1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCContext.h"
84 #include "llvm/MC/MCDirectives.h"
85 #include "llvm/MC/MCDwarf.h"
86 #include "llvm/MC/MCExpr.h"
87 #include "llvm/MC/MCInst.h"
88 #include "llvm/MC/MCSection.h"
89 #include "llvm/MC/MCSectionCOFF.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCSectionXCOFF.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCSymbolXCOFF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStreamer.h"
105 #include "llvm/Remarks/RemarkStringTable.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/Format.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/Path.h"
113 #include "llvm/Support/TargetRegistry.h"
114 #include "llvm/Support/Timer.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetLoweringObjectFile.h"
117 #include "llvm/Target/TargetMachine.h"
118 #include "llvm/Target/TargetOptions.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cinttypes>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <memory>
126 #include <string>
127 #include <utility>
128 #include <vector>
129
130 using namespace llvm;
131
132 #define DEBUG_TYPE "asm-printer"
133
134 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
135 static cl::opt<bool>
136 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
137 cl::desc("Disable debug info printing"));
138
139 const char DWARFGroupName[] = "dwarf";
140 const char DWARFGroupDescription[] = "DWARF Emission";
141 const char DbgTimerName[] = "emit";
142 const char DbgTimerDescription[] = "Debug Info Emission";
143 const char EHTimerName[] = "write_exception";
144 const char EHTimerDescription[] = "DWARF Exception Writer";
145 const char CFGuardName[] = "Control Flow Guard";
146 const char CFGuardDescription[] = "Control Flow Guard";
147 const char CodeViewLineTablesGroupName[] = "linetables";
148 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
149
150 STATISTIC(EmittedInsts, "Number of machine instrs printed");
151
152 char AsmPrinter::ID = 0;
153
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155
getGCMap(void * & P)156 static gcp_map_type &getGCMap(void *&P) {
157 if (!P)
158 P = new gcp_map_type();
159 return *(gcp_map_type*)P;
160 }
161
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value. This rounds up to the preferred alignment if possible and legal.
getGVAlignment(const GlobalObject * GV,const DataLayout & DL,Align InAlign)164 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
165 Align InAlign) {
166 Align Alignment;
167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168 Alignment = DL.getPreferredAlign(GVar);
169
170 // If InAlign is specified, round it to it.
171 if (InAlign > Alignment)
172 Alignment = InAlign;
173
174 // If the GV has a specified alignment, take it into account.
175 const MaybeAlign GVAlign(GV->getAlignment());
176 if (!GVAlign)
177 return Alignment;
178
179 assert(GVAlign && "GVAlign must be set");
180
181 // If the GVAlign is larger than NumBits, or if we are required to obey
182 // NumBits because the GV has an assigned section, obey it.
183 if (*GVAlign > Alignment || GV->hasSection())
184 Alignment = *GVAlign;
185 return Alignment;
186 }
187
AsmPrinter(TargetMachine & tm,std::unique_ptr<MCStreamer> Streamer)188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191 VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193
~AsmPrinter()194 AsmPrinter::~AsmPrinter() {
195 assert(!DD && Handlers.size() == NumUserHandlers &&
196 "Debug/EH info didn't get finalized");
197
198 if (GCMetadataPrinters) {
199 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
200
201 delete &GCMap;
202 GCMetadataPrinters = nullptr;
203 }
204 }
205
isPositionIndependent() const206 bool AsmPrinter::isPositionIndependent() const {
207 return TM.isPositionIndependent();
208 }
209
210 /// getFunctionNumber - Return a unique ID for the current function.
getFunctionNumber() const211 unsigned AsmPrinter::getFunctionNumber() const {
212 return MF->getFunctionNumber();
213 }
214
getObjFileLowering() const215 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
216 return *TM.getObjFileLowering();
217 }
218
getDataLayout() const219 const DataLayout &AsmPrinter::getDataLayout() const {
220 return MMI->getModule()->getDataLayout();
221 }
222
223 // Do not use the cached DataLayout because some client use it without a Module
224 // (dsymutil, llvm-dwarfdump).
getPointerSize() const225 unsigned AsmPrinter::getPointerSize() const {
226 return TM.getPointerSize(0); // FIXME: Default address space
227 }
228
getSubtargetInfo() const229 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
230 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
231 return MF->getSubtarget<MCSubtargetInfo>();
232 }
233
EmitToStreamer(MCStreamer & S,const MCInst & Inst)234 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
235 S.emitInstruction(Inst, getSubtargetInfo());
236 }
237
emitInitialRawDwarfLocDirective(const MachineFunction & MF)238 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
239 if (DD) {
240 assert(OutStreamer->hasRawTextSupport() &&
241 "Expected assembly output mode.");
242 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
243 }
244 }
245
246 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const247 const MCSection *AsmPrinter::getCurrentSection() const {
248 return OutStreamer->getCurrentSectionOnly();
249 }
250
getAnalysisUsage(AnalysisUsage & AU) const251 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
252 AU.setPreservesAll();
253 MachineFunctionPass::getAnalysisUsage(AU);
254 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
255 AU.addRequired<GCModuleInfo>();
256 }
257
doInitialization(Module & M)258 bool AsmPrinter::doInitialization(Module &M) {
259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261
262 // Initialize TargetLoweringObjectFile.
263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264 .Initialize(OutContext, TM);
265
266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267 .getModuleMetadata(M);
268
269 OutStreamer->InitSections(false);
270
271 if (DisableDebugInfoPrinting)
272 MMI->setDebugInfoAvailability(false);
273
274 // Emit the version-min deployment target directive if needed.
275 //
276 // FIXME: If we end up with a collection of these sorts of Darwin-specific
277 // or ELF-specific things, it may make sense to have a platform helper class
278 // that will work with the target helper class. For now keep it here, as the
279 // alternative is duplicated code in each of the target asm printers that
280 // use the directive, where it would need the same conditionalization
281 // anyway.
282 const Triple &Target = TM.getTargetTriple();
283 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
284
285 // Allow the target to emit any magic that it wants at the start of the file.
286 emitStartOfAsmFile(M);
287
288 // Very minimal debug info. It is ignored if we emit actual debug info. If we
289 // don't, this at least helps the user find where a global came from.
290 if (MAI->hasSingleParameterDotFile()) {
291 // .file "foo.c"
292 OutStreamer->emitFileDirective(
293 llvm::sys::path::filename(M.getSourceFileName()));
294 }
295
296 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
297 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
298 for (auto &I : *MI)
299 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
300 MP->beginAssembly(M, *MI, *this);
301
302 // Emit module-level inline asm if it exists.
303 if (!M.getModuleInlineAsm().empty()) {
304 // We're at the module level. Construct MCSubtarget from the default CPU
305 // and target triple.
306 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
307 TM.getTargetTriple().str(), TM.getTargetCPU(),
308 TM.getTargetFeatureString()));
309 assert(STI && "Unable to create subtarget info");
310 OutStreamer->AddComment("Start of file scope inline assembly");
311 OutStreamer->AddBlankLine();
312 emitInlineAsm(M.getModuleInlineAsm() + "\n",
313 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
314 OutStreamer->AddComment("End of file scope inline assembly");
315 OutStreamer->AddBlankLine();
316 }
317
318 if (MAI->doesSupportDebugInformation()) {
319 bool EmitCodeView = M.getCodeViewFlag();
320 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
321 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
322 DbgTimerName, DbgTimerDescription,
323 CodeViewLineTablesGroupName,
324 CodeViewLineTablesGroupDescription);
325 }
326 if (!EmitCodeView || M.getDwarfVersion()) {
327 if (!DisableDebugInfoPrinting) {
328 DD = new DwarfDebug(this);
329 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
330 DbgTimerDescription, DWARFGroupName,
331 DWARFGroupDescription);
332 }
333 }
334 }
335
336 switch (MAI->getExceptionHandlingType()) {
337 case ExceptionHandling::SjLj:
338 case ExceptionHandling::DwarfCFI:
339 case ExceptionHandling::ARM:
340 isCFIMoveForDebugging = true;
341 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
342 break;
343 for (auto &F: M.getFunctionList()) {
344 // If the module contains any function with unwind data,
345 // .eh_frame has to be emitted.
346 // Ignore functions that won't get emitted.
347 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
348 isCFIMoveForDebugging = false;
349 break;
350 }
351 }
352 break;
353 default:
354 isCFIMoveForDebugging = false;
355 break;
356 }
357
358 EHStreamer *ES = nullptr;
359 switch (MAI->getExceptionHandlingType()) {
360 case ExceptionHandling::None:
361 break;
362 case ExceptionHandling::SjLj:
363 case ExceptionHandling::DwarfCFI:
364 ES = new DwarfCFIException(this);
365 break;
366 case ExceptionHandling::ARM:
367 ES = new ARMException(this);
368 break;
369 case ExceptionHandling::WinEH:
370 switch (MAI->getWinEHEncodingType()) {
371 default: llvm_unreachable("unsupported unwinding information encoding");
372 case WinEH::EncodingType::Invalid:
373 break;
374 case WinEH::EncodingType::X86:
375 case WinEH::EncodingType::Itanium:
376 ES = new WinException(this);
377 break;
378 }
379 break;
380 case ExceptionHandling::Wasm:
381 ES = new WasmException(this);
382 break;
383 case ExceptionHandling::AIX:
384 ES = new AIXException(this);
385 break;
386 }
387 if (ES)
388 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
389 EHTimerDescription, DWARFGroupName,
390 DWARFGroupDescription);
391
392 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
393 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
394 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
395 CFGuardDescription, DWARFGroupName,
396 DWARFGroupDescription);
397
398 for (const HandlerInfo &HI : Handlers) {
399 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
400 HI.TimerGroupDescription, TimePassesIsEnabled);
401 HI.Handler->beginModule(&M);
402 }
403
404 return false;
405 }
406
canBeHidden(const GlobalValue * GV,const MCAsmInfo & MAI)407 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
408 if (!MAI.hasWeakDefCanBeHiddenDirective())
409 return false;
410
411 return GV->canBeOmittedFromSymbolTable();
412 }
413
emitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const414 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
415 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
416 switch (Linkage) {
417 case GlobalValue::CommonLinkage:
418 case GlobalValue::LinkOnceAnyLinkage:
419 case GlobalValue::LinkOnceODRLinkage:
420 case GlobalValue::WeakAnyLinkage:
421 case GlobalValue::WeakODRLinkage:
422 if (MAI->hasWeakDefDirective()) {
423 // .globl _foo
424 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
425
426 if (!canBeHidden(GV, *MAI))
427 // .weak_definition _foo
428 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
429 else
430 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
431 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
432 // .globl _foo
433 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
434 //NOTE: linkonce is handled by the section the symbol was assigned to.
435 } else {
436 // .weak _foo
437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
438 }
439 return;
440 case GlobalValue::ExternalLinkage:
441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
442 return;
443 case GlobalValue::PrivateLinkage:
444 case GlobalValue::InternalLinkage:
445 return;
446 case GlobalValue::ExternalWeakLinkage:
447 case GlobalValue::AvailableExternallyLinkage:
448 case GlobalValue::AppendingLinkage:
449 llvm_unreachable("Should never emit this");
450 }
451 llvm_unreachable("Unknown linkage type!");
452 }
453
getNameWithPrefix(SmallVectorImpl<char> & Name,const GlobalValue * GV) const454 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
455 const GlobalValue *GV) const {
456 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
457 }
458
getSymbol(const GlobalValue * GV) const459 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
460 return TM.getSymbol(GV);
461 }
462
getSymbolPreferLocal(const GlobalValue & GV) const463 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
464 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
465 // exact definion (intersection of GlobalValue::hasExactDefinition() and
466 // !isInterposable()). These linkages include: external, appending, internal,
467 // private. It may be profitable to use a local alias for external. The
468 // assembler would otherwise be conservative and assume a global default
469 // visibility symbol can be interposable, even if the code generator already
470 // assumed it.
471 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
472 const Module &M = *GV.getParent();
473 if (TM.getRelocationModel() != Reloc::Static &&
474 M.getPIELevel() == PIELevel::Default)
475 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() &&
476 GV.getParent()->noSemanticInterposition()))
477 return getSymbolWithGlobalValueBase(&GV, "$local");
478 }
479 return TM.getSymbol(&GV);
480 }
481
482 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
emitGlobalVariable(const GlobalVariable * GV)483 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
484 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
485 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
486 "No emulated TLS variables in the common section");
487
488 // Never emit TLS variable xyz in emulated TLS model.
489 // The initialization value is in __emutls_t.xyz instead of xyz.
490 if (IsEmuTLSVar)
491 return;
492
493 if (GV->hasInitializer()) {
494 // Check to see if this is a special global used by LLVM, if so, emit it.
495 if (emitSpecialLLVMGlobal(GV))
496 return;
497
498 // Skip the emission of global equivalents. The symbol can be emitted later
499 // on by emitGlobalGOTEquivs in case it turns out to be needed.
500 if (GlobalGOTEquivs.count(getSymbol(GV)))
501 return;
502
503 if (isVerbose()) {
504 // When printing the control variable __emutls_v.*,
505 // we don't need to print the original TLS variable name.
506 GV->printAsOperand(OutStreamer->GetCommentOS(),
507 /*PrintType=*/false, GV->getParent());
508 OutStreamer->GetCommentOS() << '\n';
509 }
510 }
511
512 MCSymbol *GVSym = getSymbol(GV);
513 MCSymbol *EmittedSym = GVSym;
514
515 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
516 // attributes.
517 // GV's or GVSym's attributes will be used for the EmittedSym.
518 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
519
520 if (!GV->hasInitializer()) // External globals require no extra code.
521 return;
522
523 GVSym->redefineIfPossible();
524 if (GVSym->isDefined() || GVSym->isVariable())
525 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
526 "' is already defined");
527
528 if (MAI->hasDotTypeDotSizeDirective())
529 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
530
531 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
532
533 const DataLayout &DL = GV->getParent()->getDataLayout();
534 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
535
536 // If the alignment is specified, we *must* obey it. Overaligning a global
537 // with a specified alignment is a prompt way to break globals emitted to
538 // sections and expected to be contiguous (e.g. ObjC metadata).
539 const Align Alignment = getGVAlignment(GV, DL);
540
541 for (const HandlerInfo &HI : Handlers) {
542 NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
543 HI.TimerGroupName, HI.TimerGroupDescription,
544 TimePassesIsEnabled);
545 HI.Handler->setSymbolSize(GVSym, Size);
546 }
547
548 // Handle common symbols
549 if (GVKind.isCommon()) {
550 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
551 // .comm _foo, 42, 4
552 const bool SupportsAlignment =
553 getObjFileLowering().getCommDirectiveSupportsAlignment();
554 OutStreamer->emitCommonSymbol(GVSym, Size,
555 SupportsAlignment ? Alignment.value() : 0);
556 return;
557 }
558
559 // Determine to which section this global should be emitted.
560 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
561
562 // If we have a bss global going to a section that supports the
563 // zerofill directive, do so here.
564 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
565 TheSection->isVirtualSection()) {
566 if (Size == 0)
567 Size = 1; // zerofill of 0 bytes is undefined.
568 emitLinkage(GV, GVSym);
569 // .zerofill __DATA, __bss, _foo, 400, 5
570 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
571 return;
572 }
573
574 // If this is a BSS local symbol and we are emitting in the BSS
575 // section use .lcomm/.comm directive.
576 if (GVKind.isBSSLocal() &&
577 getObjFileLowering().getBSSSection() == TheSection) {
578 if (Size == 0)
579 Size = 1; // .comm Foo, 0 is undefined, avoid it.
580
581 // Use .lcomm only if it supports user-specified alignment.
582 // Otherwise, while it would still be correct to use .lcomm in some
583 // cases (e.g. when Align == 1), the external assembler might enfore
584 // some -unknown- default alignment behavior, which could cause
585 // spurious differences between external and integrated assembler.
586 // Prefer to simply fall back to .local / .comm in this case.
587 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
588 // .lcomm _foo, 42
589 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
590 return;
591 }
592
593 // .local _foo
594 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
595 // .comm _foo, 42, 4
596 const bool SupportsAlignment =
597 getObjFileLowering().getCommDirectiveSupportsAlignment();
598 OutStreamer->emitCommonSymbol(GVSym, Size,
599 SupportsAlignment ? Alignment.value() : 0);
600 return;
601 }
602
603 // Handle thread local data for mach-o which requires us to output an
604 // additional structure of data and mangle the original symbol so that we
605 // can reference it later.
606 //
607 // TODO: This should become an "emit thread local global" method on TLOF.
608 // All of this macho specific stuff should be sunk down into TLOFMachO and
609 // stuff like "TLSExtraDataSection" should no longer be part of the parent
610 // TLOF class. This will also make it more obvious that stuff like
611 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
612 // specific code.
613 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
614 // Emit the .tbss symbol
615 MCSymbol *MangSym =
616 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
617
618 if (GVKind.isThreadBSS()) {
619 TheSection = getObjFileLowering().getTLSBSSSection();
620 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
621 } else if (GVKind.isThreadData()) {
622 OutStreamer->SwitchSection(TheSection);
623
624 emitAlignment(Alignment, GV);
625 OutStreamer->emitLabel(MangSym);
626
627 emitGlobalConstant(GV->getParent()->getDataLayout(),
628 GV->getInitializer());
629 }
630
631 OutStreamer->AddBlankLine();
632
633 // Emit the variable struct for the runtime.
634 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
635
636 OutStreamer->SwitchSection(TLVSect);
637 // Emit the linkage here.
638 emitLinkage(GV, GVSym);
639 OutStreamer->emitLabel(GVSym);
640
641 // Three pointers in size:
642 // - __tlv_bootstrap - used to make sure support exists
643 // - spare pointer, used when mapped by the runtime
644 // - pointer to mangled symbol above with initializer
645 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
646 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
647 PtrSize);
648 OutStreamer->emitIntValue(0, PtrSize);
649 OutStreamer->emitSymbolValue(MangSym, PtrSize);
650
651 OutStreamer->AddBlankLine();
652 return;
653 }
654
655 MCSymbol *EmittedInitSym = GVSym;
656
657 OutStreamer->SwitchSection(TheSection);
658
659 emitLinkage(GV, EmittedInitSym);
660 emitAlignment(Alignment, GV);
661
662 OutStreamer->emitLabel(EmittedInitSym);
663 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
664 if (LocalAlias != EmittedInitSym)
665 OutStreamer->emitLabel(LocalAlias);
666
667 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
668
669 if (MAI->hasDotTypeDotSizeDirective())
670 // .size foo, 42
671 OutStreamer->emitELFSize(EmittedInitSym,
672 MCConstantExpr::create(Size, OutContext));
673
674 OutStreamer->AddBlankLine();
675 }
676
677 /// Emit the directive and value for debug thread local expression
678 ///
679 /// \p Value - The value to emit.
680 /// \p Size - The size of the integer (in bytes) to emit.
emitDebugValue(const MCExpr * Value,unsigned Size) const681 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
682 OutStreamer->emitValue(Value, Size);
683 }
684
emitFunctionHeaderComment()685 void AsmPrinter::emitFunctionHeaderComment() {}
686
687 /// EmitFunctionHeader - This method emits the header for the current
688 /// function.
emitFunctionHeader()689 void AsmPrinter::emitFunctionHeader() {
690 const Function &F = MF->getFunction();
691
692 if (isVerbose())
693 OutStreamer->GetCommentOS()
694 << "-- Begin function "
695 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
696
697 // Print out constants referenced by the function
698 emitConstantPool();
699
700 // Print the 'header' of function.
701 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
702 OutStreamer->SwitchSection(MF->getSection());
703
704 if (!MAI->hasVisibilityOnlyWithLinkage())
705 emitVisibility(CurrentFnSym, F.getVisibility());
706
707 if (MAI->needsFunctionDescriptors())
708 emitLinkage(&F, CurrentFnDescSym);
709
710 emitLinkage(&F, CurrentFnSym);
711 if (MAI->hasFunctionAlignment())
712 emitAlignment(MF->getAlignment(), &F);
713
714 if (MAI->hasDotTypeDotSizeDirective())
715 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
716
717 if (F.hasFnAttribute(Attribute::Cold))
718 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
719
720 if (isVerbose()) {
721 F.printAsOperand(OutStreamer->GetCommentOS(),
722 /*PrintType=*/false, F.getParent());
723 emitFunctionHeaderComment();
724 OutStreamer->GetCommentOS() << '\n';
725 }
726
727 // Emit the prefix data.
728 if (F.hasPrefixData()) {
729 if (MAI->hasSubsectionsViaSymbols()) {
730 // Preserving prefix data on platforms which use subsections-via-symbols
731 // is a bit tricky. Here we introduce a symbol for the prefix data
732 // and use the .alt_entry attribute to mark the function's real entry point
733 // as an alternative entry point to the prefix-data symbol.
734 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
735 OutStreamer->emitLabel(PrefixSym);
736
737 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
738
739 // Emit an .alt_entry directive for the actual function symbol.
740 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
741 } else {
742 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
743 }
744 }
745
746 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
747 // place prefix data before NOPs.
748 unsigned PatchableFunctionPrefix = 0;
749 unsigned PatchableFunctionEntry = 0;
750 (void)F.getFnAttribute("patchable-function-prefix")
751 .getValueAsString()
752 .getAsInteger(10, PatchableFunctionPrefix);
753 (void)F.getFnAttribute("patchable-function-entry")
754 .getValueAsString()
755 .getAsInteger(10, PatchableFunctionEntry);
756 if (PatchableFunctionPrefix) {
757 CurrentPatchableFunctionEntrySym =
758 OutContext.createLinkerPrivateTempSymbol();
759 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
760 emitNops(PatchableFunctionPrefix);
761 } else if (PatchableFunctionEntry) {
762 // May be reassigned when emitting the body, to reference the label after
763 // the initial BTI (AArch64) or endbr32/endbr64 (x86).
764 CurrentPatchableFunctionEntrySym = CurrentFnBegin;
765 }
766
767 // Emit the function descriptor. This is a virtual function to allow targets
768 // to emit their specific function descriptor. Right now it is only used by
769 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
770 // descriptors and should be converted to use this hook as well.
771 if (MAI->needsFunctionDescriptors())
772 emitFunctionDescriptor();
773
774 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
775 // their wild and crazy things as required.
776 emitFunctionEntryLabel();
777
778 if (CurrentFnBegin) {
779 if (MAI->useAssignmentForEHBegin()) {
780 MCSymbol *CurPos = OutContext.createTempSymbol();
781 OutStreamer->emitLabel(CurPos);
782 OutStreamer->emitAssignment(CurrentFnBegin,
783 MCSymbolRefExpr::create(CurPos, OutContext));
784 } else {
785 OutStreamer->emitLabel(CurrentFnBegin);
786 }
787 }
788
789 // Emit pre-function debug and/or EH information.
790 for (const HandlerInfo &HI : Handlers) {
791 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
792 HI.TimerGroupDescription, TimePassesIsEnabled);
793 HI.Handler->beginFunction(MF);
794 }
795
796 // Emit the prologue data.
797 if (F.hasPrologueData())
798 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
799 }
800
801 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
802 /// function. This can be overridden by targets as required to do custom stuff.
emitFunctionEntryLabel()803 void AsmPrinter::emitFunctionEntryLabel() {
804 CurrentFnSym->redefineIfPossible();
805
806 // The function label could have already been emitted if two symbols end up
807 // conflicting due to asm renaming. Detect this and emit an error.
808 if (CurrentFnSym->isVariable())
809 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
810 "' is a protected alias");
811 if (CurrentFnSym->isDefined())
812 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
813 "' label emitted multiple times to assembly file");
814
815 OutStreamer->emitLabel(CurrentFnSym);
816
817 if (TM.getTargetTriple().isOSBinFormatELF()) {
818 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
819 if (Sym != CurrentFnSym)
820 OutStreamer->emitLabel(Sym);
821 }
822 }
823
824 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)825 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
826 const MachineFunction *MF = MI.getMF();
827 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
828
829 // Check for spills and reloads
830
831 // We assume a single instruction only has a spill or reload, not
832 // both.
833 Optional<unsigned> Size;
834 if ((Size = MI.getRestoreSize(TII))) {
835 CommentOS << *Size << "-byte Reload\n";
836 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
837 if (*Size)
838 CommentOS << *Size << "-byte Folded Reload\n";
839 } else if ((Size = MI.getSpillSize(TII))) {
840 CommentOS << *Size << "-byte Spill\n";
841 } else if ((Size = MI.getFoldedSpillSize(TII))) {
842 if (*Size)
843 CommentOS << *Size << "-byte Folded Spill\n";
844 }
845
846 // Check for spill-induced copies
847 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
848 CommentOS << " Reload Reuse\n";
849 }
850
851 /// emitImplicitDef - This method emits the specified machine instruction
852 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI) const853 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
854 Register RegNo = MI->getOperand(0).getReg();
855
856 SmallString<128> Str;
857 raw_svector_ostream OS(Str);
858 OS << "implicit-def: "
859 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
860
861 OutStreamer->AddComment(OS.str());
862 OutStreamer->AddBlankLine();
863 }
864
emitKill(const MachineInstr * MI,AsmPrinter & AP)865 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
866 std::string Str;
867 raw_string_ostream OS(Str);
868 OS << "kill:";
869 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
870 const MachineOperand &Op = MI->getOperand(i);
871 assert(Op.isReg() && "KILL instruction must have only register operands");
872 OS << ' ' << (Op.isDef() ? "def " : "killed ")
873 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
874 }
875 AP.OutStreamer->AddComment(OS.str());
876 AP.OutStreamer->AddBlankLine();
877 }
878
879 /// emitDebugValueComment - This method handles the target-independent form
880 /// of DBG_VALUE, returning true if it was able to do so. A false return
881 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)882 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
883 // This code handles only the 4-operand target-independent form.
884 if (MI->getNumOperands() != 4)
885 return false;
886
887 SmallString<128> Str;
888 raw_svector_ostream OS(Str);
889 OS << "DEBUG_VALUE: ";
890
891 const DILocalVariable *V = MI->getDebugVariable();
892 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
893 StringRef Name = SP->getName();
894 if (!Name.empty())
895 OS << Name << ":";
896 }
897 OS << V->getName();
898 OS << " <- ";
899
900 // The second operand is only an offset if it's an immediate.
901 bool MemLoc = MI->isIndirectDebugValue();
902 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
903 const DIExpression *Expr = MI->getDebugExpression();
904 if (Expr->getNumElements()) {
905 OS << '[';
906 bool NeedSep = false;
907 for (auto Op : Expr->expr_ops()) {
908 if (NeedSep)
909 OS << ", ";
910 else
911 NeedSep = true;
912 OS << dwarf::OperationEncodingString(Op.getOp());
913 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
914 OS << ' ' << Op.getArg(I);
915 }
916 OS << "] ";
917 }
918
919 // Register or immediate value. Register 0 means undef.
920 if (MI->getDebugOperand(0).isFPImm()) {
921 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
922 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
923 OS << (double)APF.convertToFloat();
924 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
925 OS << APF.convertToDouble();
926 } else {
927 // There is no good way to print long double. Convert a copy to
928 // double. Ah well, it's only a comment.
929 bool ignored;
930 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
931 &ignored);
932 OS << "(long double) " << APF.convertToDouble();
933 }
934 } else if (MI->getDebugOperand(0).isImm()) {
935 OS << MI->getDebugOperand(0).getImm();
936 } else if (MI->getDebugOperand(0).isCImm()) {
937 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
938 } else if (MI->getDebugOperand(0).isTargetIndex()) {
939 auto Op = MI->getDebugOperand(0);
940 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
941 return true;
942 } else {
943 Register Reg;
944 if (MI->getDebugOperand(0).isReg()) {
945 Reg = MI->getDebugOperand(0).getReg();
946 } else {
947 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
948 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
949 Offset += TFI->getFrameIndexReference(
950 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
951 MemLoc = true;
952 }
953 if (Reg == 0) {
954 // Suppress offset, it is not meaningful here.
955 OS << "undef";
956 // NOTE: Want this comment at start of line, don't emit with AddComment.
957 AP.OutStreamer->emitRawComment(OS.str());
958 return true;
959 }
960 if (MemLoc)
961 OS << '[';
962 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
963 }
964
965 if (MemLoc)
966 OS << '+' << Offset.getFixed() << ']';
967
968 // NOTE: Want this comment at start of line, don't emit with AddComment.
969 AP.OutStreamer->emitRawComment(OS.str());
970 return true;
971 }
972
973 /// This method handles the target-independent form of DBG_LABEL, returning
974 /// true if it was able to do so. A false return means the target will need
975 /// to handle MI in EmitInstruction.
emitDebugLabelComment(const MachineInstr * MI,AsmPrinter & AP)976 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
977 if (MI->getNumOperands() != 1)
978 return false;
979
980 SmallString<128> Str;
981 raw_svector_ostream OS(Str);
982 OS << "DEBUG_LABEL: ";
983
984 const DILabel *V = MI->getDebugLabel();
985 if (auto *SP = dyn_cast<DISubprogram>(
986 V->getScope()->getNonLexicalBlockFileScope())) {
987 StringRef Name = SP->getName();
988 if (!Name.empty())
989 OS << Name << ":";
990 }
991 OS << V->getName();
992
993 // NOTE: Want this comment at start of line, don't emit with AddComment.
994 AP.OutStreamer->emitRawComment(OS.str());
995 return true;
996 }
997
needsCFIMoves() const998 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
999 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1000 MF->getFunction().needsUnwindTableEntry())
1001 return CFI_M_EH;
1002
1003 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1004 return CFI_M_Debug;
1005
1006 return CFI_M_None;
1007 }
1008
needsSEHMoves()1009 bool AsmPrinter::needsSEHMoves() {
1010 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1011 }
1012
emitCFIInstruction(const MachineInstr & MI)1013 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1014 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1015 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1016 ExceptionHandlingType != ExceptionHandling::ARM)
1017 return;
1018
1019 if (needsCFIMoves() == CFI_M_None)
1020 return;
1021
1022 // If there is no "real" instruction following this CFI instruction, skip
1023 // emitting it; it would be beyond the end of the function's FDE range.
1024 auto *MBB = MI.getParent();
1025 auto I = std::next(MI.getIterator());
1026 while (I != MBB->end() && I->isTransient())
1027 ++I;
1028 if (I == MBB->instr_end() &&
1029 MBB->getReverseIterator() == MBB->getParent()->rbegin())
1030 return;
1031
1032 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1033 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1034 const MCCFIInstruction &CFI = Instrs[CFIIndex];
1035 emitCFIInstruction(CFI);
1036 }
1037
emitFrameAlloc(const MachineInstr & MI)1038 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1039 // The operands are the MCSymbol and the frame offset of the allocation.
1040 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1041 int FrameOffset = MI.getOperand(1).getImm();
1042
1043 // Emit a symbol assignment.
1044 OutStreamer->emitAssignment(FrameAllocSym,
1045 MCConstantExpr::create(FrameOffset, OutContext));
1046 }
1047
1048 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1049 /// given basic block. This can be used to capture more precise profile
1050 /// information. We use the last 3 bits (LSBs) to ecnode the following
1051 /// information:
1052 /// * (1): set if return block (ret or tail call).
1053 /// * (2): set if ends with a tail call.
1054 /// * (3): set if exception handling (EH) landing pad.
1055 /// The remaining bits are zero.
getBBAddrMapMetadata(const MachineBasicBlock & MBB)1056 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1057 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1058 return ((unsigned)MBB.isReturnBlock()) |
1059 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1060 (MBB.isEHPad() << 2);
1061 }
1062
emitBBAddrMapSection(const MachineFunction & MF)1063 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1064 MCSection *BBAddrMapSection =
1065 getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1066 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1067
1068 const MCSymbol *FunctionSymbol = getFunctionBegin();
1069
1070 OutStreamer->PushSection();
1071 OutStreamer->SwitchSection(BBAddrMapSection);
1072 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1073 // Emit the total number of basic blocks in this function.
1074 OutStreamer->emitULEB128IntValue(MF.size());
1075 // Emit BB Information for each basic block in the funciton.
1076 for (const MachineBasicBlock &MBB : MF) {
1077 const MCSymbol *MBBSymbol =
1078 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1079 // Emit the basic block offset.
1080 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1081 // Emit the basic block size. When BBs have alignments, their size cannot
1082 // always be computed from their offsets.
1083 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1084 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1085 }
1086 OutStreamer->PopSection();
1087 }
1088
emitStackSizeSection(const MachineFunction & MF)1089 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1090 if (!MF.getTarget().Options.EmitStackSizeSection)
1091 return;
1092
1093 MCSection *StackSizeSection =
1094 getObjFileLowering().getStackSizesSection(*getCurrentSection());
1095 if (!StackSizeSection)
1096 return;
1097
1098 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1099 // Don't emit functions with dynamic stack allocations.
1100 if (FrameInfo.hasVarSizedObjects())
1101 return;
1102
1103 OutStreamer->PushSection();
1104 OutStreamer->SwitchSection(StackSizeSection);
1105
1106 const MCSymbol *FunctionSymbol = getFunctionBegin();
1107 uint64_t StackSize = FrameInfo.getStackSize();
1108 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1109 OutStreamer->emitULEB128IntValue(StackSize);
1110
1111 OutStreamer->PopSection();
1112 }
1113
needFuncLabelsForEHOrDebugInfo(const MachineFunction & MF)1114 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1115 MachineModuleInfo &MMI = MF.getMMI();
1116 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1117 return true;
1118
1119 // We might emit an EH table that uses function begin and end labels even if
1120 // we don't have any landingpads.
1121 if (!MF.getFunction().hasPersonalityFn())
1122 return false;
1123 return !isNoOpWithoutInvoke(
1124 classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1125 }
1126
1127 /// EmitFunctionBody - This method emits the body and trailer for a
1128 /// function.
emitFunctionBody()1129 void AsmPrinter::emitFunctionBody() {
1130 emitFunctionHeader();
1131
1132 // Emit target-specific gunk before the function body.
1133 emitFunctionBodyStart();
1134
1135 if (isVerbose()) {
1136 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1137 MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1138 if (!MDT) {
1139 OwnedMDT = std::make_unique<MachineDominatorTree>();
1140 OwnedMDT->getBase().recalculate(*MF);
1141 MDT = OwnedMDT.get();
1142 }
1143
1144 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1145 MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1146 if (!MLI) {
1147 OwnedMLI = std::make_unique<MachineLoopInfo>();
1148 OwnedMLI->getBase().analyze(MDT->getBase());
1149 MLI = OwnedMLI.get();
1150 }
1151 }
1152
1153 // Print out code for the function.
1154 bool HasAnyRealCode = false;
1155 int NumInstsInFunction = 0;
1156
1157 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1158 for (auto &MBB : *MF) {
1159 // Print a label for the basic block.
1160 emitBasicBlockStart(MBB);
1161 DenseMap<StringRef, unsigned> MnemonicCounts;
1162 for (auto &MI : MBB) {
1163 // Print the assembly for the instruction.
1164 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1165 !MI.isDebugInstr()) {
1166 HasAnyRealCode = true;
1167 ++NumInstsInFunction;
1168 }
1169
1170 // If there is a pre-instruction symbol, emit a label for it here.
1171 if (MCSymbol *S = MI.getPreInstrSymbol())
1172 OutStreamer->emitLabel(S);
1173
1174 for (const HandlerInfo &HI : Handlers) {
1175 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1176 HI.TimerGroupDescription, TimePassesIsEnabled);
1177 HI.Handler->beginInstruction(&MI);
1178 }
1179
1180 if (isVerbose())
1181 emitComments(MI, OutStreamer->GetCommentOS());
1182
1183 switch (MI.getOpcode()) {
1184 case TargetOpcode::CFI_INSTRUCTION:
1185 emitCFIInstruction(MI);
1186 break;
1187 case TargetOpcode::LOCAL_ESCAPE:
1188 emitFrameAlloc(MI);
1189 break;
1190 case TargetOpcode::ANNOTATION_LABEL:
1191 case TargetOpcode::EH_LABEL:
1192 case TargetOpcode::GC_LABEL:
1193 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1194 break;
1195 case TargetOpcode::INLINEASM:
1196 case TargetOpcode::INLINEASM_BR:
1197 emitInlineAsm(&MI);
1198 break;
1199 case TargetOpcode::DBG_VALUE:
1200 if (isVerbose()) {
1201 if (!emitDebugValueComment(&MI, *this))
1202 emitInstruction(&MI);
1203 }
1204 break;
1205 case TargetOpcode::DBG_INSTR_REF:
1206 // This instruction reference will have been resolved to a machine
1207 // location, and a nearby DBG_VALUE created. We can safely ignore
1208 // the instruction reference.
1209 break;
1210 case TargetOpcode::DBG_LABEL:
1211 if (isVerbose()) {
1212 if (!emitDebugLabelComment(&MI, *this))
1213 emitInstruction(&MI);
1214 }
1215 break;
1216 case TargetOpcode::IMPLICIT_DEF:
1217 if (isVerbose()) emitImplicitDef(&MI);
1218 break;
1219 case TargetOpcode::KILL:
1220 if (isVerbose()) emitKill(&MI, *this);
1221 break;
1222 default:
1223 emitInstruction(&MI);
1224 if (CanDoExtraAnalysis) {
1225 MCInst MCI;
1226 MCI.setOpcode(MI.getOpcode());
1227 auto Name = OutStreamer->getMnemonic(MCI);
1228 auto I = MnemonicCounts.insert({Name, 0u});
1229 I.first->second++;
1230 }
1231 break;
1232 }
1233
1234 // If there is a post-instruction symbol, emit a label for it here.
1235 if (MCSymbol *S = MI.getPostInstrSymbol())
1236 OutStreamer->emitLabel(S);
1237
1238 for (const HandlerInfo &HI : Handlers) {
1239 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1240 HI.TimerGroupDescription, TimePassesIsEnabled);
1241 HI.Handler->endInstruction();
1242 }
1243 }
1244
1245 // We must emit temporary symbol for the end of this basic block, if either
1246 // we have BBLabels enabled or if this basic blocks marks the end of a
1247 // section (except the section containing the entry basic block as the end
1248 // symbol for that section is CurrentFnEnd).
1249 if (MF->hasBBLabels() ||
1250 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1251 !MBB.sameSection(&MF->front())))
1252 OutStreamer->emitLabel(MBB.getEndSymbol());
1253
1254 if (MBB.isEndSection()) {
1255 // The size directive for the section containing the entry block is
1256 // handled separately by the function section.
1257 if (!MBB.sameSection(&MF->front())) {
1258 if (MAI->hasDotTypeDotSizeDirective()) {
1259 // Emit the size directive for the basic block section.
1260 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1261 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1262 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1263 OutContext);
1264 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1265 }
1266 MBBSectionRanges[MBB.getSectionIDNum()] =
1267 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1268 }
1269 }
1270 emitBasicBlockEnd(MBB);
1271
1272 if (CanDoExtraAnalysis) {
1273 // Skip empty blocks.
1274 if (MBB.empty())
1275 continue;
1276
1277 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1278 MBB.begin()->getDebugLoc(), &MBB);
1279
1280 // Generate instruction mix remark. First, sort counts in descending order
1281 // by count and name.
1282 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1283 for (auto &KV : MnemonicCounts)
1284 MnemonicVec.emplace_back(KV.first, KV.second);
1285
1286 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1287 const std::pair<StringRef, unsigned> &B) {
1288 if (A.second > B.second)
1289 return true;
1290 if (A.second == B.second)
1291 return StringRef(A.first) < StringRef(B.first);
1292 return false;
1293 });
1294 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1295 for (auto &KV : MnemonicVec) {
1296 auto Name = (Twine("INST_") + KV.first.trim()).str();
1297 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1298 }
1299 ORE->emit(R);
1300 }
1301 }
1302
1303 EmittedInsts += NumInstsInFunction;
1304 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1305 MF->getFunction().getSubprogram(),
1306 &MF->front());
1307 R << ore::NV("NumInstructions", NumInstsInFunction)
1308 << " instructions in function";
1309 ORE->emit(R);
1310
1311 // If the function is empty and the object file uses .subsections_via_symbols,
1312 // then we need to emit *something* to the function body to prevent the
1313 // labels from collapsing together. Just emit a noop.
1314 // Similarly, don't emit empty functions on Windows either. It can lead to
1315 // duplicate entries (two functions with the same RVA) in the Guard CF Table
1316 // after linking, causing the kernel not to load the binary:
1317 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1318 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1319 const Triple &TT = TM.getTargetTriple();
1320 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1321 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1322 MCInst Noop;
1323 MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1324
1325 // Targets can opt-out of emitting the noop here by leaving the opcode
1326 // unspecified.
1327 if (Noop.getOpcode()) {
1328 OutStreamer->AddComment("avoids zero-length function");
1329 emitNops(1);
1330 }
1331 }
1332
1333 // Switch to the original section in case basic block sections was used.
1334 OutStreamer->SwitchSection(MF->getSection());
1335
1336 const Function &F = MF->getFunction();
1337 for (const auto &BB : F) {
1338 if (!BB.hasAddressTaken())
1339 continue;
1340 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1341 if (Sym->isDefined())
1342 continue;
1343 OutStreamer->AddComment("Address of block that was removed by CodeGen");
1344 OutStreamer->emitLabel(Sym);
1345 }
1346
1347 // Emit target-specific gunk after the function body.
1348 emitFunctionBodyEnd();
1349
1350 if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1351 MAI->hasDotTypeDotSizeDirective()) {
1352 // Create a symbol for the end of function.
1353 CurrentFnEnd = createTempSymbol("func_end");
1354 OutStreamer->emitLabel(CurrentFnEnd);
1355 }
1356
1357 // If the target wants a .size directive for the size of the function, emit
1358 // it.
1359 if (MAI->hasDotTypeDotSizeDirective()) {
1360 // We can get the size as difference between the function label and the
1361 // temp label.
1362 const MCExpr *SizeExp = MCBinaryExpr::createSub(
1363 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1364 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1365 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1366 }
1367
1368 for (const HandlerInfo &HI : Handlers) {
1369 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1370 HI.TimerGroupDescription, TimePassesIsEnabled);
1371 HI.Handler->markFunctionEnd();
1372 }
1373
1374 MBBSectionRanges[MF->front().getSectionIDNum()] =
1375 MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1376
1377 // Print out jump tables referenced by the function.
1378 emitJumpTableInfo();
1379
1380 // Emit post-function debug and/or EH information.
1381 for (const HandlerInfo &HI : Handlers) {
1382 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1383 HI.TimerGroupDescription, TimePassesIsEnabled);
1384 HI.Handler->endFunction(MF);
1385 }
1386
1387 // Emit section containing BB address offsets and their metadata, when
1388 // BB labels are requested for this function.
1389 if (MF->hasBBLabels())
1390 emitBBAddrMapSection(*MF);
1391
1392 // Emit section containing stack size metadata.
1393 emitStackSizeSection(*MF);
1394
1395 emitPatchableFunctionEntries();
1396
1397 if (isVerbose())
1398 OutStreamer->GetCommentOS() << "-- End function\n";
1399
1400 OutStreamer->AddBlankLine();
1401 }
1402
1403 /// Compute the number of Global Variables that uses a Constant.
getNumGlobalVariableUses(const Constant * C)1404 static unsigned getNumGlobalVariableUses(const Constant *C) {
1405 if (!C)
1406 return 0;
1407
1408 if (isa<GlobalVariable>(C))
1409 return 1;
1410
1411 unsigned NumUses = 0;
1412 for (auto *CU : C->users())
1413 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1414
1415 return NumUses;
1416 }
1417
1418 /// Only consider global GOT equivalents if at least one user is a
1419 /// cstexpr inside an initializer of another global variables. Also, don't
1420 /// handle cstexpr inside instructions. During global variable emission,
1421 /// candidates are skipped and are emitted later in case at least one cstexpr
1422 /// isn't replaced by a PC relative GOT entry access.
isGOTEquivalentCandidate(const GlobalVariable * GV,unsigned & NumGOTEquivUsers)1423 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1424 unsigned &NumGOTEquivUsers) {
1425 // Global GOT equivalents are unnamed private globals with a constant
1426 // pointer initializer to another global symbol. They must point to a
1427 // GlobalVariable or Function, i.e., as GlobalValue.
1428 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1429 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1430 !isa<GlobalValue>(GV->getOperand(0)))
1431 return false;
1432
1433 // To be a got equivalent, at least one of its users need to be a constant
1434 // expression used by another global variable.
1435 for (auto *U : GV->users())
1436 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1437
1438 return NumGOTEquivUsers > 0;
1439 }
1440
1441 /// Unnamed constant global variables solely contaning a pointer to
1442 /// another globals variable is equivalent to a GOT table entry; it contains the
1443 /// the address of another symbol. Optimize it and replace accesses to these
1444 /// "GOT equivalents" by using the GOT entry for the final global instead.
1445 /// Compute GOT equivalent candidates among all global variables to avoid
1446 /// emitting them if possible later on, after it use is replaced by a GOT entry
1447 /// access.
computeGlobalGOTEquivs(Module & M)1448 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1449 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1450 return;
1451
1452 for (const auto &G : M.globals()) {
1453 unsigned NumGOTEquivUsers = 0;
1454 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1455 continue;
1456
1457 const MCSymbol *GOTEquivSym = getSymbol(&G);
1458 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1459 }
1460 }
1461
1462 /// Constant expressions using GOT equivalent globals may not be eligible
1463 /// for PC relative GOT entry conversion, in such cases we need to emit such
1464 /// globals we previously omitted in EmitGlobalVariable.
emitGlobalGOTEquivs()1465 void AsmPrinter::emitGlobalGOTEquivs() {
1466 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1467 return;
1468
1469 SmallVector<const GlobalVariable *, 8> FailedCandidates;
1470 for (auto &I : GlobalGOTEquivs) {
1471 const GlobalVariable *GV = I.second.first;
1472 unsigned Cnt = I.second.second;
1473 if (Cnt)
1474 FailedCandidates.push_back(GV);
1475 }
1476 GlobalGOTEquivs.clear();
1477
1478 for (auto *GV : FailedCandidates)
1479 emitGlobalVariable(GV);
1480 }
1481
emitGlobalIndirectSymbol(Module & M,const GlobalIndirectSymbol & GIS)1482 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1483 const GlobalIndirectSymbol& GIS) {
1484 MCSymbol *Name = getSymbol(&GIS);
1485 bool IsFunction = GIS.getValueType()->isFunctionTy();
1486 // Treat bitcasts of functions as functions also. This is important at least
1487 // on WebAssembly where object and function addresses can't alias each other.
1488 if (!IsFunction)
1489 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1490 if (CE->getOpcode() == Instruction::BitCast)
1491 IsFunction =
1492 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1493
1494 // AIX's assembly directive `.set` is not usable for aliasing purpose,
1495 // so AIX has to use the extra-label-at-definition strategy. At this
1496 // point, all the extra label is emitted, we just have to emit linkage for
1497 // those labels.
1498 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1499 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1500 assert(MAI->hasVisibilityOnlyWithLinkage() &&
1501 "Visibility should be handled with emitLinkage() on AIX.");
1502 emitLinkage(&GIS, Name);
1503 // If it's a function, also emit linkage for aliases of function entry
1504 // point.
1505 if (IsFunction)
1506 emitLinkage(&GIS,
1507 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1508 return;
1509 }
1510
1511 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1512 OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1513 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1514 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1515 else
1516 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1517
1518 // Set the symbol type to function if the alias has a function type.
1519 // This affects codegen when the aliasee is not a function.
1520 if (IsFunction)
1521 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1522 ? MCSA_ELF_TypeIndFunction
1523 : MCSA_ELF_TypeFunction);
1524
1525 emitVisibility(Name, GIS.getVisibility());
1526
1527 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1528
1529 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1530 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1531
1532 // Emit the directives as assignments aka .set:
1533 OutStreamer->emitAssignment(Name, Expr);
1534 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1535 if (LocalAlias != Name)
1536 OutStreamer->emitAssignment(LocalAlias, Expr);
1537
1538 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1539 // If the aliasee does not correspond to a symbol in the output, i.e. the
1540 // alias is not of an object or the aliased object is private, then set the
1541 // size of the alias symbol from the type of the alias. We don't do this in
1542 // other situations as the alias and aliasee having differing types but same
1543 // size may be intentional.
1544 const GlobalObject *BaseObject = GA->getBaseObject();
1545 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1546 (!BaseObject || BaseObject->hasPrivateLinkage())) {
1547 const DataLayout &DL = M.getDataLayout();
1548 uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1549 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1550 }
1551 }
1552 }
1553
emitRemarksSection(remarks::RemarkStreamer & RS)1554 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1555 if (!RS.needsSection())
1556 return;
1557
1558 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1559
1560 Optional<SmallString<128>> Filename;
1561 if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1562 Filename = *FilenameRef;
1563 sys::fs::make_absolute(*Filename);
1564 assert(!Filename->empty() && "The filename can't be empty.");
1565 }
1566
1567 std::string Buf;
1568 raw_string_ostream OS(Buf);
1569 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1570 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1571 : RemarkSerializer.metaSerializer(OS);
1572 MetaSerializer->emit();
1573
1574 // Switch to the remarks section.
1575 MCSection *RemarksSection =
1576 OutContext.getObjectFileInfo()->getRemarksSection();
1577 OutStreamer->SwitchSection(RemarksSection);
1578
1579 OutStreamer->emitBinaryData(OS.str());
1580 }
1581
doFinalization(Module & M)1582 bool AsmPrinter::doFinalization(Module &M) {
1583 // Set the MachineFunction to nullptr so that we can catch attempted
1584 // accesses to MF specific features at the module level and so that
1585 // we can conditionalize accesses based on whether or not it is nullptr.
1586 MF = nullptr;
1587
1588 // Gather all GOT equivalent globals in the module. We really need two
1589 // passes over the globals: one to compute and another to avoid its emission
1590 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1591 // where the got equivalent shows up before its use.
1592 computeGlobalGOTEquivs(M);
1593
1594 // Emit global variables.
1595 for (const auto &G : M.globals())
1596 emitGlobalVariable(&G);
1597
1598 // Emit remaining GOT equivalent globals.
1599 emitGlobalGOTEquivs();
1600
1601 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1602
1603 // Emit linkage(XCOFF) and visibility info for declarations
1604 for (const Function &F : M) {
1605 if (!F.isDeclarationForLinker())
1606 continue;
1607
1608 MCSymbol *Name = getSymbol(&F);
1609 // Function getSymbol gives us the function descriptor symbol for XCOFF.
1610
1611 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1612 GlobalValue::VisibilityTypes V = F.getVisibility();
1613 if (V == GlobalValue::DefaultVisibility)
1614 continue;
1615
1616 emitVisibility(Name, V, false);
1617 continue;
1618 }
1619
1620 if (F.isIntrinsic())
1621 continue;
1622
1623 // Handle the XCOFF case.
1624 // Variable `Name` is the function descriptor symbol (see above). Get the
1625 // function entry point symbol.
1626 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1627 // Emit linkage for the function entry point.
1628 emitLinkage(&F, FnEntryPointSym);
1629
1630 // Emit linkage for the function descriptor.
1631 emitLinkage(&F, Name);
1632 }
1633
1634 // Emit the remarks section contents.
1635 // FIXME: Figure out when is the safest time to emit this section. It should
1636 // not come after debug info.
1637 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1638 emitRemarksSection(*RS);
1639
1640 TLOF.emitModuleMetadata(*OutStreamer, M);
1641
1642 if (TM.getTargetTriple().isOSBinFormatELF()) {
1643 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1644
1645 // Output stubs for external and common global variables.
1646 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1647 if (!Stubs.empty()) {
1648 OutStreamer->SwitchSection(TLOF.getDataSection());
1649 const DataLayout &DL = M.getDataLayout();
1650
1651 emitAlignment(Align(DL.getPointerSize()));
1652 for (const auto &Stub : Stubs) {
1653 OutStreamer->emitLabel(Stub.first);
1654 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1655 DL.getPointerSize());
1656 }
1657 }
1658 }
1659
1660 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1661 MachineModuleInfoCOFF &MMICOFF =
1662 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1663
1664 // Output stubs for external and common global variables.
1665 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1666 if (!Stubs.empty()) {
1667 const DataLayout &DL = M.getDataLayout();
1668
1669 for (const auto &Stub : Stubs) {
1670 SmallString<256> SectionName = StringRef(".rdata$");
1671 SectionName += Stub.first->getName();
1672 OutStreamer->SwitchSection(OutContext.getCOFFSection(
1673 SectionName,
1674 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1675 COFF::IMAGE_SCN_LNK_COMDAT,
1676 SectionKind::getReadOnly(), Stub.first->getName(),
1677 COFF::IMAGE_COMDAT_SELECT_ANY));
1678 emitAlignment(Align(DL.getPointerSize()));
1679 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1680 OutStreamer->emitLabel(Stub.first);
1681 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1682 DL.getPointerSize());
1683 }
1684 }
1685 }
1686
1687 // Finalize debug and EH information.
1688 for (const HandlerInfo &HI : Handlers) {
1689 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1690 HI.TimerGroupDescription, TimePassesIsEnabled);
1691 HI.Handler->endModule();
1692 }
1693
1694 // This deletes all the ephemeral handlers that AsmPrinter added, while
1695 // keeping all the user-added handlers alive until the AsmPrinter is
1696 // destroyed.
1697 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1698 DD = nullptr;
1699
1700 // If the target wants to know about weak references, print them all.
1701 if (MAI->getWeakRefDirective()) {
1702 // FIXME: This is not lazy, it would be nice to only print weak references
1703 // to stuff that is actually used. Note that doing so would require targets
1704 // to notice uses in operands (due to constant exprs etc). This should
1705 // happen with the MC stuff eventually.
1706
1707 // Print out module-level global objects here.
1708 for (const auto &GO : M.global_objects()) {
1709 if (!GO.hasExternalWeakLinkage())
1710 continue;
1711 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1712 }
1713 }
1714
1715 // Print aliases in topological order, that is, for each alias a = b,
1716 // b must be printed before a.
1717 // This is because on some targets (e.g. PowerPC) linker expects aliases in
1718 // such an order to generate correct TOC information.
1719 SmallVector<const GlobalAlias *, 16> AliasStack;
1720 SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1721 for (const auto &Alias : M.aliases()) {
1722 for (const GlobalAlias *Cur = &Alias; Cur;
1723 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1724 if (!AliasVisited.insert(Cur).second)
1725 break;
1726 AliasStack.push_back(Cur);
1727 }
1728 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1729 emitGlobalIndirectSymbol(M, *AncestorAlias);
1730 AliasStack.clear();
1731 }
1732 for (const auto &IFunc : M.ifuncs())
1733 emitGlobalIndirectSymbol(M, IFunc);
1734
1735 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1736 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1737 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1738 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1739 MP->finishAssembly(M, *MI, *this);
1740
1741 // Emit llvm.ident metadata in an '.ident' directive.
1742 emitModuleIdents(M);
1743
1744 // Emit bytes for llvm.commandline metadata.
1745 emitModuleCommandLines(M);
1746
1747 // Emit __morestack address if needed for indirect calls.
1748 if (MMI->usesMorestackAddr()) {
1749 Align Alignment(1);
1750 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1751 getDataLayout(), SectionKind::getReadOnly(),
1752 /*C=*/nullptr, Alignment);
1753 OutStreamer->SwitchSection(ReadOnlySection);
1754
1755 MCSymbol *AddrSymbol =
1756 OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1757 OutStreamer->emitLabel(AddrSymbol);
1758
1759 unsigned PtrSize = MAI->getCodePointerSize();
1760 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1761 PtrSize);
1762 }
1763
1764 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1765 // split-stack is used.
1766 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1767 OutStreamer->SwitchSection(
1768 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1769 if (MMI->hasNosplitStack())
1770 OutStreamer->SwitchSection(
1771 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1772 }
1773
1774 // If we don't have any trampolines, then we don't require stack memory
1775 // to be executable. Some targets have a directive to declare this.
1776 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1777 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1778 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1779 OutStreamer->SwitchSection(S);
1780
1781 if (TM.Options.EmitAddrsig) {
1782 // Emit address-significance attributes for all globals.
1783 OutStreamer->emitAddrsig();
1784 for (const GlobalValue &GV : M.global_values())
1785 if (!GV.use_empty() && !GV.isThreadLocal() &&
1786 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1787 !GV.hasAtLeastLocalUnnamedAddr())
1788 OutStreamer->emitAddrsigSym(getSymbol(&GV));
1789 }
1790
1791 // Emit symbol partition specifications (ELF only).
1792 if (TM.getTargetTriple().isOSBinFormatELF()) {
1793 unsigned UniqueID = 0;
1794 for (const GlobalValue &GV : M.global_values()) {
1795 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1796 GV.getVisibility() != GlobalValue::DefaultVisibility)
1797 continue;
1798
1799 OutStreamer->SwitchSection(
1800 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1801 "", ++UniqueID, nullptr));
1802 OutStreamer->emitBytes(GV.getPartition());
1803 OutStreamer->emitZeros(1);
1804 OutStreamer->emitValue(
1805 MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1806 MAI->getCodePointerSize());
1807 }
1808 }
1809
1810 // Allow the target to emit any magic that it wants at the end of the file,
1811 // after everything else has gone out.
1812 emitEndOfAsmFile(M);
1813
1814 MMI = nullptr;
1815
1816 OutStreamer->Finish();
1817 OutStreamer->reset();
1818 OwnedMLI.reset();
1819 OwnedMDT.reset();
1820
1821 return false;
1822 }
1823
getMBBExceptionSym(const MachineBasicBlock & MBB)1824 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1825 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1826 if (Res.second)
1827 Res.first->second = createTempSymbol("exception");
1828 return Res.first->second;
1829 }
1830
SetupMachineFunction(MachineFunction & MF)1831 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1832 this->MF = &MF;
1833 const Function &F = MF.getFunction();
1834
1835 // Get the function symbol.
1836 if (!MAI->needsFunctionDescriptors()) {
1837 CurrentFnSym = getSymbol(&MF.getFunction());
1838 } else {
1839 assert(TM.getTargetTriple().isOSAIX() &&
1840 "Only AIX uses the function descriptor hooks.");
1841 // AIX is unique here in that the name of the symbol emitted for the
1842 // function body does not have the same name as the source function's
1843 // C-linkage name.
1844 assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1845 " initalized first.");
1846
1847 // Get the function entry point symbol.
1848 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1849 }
1850
1851 CurrentFnSymForSize = CurrentFnSym;
1852 CurrentFnBegin = nullptr;
1853 CurrentSectionBeginSym = nullptr;
1854 MBBSectionRanges.clear();
1855 MBBSectionExceptionSyms.clear();
1856 bool NeedsLocalForSize = MAI->needsLocalForSize();
1857 if (F.hasFnAttribute("patchable-function-entry") ||
1858 F.hasFnAttribute("function-instrument") ||
1859 F.hasFnAttribute("xray-instruction-threshold") ||
1860 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1861 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1862 CurrentFnBegin = createTempSymbol("func_begin");
1863 if (NeedsLocalForSize)
1864 CurrentFnSymForSize = CurrentFnBegin;
1865 }
1866
1867 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1868 }
1869
1870 namespace {
1871
1872 // Keep track the alignment, constpool entries per Section.
1873 struct SectionCPs {
1874 MCSection *S;
1875 Align Alignment;
1876 SmallVector<unsigned, 4> CPEs;
1877
SectionCPs__anon0f7c2c840211::SectionCPs1878 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1879 };
1880
1881 } // end anonymous namespace
1882
1883 /// EmitConstantPool - Print to the current output stream assembly
1884 /// representations of the constants in the constant pool MCP. This is
1885 /// used to print out constants which have been "spilled to memory" by
1886 /// the code generator.
emitConstantPool()1887 void AsmPrinter::emitConstantPool() {
1888 const MachineConstantPool *MCP = MF->getConstantPool();
1889 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1890 if (CP.empty()) return;
1891
1892 // Calculate sections for constant pool entries. We collect entries to go into
1893 // the same section together to reduce amount of section switch statements.
1894 SmallVector<SectionCPs, 4> CPSections;
1895 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1896 const MachineConstantPoolEntry &CPE = CP[i];
1897 Align Alignment = CPE.getAlign();
1898
1899 SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1900
1901 const Constant *C = nullptr;
1902 if (!CPE.isMachineConstantPoolEntry())
1903 C = CPE.Val.ConstVal;
1904
1905 MCSection *S = getObjFileLowering().getSectionForConstant(
1906 getDataLayout(), Kind, C, Alignment);
1907
1908 // The number of sections are small, just do a linear search from the
1909 // last section to the first.
1910 bool Found = false;
1911 unsigned SecIdx = CPSections.size();
1912 while (SecIdx != 0) {
1913 if (CPSections[--SecIdx].S == S) {
1914 Found = true;
1915 break;
1916 }
1917 }
1918 if (!Found) {
1919 SecIdx = CPSections.size();
1920 CPSections.push_back(SectionCPs(S, Alignment));
1921 }
1922
1923 if (Alignment > CPSections[SecIdx].Alignment)
1924 CPSections[SecIdx].Alignment = Alignment;
1925 CPSections[SecIdx].CPEs.push_back(i);
1926 }
1927
1928 // Now print stuff into the calculated sections.
1929 const MCSection *CurSection = nullptr;
1930 unsigned Offset = 0;
1931 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1932 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1933 unsigned CPI = CPSections[i].CPEs[j];
1934 MCSymbol *Sym = GetCPISymbol(CPI);
1935 if (!Sym->isUndefined())
1936 continue;
1937
1938 if (CurSection != CPSections[i].S) {
1939 OutStreamer->SwitchSection(CPSections[i].S);
1940 emitAlignment(Align(CPSections[i].Alignment));
1941 CurSection = CPSections[i].S;
1942 Offset = 0;
1943 }
1944
1945 MachineConstantPoolEntry CPE = CP[CPI];
1946
1947 // Emit inter-object padding for alignment.
1948 unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1949 OutStreamer->emitZeros(NewOffset - Offset);
1950
1951 Type *Ty = CPE.getType();
1952 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1953
1954 OutStreamer->emitLabel(Sym);
1955 if (CPE.isMachineConstantPoolEntry())
1956 emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1957 else
1958 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1959 }
1960 }
1961 }
1962
1963 // Print assembly representations of the jump tables used by the current
1964 // function.
emitJumpTableInfo()1965 void AsmPrinter::emitJumpTableInfo() {
1966 const DataLayout &DL = MF->getDataLayout();
1967 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1968 if (!MJTI) return;
1969 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1970 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1971 if (JT.empty()) return;
1972
1973 // Pick the directive to use to print the jump table entries, and switch to
1974 // the appropriate section.
1975 const Function &F = MF->getFunction();
1976 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1977 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1978 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1979 F);
1980 if (JTInDiffSection) {
1981 // Drop it in the readonly section.
1982 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1983 OutStreamer->SwitchSection(ReadOnlySection);
1984 }
1985
1986 emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1987
1988 // Jump tables in code sections are marked with a data_region directive
1989 // where that's supported.
1990 if (!JTInDiffSection)
1991 OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1992
1993 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1994 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1995
1996 // If this jump table was deleted, ignore it.
1997 if (JTBBs.empty()) continue;
1998
1999 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2000 /// emit a .set directive for each unique entry.
2001 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2002 MAI->doesSetDirectiveSuppressReloc()) {
2003 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2004 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2005 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2006 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2007 const MachineBasicBlock *MBB = JTBBs[ii];
2008 if (!EmittedSets.insert(MBB).second)
2009 continue;
2010
2011 // .set LJTSet, LBB32-base
2012 const MCExpr *LHS =
2013 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2014 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2015 MCBinaryExpr::createSub(LHS, Base,
2016 OutContext));
2017 }
2018 }
2019
2020 // On some targets (e.g. Darwin) we want to emit two consecutive labels
2021 // before each jump table. The first label is never referenced, but tells
2022 // the assembler and linker the extents of the jump table object. The
2023 // second label is actually referenced by the code.
2024 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2025 // FIXME: This doesn't have to have any specific name, just any randomly
2026 // named and numbered local label started with 'l' would work. Simplify
2027 // GetJTISymbol.
2028 OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2029
2030 MCSymbol* JTISymbol = GetJTISymbol(JTI);
2031 OutStreamer->emitLabel(JTISymbol);
2032
2033 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2034 emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2035 }
2036 if (!JTInDiffSection)
2037 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2038 }
2039
2040 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2041 /// current stream.
emitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const2042 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2043 const MachineBasicBlock *MBB,
2044 unsigned UID) const {
2045 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2046 const MCExpr *Value = nullptr;
2047 switch (MJTI->getEntryKind()) {
2048 case MachineJumpTableInfo::EK_Inline:
2049 llvm_unreachable("Cannot emit EK_Inline jump table entry");
2050 case MachineJumpTableInfo::EK_Custom32:
2051 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2052 MJTI, MBB, UID, OutContext);
2053 break;
2054 case MachineJumpTableInfo::EK_BlockAddress:
2055 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2056 // .word LBB123
2057 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2058 break;
2059 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2060 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2061 // with a relocation as gp-relative, e.g.:
2062 // .gprel32 LBB123
2063 MCSymbol *MBBSym = MBB->getSymbol();
2064 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2065 return;
2066 }
2067
2068 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2069 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2070 // with a relocation as gp-relative, e.g.:
2071 // .gpdword LBB123
2072 MCSymbol *MBBSym = MBB->getSymbol();
2073 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2074 return;
2075 }
2076
2077 case MachineJumpTableInfo::EK_LabelDifference32: {
2078 // Each entry is the address of the block minus the address of the jump
2079 // table. This is used for PIC jump tables where gprel32 is not supported.
2080 // e.g.:
2081 // .word LBB123 - LJTI1_2
2082 // If the .set directive avoids relocations, this is emitted as:
2083 // .set L4_5_set_123, LBB123 - LJTI1_2
2084 // .word L4_5_set_123
2085 if (MAI->doesSetDirectiveSuppressReloc()) {
2086 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2087 OutContext);
2088 break;
2089 }
2090 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2091 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2092 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2093 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2094 break;
2095 }
2096 }
2097
2098 assert(Value && "Unknown entry kind!");
2099
2100 unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2101 OutStreamer->emitValue(Value, EntrySize);
2102 }
2103
2104 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2105 /// special global used by LLVM. If so, emit it and return true, otherwise
2106 /// do nothing and return false.
emitSpecialLLVMGlobal(const GlobalVariable * GV)2107 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2108 if (GV->getName() == "llvm.used") {
2109 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
2110 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2111 return true;
2112 }
2113
2114 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
2115 if (GV->getSection() == "llvm.metadata" ||
2116 GV->hasAvailableExternallyLinkage())
2117 return true;
2118
2119 if (!GV->hasAppendingLinkage()) return false;
2120
2121 assert(GV->hasInitializer() && "Not a special LLVM global!");
2122
2123 if (GV->getName() == "llvm.global_ctors") {
2124 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2125 /* isCtor */ true);
2126
2127 return true;
2128 }
2129
2130 if (GV->getName() == "llvm.global_dtors") {
2131 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2132 /* isCtor */ false);
2133
2134 return true;
2135 }
2136
2137 report_fatal_error("unknown special variable");
2138 }
2139
2140 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2141 /// global in the specified llvm.used list.
emitLLVMUsedList(const ConstantArray * InitList)2142 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2143 // Should be an array of 'i8*'.
2144 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2145 const GlobalValue *GV =
2146 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2147 if (GV)
2148 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2149 }
2150 }
2151
preprocessXXStructorList(const DataLayout & DL,const Constant * List,SmallVector<Structor,8> & Structors)2152 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2153 const Constant *List,
2154 SmallVector<Structor, 8> &Structors) {
2155 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is
2156 // the init priority.
2157 if (!isa<ConstantArray>(List))
2158 return;
2159
2160 // Gather the structors in a form that's convenient for sorting by priority.
2161 for (Value *O : cast<ConstantArray>(List)->operands()) {
2162 auto *CS = cast<ConstantStruct>(O);
2163 if (CS->getOperand(1)->isNullValue())
2164 break; // Found a null terminator, skip the rest.
2165 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2166 if (!Priority)
2167 continue; // Malformed.
2168 Structors.push_back(Structor());
2169 Structor &S = Structors.back();
2170 S.Priority = Priority->getLimitedValue(65535);
2171 S.Func = CS->getOperand(1);
2172 if (!CS->getOperand(2)->isNullValue()) {
2173 if (TM.getTargetTriple().isOSAIX())
2174 llvm::report_fatal_error(
2175 "associated data of XXStructor list is not yet supported on AIX");
2176 S.ComdatKey =
2177 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2178 }
2179 }
2180
2181 // Emit the function pointers in the target-specific order
2182 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2183 return L.Priority < R.Priority;
2184 });
2185 }
2186
2187 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2188 /// priority.
emitXXStructorList(const DataLayout & DL,const Constant * List,bool IsCtor)2189 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2190 bool IsCtor) {
2191 SmallVector<Structor, 8> Structors;
2192 preprocessXXStructorList(DL, List, Structors);
2193 if (Structors.empty())
2194 return;
2195
2196 const Align Align = DL.getPointerPrefAlignment();
2197 for (Structor &S : Structors) {
2198 const TargetLoweringObjectFile &Obj = getObjFileLowering();
2199 const MCSymbol *KeySym = nullptr;
2200 if (GlobalValue *GV = S.ComdatKey) {
2201 if (GV->isDeclarationForLinker())
2202 // If the associated variable is not defined in this module
2203 // (it might be available_externally, or have been an
2204 // available_externally definition that was dropped by the
2205 // EliminateAvailableExternally pass), some other TU
2206 // will provide its dynamic initializer.
2207 continue;
2208
2209 KeySym = getSymbol(GV);
2210 }
2211
2212 MCSection *OutputSection =
2213 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2214 : Obj.getStaticDtorSection(S.Priority, KeySym));
2215 OutStreamer->SwitchSection(OutputSection);
2216 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2217 emitAlignment(Align);
2218 emitXXStructor(DL, S.Func);
2219 }
2220 }
2221
emitModuleIdents(Module & M)2222 void AsmPrinter::emitModuleIdents(Module &M) {
2223 if (!MAI->hasIdentDirective())
2224 return;
2225
2226 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2227 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2228 const MDNode *N = NMD->getOperand(i);
2229 assert(N->getNumOperands() == 1 &&
2230 "llvm.ident metadata entry can have only one operand");
2231 const MDString *S = cast<MDString>(N->getOperand(0));
2232 OutStreamer->emitIdent(S->getString());
2233 }
2234 }
2235 }
2236
emitModuleCommandLines(Module & M)2237 void AsmPrinter::emitModuleCommandLines(Module &M) {
2238 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2239 if (!CommandLine)
2240 return;
2241
2242 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2243 if (!NMD || !NMD->getNumOperands())
2244 return;
2245
2246 OutStreamer->PushSection();
2247 OutStreamer->SwitchSection(CommandLine);
2248 OutStreamer->emitZeros(1);
2249 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2250 const MDNode *N = NMD->getOperand(i);
2251 assert(N->getNumOperands() == 1 &&
2252 "llvm.commandline metadata entry can have only one operand");
2253 const MDString *S = cast<MDString>(N->getOperand(0));
2254 OutStreamer->emitBytes(S->getString());
2255 OutStreamer->emitZeros(1);
2256 }
2257 OutStreamer->PopSection();
2258 }
2259
2260 //===--------------------------------------------------------------------===//
2261 // Emission and print routines
2262 //
2263
2264 /// Emit a byte directive and value.
2265 ///
emitInt8(int Value) const2266 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2267
2268 /// Emit a short directive and value.
emitInt16(int Value) const2269 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2270
2271 /// Emit a long directive and value.
emitInt32(int Value) const2272 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2273
2274 /// Emit a long long directive and value.
emitInt64(uint64_t Value) const2275 void AsmPrinter::emitInt64(uint64_t Value) const {
2276 OutStreamer->emitInt64(Value);
2277 }
2278
2279 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2280 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2281 /// .set if it avoids relocations.
emitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const2282 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2283 unsigned Size) const {
2284 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2285 }
2286
2287 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2288 /// where the size in bytes of the directive is specified by Size and Label
2289 /// specifies the label. This implicitly uses .set if it is available.
emitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size,bool IsSectionRelative) const2290 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2291 unsigned Size,
2292 bool IsSectionRelative) const {
2293 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2294 OutStreamer->EmitCOFFSecRel32(Label, Offset);
2295 if (Size > 4)
2296 OutStreamer->emitZeros(Size - 4);
2297 return;
2298 }
2299
2300 // Emit Label+Offset (or just Label if Offset is zero)
2301 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2302 if (Offset)
2303 Expr = MCBinaryExpr::createAdd(
2304 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2305
2306 OutStreamer->emitValue(Expr, Size);
2307 }
2308
2309 //===----------------------------------------------------------------------===//
2310
2311 // EmitAlignment - Emit an alignment directive to the specified power of
2312 // two boundary. If a global value is specified, and if that global has
2313 // an explicit alignment requested, it will override the alignment request
2314 // if required for correctness.
emitAlignment(Align Alignment,const GlobalObject * GV) const2315 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2316 if (GV)
2317 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2318
2319 if (Alignment == Align(1))
2320 return; // 1-byte aligned: no need to emit alignment.
2321
2322 if (getCurrentSection()->getKind().isText())
2323 OutStreamer->emitCodeAlignment(Alignment.value());
2324 else
2325 OutStreamer->emitValueToAlignment(Alignment.value());
2326 }
2327
2328 //===----------------------------------------------------------------------===//
2329 // Constant emission.
2330 //===----------------------------------------------------------------------===//
2331
lowerConstant(const Constant * CV)2332 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2333 MCContext &Ctx = OutContext;
2334
2335 if (CV->isNullValue() || isa<UndefValue>(CV))
2336 return MCConstantExpr::create(0, Ctx);
2337
2338 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2339 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2340
2341 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2342 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2343
2344 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2345 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2346
2347 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2348 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2349
2350 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2351 if (!CE) {
2352 llvm_unreachable("Unknown constant value to lower!");
2353 }
2354
2355 switch (CE->getOpcode()) {
2356 case Instruction::AddrSpaceCast: {
2357 const Constant *Op = CE->getOperand(0);
2358 unsigned DstAS = CE->getType()->getPointerAddressSpace();
2359 unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2360 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2361 return lowerConstant(Op);
2362
2363 // Fallthrough to error.
2364 LLVM_FALLTHROUGH;
2365 }
2366 default: {
2367 // If the code isn't optimized, there may be outstanding folding
2368 // opportunities. Attempt to fold the expression using DataLayout as a
2369 // last resort before giving up.
2370 Constant *C = ConstantFoldConstant(CE, getDataLayout());
2371 if (C != CE)
2372 return lowerConstant(C);
2373
2374 // Otherwise report the problem to the user.
2375 std::string S;
2376 raw_string_ostream OS(S);
2377 OS << "Unsupported expression in static initializer: ";
2378 CE->printAsOperand(OS, /*PrintType=*/false,
2379 !MF ? nullptr : MF->getFunction().getParent());
2380 report_fatal_error(OS.str());
2381 }
2382 case Instruction::GetElementPtr: {
2383 // Generate a symbolic expression for the byte address
2384 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2385 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2386
2387 const MCExpr *Base = lowerConstant(CE->getOperand(0));
2388 if (!OffsetAI)
2389 return Base;
2390
2391 int64_t Offset = OffsetAI.getSExtValue();
2392 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2393 Ctx);
2394 }
2395
2396 case Instruction::Trunc:
2397 // We emit the value and depend on the assembler to truncate the generated
2398 // expression properly. This is important for differences between
2399 // blockaddress labels. Since the two labels are in the same function, it
2400 // is reasonable to treat their delta as a 32-bit value.
2401 LLVM_FALLTHROUGH;
2402 case Instruction::BitCast:
2403 return lowerConstant(CE->getOperand(0));
2404
2405 case Instruction::IntToPtr: {
2406 const DataLayout &DL = getDataLayout();
2407
2408 // Handle casts to pointers by changing them into casts to the appropriate
2409 // integer type. This promotes constant folding and simplifies this code.
2410 Constant *Op = CE->getOperand(0);
2411 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2412 false/*ZExt*/);
2413 return lowerConstant(Op);
2414 }
2415
2416 case Instruction::PtrToInt: {
2417 const DataLayout &DL = getDataLayout();
2418
2419 // Support only foldable casts to/from pointers that can be eliminated by
2420 // changing the pointer to the appropriately sized integer type.
2421 Constant *Op = CE->getOperand(0);
2422 Type *Ty = CE->getType();
2423
2424 const MCExpr *OpExpr = lowerConstant(Op);
2425
2426 // We can emit the pointer value into this slot if the slot is an
2427 // integer slot equal to the size of the pointer.
2428 //
2429 // If the pointer is larger than the resultant integer, then
2430 // as with Trunc just depend on the assembler to truncate it.
2431 if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2432 DL.getTypeAllocSize(Op->getType()).getFixedSize())
2433 return OpExpr;
2434
2435 // Otherwise the pointer is smaller than the resultant integer, mask off
2436 // the high bits so we are sure to get a proper truncation if the input is
2437 // a constant expr.
2438 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2439 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2440 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2441 }
2442
2443 case Instruction::Sub: {
2444 GlobalValue *LHSGV;
2445 APInt LHSOffset;
2446 DSOLocalEquivalent *DSOEquiv;
2447 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2448 getDataLayout(), &DSOEquiv)) {
2449 GlobalValue *RHSGV;
2450 APInt RHSOffset;
2451 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2452 getDataLayout())) {
2453 const MCExpr *RelocExpr =
2454 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2455 if (!RelocExpr) {
2456 const MCExpr *LHSExpr =
2457 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2458 if (DSOEquiv &&
2459 getObjFileLowering().supportDSOLocalEquivalentLowering())
2460 LHSExpr =
2461 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2462 RelocExpr = MCBinaryExpr::createSub(
2463 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2464 }
2465 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2466 if (Addend != 0)
2467 RelocExpr = MCBinaryExpr::createAdd(
2468 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2469 return RelocExpr;
2470 }
2471 }
2472 }
2473 // else fallthrough
2474 LLVM_FALLTHROUGH;
2475
2476 // The MC library also has a right-shift operator, but it isn't consistently
2477 // signed or unsigned between different targets.
2478 case Instruction::Add:
2479 case Instruction::Mul:
2480 case Instruction::SDiv:
2481 case Instruction::SRem:
2482 case Instruction::Shl:
2483 case Instruction::And:
2484 case Instruction::Or:
2485 case Instruction::Xor: {
2486 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2487 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2488 switch (CE->getOpcode()) {
2489 default: llvm_unreachable("Unknown binary operator constant cast expr");
2490 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2491 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2492 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2493 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2494 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2495 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2496 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2497 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2498 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2499 }
2500 }
2501 }
2502 }
2503
2504 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2505 AsmPrinter &AP,
2506 const Constant *BaseCV = nullptr,
2507 uint64_t Offset = 0);
2508
2509 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2510 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2511
2512 /// isRepeatedByteSequence - Determine whether the given value is
2513 /// composed of a repeated sequence of identical bytes and return the
2514 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)2515 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2516 StringRef Data = V->getRawDataValues();
2517 assert(!Data.empty() && "Empty aggregates should be CAZ node");
2518 char C = Data[0];
2519 for (unsigned i = 1, e = Data.size(); i != e; ++i)
2520 if (Data[i] != C) return -1;
2521 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2522 }
2523
2524 /// isRepeatedByteSequence - Determine whether the given value is
2525 /// composed of a repeated sequence of identical bytes and return the
2526 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,const DataLayout & DL)2527 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2528 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2529 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2530 assert(Size % 8 == 0);
2531
2532 // Extend the element to take zero padding into account.
2533 APInt Value = CI->getValue().zextOrSelf(Size);
2534 if (!Value.isSplat(8))
2535 return -1;
2536
2537 return Value.zextOrTrunc(8).getZExtValue();
2538 }
2539 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2540 // Make sure all array elements are sequences of the same repeated
2541 // byte.
2542 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2543 Constant *Op0 = CA->getOperand(0);
2544 int Byte = isRepeatedByteSequence(Op0, DL);
2545 if (Byte == -1)
2546 return -1;
2547
2548 // All array elements must be equal.
2549 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2550 if (CA->getOperand(i) != Op0)
2551 return -1;
2552 return Byte;
2553 }
2554
2555 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2556 return isRepeatedByteSequence(CDS);
2557
2558 return -1;
2559 }
2560
emitGlobalConstantDataSequential(const DataLayout & DL,const ConstantDataSequential * CDS,AsmPrinter & AP)2561 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2562 const ConstantDataSequential *CDS,
2563 AsmPrinter &AP) {
2564 // See if we can aggregate this into a .fill, if so, emit it as such.
2565 int Value = isRepeatedByteSequence(CDS, DL);
2566 if (Value != -1) {
2567 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2568 // Don't emit a 1-byte object as a .fill.
2569 if (Bytes > 1)
2570 return AP.OutStreamer->emitFill(Bytes, Value);
2571 }
2572
2573 // If this can be emitted with .ascii/.asciz, emit it as such.
2574 if (CDS->isString())
2575 return AP.OutStreamer->emitBytes(CDS->getAsString());
2576
2577 // Otherwise, emit the values in successive locations.
2578 unsigned ElementByteSize = CDS->getElementByteSize();
2579 if (isa<IntegerType>(CDS->getElementType())) {
2580 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2581 if (AP.isVerbose())
2582 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2583 CDS->getElementAsInteger(i));
2584 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2585 ElementByteSize);
2586 }
2587 } else {
2588 Type *ET = CDS->getElementType();
2589 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2590 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2591 }
2592
2593 unsigned Size = DL.getTypeAllocSize(CDS->getType());
2594 unsigned EmittedSize =
2595 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2596 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2597 if (unsigned Padding = Size - EmittedSize)
2598 AP.OutStreamer->emitZeros(Padding);
2599 }
2600
emitGlobalConstantArray(const DataLayout & DL,const ConstantArray * CA,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2601 static void emitGlobalConstantArray(const DataLayout &DL,
2602 const ConstantArray *CA, AsmPrinter &AP,
2603 const Constant *BaseCV, uint64_t Offset) {
2604 // See if we can aggregate some values. Make sure it can be
2605 // represented as a series of bytes of the constant value.
2606 int Value = isRepeatedByteSequence(CA, DL);
2607
2608 if (Value != -1) {
2609 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2610 AP.OutStreamer->emitFill(Bytes, Value);
2611 }
2612 else {
2613 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2614 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2615 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2616 }
2617 }
2618 }
2619
emitGlobalConstantVector(const DataLayout & DL,const ConstantVector * CV,AsmPrinter & AP)2620 static void emitGlobalConstantVector(const DataLayout &DL,
2621 const ConstantVector *CV, AsmPrinter &AP) {
2622 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2623 emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2624
2625 unsigned Size = DL.getTypeAllocSize(CV->getType());
2626 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2627 CV->getType()->getNumElements();
2628 if (unsigned Padding = Size - EmittedSize)
2629 AP.OutStreamer->emitZeros(Padding);
2630 }
2631
emitGlobalConstantStruct(const DataLayout & DL,const ConstantStruct * CS,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2632 static void emitGlobalConstantStruct(const DataLayout &DL,
2633 const ConstantStruct *CS, AsmPrinter &AP,
2634 const Constant *BaseCV, uint64_t Offset) {
2635 // Print the fields in successive locations. Pad to align if needed!
2636 unsigned Size = DL.getTypeAllocSize(CS->getType());
2637 const StructLayout *Layout = DL.getStructLayout(CS->getType());
2638 uint64_t SizeSoFar = 0;
2639 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2640 const Constant *Field = CS->getOperand(i);
2641
2642 // Print the actual field value.
2643 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2644
2645 // Check if padding is needed and insert one or more 0s.
2646 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2647 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2648 - Layout->getElementOffset(i)) - FieldSize;
2649 SizeSoFar += FieldSize + PadSize;
2650
2651 // Insert padding - this may include padding to increase the size of the
2652 // current field up to the ABI size (if the struct is not packed) as well
2653 // as padding to ensure that the next field starts at the right offset.
2654 AP.OutStreamer->emitZeros(PadSize);
2655 }
2656 assert(SizeSoFar == Layout->getSizeInBytes() &&
2657 "Layout of constant struct may be incorrect!");
2658 }
2659
emitGlobalConstantFP(APFloat APF,Type * ET,AsmPrinter & AP)2660 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2661 assert(ET && "Unknown float type");
2662 APInt API = APF.bitcastToAPInt();
2663
2664 // First print a comment with what we think the original floating-point value
2665 // should have been.
2666 if (AP.isVerbose()) {
2667 SmallString<8> StrVal;
2668 APF.toString(StrVal);
2669 ET->print(AP.OutStreamer->GetCommentOS());
2670 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2671 }
2672
2673 // Now iterate through the APInt chunks, emitting them in endian-correct
2674 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2675 // floats).
2676 unsigned NumBytes = API.getBitWidth() / 8;
2677 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2678 const uint64_t *p = API.getRawData();
2679
2680 // PPC's long double has odd notions of endianness compared to how LLVM
2681 // handles it: p[0] goes first for *big* endian on PPC.
2682 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2683 int Chunk = API.getNumWords() - 1;
2684
2685 if (TrailingBytes)
2686 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2687
2688 for (; Chunk >= 0; --Chunk)
2689 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2690 } else {
2691 unsigned Chunk;
2692 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2693 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2694
2695 if (TrailingBytes)
2696 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2697 }
2698
2699 // Emit the tail padding for the long double.
2700 const DataLayout &DL = AP.getDataLayout();
2701 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2702 }
2703
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)2704 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2705 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2706 }
2707
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)2708 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2709 const DataLayout &DL = AP.getDataLayout();
2710 unsigned BitWidth = CI->getBitWidth();
2711
2712 // Copy the value as we may massage the layout for constants whose bit width
2713 // is not a multiple of 64-bits.
2714 APInt Realigned(CI->getValue());
2715 uint64_t ExtraBits = 0;
2716 unsigned ExtraBitsSize = BitWidth & 63;
2717
2718 if (ExtraBitsSize) {
2719 // The bit width of the data is not a multiple of 64-bits.
2720 // The extra bits are expected to be at the end of the chunk of the memory.
2721 // Little endian:
2722 // * Nothing to be done, just record the extra bits to emit.
2723 // Big endian:
2724 // * Record the extra bits to emit.
2725 // * Realign the raw data to emit the chunks of 64-bits.
2726 if (DL.isBigEndian()) {
2727 // Basically the structure of the raw data is a chunk of 64-bits cells:
2728 // 0 1 BitWidth / 64
2729 // [chunk1][chunk2] ... [chunkN].
2730 // The most significant chunk is chunkN and it should be emitted first.
2731 // However, due to the alignment issue chunkN contains useless bits.
2732 // Realign the chunks so that they contain only useful information:
2733 // ExtraBits 0 1 (BitWidth / 64) - 1
2734 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2735 ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2736 ExtraBits = Realigned.getRawData()[0] &
2737 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2738 Realigned.lshrInPlace(ExtraBitsSize);
2739 } else
2740 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2741 }
2742
2743 // We don't expect assemblers to support integer data directives
2744 // for more than 64 bits, so we emit the data in at most 64-bit
2745 // quantities at a time.
2746 const uint64_t *RawData = Realigned.getRawData();
2747 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2748 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2749 AP.OutStreamer->emitIntValue(Val, 8);
2750 }
2751
2752 if (ExtraBitsSize) {
2753 // Emit the extra bits after the 64-bits chunks.
2754
2755 // Emit a directive that fills the expected size.
2756 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2757 Size -= (BitWidth / 64) * 8;
2758 assert(Size && Size * 8 >= ExtraBitsSize &&
2759 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2760 == ExtraBits && "Directive too small for extra bits.");
2761 AP.OutStreamer->emitIntValue(ExtraBits, Size);
2762 }
2763 }
2764
2765 /// Transform a not absolute MCExpr containing a reference to a GOT
2766 /// equivalent global, by a target specific GOT pc relative access to the
2767 /// final symbol.
handleIndirectSymViaGOTPCRel(AsmPrinter & AP,const MCExpr ** ME,const Constant * BaseCst,uint64_t Offset)2768 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2769 const Constant *BaseCst,
2770 uint64_t Offset) {
2771 // The global @foo below illustrates a global that uses a got equivalent.
2772 //
2773 // @bar = global i32 42
2774 // @gotequiv = private unnamed_addr constant i32* @bar
2775 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2776 // i64 ptrtoint (i32* @foo to i64))
2777 // to i32)
2778 //
2779 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2780 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2781 // form:
2782 //
2783 // foo = cstexpr, where
2784 // cstexpr := <gotequiv> - "." + <cst>
2785 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2786 //
2787 // After canonicalization by evaluateAsRelocatable `ME` turns into:
2788 //
2789 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2790 // gotpcrelcst := <offset from @foo base> + <cst>
2791 MCValue MV;
2792 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2793 return;
2794 const MCSymbolRefExpr *SymA = MV.getSymA();
2795 if (!SymA)
2796 return;
2797
2798 // Check that GOT equivalent symbol is cached.
2799 const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2800 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2801 return;
2802
2803 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2804 if (!BaseGV)
2805 return;
2806
2807 // Check for a valid base symbol
2808 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2809 const MCSymbolRefExpr *SymB = MV.getSymB();
2810
2811 if (!SymB || BaseSym != &SymB->getSymbol())
2812 return;
2813
2814 // Make sure to match:
2815 //
2816 // gotpcrelcst := <offset from @foo base> + <cst>
2817 //
2818 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2819 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2820 // if the target knows how to encode it.
2821 int64_t GOTPCRelCst = Offset + MV.getConstant();
2822 if (GOTPCRelCst < 0)
2823 return;
2824 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2825 return;
2826
2827 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2828 //
2829 // bar:
2830 // .long 42
2831 // gotequiv:
2832 // .quad bar
2833 // foo:
2834 // .long gotequiv - "." + <cst>
2835 //
2836 // is replaced by the target specific equivalent to:
2837 //
2838 // bar:
2839 // .long 42
2840 // foo:
2841 // .long bar@GOTPCREL+<gotpcrelcst>
2842 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2843 const GlobalVariable *GV = Result.first;
2844 int NumUses = (int)Result.second;
2845 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2846 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2847 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2848 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2849
2850 // Update GOT equivalent usage information
2851 --NumUses;
2852 if (NumUses >= 0)
2853 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2854 }
2855
emitGlobalConstantImpl(const DataLayout & DL,const Constant * CV,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2856 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2857 AsmPrinter &AP, const Constant *BaseCV,
2858 uint64_t Offset) {
2859 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2860
2861 // Globals with sub-elements such as combinations of arrays and structs
2862 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2863 // constant symbol base and the current position with BaseCV and Offset.
2864 if (!BaseCV && CV->hasOneUse())
2865 BaseCV = dyn_cast<Constant>(CV->user_back());
2866
2867 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2868 return AP.OutStreamer->emitZeros(Size);
2869
2870 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2871 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2872
2873 if (StoreSize <= 8) {
2874 if (AP.isVerbose())
2875 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2876 CI->getZExtValue());
2877 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2878 } else {
2879 emitGlobalConstantLargeInt(CI, AP);
2880 }
2881
2882 // Emit tail padding if needed
2883 if (Size != StoreSize)
2884 AP.OutStreamer->emitZeros(Size - StoreSize);
2885
2886 return;
2887 }
2888
2889 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2890 return emitGlobalConstantFP(CFP, AP);
2891
2892 if (isa<ConstantPointerNull>(CV)) {
2893 AP.OutStreamer->emitIntValue(0, Size);
2894 return;
2895 }
2896
2897 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2898 return emitGlobalConstantDataSequential(DL, CDS, AP);
2899
2900 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2901 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2902
2903 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2904 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2905
2906 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2907 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2908 // vectors).
2909 if (CE->getOpcode() == Instruction::BitCast)
2910 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2911
2912 if (Size > 8) {
2913 // If the constant expression's size is greater than 64-bits, then we have
2914 // to emit the value in chunks. Try to constant fold the value and emit it
2915 // that way.
2916 Constant *New = ConstantFoldConstant(CE, DL);
2917 if (New != CE)
2918 return emitGlobalConstantImpl(DL, New, AP);
2919 }
2920 }
2921
2922 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2923 return emitGlobalConstantVector(DL, V, AP);
2924
2925 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2926 // thread the streamer with EmitValue.
2927 const MCExpr *ME = AP.lowerConstant(CV);
2928
2929 // Since lowerConstant already folded and got rid of all IR pointer and
2930 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2931 // directly.
2932 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2933 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2934
2935 AP.OutStreamer->emitValue(ME, Size);
2936 }
2937
2938 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
emitGlobalConstant(const DataLayout & DL,const Constant * CV)2939 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2940 uint64_t Size = DL.getTypeAllocSize(CV->getType());
2941 if (Size)
2942 emitGlobalConstantImpl(DL, CV, *this);
2943 else if (MAI->hasSubsectionsViaSymbols()) {
2944 // If the global has zero size, emit a single byte so that two labels don't
2945 // look like they are at the same location.
2946 OutStreamer->emitIntValue(0, 1);
2947 }
2948 }
2949
emitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)2950 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2951 // Target doesn't support this yet!
2952 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2953 }
2954
printOffset(int64_t Offset,raw_ostream & OS) const2955 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2956 if (Offset > 0)
2957 OS << '+' << Offset;
2958 else if (Offset < 0)
2959 OS << Offset;
2960 }
2961
emitNops(unsigned N)2962 void AsmPrinter::emitNops(unsigned N) {
2963 MCInst Nop;
2964 MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2965 for (; N; --N)
2966 EmitToStreamer(*OutStreamer, Nop);
2967 }
2968
2969 //===----------------------------------------------------------------------===//
2970 // Symbol Lowering Routines.
2971 //===----------------------------------------------------------------------===//
2972
createTempSymbol(const Twine & Name) const2973 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2974 return OutContext.createTempSymbol(Name, true);
2975 }
2976
GetBlockAddressSymbol(const BlockAddress * BA) const2977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2978 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2979 }
2980
GetBlockAddressSymbol(const BasicBlock * BB) const2981 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2982 return MMI->getAddrLabelSymbol(BB);
2983 }
2984
2985 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const2986 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2987 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2988 const MachineConstantPoolEntry &CPE =
2989 MF->getConstantPool()->getConstants()[CPID];
2990 if (!CPE.isMachineConstantPoolEntry()) {
2991 const DataLayout &DL = MF->getDataLayout();
2992 SectionKind Kind = CPE.getSectionKind(&DL);
2993 const Constant *C = CPE.Val.ConstVal;
2994 Align Alignment = CPE.Alignment;
2995 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2996 getObjFileLowering().getSectionForConstant(DL, Kind, C,
2997 Alignment))) {
2998 if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2999 if (Sym->isUndefined())
3000 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3001 return Sym;
3002 }
3003 }
3004 }
3005 }
3006
3007 const DataLayout &DL = getDataLayout();
3008 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3009 "CPI" + Twine(getFunctionNumber()) + "_" +
3010 Twine(CPID));
3011 }
3012
3013 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const3014 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3015 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3016 }
3017
3018 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3019 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const3020 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3021 const DataLayout &DL = getDataLayout();
3022 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3023 Twine(getFunctionNumber()) + "_" +
3024 Twine(UID) + "_set_" + Twine(MBBID));
3025 }
3026
getSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix) const3027 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3028 StringRef Suffix) const {
3029 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3030 }
3031
3032 /// Return the MCSymbol for the specified ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const3033 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3034 SmallString<60> NameStr;
3035 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3036 return OutContext.getOrCreateSymbol(NameStr);
3037 }
3038
3039 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)3040 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3041 unsigned FunctionNumber) {
3042 if (!Loop) return;
3043 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3044 OS.indent(Loop->getLoopDepth()*2)
3045 << "Parent Loop BB" << FunctionNumber << "_"
3046 << Loop->getHeader()->getNumber()
3047 << " Depth=" << Loop->getLoopDepth() << '\n';
3048 }
3049
3050 /// PrintChildLoopComment - Print comments about child loops within
3051 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)3052 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3053 unsigned FunctionNumber) {
3054 // Add child loop information
3055 for (const MachineLoop *CL : *Loop) {
3056 OS.indent(CL->getLoopDepth()*2)
3057 << "Child Loop BB" << FunctionNumber << "_"
3058 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3059 << '\n';
3060 PrintChildLoopComment(OS, CL, FunctionNumber);
3061 }
3062 }
3063
3064 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)3065 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3066 const MachineLoopInfo *LI,
3067 const AsmPrinter &AP) {
3068 // Add loop depth information
3069 const MachineLoop *Loop = LI->getLoopFor(&MBB);
3070 if (!Loop) return;
3071
3072 MachineBasicBlock *Header = Loop->getHeader();
3073 assert(Header && "No header for loop");
3074
3075 // If this block is not a loop header, just print out what is the loop header
3076 // and return.
3077 if (Header != &MBB) {
3078 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
3079 Twine(AP.getFunctionNumber())+"_" +
3080 Twine(Loop->getHeader()->getNumber())+
3081 " Depth="+Twine(Loop->getLoopDepth()));
3082 return;
3083 }
3084
3085 // Otherwise, it is a loop header. Print out information about child and
3086 // parent loops.
3087 raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3088
3089 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3090
3091 OS << "=>";
3092 OS.indent(Loop->getLoopDepth()*2-2);
3093
3094 OS << "This ";
3095 if (Loop->isInnermost())
3096 OS << "Inner ";
3097 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3098
3099 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3100 }
3101
3102 /// emitBasicBlockStart - This method prints the label for the specified
3103 /// MachineBasicBlock, an alignment (if present) and a comment describing
3104 /// it if appropriate.
emitBasicBlockStart(const MachineBasicBlock & MBB)3105 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3106 // End the previous funclet and start a new one.
3107 if (MBB.isEHFuncletEntry()) {
3108 for (const HandlerInfo &HI : Handlers) {
3109 HI.Handler->endFunclet();
3110 HI.Handler->beginFunclet(MBB);
3111 }
3112 }
3113
3114 // Emit an alignment directive for this block, if needed.
3115 const Align Alignment = MBB.getAlignment();
3116 if (Alignment != Align(1))
3117 emitAlignment(Alignment);
3118
3119 // Switch to a new section if this basic block must begin a section. The
3120 // entry block is always placed in the function section and is handled
3121 // separately.
3122 if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3123 OutStreamer->SwitchSection(
3124 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3125 MBB, TM));
3126 CurrentSectionBeginSym = MBB.getSymbol();
3127 }
3128
3129 // If the block has its address taken, emit any labels that were used to
3130 // reference the block. It is possible that there is more than one label
3131 // here, because multiple LLVM BB's may have been RAUW'd to this block after
3132 // the references were generated.
3133 if (MBB.hasAddressTaken()) {
3134 const BasicBlock *BB = MBB.getBasicBlock();
3135 if (isVerbose())
3136 OutStreamer->AddComment("Block address taken");
3137
3138 // MBBs can have their address taken as part of CodeGen without having
3139 // their corresponding BB's address taken in IR
3140 if (BB->hasAddressTaken())
3141 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3142 OutStreamer->emitLabel(Sym);
3143 }
3144
3145 // Print some verbose block comments.
3146 if (isVerbose()) {
3147 if (const BasicBlock *BB = MBB.getBasicBlock()) {
3148 if (BB->hasName()) {
3149 BB->printAsOperand(OutStreamer->GetCommentOS(),
3150 /*PrintType=*/false, BB->getModule());
3151 OutStreamer->GetCommentOS() << '\n';
3152 }
3153 }
3154
3155 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3156 emitBasicBlockLoopComments(MBB, MLI, *this);
3157 }
3158
3159 // Print the main label for the block.
3160 if (shouldEmitLabelForBasicBlock(MBB)) {
3161 if (isVerbose() && MBB.hasLabelMustBeEmitted())
3162 OutStreamer->AddComment("Label of block must be emitted");
3163 OutStreamer->emitLabel(MBB.getSymbol());
3164 } else {
3165 if (isVerbose()) {
3166 // NOTE: Want this comment at start of line, don't emit with AddComment.
3167 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3168 false);
3169 }
3170 }
3171
3172 // With BB sections, each basic block must handle CFI information on its own
3173 // if it begins a section (Entry block is handled separately by
3174 // AsmPrinterHandler::beginFunction).
3175 if (MBB.isBeginSection() && !MBB.isEntryBlock())
3176 for (const HandlerInfo &HI : Handlers)
3177 HI.Handler->beginBasicBlock(MBB);
3178 }
3179
emitBasicBlockEnd(const MachineBasicBlock & MBB)3180 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3181 // Check if CFI information needs to be updated for this MBB with basic block
3182 // sections.
3183 if (MBB.isEndSection())
3184 for (const HandlerInfo &HI : Handlers)
3185 HI.Handler->endBasicBlock(MBB);
3186 }
3187
emitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const3188 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3189 bool IsDefinition) const {
3190 MCSymbolAttr Attr = MCSA_Invalid;
3191
3192 switch (Visibility) {
3193 default: break;
3194 case GlobalValue::HiddenVisibility:
3195 if (IsDefinition)
3196 Attr = MAI->getHiddenVisibilityAttr();
3197 else
3198 Attr = MAI->getHiddenDeclarationVisibilityAttr();
3199 break;
3200 case GlobalValue::ProtectedVisibility:
3201 Attr = MAI->getProtectedVisibilityAttr();
3202 break;
3203 }
3204
3205 if (Attr != MCSA_Invalid)
3206 OutStreamer->emitSymbolAttribute(Sym, Attr);
3207 }
3208
shouldEmitLabelForBasicBlock(const MachineBasicBlock & MBB) const3209 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3210 const MachineBasicBlock &MBB) const {
3211 // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3212 // in the labels mode (option `=labels`) and every section beginning in the
3213 // sections mode (`=all` and `=list=`).
3214 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3215 return true;
3216 // A label is needed for any block with at least one predecessor (when that
3217 // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3218 // entry, or if a label is forced).
3219 return !MBB.pred_empty() &&
3220 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3221 MBB.hasLabelMustBeEmitted());
3222 }
3223
3224 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3225 /// exactly one predecessor and the control transfer mechanism between
3226 /// the predecessor and this block is a fall-through.
3227 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const3228 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3229 // If this is a landing pad, it isn't a fall through. If it has no preds,
3230 // then nothing falls through to it.
3231 if (MBB->isEHPad() || MBB->pred_empty())
3232 return false;
3233
3234 // If there isn't exactly one predecessor, it can't be a fall through.
3235 if (MBB->pred_size() > 1)
3236 return false;
3237
3238 // The predecessor has to be immediately before this block.
3239 MachineBasicBlock *Pred = *MBB->pred_begin();
3240 if (!Pred->isLayoutSuccessor(MBB))
3241 return false;
3242
3243 // If the block is completely empty, then it definitely does fall through.
3244 if (Pred->empty())
3245 return true;
3246
3247 // Check the terminators in the previous blocks
3248 for (const auto &MI : Pred->terminators()) {
3249 // If it is not a simple branch, we are in a table somewhere.
3250 if (!MI.isBranch() || MI.isIndirectBranch())
3251 return false;
3252
3253 // If we are the operands of one of the branches, this is not a fall
3254 // through. Note that targets with delay slots will usually bundle
3255 // terminators with the delay slot instruction.
3256 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3257 if (OP->isJTI())
3258 return false;
3259 if (OP->isMBB() && OP->getMBB() == MBB)
3260 return false;
3261 }
3262 }
3263
3264 return true;
3265 }
3266
GetOrCreateGCPrinter(GCStrategy & S)3267 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3268 if (!S.usesMetadata())
3269 return nullptr;
3270
3271 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3272 gcp_map_type::iterator GCPI = GCMap.find(&S);
3273 if (GCPI != GCMap.end())
3274 return GCPI->second.get();
3275
3276 auto Name = S.getName();
3277
3278 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3279 GCMetadataPrinterRegistry::entries())
3280 if (Name == GCMetaPrinter.getName()) {
3281 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3282 GMP->S = &S;
3283 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3284 return IterBool.first->second.get();
3285 }
3286
3287 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3288 }
3289
emitStackMaps(StackMaps & SM)3290 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3291 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3292 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3293 bool NeedsDefault = false;
3294 if (MI->begin() == MI->end())
3295 // No GC strategy, use the default format.
3296 NeedsDefault = true;
3297 else
3298 for (auto &I : *MI) {
3299 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3300 if (MP->emitStackMaps(SM, *this))
3301 continue;
3302 // The strategy doesn't have printer or doesn't emit custom stack maps.
3303 // Use the default format.
3304 NeedsDefault = true;
3305 }
3306
3307 if (NeedsDefault)
3308 SM.serializeToStackMapSection();
3309 }
3310
3311 /// Pin vtable to this file.
3312 AsmPrinterHandler::~AsmPrinterHandler() = default;
3313
markFunctionEnd()3314 void AsmPrinterHandler::markFunctionEnd() {}
3315
3316 // In the binary's "xray_instr_map" section, an array of these function entries
3317 // describes each instrumentation point. When XRay patches your code, the index
3318 // into this table will be given to your handler as a patch point identifier.
emit(int Bytes,MCStreamer * Out) const3319 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3320 auto Kind8 = static_cast<uint8_t>(Kind);
3321 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3322 Out->emitBinaryData(
3323 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3324 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3325 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3326 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3327 Out->emitZeros(Padding);
3328 }
3329
emitXRayTable()3330 void AsmPrinter::emitXRayTable() {
3331 if (Sleds.empty())
3332 return;
3333
3334 auto PrevSection = OutStreamer->getCurrentSectionOnly();
3335 const Function &F = MF->getFunction();
3336 MCSection *InstMap = nullptr;
3337 MCSection *FnSledIndex = nullptr;
3338 const Triple &TT = TM.getTargetTriple();
3339 // Use PC-relative addresses on all targets.
3340 if (TT.isOSBinFormatELF()) {
3341 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3342 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3343 StringRef GroupName;
3344 if (F.hasComdat()) {
3345 Flags |= ELF::SHF_GROUP;
3346 GroupName = F.getComdat()->getName();
3347 }
3348 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3349 Flags, 0, GroupName,
3350 MCSection::NonUniqueID, LinkedToSym);
3351
3352 if (!TM.Options.XRayOmitFunctionIndex)
3353 FnSledIndex = OutContext.getELFSection(
3354 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3355 GroupName, MCSection::NonUniqueID, LinkedToSym);
3356 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3357 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3358 SectionKind::getReadOnlyWithRel());
3359 if (!TM.Options.XRayOmitFunctionIndex)
3360 FnSledIndex = OutContext.getMachOSection(
3361 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3362 } else {
3363 llvm_unreachable("Unsupported target");
3364 }
3365
3366 auto WordSizeBytes = MAI->getCodePointerSize();
3367
3368 // Now we switch to the instrumentation map section. Because this is done
3369 // per-function, we are able to create an index entry that will represent the
3370 // range of sleds associated with a function.
3371 auto &Ctx = OutContext;
3372 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3373 OutStreamer->SwitchSection(InstMap);
3374 OutStreamer->emitLabel(SledsStart);
3375 for (const auto &Sled : Sleds) {
3376 MCSymbol *Dot = Ctx.createTempSymbol();
3377 OutStreamer->emitLabel(Dot);
3378 OutStreamer->emitValueImpl(
3379 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3380 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3381 WordSizeBytes);
3382 OutStreamer->emitValueImpl(
3383 MCBinaryExpr::createSub(
3384 MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3385 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3386 MCConstantExpr::create(WordSizeBytes, Ctx),
3387 Ctx),
3388 Ctx),
3389 WordSizeBytes);
3390 Sled.emit(WordSizeBytes, OutStreamer.get());
3391 }
3392 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3393 OutStreamer->emitLabel(SledsEnd);
3394
3395 // We then emit a single entry in the index per function. We use the symbols
3396 // that bound the instrumentation map as the range for a specific function.
3397 // Each entry here will be 2 * word size aligned, as we're writing down two
3398 // pointers. This should work for both 32-bit and 64-bit platforms.
3399 if (FnSledIndex) {
3400 OutStreamer->SwitchSection(FnSledIndex);
3401 OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3402 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3403 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3404 OutStreamer->SwitchSection(PrevSection);
3405 }
3406 Sleds.clear();
3407 }
3408
recordSled(MCSymbol * Sled,const MachineInstr & MI,SledKind Kind,uint8_t Version)3409 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3410 SledKind Kind, uint8_t Version) {
3411 const Function &F = MI.getMF()->getFunction();
3412 auto Attr = F.getFnAttribute("function-instrument");
3413 bool LogArgs = F.hasFnAttribute("xray-log-args");
3414 bool AlwaysInstrument =
3415 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3416 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3417 Kind = SledKind::LOG_ARGS_ENTER;
3418 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3419 AlwaysInstrument, &F, Version});
3420 }
3421
emitPatchableFunctionEntries()3422 void AsmPrinter::emitPatchableFunctionEntries() {
3423 const Function &F = MF->getFunction();
3424 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3425 (void)F.getFnAttribute("patchable-function-prefix")
3426 .getValueAsString()
3427 .getAsInteger(10, PatchableFunctionPrefix);
3428 (void)F.getFnAttribute("patchable-function-entry")
3429 .getValueAsString()
3430 .getAsInteger(10, PatchableFunctionEntry);
3431 if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3432 return;
3433 const unsigned PointerSize = getPointerSize();
3434 if (TM.getTargetTriple().isOSBinFormatELF()) {
3435 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3436 const MCSymbolELF *LinkedToSym = nullptr;
3437 StringRef GroupName;
3438
3439 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3440 // if we are using the integrated assembler.
3441 if (MAI->useIntegratedAssembler()) {
3442 Flags |= ELF::SHF_LINK_ORDER;
3443 if (F.hasComdat()) {
3444 Flags |= ELF::SHF_GROUP;
3445 GroupName = F.getComdat()->getName();
3446 }
3447 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3448 }
3449 OutStreamer->SwitchSection(OutContext.getELFSection(
3450 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3451 MCSection::NonUniqueID, LinkedToSym));
3452 emitAlignment(Align(PointerSize));
3453 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3454 }
3455 }
3456
getDwarfVersion() const3457 uint16_t AsmPrinter::getDwarfVersion() const {
3458 return OutStreamer->getContext().getDwarfVersion();
3459 }
3460
setDwarfVersion(uint16_t Version)3461 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3462 OutStreamer->getContext().setDwarfVersion(Version);
3463 }
3464
isDwarf64() const3465 bool AsmPrinter::isDwarf64() const {
3466 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3467 }
3468
getDwarfOffsetByteSize() const3469 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3470 return dwarf::getDwarfOffsetByteSize(
3471 OutStreamer->getContext().getDwarfFormat());
3472 }
3473
getUnitLengthFieldByteSize() const3474 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3475 return dwarf::getUnitLengthFieldByteSize(
3476 OutStreamer->getContext().getDwarfFormat());
3477 }
3478