• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39 
40 #define DEBUG_TYPE "iv-descriptors"
41 
areAllUsesIn(Instruction * I,SmallPtrSetImpl<Instruction * > & Set)42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
43                                         SmallPtrSetImpl<Instruction *> &Set) {
44   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
45     if (!Set.count(dyn_cast<Instruction>(*Use)))
46       return false;
47   return true;
48 }
49 
isIntegerRecurrenceKind(RecurrenceKind Kind)50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
51   switch (Kind) {
52   default:
53     break;
54   case RK_IntegerAdd:
55   case RK_IntegerMult:
56   case RK_IntegerOr:
57   case RK_IntegerAnd:
58   case RK_IntegerXor:
59   case RK_IntegerMinMax:
60     return true;
61   }
62   return false;
63 }
64 
isFloatingPointRecurrenceKind(RecurrenceKind Kind)65 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
66   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
67 }
68 
isArithmeticRecurrenceKind(RecurrenceKind Kind)69 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
70   switch (Kind) {
71   default:
72     break;
73   case RK_IntegerAdd:
74   case RK_IntegerMult:
75   case RK_FloatAdd:
76   case RK_FloatMult:
77     return true;
78   }
79   return false;
80 }
81 
82 /// Determines if Phi may have been type-promoted. If Phi has a single user
83 /// that ANDs the Phi with a type mask, return the user. RT is updated to
84 /// account for the narrower bit width represented by the mask, and the AND
85 /// instruction is added to CI.
lookThroughAnd(PHINode * Phi,Type * & RT,SmallPtrSetImpl<Instruction * > & Visited,SmallPtrSetImpl<Instruction * > & CI)86 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
87                                    SmallPtrSetImpl<Instruction *> &Visited,
88                                    SmallPtrSetImpl<Instruction *> &CI) {
89   if (!Phi->hasOneUse())
90     return Phi;
91 
92   const APInt *M = nullptr;
93   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
94 
95   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
96   // with a new integer type of the corresponding bit width.
97   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
98     int32_t Bits = (*M + 1).exactLogBase2();
99     if (Bits > 0) {
100       RT = IntegerType::get(Phi->getContext(), Bits);
101       Visited.insert(Phi);
102       CI.insert(J);
103       return J;
104     }
105   }
106   return Phi;
107 }
108 
109 /// Compute the minimal bit width needed to represent a reduction whose exit
110 /// instruction is given by Exit.
computeRecurrenceType(Instruction * Exit,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)111 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
112                                                      DemandedBits *DB,
113                                                      AssumptionCache *AC,
114                                                      DominatorTree *DT) {
115   bool IsSigned = false;
116   const DataLayout &DL = Exit->getModule()->getDataLayout();
117   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
118 
119   if (DB) {
120     // Use the demanded bits analysis to determine the bits that are live out
121     // of the exit instruction, rounding up to the nearest power of two. If the
122     // use of demanded bits results in a smaller bit width, we know the value
123     // must be positive (i.e., IsSigned = false), because if this were not the
124     // case, the sign bit would have been demanded.
125     auto Mask = DB->getDemandedBits(Exit);
126     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
127   }
128 
129   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
130     // If demanded bits wasn't able to limit the bit width, we can try to use
131     // value tracking instead. This can be the case, for example, if the value
132     // may be negative.
133     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
134     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
135     MaxBitWidth = NumTypeBits - NumSignBits;
136     KnownBits Bits = computeKnownBits(Exit, DL);
137     if (!Bits.isNonNegative()) {
138       // If the value is not known to be non-negative, we set IsSigned to true,
139       // meaning that we will use sext instructions instead of zext
140       // instructions to restore the original type.
141       IsSigned = true;
142       if (!Bits.isNegative())
143         // If the value is not known to be negative, we don't known what the
144         // upper bit is, and therefore, we don't know what kind of extend we
145         // will need. In this case, just increase the bit width by one bit and
146         // use sext.
147         ++MaxBitWidth;
148     }
149   }
150   if (!isPowerOf2_64(MaxBitWidth))
151     MaxBitWidth = NextPowerOf2(MaxBitWidth);
152 
153   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
154                         IsSigned);
155 }
156 
157 /// Collect cast instructions that can be ignored in the vectorizer's cost
158 /// model, given a reduction exit value and the minimal type in which the
159 /// reduction can be represented.
collectCastsToIgnore(Loop * TheLoop,Instruction * Exit,Type * RecurrenceType,SmallPtrSetImpl<Instruction * > & Casts)160 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
161                                  Type *RecurrenceType,
162                                  SmallPtrSetImpl<Instruction *> &Casts) {
163 
164   SmallVector<Instruction *, 8> Worklist;
165   SmallPtrSet<Instruction *, 8> Visited;
166   Worklist.push_back(Exit);
167 
168   while (!Worklist.empty()) {
169     Instruction *Val = Worklist.pop_back_val();
170     Visited.insert(Val);
171     if (auto *Cast = dyn_cast<CastInst>(Val))
172       if (Cast->getSrcTy() == RecurrenceType) {
173         // If the source type of a cast instruction is equal to the recurrence
174         // type, it will be eliminated, and should be ignored in the vectorizer
175         // cost model.
176         Casts.insert(Cast);
177         continue;
178       }
179 
180     // Add all operands to the work list if they are loop-varying values that
181     // we haven't yet visited.
182     for (Value *O : cast<User>(Val)->operands())
183       if (auto *I = dyn_cast<Instruction>(O))
184         if (TheLoop->contains(I) && !Visited.count(I))
185           Worklist.push_back(I);
186   }
187 }
188 
AddReductionVar(PHINode * Phi,RecurrenceKind Kind,Loop * TheLoop,bool HasFunNoNaNAttr,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)189 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
190                                            Loop *TheLoop, bool HasFunNoNaNAttr,
191                                            RecurrenceDescriptor &RedDes,
192                                            DemandedBits *DB,
193                                            AssumptionCache *AC,
194                                            DominatorTree *DT) {
195   if (Phi->getNumIncomingValues() != 2)
196     return false;
197 
198   // Reduction variables are only found in the loop header block.
199   if (Phi->getParent() != TheLoop->getHeader())
200     return false;
201 
202   // Obtain the reduction start value from the value that comes from the loop
203   // preheader.
204   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
205 
206   // ExitInstruction is the single value which is used outside the loop.
207   // We only allow for a single reduction value to be used outside the loop.
208   // This includes users of the reduction, variables (which form a cycle
209   // which ends in the phi node).
210   Instruction *ExitInstruction = nullptr;
211   // Indicates that we found a reduction operation in our scan.
212   bool FoundReduxOp = false;
213 
214   // We start with the PHI node and scan for all of the users of this
215   // instruction. All users must be instructions that can be used as reduction
216   // variables (such as ADD). We must have a single out-of-block user. The cycle
217   // must include the original PHI.
218   bool FoundStartPHI = false;
219 
220   // To recognize min/max patterns formed by a icmp select sequence, we store
221   // the number of instruction we saw from the recognized min/max pattern,
222   //  to make sure we only see exactly the two instructions.
223   unsigned NumCmpSelectPatternInst = 0;
224   InstDesc ReduxDesc(false, nullptr);
225 
226   // Data used for determining if the recurrence has been type-promoted.
227   Type *RecurrenceType = Phi->getType();
228   SmallPtrSet<Instruction *, 4> CastInsts;
229   Instruction *Start = Phi;
230   bool IsSigned = false;
231 
232   SmallPtrSet<Instruction *, 8> VisitedInsts;
233   SmallVector<Instruction *, 8> Worklist;
234 
235   // Return early if the recurrence kind does not match the type of Phi. If the
236   // recurrence kind is arithmetic, we attempt to look through AND operations
237   // resulting from the type promotion performed by InstCombine.  Vector
238   // operations are not limited to the legal integer widths, so we may be able
239   // to evaluate the reduction in the narrower width.
240   if (RecurrenceType->isFloatingPointTy()) {
241     if (!isFloatingPointRecurrenceKind(Kind))
242       return false;
243   } else {
244     if (!isIntegerRecurrenceKind(Kind))
245       return false;
246     if (isArithmeticRecurrenceKind(Kind))
247       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
248   }
249 
250   Worklist.push_back(Start);
251   VisitedInsts.insert(Start);
252 
253   // Start with all flags set because we will intersect this with the reduction
254   // flags from all the reduction operations.
255   FastMathFlags FMF = FastMathFlags::getFast();
256 
257   // A value in the reduction can be used:
258   //  - By the reduction:
259   //      - Reduction operation:
260   //        - One use of reduction value (safe).
261   //        - Multiple use of reduction value (not safe).
262   //      - PHI:
263   //        - All uses of the PHI must be the reduction (safe).
264   //        - Otherwise, not safe.
265   //  - By instructions outside of the loop (safe).
266   //      * One value may have several outside users, but all outside
267   //        uses must be of the same value.
268   //  - By an instruction that is not part of the reduction (not safe).
269   //    This is either:
270   //      * An instruction type other than PHI or the reduction operation.
271   //      * A PHI in the header other than the initial PHI.
272   while (!Worklist.empty()) {
273     Instruction *Cur = Worklist.back();
274     Worklist.pop_back();
275 
276     // No Users.
277     // If the instruction has no users then this is a broken chain and can't be
278     // a reduction variable.
279     if (Cur->use_empty())
280       return false;
281 
282     bool IsAPhi = isa<PHINode>(Cur);
283 
284     // A header PHI use other than the original PHI.
285     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
286       return false;
287 
288     // Reductions of instructions such as Div, and Sub is only possible if the
289     // LHS is the reduction variable.
290     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
291         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
292         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
293       return false;
294 
295     // Any reduction instruction must be of one of the allowed kinds. We ignore
296     // the starting value (the Phi or an AND instruction if the Phi has been
297     // type-promoted).
298     if (Cur != Start) {
299       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
300       if (!ReduxDesc.isRecurrence())
301         return false;
302       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
303       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
304         FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
305     }
306 
307     bool IsASelect = isa<SelectInst>(Cur);
308 
309     // A conditional reduction operation must only have 2 or less uses in
310     // VisitedInsts.
311     if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
312         hasMultipleUsesOf(Cur, VisitedInsts, 2))
313       return false;
314 
315     // A reduction operation must only have one use of the reduction value.
316     if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
317         Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
318       return false;
319 
320     // All inputs to a PHI node must be a reduction value.
321     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
322       return false;
323 
324     if (Kind == RK_IntegerMinMax &&
325         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
326       ++NumCmpSelectPatternInst;
327     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
328       ++NumCmpSelectPatternInst;
329 
330     // Check  whether we found a reduction operator.
331     FoundReduxOp |= !IsAPhi && Cur != Start;
332 
333     // Process users of current instruction. Push non-PHI nodes after PHI nodes
334     // onto the stack. This way we are going to have seen all inputs to PHI
335     // nodes once we get to them.
336     SmallVector<Instruction *, 8> NonPHIs;
337     SmallVector<Instruction *, 8> PHIs;
338     for (User *U : Cur->users()) {
339       Instruction *UI = cast<Instruction>(U);
340 
341       // Check if we found the exit user.
342       BasicBlock *Parent = UI->getParent();
343       if (!TheLoop->contains(Parent)) {
344         // If we already know this instruction is used externally, move on to
345         // the next user.
346         if (ExitInstruction == Cur)
347           continue;
348 
349         // Exit if you find multiple values used outside or if the header phi
350         // node is being used. In this case the user uses the value of the
351         // previous iteration, in which case we would loose "VF-1" iterations of
352         // the reduction operation if we vectorize.
353         if (ExitInstruction != nullptr || Cur == Phi)
354           return false;
355 
356         // The instruction used by an outside user must be the last instruction
357         // before we feed back to the reduction phi. Otherwise, we loose VF-1
358         // operations on the value.
359         if (!is_contained(Phi->operands(), Cur))
360           return false;
361 
362         ExitInstruction = Cur;
363         continue;
364       }
365 
366       // Process instructions only once (termination). Each reduction cycle
367       // value must only be used once, except by phi nodes and min/max
368       // reductions which are represented as a cmp followed by a select.
369       InstDesc IgnoredVal(false, nullptr);
370       if (VisitedInsts.insert(UI).second) {
371         if (isa<PHINode>(UI))
372           PHIs.push_back(UI);
373         else
374           NonPHIs.push_back(UI);
375       } else if (!isa<PHINode>(UI) &&
376                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
377                    !isa<SelectInst>(UI)) ||
378                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
379                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
380         return false;
381 
382       // Remember that we completed the cycle.
383       if (UI == Phi)
384         FoundStartPHI = true;
385     }
386     Worklist.append(PHIs.begin(), PHIs.end());
387     Worklist.append(NonPHIs.begin(), NonPHIs.end());
388   }
389 
390   // This means we have seen one but not the other instruction of the
391   // pattern or more than just a select and cmp.
392   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
393       NumCmpSelectPatternInst != 2)
394     return false;
395 
396   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
397     return false;
398 
399   if (Start != Phi) {
400     // If the starting value is not the same as the phi node, we speculatively
401     // looked through an 'and' instruction when evaluating a potential
402     // arithmetic reduction to determine if it may have been type-promoted.
403     //
404     // We now compute the minimal bit width that is required to represent the
405     // reduction. If this is the same width that was indicated by the 'and', we
406     // can represent the reduction in the smaller type. The 'and' instruction
407     // will be eliminated since it will essentially be a cast instruction that
408     // can be ignore in the cost model. If we compute a different type than we
409     // did when evaluating the 'and', the 'and' will not be eliminated, and we
410     // will end up with different kinds of operations in the recurrence
411     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
412     // the case.
413     //
414     // The vectorizer relies on InstCombine to perform the actual
415     // type-shrinking. It does this by inserting instructions to truncate the
416     // exit value of the reduction to the width indicated by RecurrenceType and
417     // then extend this value back to the original width. If IsSigned is false,
418     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
419     // used.
420     //
421     // TODO: We should not rely on InstCombine to rewrite the reduction in the
422     //       smaller type. We should just generate a correctly typed expression
423     //       to begin with.
424     Type *ComputedType;
425     std::tie(ComputedType, IsSigned) =
426         computeRecurrenceType(ExitInstruction, DB, AC, DT);
427     if (ComputedType != RecurrenceType)
428       return false;
429 
430     // The recurrence expression will be represented in a narrower type. If
431     // there are any cast instructions that will be unnecessary, collect them
432     // in CastInsts. Note that the 'and' instruction was already included in
433     // this list.
434     //
435     // TODO: A better way to represent this may be to tag in some way all the
436     //       instructions that are a part of the reduction. The vectorizer cost
437     //       model could then apply the recurrence type to these instructions,
438     //       without needing a white list of instructions to ignore.
439     //       This may also be useful for the inloop reductions, if it can be
440     //       kept simple enough.
441     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
442   }
443 
444   // We found a reduction var if we have reached the original phi node and we
445   // only have a single instruction with out-of-loop users.
446 
447   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
448   // is saved as part of the RecurrenceDescriptor.
449 
450   // Save the description of this reduction variable.
451   RecurrenceDescriptor RD(
452       RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
453       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
454   RedDes = RD;
455 
456   return true;
457 }
458 
459 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
460 /// pattern corresponding to a min(X, Y) or max(X, Y).
461 RecurrenceDescriptor::InstDesc
isMinMaxSelectCmpPattern(Instruction * I,InstDesc & Prev)462 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
463 
464   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
465          "Expect a select instruction");
466   Instruction *Cmp = nullptr;
467   SelectInst *Select = nullptr;
468 
469   // We must handle the select(cmp()) as a single instruction. Advance to the
470   // select.
471   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
472     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
473       return InstDesc(false, I);
474     return InstDesc(Select, Prev.getMinMaxKind());
475   }
476 
477   // Only handle single use cases for now.
478   if (!(Select = dyn_cast<SelectInst>(I)))
479     return InstDesc(false, I);
480   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
481       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
482     return InstDesc(false, I);
483   if (!Cmp->hasOneUse())
484     return InstDesc(false, I);
485 
486   Value *CmpLeft;
487   Value *CmpRight;
488 
489   // Look for a min/max pattern.
490   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
491     return InstDesc(Select, MRK_UIntMin);
492   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
493     return InstDesc(Select, MRK_UIntMax);
494   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
495     return InstDesc(Select, MRK_SIntMax);
496   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
497     return InstDesc(Select, MRK_SIntMin);
498   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
499     return InstDesc(Select, MRK_FloatMin);
500   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
501     return InstDesc(Select, MRK_FloatMax);
502   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
503     return InstDesc(Select, MRK_FloatMin);
504   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
505     return InstDesc(Select, MRK_FloatMax);
506 
507   return InstDesc(false, I);
508 }
509 
510 /// Returns true if the select instruction has users in the compare-and-add
511 /// reduction pattern below. The select instruction argument is the last one
512 /// in the sequence.
513 ///
514 /// %sum.1 = phi ...
515 /// ...
516 /// %cmp = fcmp pred %0, %CFP
517 /// %add = fadd %0, %sum.1
518 /// %sum.2 = select %cmp, %add, %sum.1
519 RecurrenceDescriptor::InstDesc
isConditionalRdxPattern(RecurrenceKind Kind,Instruction * I)520 RecurrenceDescriptor::isConditionalRdxPattern(
521     RecurrenceKind Kind, Instruction *I) {
522   SelectInst *SI = dyn_cast<SelectInst>(I);
523   if (!SI)
524     return InstDesc(false, I);
525 
526   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
527   // Only handle single use cases for now.
528   if (!CI || !CI->hasOneUse())
529     return InstDesc(false, I);
530 
531   Value *TrueVal = SI->getTrueValue();
532   Value *FalseVal = SI->getFalseValue();
533   // Handle only when either of operands of select instruction is a PHI
534   // node for now.
535   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
536       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
537     return InstDesc(false, I);
538 
539   Instruction *I1 =
540       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
541                              : dyn_cast<Instruction>(TrueVal);
542   if (!I1 || !I1->isBinaryOp())
543     return InstDesc(false, I);
544 
545   Value *Op1, *Op2;
546   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
547        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
548       I1->isFast())
549     return InstDesc(Kind == RK_FloatAdd, SI);
550 
551   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
552     return InstDesc(Kind == RK_FloatMult, SI);
553 
554   return InstDesc(false, I);
555 }
556 
557 RecurrenceDescriptor::InstDesc
isRecurrenceInstr(Instruction * I,RecurrenceKind Kind,InstDesc & Prev,bool HasFunNoNaNAttr)558 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
559                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
560   Instruction *UAI = Prev.getUnsafeAlgebraInst();
561   if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
562     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
563 
564   switch (I->getOpcode()) {
565   default:
566     return InstDesc(false, I);
567   case Instruction::PHI:
568     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
569   case Instruction::Sub:
570   case Instruction::Add:
571     return InstDesc(Kind == RK_IntegerAdd, I);
572   case Instruction::Mul:
573     return InstDesc(Kind == RK_IntegerMult, I);
574   case Instruction::And:
575     return InstDesc(Kind == RK_IntegerAnd, I);
576   case Instruction::Or:
577     return InstDesc(Kind == RK_IntegerOr, I);
578   case Instruction::Xor:
579     return InstDesc(Kind == RK_IntegerXor, I);
580   case Instruction::FDiv:
581   case Instruction::FMul:
582     return InstDesc(Kind == RK_FloatMult, I, UAI);
583   case Instruction::FSub:
584   case Instruction::FAdd:
585     return InstDesc(Kind == RK_FloatAdd, I, UAI);
586   case Instruction::Select:
587     if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
588       return isConditionalRdxPattern(Kind, I);
589     LLVM_FALLTHROUGH;
590   case Instruction::FCmp:
591   case Instruction::ICmp:
592     if (Kind != RK_IntegerMinMax &&
593         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
594       return InstDesc(false, I);
595     return isMinMaxSelectCmpPattern(I, Prev);
596   }
597 }
598 
hasMultipleUsesOf(Instruction * I,SmallPtrSetImpl<Instruction * > & Insts,unsigned MaxNumUses)599 bool RecurrenceDescriptor::hasMultipleUsesOf(
600     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
601     unsigned MaxNumUses) {
602   unsigned NumUses = 0;
603   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
604        ++Use) {
605     if (Insts.count(dyn_cast<Instruction>(*Use)))
606       ++NumUses;
607     if (NumUses > MaxNumUses)
608       return true;
609   }
610 
611   return false;
612 }
isReductionPHI(PHINode * Phi,Loop * TheLoop,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)613 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
614                                           RecurrenceDescriptor &RedDes,
615                                           DemandedBits *DB, AssumptionCache *AC,
616                                           DominatorTree *DT) {
617 
618   BasicBlock *Header = TheLoop->getHeader();
619   Function &F = *Header->getParent();
620   bool HasFunNoNaNAttr =
621       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
622 
623   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
624                       AC, DT)) {
625     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
626     return true;
627   }
628   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
629                       AC, DT)) {
630     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
631     return true;
632   }
633   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
634                       AC, DT)) {
635     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
636     return true;
637   }
638   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
639                       AC, DT)) {
640     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
641     return true;
642   }
643   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
644                       AC, DT)) {
645     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
646     return true;
647   }
648   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
649                       DB, AC, DT)) {
650     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
651     return true;
652   }
653   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
654                       AC, DT)) {
655     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
656     return true;
657   }
658   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
659                       AC, DT)) {
660     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
661     return true;
662   }
663   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
664                       AC, DT)) {
665     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
666                       << "\n");
667     return true;
668   }
669   // Not a reduction of known type.
670   return false;
671 }
672 
isFirstOrderRecurrence(PHINode * Phi,Loop * TheLoop,DenseMap<Instruction *,Instruction * > & SinkAfter,DominatorTree * DT)673 bool RecurrenceDescriptor::isFirstOrderRecurrence(
674     PHINode *Phi, Loop *TheLoop,
675     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
676 
677   // Ensure the phi node is in the loop header and has two incoming values.
678   if (Phi->getParent() != TheLoop->getHeader() ||
679       Phi->getNumIncomingValues() != 2)
680     return false;
681 
682   // Ensure the loop has a preheader and a single latch block. The loop
683   // vectorizer will need the latch to set up the next iteration of the loop.
684   auto *Preheader = TheLoop->getLoopPreheader();
685   auto *Latch = TheLoop->getLoopLatch();
686   if (!Preheader || !Latch)
687     return false;
688 
689   // Ensure the phi node's incoming blocks are the loop preheader and latch.
690   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
691       Phi->getBasicBlockIndex(Latch) < 0)
692     return false;
693 
694   // Get the previous value. The previous value comes from the latch edge while
695   // the initial value comes form the preheader edge.
696   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
697   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
698       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
699     return false;
700 
701   // Ensure every user of the phi node is dominated by the previous value.
702   // The dominance requirement ensures the loop vectorizer will not need to
703   // vectorize the initial value prior to the first iteration of the loop.
704   // TODO: Consider extending this sinking to handle memory instructions and
705   // phis with multiple users.
706 
707   // Returns true, if all users of I are dominated by DominatedBy.
708   auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) {
709     return all_of(I->uses(), [DT, DominatedBy](Use &U) {
710       return DT->dominates(DominatedBy, U);
711     });
712   };
713 
714   if (Phi->hasOneUse()) {
715     Instruction *I = Phi->user_back();
716 
717     // If the user of the PHI is also the incoming value, we potentially have a
718     // reduction and which cannot be handled by sinking.
719     if (Previous == I)
720       return false;
721 
722     // We cannot sink terminator instructions.
723     if (I->getParent()->getTerminator() == I)
724       return false;
725 
726     // Do not try to sink an instruction multiple times (if multiple operands
727     // are first order recurrences).
728     // TODO: We can support this case, by sinking the instruction after the
729     // 'deepest' previous instruction.
730     if (SinkAfter.find(I) != SinkAfter.end())
731       return false;
732 
733     if (DT->dominates(Previous, I)) // We already are good w/o sinking.
734       return true;
735 
736     // We can sink any instruction without side effects, as long as all users
737     // are dominated by the instruction we are sinking after.
738     if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() &&
739         allUsesDominatedBy(I, Previous)) {
740       SinkAfter[I] = Previous;
741       return true;
742     }
743   }
744 
745   return allUsesDominatedBy(Phi, Previous);
746 }
747 
748 /// This function returns the identity element (or neutral element) for
749 /// the operation K.
getRecurrenceIdentity(RecurrenceKind K,MinMaxRecurrenceKind MK,Type * Tp)750 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
751                                                       MinMaxRecurrenceKind MK,
752                                                       Type *Tp) {
753   switch (K) {
754   case RK_IntegerXor:
755   case RK_IntegerAdd:
756   case RK_IntegerOr:
757     // Adding, Xoring, Oring zero to a number does not change it.
758     return ConstantInt::get(Tp, 0);
759   case RK_IntegerMult:
760     // Multiplying a number by 1 does not change it.
761     return ConstantInt::get(Tp, 1);
762   case RK_IntegerAnd:
763     // AND-ing a number with an all-1 value does not change it.
764     return ConstantInt::get(Tp, -1, true);
765   case RK_FloatMult:
766     // Multiplying a number by 1 does not change it.
767     return ConstantFP::get(Tp, 1.0L);
768   case RK_FloatAdd:
769     // Adding zero to a number does not change it.
770     return ConstantFP::get(Tp, 0.0L);
771   case RK_IntegerMinMax:
772   case RK_FloatMinMax:
773     switch (MK) {
774     case MRK_UIntMin:
775       return ConstantInt::get(Tp, -1);
776     case MRK_UIntMax:
777       return ConstantInt::get(Tp, 0);
778     case MRK_SIntMin:
779       return ConstantInt::get(
780           Tp, APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
781     case MRK_SIntMax:
782       return ConstantInt::get(
783           Tp, APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
784     case MRK_FloatMin:
785       return ConstantFP::getInfinity(Tp, true);
786     case MRK_FloatMax:
787       return ConstantFP::getInfinity(Tp, false);
788     default:
789       llvm_unreachable("Unknown recurrence kind");
790     }
791   default:
792     llvm_unreachable("Unknown recurrence kind");
793   }
794 }
795 
796 /// This function translates the recurrence kind to an LLVM binary operator.
getRecurrenceBinOp(RecurrenceKind Kind)797 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
798   switch (Kind) {
799   case RK_IntegerAdd:
800     return Instruction::Add;
801   case RK_IntegerMult:
802     return Instruction::Mul;
803   case RK_IntegerOr:
804     return Instruction::Or;
805   case RK_IntegerAnd:
806     return Instruction::And;
807   case RK_IntegerXor:
808     return Instruction::Xor;
809   case RK_FloatMult:
810     return Instruction::FMul;
811   case RK_FloatAdd:
812     return Instruction::FAdd;
813   case RK_IntegerMinMax:
814     return Instruction::ICmp;
815   case RK_FloatMinMax:
816     return Instruction::FCmp;
817   default:
818     llvm_unreachable("Unknown recurrence operation");
819   }
820 }
821 
822 SmallVector<Instruction *, 4>
getReductionOpChain(PHINode * Phi,Loop * L) const823 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
824   SmallVector<Instruction *, 4> ReductionOperations;
825   unsigned RedOp = getRecurrenceBinOp(Kind);
826 
827   // Search down from the Phi to the LoopExitInstr, looking for instructions
828   // with a single user of the correct type for the reduction.
829 
830   // Note that we check that the type of the operand is correct for each item in
831   // the chain, including the last (the loop exit value). This can come up from
832   // sub, which would otherwise be treated as an add reduction. MinMax also need
833   // to check for a pair of icmp/select, for which we use getNextInstruction and
834   // isCorrectOpcode functions to step the right number of instruction, and
835   // check the icmp/select pair.
836   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
837   // be part of the reduction chain, or attempt to looks through And's to find a
838   // smaller bitwidth. Subs are also currently not allowed (which are usually
839   // treated as part of a add reduction) as they are expected to generally be
840   // more expensive than out-of-loop reductions, and need to be costed more
841   // carefully.
842   unsigned ExpectedUses = 1;
843   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
844     ExpectedUses = 2;
845 
846   auto getNextInstruction = [&](Instruction *Cur) {
847     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
848       // We are expecting a icmp/select pair, which we go to the next select
849       // instruction if we can. We already know that Cur has 2 uses.
850       if (isa<SelectInst>(*Cur->user_begin()))
851         return cast<Instruction>(*Cur->user_begin());
852       else
853         return cast<Instruction>(*std::next(Cur->user_begin()));
854     }
855     return cast<Instruction>(*Cur->user_begin());
856   };
857   auto isCorrectOpcode = [&](Instruction *Cur) {
858     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
859       Value *LHS, *RHS;
860       return SelectPatternResult::isMinOrMax(
861           matchSelectPattern(Cur, LHS, RHS).Flavor);
862     }
863     return Cur->getOpcode() == RedOp;
864   };
865 
866   // The loop exit instruction we check first (as a quick test) but add last. We
867   // check the opcode is correct (and dont allow them to be Subs) and that they
868   // have expected to have the expected number of uses. They will have one use
869   // from the phi and one from a LCSSA value, no matter the type.
870   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
871     return {};
872 
873   // Check that the Phi has one (or two for min/max) uses.
874   if (!Phi->hasNUses(ExpectedUses))
875     return {};
876   Instruction *Cur = getNextInstruction(Phi);
877 
878   // Each other instruction in the chain should have the expected number of uses
879   // and be the correct opcode.
880   while (Cur != LoopExitInstr) {
881     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
882       return {};
883 
884     ReductionOperations.push_back(Cur);
885     Cur = getNextInstruction(Cur);
886   }
887 
888   ReductionOperations.push_back(Cur);
889   return ReductionOperations;
890 }
891 
InductionDescriptor(Value * Start,InductionKind K,const SCEV * Step,BinaryOperator * BOp,SmallVectorImpl<Instruction * > * Casts)892 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
893                                          const SCEV *Step, BinaryOperator *BOp,
894                                          SmallVectorImpl<Instruction *> *Casts)
895     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
896   assert(IK != IK_NoInduction && "Not an induction");
897 
898   // Start value type should match the induction kind and the value
899   // itself should not be null.
900   assert(StartValue && "StartValue is null");
901   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
902          "StartValue is not a pointer for pointer induction");
903   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
904          "StartValue is not an integer for integer induction");
905 
906   // Check the Step Value. It should be non-zero integer value.
907   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
908          "Step value is zero");
909 
910   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
911          "Step value should be constant for pointer induction");
912   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
913          "StepValue is not an integer");
914 
915   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
916          "StepValue is not FP for FpInduction");
917   assert((IK != IK_FpInduction ||
918           (InductionBinOp &&
919            (InductionBinOp->getOpcode() == Instruction::FAdd ||
920             InductionBinOp->getOpcode() == Instruction::FSub))) &&
921          "Binary opcode should be specified for FP induction");
922 
923   if (Casts) {
924     for (auto &Inst : *Casts) {
925       RedundantCasts.push_back(Inst);
926     }
927   }
928 }
929 
getConsecutiveDirection() const930 int InductionDescriptor::getConsecutiveDirection() const {
931   ConstantInt *ConstStep = getConstIntStepValue();
932   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
933     return ConstStep->getSExtValue();
934   return 0;
935 }
936 
getConstIntStepValue() const937 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
938   if (isa<SCEVConstant>(Step))
939     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
940   return nullptr;
941 }
942 
isFPInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D)943 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
944                                            ScalarEvolution *SE,
945                                            InductionDescriptor &D) {
946 
947   // Here we only handle FP induction variables.
948   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
949 
950   if (TheLoop->getHeader() != Phi->getParent())
951     return false;
952 
953   // The loop may have multiple entrances or multiple exits; we can analyze
954   // this phi if it has a unique entry value and a unique backedge value.
955   if (Phi->getNumIncomingValues() != 2)
956     return false;
957   Value *BEValue = nullptr, *StartValue = nullptr;
958   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
959     BEValue = Phi->getIncomingValue(0);
960     StartValue = Phi->getIncomingValue(1);
961   } else {
962     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
963            "Unexpected Phi node in the loop");
964     BEValue = Phi->getIncomingValue(1);
965     StartValue = Phi->getIncomingValue(0);
966   }
967 
968   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
969   if (!BOp)
970     return false;
971 
972   Value *Addend = nullptr;
973   if (BOp->getOpcode() == Instruction::FAdd) {
974     if (BOp->getOperand(0) == Phi)
975       Addend = BOp->getOperand(1);
976     else if (BOp->getOperand(1) == Phi)
977       Addend = BOp->getOperand(0);
978   } else if (BOp->getOpcode() == Instruction::FSub)
979     if (BOp->getOperand(0) == Phi)
980       Addend = BOp->getOperand(1);
981 
982   if (!Addend)
983     return false;
984 
985   // The addend should be loop invariant
986   if (auto *I = dyn_cast<Instruction>(Addend))
987     if (TheLoop->contains(I))
988       return false;
989 
990   // FP Step has unknown SCEV
991   const SCEV *Step = SE->getUnknown(Addend);
992   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
993   return true;
994 }
995 
996 /// This function is called when we suspect that the update-chain of a phi node
997 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
998 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
999 /// predicate P under which the SCEV expression for the phi can be the
1000 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1001 /// cast instructions that are involved in the update-chain of this induction.
1002 /// A caller that adds the required runtime predicate can be free to drop these
1003 /// cast instructions, and compute the phi using \p AR (instead of some scev
1004 /// expression with casts).
1005 ///
1006 /// For example, without a predicate the scev expression can take the following
1007 /// form:
1008 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1009 ///
1010 /// It corresponds to the following IR sequence:
1011 /// %for.body:
1012 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1013 ///   %casted_phi = "ExtTrunc i64 %x"
1014 ///   %add = add i64 %casted_phi, %step
1015 ///
1016 /// where %x is given in \p PN,
1017 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1018 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1019 /// several forms, for example, such as:
1020 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1021 /// or:
1022 ///   ExtTrunc2:    %t = shl %x, m
1023 ///                 %casted_phi = ashr %t, m
1024 ///
1025 /// If we are able to find such sequence, we return the instructions
1026 /// we found, namely %casted_phi and the instructions on its use-def chain up
1027 /// to the phi (not including the phi).
getCastsForInductionPHI(PredicatedScalarEvolution & PSE,const SCEVUnknown * PhiScev,const SCEVAddRecExpr * AR,SmallVectorImpl<Instruction * > & CastInsts)1028 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1029                                     const SCEVUnknown *PhiScev,
1030                                     const SCEVAddRecExpr *AR,
1031                                     SmallVectorImpl<Instruction *> &CastInsts) {
1032 
1033   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1034   auto *PN = cast<PHINode>(PhiScev->getValue());
1035   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1036   const Loop *L = AR->getLoop();
1037 
1038   // Find any cast instructions that participate in the def-use chain of
1039   // PhiScev in the loop.
1040   // FORNOW/TODO: We currently expect the def-use chain to include only
1041   // two-operand instructions, where one of the operands is an invariant.
1042   // createAddRecFromPHIWithCasts() currently does not support anything more
1043   // involved than that, so we keep the search simple. This can be
1044   // extended/generalized as needed.
1045 
1046   auto getDef = [&](const Value *Val) -> Value * {
1047     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1048     if (!BinOp)
1049       return nullptr;
1050     Value *Op0 = BinOp->getOperand(0);
1051     Value *Op1 = BinOp->getOperand(1);
1052     Value *Def = nullptr;
1053     if (L->isLoopInvariant(Op0))
1054       Def = Op1;
1055     else if (L->isLoopInvariant(Op1))
1056       Def = Op0;
1057     return Def;
1058   };
1059 
1060   // Look for the instruction that defines the induction via the
1061   // loop backedge.
1062   BasicBlock *Latch = L->getLoopLatch();
1063   if (!Latch)
1064     return false;
1065   Value *Val = PN->getIncomingValueForBlock(Latch);
1066   if (!Val)
1067     return false;
1068 
1069   // Follow the def-use chain until the induction phi is reached.
1070   // If on the way we encounter a Value that has the same SCEV Expr as the
1071   // phi node, we can consider the instructions we visit from that point
1072   // as part of the cast-sequence that can be ignored.
1073   bool InCastSequence = false;
1074   auto *Inst = dyn_cast<Instruction>(Val);
1075   while (Val != PN) {
1076     // If we encountered a phi node other than PN, or if we left the loop,
1077     // we bail out.
1078     if (!Inst || !L->contains(Inst)) {
1079       return false;
1080     }
1081     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1082     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1083       InCastSequence = true;
1084     if (InCastSequence) {
1085       // Only the last instruction in the cast sequence is expected to have
1086       // uses outside the induction def-use chain.
1087       if (!CastInsts.empty())
1088         if (!Inst->hasOneUse())
1089           return false;
1090       CastInsts.push_back(Inst);
1091     }
1092     Val = getDef(Val);
1093     if (!Val)
1094       return false;
1095     Inst = dyn_cast<Instruction>(Val);
1096   }
1097 
1098   return InCastSequence;
1099 }
1100 
isInductionPHI(PHINode * Phi,const Loop * TheLoop,PredicatedScalarEvolution & PSE,InductionDescriptor & D,bool Assume)1101 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1102                                          PredicatedScalarEvolution &PSE,
1103                                          InductionDescriptor &D, bool Assume) {
1104   Type *PhiTy = Phi->getType();
1105 
1106   // Handle integer and pointer inductions variables.
1107   // Now we handle also FP induction but not trying to make a
1108   // recurrent expression from the PHI node in-place.
1109 
1110   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1111       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1112     return false;
1113 
1114   if (PhiTy->isFloatingPointTy())
1115     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1116 
1117   const SCEV *PhiScev = PSE.getSCEV(Phi);
1118   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1119 
1120   // We need this expression to be an AddRecExpr.
1121   if (Assume && !AR)
1122     AR = PSE.getAsAddRec(Phi);
1123 
1124   if (!AR) {
1125     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1126     return false;
1127   }
1128 
1129   // Record any Cast instructions that participate in the induction update
1130   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1131   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1132   // only after enabling Assume with PSCEV, this means we may have encountered
1133   // cast instructions that required adding a runtime check in order to
1134   // guarantee the correctness of the AddRecurrence respresentation of the
1135   // induction.
1136   if (PhiScev != AR && SymbolicPhi) {
1137     SmallVector<Instruction *, 2> Casts;
1138     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1139       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1140   }
1141 
1142   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1143 }
1144 
isInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D,const SCEV * Expr,SmallVectorImpl<Instruction * > * CastsToIgnore)1145 bool InductionDescriptor::isInductionPHI(
1146     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1147     InductionDescriptor &D, const SCEV *Expr,
1148     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1149   Type *PhiTy = Phi->getType();
1150   // We only handle integer and pointer inductions variables.
1151   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1152     return false;
1153 
1154   // Check that the PHI is consecutive.
1155   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1156   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1157 
1158   if (!AR) {
1159     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1160     return false;
1161   }
1162 
1163   if (AR->getLoop() != TheLoop) {
1164     // FIXME: We should treat this as a uniform. Unfortunately, we
1165     // don't currently know how to handled uniform PHIs.
1166     LLVM_DEBUG(
1167         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1168     return false;
1169   }
1170 
1171   Value *StartValue =
1172       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1173 
1174   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1175   if (!Latch)
1176     return false;
1177   BinaryOperator *BOp =
1178       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1179 
1180   const SCEV *Step = AR->getStepRecurrence(*SE);
1181   // Calculate the pointer stride and check if it is consecutive.
1182   // The stride may be a constant or a loop invariant integer value.
1183   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1184   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1185     return false;
1186 
1187   if (PhiTy->isIntegerTy()) {
1188     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1189                             CastsToIgnore);
1190     return true;
1191   }
1192 
1193   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1194   // Pointer induction should be a constant.
1195   if (!ConstStep)
1196     return false;
1197 
1198   ConstantInt *CV = ConstStep->getValue();
1199   Type *PointerElementType = PhiTy->getPointerElementType();
1200   // The pointer stride cannot be determined if the pointer element type is not
1201   // sized.
1202   if (!PointerElementType->isSized())
1203     return false;
1204 
1205   const DataLayout &DL = Phi->getModule()->getDataLayout();
1206   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1207   if (!Size)
1208     return false;
1209 
1210   int64_t CVSize = CV->getSExtValue();
1211   if (CVSize % Size)
1212     return false;
1213   auto *StepValue =
1214       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1215   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1216   return true;
1217 }
1218