1 //===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements utilities for interfacing with tensorflow C APIs.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "llvm/Config/config.h"
14 #if defined(LLVM_HAVE_TF_API)
15
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/Analysis/Utils/TFUtils.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/JSON.h"
20 #include "llvm/Support/ManagedStatic.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Path.h"
23 #include "llvm/Support/raw_ostream.h"
24
25 #include "tensorflow/c/c_api.h"
26 #include "tensorflow/c/c_api_experimental.h"
27
28 #include <cassert>
29 #include <numeric>
30
31 using namespace llvm;
32
33 namespace {
34
35 using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
36 using TFSessionOptionsPtr =
37 std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
38 using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
39
40 struct TFInitializer {
TFInitializer__anon40c442650111::TFInitializer41 TFInitializer() {
42 assert(!IsInitialized && "TFInitialized should be called only once");
43 int Argc = 1;
44 const char *Name = "";
45 const char **NamePtr = &Name;
46 TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
47 IsInitialized = true;
48 }
49 bool IsInitialized = false;
50 };
51
52 llvm::ManagedStatic<TFInitializer> TFLibInitializer;
53
ensureInitTF()54 bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
55
createTFGraph()56 TFGraphPtr createTFGraph() {
57 return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
58 }
59
createTFStatus()60 TFStatusPtr createTFStatus() {
61 return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
62 }
63
createTFSessionOptions()64 TFSessionOptionsPtr createTFSessionOptions() {
65 return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
66 }
67
68 /// Write the values of one tensor as a list.
69 template <typename T>
writeTensorValues(raw_ostream & OutFile,const char * TensorData,size_t ElemCount)70 void writeTensorValues(raw_ostream &OutFile, const char *TensorData,
71 size_t ElemCount) {
72 OutFile << "[";
73 const T *TypedData = reinterpret_cast<const T *>(TensorData);
74 for (size_t I = 0; I < ElemCount; ++I) {
75 if (I > 0)
76 OutFile << ", ";
77 OutFile << TypedData[I];
78 }
79 OutFile << "]";
80 }
81
82 /// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
83 /// The tensors are assumed to be stored contiguously, in row-major format,
84 /// in the TensorData buffer. Each tensor has the shape given by Spec. The
85 /// feature name in the output is either the provided LoggingName, if
86 /// specified, otherwise it's the name of the tensor (as given by Spec).
writeRawTensorsAsFeatureLists(raw_ostream & OutFile,const LoggedFeatureSpec & LoggedSpec,const char * TensorData,size_t TensorCount,bool FinalReward=false)87 void writeRawTensorsAsFeatureLists(raw_ostream &OutFile,
88 const LoggedFeatureSpec &LoggedSpec,
89 const char *TensorData, size_t TensorCount,
90 bool FinalReward = false) {
91 const char *FieldName = "<invalid>";
92 std::function<void(const char *)> ValueWriter;
93 const auto &Spec = LoggedSpec.Spec;
94 // The 'Feature' protobuf only has 3 possible fields: float_list,
95 // int64_list, or bytes_list, so we capture int32 values as int64. We don't
96 // support any other types.
97 if (Spec.isElementType<int64_t>()) {
98 FieldName = "int64_list";
99 ValueWriter = [&](const char *Data) {
100 writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount());
101 };
102 } else if (Spec.isElementType<int32_t>()) {
103 FieldName = "int64_list";
104 ValueWriter = [&](const char *Data) {
105 writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount());
106 };
107
108 } else if (Spec.isElementType<float>()) {
109 FieldName = "float_list";
110 ValueWriter = [&](const char *Data) {
111 writeTensorValues<float>(OutFile, Data, Spec.getElementCount());
112 };
113
114 } else {
115 llvm_unreachable("Unsupported tensor type.");
116 }
117
118 OutFile << " feature_list: {\n";
119 OutFile << " key: "
120 << "\""
121 << (LoggedSpec.LoggingName ? *LoggedSpec.LoggingName : Spec.name())
122 << "\" ";
123 OutFile << "value: {\n";
124 size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize();
125
126 auto WriteFeatureProto = [&](const char *P) {
127 OutFile << " feature: { " << FieldName << ": { value: ";
128 ValueWriter(P);
129 OutFile << " } }\n";
130 };
131
132 const char *CurrentTensor = TensorData;
133 static int64_t Zero = 0;
134 // Write all but the last value. If this is the final reward, don't increment
135 // the CurrentTensor, and just write 0.
136 for (size_t I = 0; I < TensorCount - 1; ++I) {
137 if (FinalReward)
138 WriteFeatureProto(reinterpret_cast<const char *>(&Zero));
139 else {
140 WriteFeatureProto(CurrentTensor);
141 CurrentTensor += TensorByteSize;
142 }
143 }
144
145 WriteFeatureProto(CurrentTensor);
146
147 OutFile << " }\n";
148 OutFile << " }\n";
149 }
150 } // namespace
151
152 namespace llvm {
153 class EvaluationResultImpl {
154 public:
EvaluationResultImpl(size_t OutputSize)155 EvaluationResultImpl(size_t OutputSize)
156 : OutputSize(OutputSize), Output(OutputSize){};
157
~EvaluationResultImpl()158 ~EvaluationResultImpl() {
159 for (auto *P : Output)
160 if (P)
161 TF_DeleteTensor(P);
162 }
163
164 EvaluationResultImpl(const EvaluationResultImpl &) = delete;
165 EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
getOutput()166 std::vector<TF_Tensor *> &getOutput() { return Output; }
167
168 private:
169 const size_t OutputSize;
170 std::vector<TF_Tensor *> Output;
171 };
172
getElementByteSize() const173 size_t TensorSpec::getElementByteSize() const {
174 return TF_DataTypeSize(static_cast<TF_DataType>(TypeIndex));
175 }
176
TensorSpec(const std::string & Name,int Port,int TypeIndex,const std::vector<int64_t> & Shape)177 TensorSpec::TensorSpec(const std::string &Name, int Port, int TypeIndex,
178 const std::vector<int64_t> &Shape)
179 : Name(Name), Port(Port), TypeIndex(TypeIndex), Shape(Shape),
180 ElementCount(std::accumulate(Shape.begin(), Shape.end(), 1,
181 std::multiplies<int64_t>())) {}
182
getTensorSpecFromJSON(LLVMContext & Ctx,const json::Value & Value)183 Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
184 const json::Value &Value) {
185 auto EmitError = [&](const llvm::Twine &Message) -> Optional<TensorSpec> {
186 std::string S;
187 llvm::raw_string_ostream OS(S);
188 OS << Value;
189 Ctx.emitError("Unable to parse JSON Value as spec (" + Message + "): " + S);
190 return None;
191 };
192 // FIXME: accept a Path as a parameter, and use it for error reporting.
193 json::Path::Root Root("tensor_spec");
194 json::ObjectMapper Mapper(Value, Root);
195 if (!Mapper)
196 return EmitError("Value is not a dict");
197
198 std::string TensorName;
199 int TensorPort = -1;
200 std::string TensorType;
201 std::vector<int64_t> TensorShape;
202
203 if (!Mapper.map<std::string>("name", TensorName))
204 return EmitError("'name' property not present or not a string");
205 if (!Mapper.map<std::string>("type", TensorType))
206 return EmitError("'type' property not present or not a string");
207 if (!Mapper.map<int>("port", TensorPort))
208 return EmitError("'port' property not present or not an int");
209 if (!Mapper.map<std::vector<int64_t>>("shape", TensorShape))
210 return EmitError("'shape' property not present or not an int array");
211
212 #define PARSE_TYPE(T, E) \
213 if (TensorType == #T) \
214 return TensorSpec::createSpec<T>(TensorName, TensorShape, TensorPort);
215 TFUTILS_SUPPORTED_TYPES(PARSE_TYPE)
216 #undef PARSE_TYPE
217 return None;
218 }
219
220 Optional<std::vector<LoggedFeatureSpec>>
loadOutputSpecs(LLVMContext & Ctx,StringRef ExpectedDecisionName,StringRef ModelPath,StringRef SpecFileOverride)221 loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
222 StringRef ModelPath, StringRef SpecFileOverride) {
223 SmallVector<char, 128> OutputSpecsPath;
224 StringRef FileName = SpecFileOverride;
225 if (FileName.empty()) {
226 llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
227 FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()};
228 }
229
230 auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
231 if (!BufferOrError) {
232 Ctx.emitError("Error opening output specs file: " + FileName + " : " +
233 BufferOrError.getError().message());
234 return None;
235 }
236 auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
237 if (!ParsedJSONValues) {
238 Ctx.emitError("Could not parse specs file: " + FileName);
239 return None;
240 }
241 auto ValuesArray = ParsedJSONValues->getAsArray();
242 if (!ValuesArray) {
243 Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
244 "logging_name:<name>} dictionaries");
245 return None;
246 }
247 std::vector<LoggedFeatureSpec> Ret;
248 for (const auto &Value : *ValuesArray)
249 if (const auto *Obj = Value.getAsObject())
250 if (const auto *SpecPart = Obj->get("tensor_spec"))
251 if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
252 if (auto LoggingName = Obj->getString("logging_name")) {
253 if (!TensorSpec->isElementType<int64_t>() &&
254 !TensorSpec->isElementType<int32_t>() &&
255 !TensorSpec->isElementType<float>()) {
256 Ctx.emitError(
257 "Only int64, int32, and float tensors are supported. "
258 "Found unsupported type for tensor named " +
259 TensorSpec->name());
260 return None;
261 }
262 Ret.push_back({*TensorSpec, LoggingName->str()});
263 }
264
265 if (ValuesArray->size() != Ret.size()) {
266 Ctx.emitError(
267 "Unable to parse output spec. It should be a json file containing an "
268 "array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
269 "with a json object describing a TensorSpec; and a 'logging_name' key, "
270 "which is a string to use as name when logging this tensor in the "
271 "training log.");
272 return None;
273 }
274 if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) {
275 Ctx.emitError("The first output spec must describe the decision tensor, "
276 "and must have the logging_name " +
277 StringRef(ExpectedDecisionName));
278 return None;
279 }
280 return Ret;
281 }
282
283 class TFModelEvaluatorImpl {
284 public:
285 TFModelEvaluatorImpl(StringRef SavedModelPath,
286 const std::vector<TensorSpec> &InputSpecs,
287 function_ref<TensorSpec(size_t)> GetOutputSpecs,
288 size_t OutputSpecsSize, const char *Tags);
289
isValid() const290 bool isValid() const { return IsValid; }
OutputSize() const291 size_t OutputSize() const { return OutputFeed.size(); }
292
evaluate(TF_Tensor ** Output,TF_Status * Status)293 void evaluate(TF_Tensor **Output, TF_Status *Status) {
294 TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(),
295 Input.size(), OutputFeed.data(), Output, OutputFeed.size(),
296 nullptr, 0, nullptr, Status);
297 }
298
299 void initInput(size_t Index, TF_DataType Type,
300 const std::vector<int64_t> &Dimensions);
getInput() const301 const std::vector<TF_Tensor *> &getInput() const { return Input; }
302
303 ~TFModelEvaluatorImpl();
304
305 private:
306 /// The objects necessary for carrying out an evaluation of the SavedModel.
307 /// They are expensive to set up, and we maintain them accross all the
308 /// evaluations of the model.
309 TF_Session *Session = nullptr;
310 TFGraphPtr Graph;
311 TFSessionOptionsPtr Options;
312
313 /// The specification of the input nodes.
314 std::vector<TF_Output> InputFeed;
315
316 /// The input tensors. They must match by index of the corresponding InputFeed
317 /// value. We set up the tensors once and just mutate theirs scalars before
318 /// each evaluation. The input tensors keep their value after an evaluation.
319 std::vector<TF_Tensor *> Input;
320
321 /// The specification of the output nodes. When evaluating, the tensors in the
322 /// output tensor vector must match by index the corresponding element in the
323 /// OutputFeed.
324 std::vector<TF_Output> OutputFeed;
325
invalidate()326 void invalidate() { IsValid = false; }
327
328 bool IsValid = true;
329
330 /// Reusable utility for ensuring we can bind the requested Name to a node in
331 /// the SavedModel Graph.
332 bool checkReportAndInvalidate(const TF_Output &Output,
333 const TensorSpec &OutputSpec);
334 };
335 } // namespace llvm
336
TFModelEvaluatorImpl(StringRef SavedModelPath,const std::vector<TensorSpec> & InputSpecs,function_ref<TensorSpec (size_t)> GetOutputSpecs,size_t OutputSpecsSize,const char * Tags="serve")337 TFModelEvaluatorImpl::TFModelEvaluatorImpl(
338 StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
339 function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
340 const char *Tags = "serve")
341 : Graph(createTFGraph()), Options(createTFSessionOptions()),
342 InputFeed(InputSpecs.size()), Input(InputSpecs.size()),
343 OutputFeed(OutputSpecsSize) {
344 if (!ensureInitTF()) {
345 errs() << "Tensorflow should have been initialized";
346 return;
347 }
348 auto Status = createTFStatus();
349
350 Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
351 SavedModelPath.str().c_str(), &Tags, 1,
352 Graph.get(), nullptr, Status.get());
353 if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
354 errs() << TF_Message(Status.get());
355 invalidate();
356 }
357 for (size_t I = 0; I < InputSpecs.size(); ++I) {
358 auto &InputSpec = InputSpecs[I];
359 InputFeed[I] = {
360 TF_GraphOperationByName(Graph.get(), (InputSpec.name()).c_str()),
361 InputSpec.port()};
362 if (!checkReportAndInvalidate(InputFeed[I], InputSpec))
363 return;
364 initInput(I, static_cast<TF_DataType>(InputSpec.typeIndex()),
365 InputSpec.shape());
366 }
367 for (size_t I = 0; I < OutputSpecsSize; ++I) {
368 auto OutputSpec = GetOutputSpecs(I);
369 OutputFeed[I] = {
370 TF_GraphOperationByName(Graph.get(), (OutputSpec.name()).c_str()),
371 OutputSpec.port()};
372 if (!checkReportAndInvalidate(OutputFeed[I], OutputSpec))
373 return;
374 }
375 }
376
TFModelEvaluator(StringRef SavedModelPath,const std::vector<TensorSpec> & InputSpecs,function_ref<TensorSpec (size_t)> GetOutputSpecs,size_t OutputSpecsSize,const char * Tags)377 TFModelEvaluator::TFModelEvaluator(
378 StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
379 function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
380 const char *Tags)
381 : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
382 OutputSpecsSize, Tags)) {
383 if (!Impl->isValid())
384 Impl.reset();
385 }
386
TFModelEvaluator(StringRef SavedModelPath,const std::vector<TensorSpec> & InputSpecs,const std::vector<TensorSpec> & OutputSpecs,const char * Tags)387 TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
388 const std::vector<TensorSpec> &InputSpecs,
389 const std::vector<TensorSpec> &OutputSpecs,
390 const char *Tags)
391 : TFModelEvaluator(
392 SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
393 OutputSpecs.size(), Tags) {}
394
~TFModelEvaluatorImpl()395 TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {
396 for (auto *T : Input) {
397 TF_DeleteTensor(T);
398 }
399 if (Session == nullptr)
400 return;
401 auto Status = createTFStatus();
402 TF_DeleteSession(Session, Status.get());
403 Session = nullptr;
404 if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
405 errs() << "Could not delete TF session";
406 }
407
checkReportAndInvalidate(const TF_Output & Output,const TensorSpec & OutputSpec)408 bool TFModelEvaluatorImpl::checkReportAndInvalidate(
409 const TF_Output &Output, const TensorSpec &OutputSpec) {
410 if (Output.oper)
411 return true;
412 errs() << "Could not find TF_Output named: " + OutputSpec.name();
413 IsValid = false;
414 return IsValid;
415 }
416
evaluate()417 Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
418 if (!isValid())
419 return None;
420 std::unique_ptr<EvaluationResultImpl> Ret =
421 std::make_unique<EvaluationResultImpl>(Impl->OutputSize());
422 auto Status = createTFStatus();
423 Impl->evaluate(Ret->getOutput().data(), Status.get());
424 if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
425 errs() << TF_Message(Status.get());
426 Impl.reset();
427 return None;
428 }
429 return EvaluationResult(std::move(Ret));
430 }
431
initInput(size_t Index,TF_DataType Type,const std::vector<int64_t> & Dimensions)432 void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type,
433 const std::vector<int64_t> &Dimensions) {
434 int64_t TotalSize = TF_DataTypeSize(Type);
435 for (auto &D : Dimensions)
436 TotalSize *= D;
437
438 Input[Index] =
439 TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
440 std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
441 }
442
getUntypedInput(size_t Index)443 void *TFModelEvaluator::getUntypedInput(size_t Index) {
444 return TF_TensorData(Impl->getInput()[Index]);
445 }
446
EvaluationResult(std::unique_ptr<EvaluationResultImpl> Impl)447 TFModelEvaluator::EvaluationResult::EvaluationResult(
448 std::unique_ptr<EvaluationResultImpl> Impl)
449 : Impl(std::move(Impl)) {}
450
EvaluationResult(EvaluationResult && Other)451 TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
452 : Impl(std::move(Other.Impl)) {}
453
454 TFModelEvaluator::EvaluationResult &
operator =(EvaluationResult && Other)455 TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
456 Impl = std::move(Other.Impl);
457 return *this;
458 }
459
getUntypedTensorValue(size_t Index)460 void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
461 return TF_TensorData(Impl->getOutput()[Index]);
462 }
463
464 const void *
getUntypedTensorValue(size_t Index) const465 TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
466 return TF_TensorData(Impl->getOutput()[Index]);
467 }
468
469 #define TFUTILS_GETDATATYPE_IMPL(T, E) \
470 template <> int TensorSpec::getDataType<T>() { return E; }
471
TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)472 TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)
473
474 #undef TFUTILS_GETDATATYPE_IMPL
475
476 TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
~TFModelEvaluator()477 TFModelEvaluator::~TFModelEvaluator() {}
478
print(raw_ostream & OS)479 void Logger::print(raw_ostream &OS) {
480 if (RawLogData.empty())
481 return;
482 if (RawLogData[0].empty())
483 return;
484 size_t Tensor0Size = FeatureSpecs[0].Spec.getElementCount() *
485 FeatureSpecs[0].Spec.getElementByteSize();
486 size_t NumberOfRecords = RawLogData[0].size() / Tensor0Size;
487 if (NumberOfRecords == 0)
488 return;
489 size_t RewardSize =
490 RewardSpec.getElementCount() * RewardSpec.getElementByteSize();
491 size_t NumberOfRewards = RawLogData.back().size() / RewardSize;
492
493 OS << "feature_lists: {\n";
494 for (size_t I = 0; I < FeatureSpecs.size(); ++I)
495 writeRawTensorsAsFeatureLists(OS, FeatureSpecs[I], RawLogData[I].data(),
496 NumberOfRecords);
497
498 if (IncludeReward)
499 writeRawTensorsAsFeatureLists(OS, {RewardSpec, None},
500 RawLogData.back().data(), NumberOfRecords,
501 NumberOfRewards == 1);
502
503 OS << "}\n";
504 }
505 #endif // defined(LLVM_HAVE_TF_API)
506