 // possible choices given that the maximum range from the caller is usually
1638 // much larger than the average InputSection size. Desirable properties include:
1639 // - Maximize reuse of thunks by multiple callers
1640 // - Minimize number of ThunkSections to simplify insertion
1641 // - Handle impact of already added Thunks on addresses
1642 // - Simple to understand and implement
1643 //
1644 // In lld for the first pass, we pre-create one or more ThunkSections per
1645 // InputSectionDescription at Target specific intervals. A ThunkSection is
1646 // placed so that the estimated end of the ThunkSection is within range of the
1647 // start of the InputSectionDescription or the previous ThunkSection. For
1648 // example:
1649 // InputSectionDescription
1650 // Section 0
1651 // ...
1652 // Section N
1653 // ThunkSection 0
1654 // Section N + 1
1655 // ...
1656 // Section N + K
1657 // Thunk Section 1
1658 //
1659 // The intention is that we can add a Thunk to a ThunkSection that is well
1660 // spaced enough to service a number of callers without having to do a lot
1661 // of work. An important principle is that it is not an error if a Thunk cannot
1662 // be placed in a pre-created ThunkSection; when this happens we create a new
1663 // ThunkSection placed next to the caller. This allows us to handle the vast
1664 // majority of thunks simply, but also handle rare cases where the branch range
1665 // is smaller than the target specific spacing.
1666 //
1667 // The algorithm is expected to create all the thunks that are needed in a
1668 // single pass, with a small number of programs needing a second pass due to
1669 // the insertion of thunks in the first pass increasing the offset between
1670 // callers and callees that were only just in range.
1671 //
1672 // A consequence of allowing new ThunkSections to be created outside of the
1673 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1674 // range in pass K, are out of range in some pass > K due to the insertion of
1675 // more Thunks in between the caller and callee. When this happens we retarget
1676 // the relocation back to the original target and create another Thunk.
1677
1678 // Remove ThunkSections that are empty, this should only be the initial set
1679 // precreated on pass 0.
1680
1681 // Insert the Thunks for OutputSection OS into their designated place
1682 // in the Sections vector, and recalculate the InputSection output section
1683 // offsets.
1684 // This may invalidate any output section offsets stored outside of InputSection
mergeThunks(ArrayRef<OutputSection * > outputSections)1685 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1686 forEachInputSectionDescription(
1687 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1688 if (isd->thunkSections.empty())
1689 return;
1690
1691 // Remove any zero sized precreated Thunks.
1692 llvm::erase_if(isd->thunkSections,
1693 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1694 return ts.first->getSize() == 0;
1695 });
1696
1697 // ISD->ThunkSections contains all created ThunkSections, including
1698 // those inserted in previous passes. Extract the Thunks created this
1699 // pass and order them in ascending outSecOff.
1700 std::vector<ThunkSection *> newThunks;
1701 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1702 if (ts.second == pass)
1703 newThunks.push_back(ts.first);
1704 llvm::stable_sort(newThunks,
1705 [](const ThunkSection *a, const ThunkSection *b) {
1706 return a->outSecOff < b->outSecOff;
1707 });
1708
1709 // Merge sorted vectors of Thunks and InputSections by outSecOff
1710 std::vector<InputSection *> tmp;
1711 tmp.reserve(isd->sections.size() + newThunks.size());
1712
1713 std::merge(isd->sections.begin(), isd->sections.end(),
1714 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1715 mergeCmp);
1716
1717 isd->sections = std::move(tmp);
1718 });
1719 }
1720
1721 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1722 // is in range of Src. An ISD maps to a range of InputSections described by a
1723 // linker script section pattern such as { .text .text.* }.
getISDThunkSec(OutputSection * os,InputSection * isec,InputSectionDescription * isd,uint32_t type,uint64_t src)1724 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os, InputSection *isec,
1725 InputSectionDescription *isd,
1726 uint32_t type, uint64_t src) {
1727 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1728 ThunkSection *ts = tp.first;
1729 uint64_t tsBase = os->addr + ts->outSecOff;
1730 uint64_t tsLimit = tsBase + ts->getSize();
1731 if (target->inBranchRange(type, src, (src > tsLimit) ? tsBase : tsLimit))
1732 return ts;
1733 }
1734
1735 // No suitable ThunkSection exists. This can happen when there is a branch
1736 // with lower range than the ThunkSection spacing or when there are too
1737 // many Thunks. Create a new ThunkSection as close to the InputSection as
1738 // possible. Error if InputSection is so large we cannot place ThunkSection
1739 // anywhere in Range.
1740 uint64_t thunkSecOff = isec->outSecOff;
1741 if (!target->inBranchRange(type, src, os->addr + thunkSecOff)) {
1742 thunkSecOff = isec->outSecOff + isec->getSize();
1743 if (!target->inBranchRange(type, src, os->addr + thunkSecOff))
1744 fatal("InputSection too large for range extension thunk " +
1745 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1746 }
1747 return addThunkSection(os, isd, thunkSecOff);
1748 }
1749
1750 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1751 // precedes its Target.
getISThunkSec(InputSection * isec)1752 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1753 ThunkSection *ts = thunkedSections.lookup(isec);
1754 if (ts)
1755 return ts;
1756
1757 // Find InputSectionRange within Target Output Section (TOS) that the
1758 // InputSection (IS) that we need to precede is in.
1759 OutputSection *tos = isec->getParent();
1760 for (BaseCommand *bc : tos->sectionCommands) {
1761 auto *isd = dyn_cast<InputSectionDescription>(bc);
1762 if (!isd || isd->sections.empty())
1763 continue;
1764
1765 InputSection *first = isd->sections.front();
1766 InputSection *last = isd->sections.back();
1767
1768 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1769 continue;
1770
1771 ts = addThunkSection(tos, isd, isec->outSecOff);
1772 thunkedSections[isec] = ts;
1773 return ts;
1774 }
1775
1776 return nullptr;
1777 }
1778
1779 // Create one or more ThunkSections per OS that can be used to place Thunks.
1780 // We attempt to place the ThunkSections using the following desirable
1781 // properties:
1782 // - Within range of the maximum number of callers
1783 // - Minimise the number of ThunkSections
1784 //
1785 // We follow a simple but conservative heuristic to place ThunkSections at
1786 // offsets that are multiples of a Target specific branch range.
1787 // For an InputSectionDescription that is smaller than the range, a single
1788 // ThunkSection at the end of the range will do.
1789 //
1790 // For an InputSectionDescription that is more than twice the size of the range,
1791 // we place the last ThunkSection at range bytes from the end of the
1792 // InputSectionDescription in order to increase the likelihood that the
1793 // distance from a thunk to its target will be sufficiently small to
1794 // allow for the creation of a short thunk.
createInitialThunkSections(ArrayRef<OutputSection * > outputSections)1795 void ThunkCreator::createInitialThunkSections(
1796 ArrayRef<OutputSection *> outputSections) {
1797 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1798
1799 forEachInputSectionDescription(
1800 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1801 if (isd->sections.empty())
1802 return;
1803
1804 uint32_t isdBegin = isd->sections.front()->outSecOff;
1805 uint32_t isdEnd =
1806 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1807 uint32_t lastThunkLowerBound = -1;
1808 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
1809 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
1810
1811 uint32_t isecLimit;
1812 uint32_t prevIsecLimit = isdBegin;
1813 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
1814
1815 for (const InputSection *isec : isd->sections) {
1816 isecLimit = isec->outSecOff + isec->getSize();
1817 if (isecLimit > thunkUpperBound) {
1818 addThunkSection(os, isd, prevIsecLimit);
1819 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
1820 }
1821 if (isecLimit > lastThunkLowerBound)
1822 break;
1823 prevIsecLimit = isecLimit;
1824 }
1825 addThunkSection(os, isd, isecLimit);
1826 });
1827 }
1828
addThunkSection(OutputSection * os,InputSectionDescription * isd,uint64_t off)1829 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
1830 InputSectionDescription *isd,
1831 uint64_t off) {
1832 auto *ts = make<ThunkSection>(os, off);
1833 ts->partition = os->partition;
1834 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
1835 !isd->sections.empty()) {
1836 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
1837 // thunks we disturb the base addresses of sections placed after the thunks
1838 // this makes patches we have generated redundant, and may cause us to
1839 // generate more patches as different instructions are now in sensitive
1840 // locations. When we generate more patches we may force more branches to
1841 // go out of range, causing more thunks to be generated. In pathological
1842 // cases this can cause the address dependent content pass not to converge.
1843 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
1844 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
1845 // which means that adding Thunks to the section does not invalidate
1846 // errata patches for following code.
1847 // Rounding up the size to 4KiB has consequences for code-size and can
1848 // trip up linker script defined assertions. For example the linux kernel
1849 // has an assertion that what LLD represents as an InputSectionDescription
1850 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
1851 // We use the heuristic of rounding up the size when both of the following
1852 // conditions are true:
1853 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
1854 // accounts for the case where no single InputSectionDescription is
1855 // larger than the OutputSection size. This is conservative but simple.
1856 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
1857 // any assertion failures that an InputSectionDescription is < 4 KiB
1858 // in size.
1859 uint64_t isdSize = isd->sections.back()->outSecOff +
1860 isd->sections.back()->getSize() -
1861 isd->sections.front()->outSecOff;
1862 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
1863 ts->roundUpSizeForErrata = true;
1864 }
1865 isd->thunkSections.push_back({ts, pass});
1866 return ts;
1867 }
1868
isThunkSectionCompatible(InputSection * source,SectionBase * target)1869 static bool isThunkSectionCompatible(InputSection *source,
1870 SectionBase *target) {
1871 // We can't reuse thunks in different loadable partitions because they might
1872 // not be loaded. But partition 1 (the main partition) will always be loaded.
1873 if (source->partition != target->partition)
1874 return target->partition == 1;
1875 return true;
1876 }
1877
getPCBias(RelType type)1878 static int64_t getPCBias(RelType type) {
1879 if (config->emachine != EM_ARM)
1880 return 0;
1881 switch (type) {
1882 case R_ARM_THM_JUMP19:
1883 case R_ARM_THM_JUMP24:
1884 case R_ARM_THM_CALL:
1885 return 4;
1886 default:
1887 return 8;
1888 }
1889 }
1890
getThunk(InputSection * isec,Relocation & rel,uint64_t src)1891 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
1892 Relocation &rel, uint64_t src) {
1893 std::vector<Thunk *> *thunkVec = nullptr;
1894 int64_t addend = rel.addend + getPCBias(rel.type);
1895
1896 // We use a ((section, offset), addend) pair to find the thunk position if
1897 // possible so that we create only one thunk for aliased symbols or ICFed
1898 // sections. There may be multiple relocations sharing the same (section,
1899 // offset + addend) pair. We may revert the relocation back to its original
1900 // non-Thunk target, so we cannot fold offset + addend.
1901 if (auto *d = dyn_cast<Defined>(rel.sym))
1902 if (!d->isInPlt() && d->section)
1903 thunkVec = &thunkedSymbolsBySectionAndAddend[{
1904 {d->section->repl, d->value}, addend}];
1905 if (!thunkVec)
1906 thunkVec = &thunkedSymbols[{rel.sym, addend}];
1907
1908 // Check existing Thunks for Sym to see if they can be reused
1909 for (Thunk *t : *thunkVec)
1910 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
1911 t->isCompatibleWith(*isec, rel) &&
1912 target->inBranchRange(rel.type, src,
1913 t->getThunkTargetSym()->getVA(rel.addend) +
1914 getPCBias(rel.type)))
1915 return std::make_pair(t, false);
1916
1917 // No existing compatible Thunk in range, create a new one
1918 Thunk *t = addThunk(*isec, rel);
1919 thunkVec->push_back(t);
1920 return std::make_pair(t, true);
1921 }
1922
1923 // Return true if the relocation target is an in range Thunk.
1924 // Return false if the relocation is not to a Thunk. If the relocation target
1925 // was originally to a Thunk, but is no longer in range we revert the
1926 // relocation back to its original non-Thunk target.
normalizeExistingThunk(Relocation & rel,uint64_t src)1927 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
1928 if (Thunk *t = thunks.lookup(rel.sym)) {
1929 if (target->inBranchRange(rel.type, src,
1930 rel.sym->getVA(rel.addend) + getPCBias(rel.type)))
1931 return true;
1932 rel.sym = &t->destination;
1933 rel.addend = t->addend;
1934 if (rel.sym->isInPlt())
1935 rel.expr = toPlt(rel.expr);
1936 }
1937 return false;
1938 }
1939
1940 // Process all relocations from the InputSections that have been assigned
1941 // to InputSectionDescriptions and redirect through Thunks if needed. The
1942 // function should be called iteratively until it returns false.
1943 //
1944 // PreConditions:
1945 // All InputSections that may need a Thunk are reachable from
1946 // OutputSectionCommands.
1947 //
1948 // All OutputSections have an address and all InputSections have an offset
1949 // within the OutputSection.
1950 //
1951 // The offsets between caller (relocation place) and callee
1952 // (relocation target) will not be modified outside of createThunks().
1953 //
1954 // PostConditions:
1955 // If return value is true then ThunkSections have been inserted into
1956 // OutputSections. All relocations that needed a Thunk based on the information
1957 // available to createThunks() on entry have been redirected to a Thunk. Note
1958 // that adding Thunks changes offsets between caller and callee so more Thunks
1959 // may be required.
1960 //
1961 // If return value is false then no more Thunks are needed, and createThunks has
1962 // made no changes. If the target requires range extension thunks, currently
1963 // ARM, then any future change in offset between caller and callee risks a
1964 // relocation out of range error.
createThunks(ArrayRef<OutputSection * > outputSections)1965 bool ThunkCreator::createThunks(ArrayRef<OutputSection *> outputSections) {
1966 bool addressesChanged = false;
1967
1968 if (pass == 0 && target->getThunkSectionSpacing())
1969 createInitialThunkSections(outputSections);
1970
1971 // Create all the Thunks and insert them into synthetic ThunkSections. The
1972 // ThunkSections are later inserted back into InputSectionDescriptions.
1973 // We separate the creation of ThunkSections from the insertion of the
1974 // ThunkSections as ThunkSections are not always inserted into the same
1975 // InputSectionDescription as the caller.
1976 forEachInputSectionDescription(
1977 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1978 for (InputSection *isec : isd->sections)
1979 for (Relocation &rel : isec->relocations) {
1980 uint64_t src = isec->getVA(rel.offset);
1981
1982 // If we are a relocation to an existing Thunk, check if it is
1983 // still in range. If not then Rel will be altered to point to its
1984 // original target so another Thunk can be generated.
1985 if (pass > 0 && normalizeExistingThunk(rel, src))
1986 continue;
1987
1988 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
1989 *rel.sym, rel.addend))
1990 continue;
1991
1992 Thunk *t;
1993 bool isNew;
1994 std::tie(t, isNew) = getThunk(isec, rel, src);
1995
1996 if (isNew) {
1997 // Find or create a ThunkSection for the new Thunk
1998 ThunkSection *ts;
1999 if (auto *tis = t->getTargetInputSection())
2000 ts = getISThunkSec(tis);
2001 else
2002 ts = getISDThunkSec(os, isec, isd, rel.type, src);
2003 ts->addThunk(t);
2004 thunks[t->getThunkTargetSym()] = t;
2005 }
2006
2007 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2008 rel.sym = t->getThunkTargetSym();
2009 rel.expr = fromPlt(rel.expr);
2010
2011 // On AArch64 and PPC, a jump/call relocation may be encoded as
2012 // STT_SECTION + non-zero addend, clear the addend after
2013 // redirection.
2014 if (config->emachine != EM_MIPS)
2015 rel.addend = -getPCBias(rel.type);
2016 }
2017
2018 for (auto &p : isd->thunkSections)
2019 addressesChanged |= p.first->assignOffsets();
2020 });
2021
2022 for (auto &p : thunkedSections)
2023 addressesChanged |= p.second->assignOffsets();
2024
2025 // Merge all created synthetic ThunkSections back into OutputSection
2026 mergeThunks(outputSections);
2027 ++pass;
2028 return addressesChanged;
2029 }
2030
2031 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2032 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2033 // __tls_get_addr.
2034 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
hexagonNeedsTLSSymbol(ArrayRef<OutputSection * > outputSections)2035 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2036 bool needTlsSymbol = false;
2037 forEachInputSectionDescription(
2038 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2039 for (InputSection *isec : isd->sections)
2040 for (Relocation &rel : isec->relocations)
2041 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2042 needTlsSymbol = true;
2043 return;
2044 }
2045 });
2046 return needTlsSymbol;
2047 }
2048
hexagonTLSSymbolUpdate(ArrayRef<OutputSection * > outputSections)2049 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2050 Symbol *sym = symtab->find("__tls_get_addr");
2051 if (!sym)
2052 return;
2053 bool needEntry = true;
2054 forEachInputSectionDescription(
2055 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2056 for (InputSection *isec : isd->sections)
2057 for (Relocation &rel : isec->relocations)
2058 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2059 if (needEntry) {
2060 addPltEntry(in.plt, in.gotPlt, in.relaPlt, target->pltRel,
2061 *sym);
2062 needEntry = false;
2063 }
2064 rel.sym = sym;
2065 }
2066 });
2067 }
2068
2069 template void elf::scanRelocations<ELF32LE>(InputSectionBase &);
2070 template void elf::scanRelocations<ELF32BE>(InputSectionBase &);
2071 template void elf::scanRelocations<ELF64LE>(InputSectionBase &);
2072 template void elf::scanRelocations<ELF64BE>(InputSectionBase &);
2073 template void elf::reportUndefinedSymbols<ELF32LE>();
2074 template void elf::reportUndefinedSymbols<ELF32BE>();
2075 template void elf::reportUndefinedSymbols<ELF64LE>();
2076 template void elf::reportUndefinedSymbols<ELF64BE>();
2077