• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/CodeGen/GlobalISel/InlineAsmLowering.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering from LLVM IR inline asm to MIR INLINEASM
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 
26 #define DEBUG_TYPE "inline-asm-lowering"
27 
28 using namespace llvm;
29 
anchor()30 void InlineAsmLowering::anchor() {}
31 
32 namespace {
33 
34 /// GISelAsmOperandInfo - This contains information for each constraint that we
35 /// are lowering.
36 class GISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
37 public:
38   /// Regs - If this is a register or register class operand, this
39   /// contains the set of assigned registers corresponding to the operand.
40   SmallVector<Register, 1> Regs;
41 
GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo & Info)42   explicit GISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &Info)
43       : TargetLowering::AsmOperandInfo(Info) {}
44 };
45 
46 using GISelAsmOperandInfoVector = SmallVector<GISelAsmOperandInfo, 16>;
47 
48 class ExtraFlags {
49   unsigned Flags = 0;
50 
51 public:
ExtraFlags(const CallBase & CB)52   explicit ExtraFlags(const CallBase &CB) {
53     const InlineAsm *IA = cast<InlineAsm>(CB.getCalledOperand());
54     if (IA->hasSideEffects())
55       Flags |= InlineAsm::Extra_HasSideEffects;
56     if (IA->isAlignStack())
57       Flags |= InlineAsm::Extra_IsAlignStack;
58     if (CB.isConvergent())
59       Flags |= InlineAsm::Extra_IsConvergent;
60     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
61   }
62 
update(const TargetLowering::AsmOperandInfo & OpInfo)63   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
64     // Ideally, we would only check against memory constraints.  However, the
65     // meaning of an Other constraint can be target-specific and we can't easily
66     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
67     // for Other constraints as well.
68     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
69         OpInfo.ConstraintType == TargetLowering::C_Other) {
70       if (OpInfo.Type == InlineAsm::isInput)
71         Flags |= InlineAsm::Extra_MayLoad;
72       else if (OpInfo.Type == InlineAsm::isOutput)
73         Flags |= InlineAsm::Extra_MayStore;
74       else if (OpInfo.Type == InlineAsm::isClobber)
75         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
76     }
77   }
78 
get() const79   unsigned get() const { return Flags; }
80 };
81 
82 } // namespace
83 
84 /// Assign virtual/physical registers for the specified register operand.
getRegistersForValue(MachineFunction & MF,MachineIRBuilder & MIRBuilder,GISelAsmOperandInfo & OpInfo,GISelAsmOperandInfo & RefOpInfo)85 static void getRegistersForValue(MachineFunction &MF,
86                                  MachineIRBuilder &MIRBuilder,
87                                  GISelAsmOperandInfo &OpInfo,
88                                  GISelAsmOperandInfo &RefOpInfo) {
89 
90   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
91   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
92 
93   // No work to do for memory operations.
94   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
95     return;
96 
97   // If this is a constraint for a single physreg, or a constraint for a
98   // register class, find it.
99   Register AssignedReg;
100   const TargetRegisterClass *RC;
101   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
102       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
103   // RC is unset only on failure. Return immediately.
104   if (!RC)
105     return;
106 
107   // No need to allocate a matching input constraint since the constraint it's
108   // matching to has already been allocated.
109   if (OpInfo.isMatchingInputConstraint())
110     return;
111 
112   // Initialize NumRegs.
113   unsigned NumRegs = 1;
114   if (OpInfo.ConstraintVT != MVT::Other)
115     NumRegs =
116         TLI.getNumRegisters(MF.getFunction().getContext(), OpInfo.ConstraintVT);
117 
118   // If this is a constraint for a specific physical register, but the type of
119   // the operand requires more than one register to be passed, we allocate the
120   // required amount of physical registers, starting from the selected physical
121   // register.
122   // For this, first retrieve a register iterator for the given register class
123   TargetRegisterClass::iterator I = RC->begin();
124   MachineRegisterInfo &RegInfo = MF.getRegInfo();
125 
126   // Advance the iterator to the assigned register (if set)
127   if (AssignedReg) {
128     for (; *I != AssignedReg; ++I)
129       assert(I != RC->end() && "AssignedReg should be a member of provided RC");
130   }
131 
132   // Finally, assign the registers. If the AssignedReg isn't set, create virtual
133   // registers with the provided register class
134   for (; NumRegs; --NumRegs, ++I) {
135     assert(I != RC->end() && "Ran out of registers to allocate!");
136     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
137     OpInfo.Regs.push_back(R);
138   }
139 }
140 
141 /// Return an integer indicating how general CT is.
getConstraintGenerality(TargetLowering::ConstraintType CT)142 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
143   switch (CT) {
144   case TargetLowering::C_Immediate:
145   case TargetLowering::C_Other:
146   case TargetLowering::C_Unknown:
147     return 0;
148   case TargetLowering::C_Register:
149     return 1;
150   case TargetLowering::C_RegisterClass:
151     return 2;
152   case TargetLowering::C_Memory:
153     return 3;
154   }
155   llvm_unreachable("Invalid constraint type");
156 }
157 
chooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering * TLI)158 static void chooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
159                              const TargetLowering *TLI) {
160   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
161   unsigned BestIdx = 0;
162   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
163   int BestGenerality = -1;
164 
165   // Loop over the options, keeping track of the most general one.
166   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
167     TargetLowering::ConstraintType CType =
168         TLI->getConstraintType(OpInfo.Codes[i]);
169 
170     // Indirect 'other' or 'immediate' constraints are not allowed.
171     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
172                                CType == TargetLowering::C_Register ||
173                                CType == TargetLowering::C_RegisterClass))
174       continue;
175 
176     // If this is an 'other' or 'immediate' constraint, see if the operand is
177     // valid for it. For example, on X86 we might have an 'rI' constraint. If
178     // the operand is an integer in the range [0..31] we want to use I (saving a
179     // load of a register), otherwise we must use 'r'.
180     if (CType == TargetLowering::C_Other ||
181         CType == TargetLowering::C_Immediate) {
182       assert(OpInfo.Codes[i].size() == 1 &&
183              "Unhandled multi-letter 'other' constraint");
184       // FIXME: prefer immediate constraints if the target allows it
185     }
186 
187     // Things with matching constraints can only be registers, per gcc
188     // documentation.  This mainly affects "g" constraints.
189     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
190       continue;
191 
192     // This constraint letter is more general than the previous one, use it.
193     int Generality = getConstraintGenerality(CType);
194     if (Generality > BestGenerality) {
195       BestType = CType;
196       BestIdx = i;
197       BestGenerality = Generality;
198     }
199   }
200 
201   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
202   OpInfo.ConstraintType = BestType;
203 }
204 
computeConstraintToUse(const TargetLowering * TLI,TargetLowering::AsmOperandInfo & OpInfo)205 static void computeConstraintToUse(const TargetLowering *TLI,
206                                    TargetLowering::AsmOperandInfo &OpInfo) {
207   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
208 
209   // Single-letter constraints ('r') are very common.
210   if (OpInfo.Codes.size() == 1) {
211     OpInfo.ConstraintCode = OpInfo.Codes[0];
212     OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
213   } else {
214     chooseConstraint(OpInfo, TLI);
215   }
216 
217   // 'X' matches anything.
218   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
219     // Labels and constants are handled elsewhere ('X' is the only thing
220     // that matches labels).  For Functions, the type here is the type of
221     // the result, which is not what we want to look at; leave them alone.
222     Value *Val = OpInfo.CallOperandVal;
223     if (isa<BasicBlock>(Val) || isa<ConstantInt>(Val) || isa<Function>(Val))
224       return;
225 
226     // Otherwise, try to resolve it to something we know about by looking at
227     // the actual operand type.
228     if (const char *Repl = TLI->LowerXConstraint(OpInfo.ConstraintVT)) {
229       OpInfo.ConstraintCode = Repl;
230       OpInfo.ConstraintType = TLI->getConstraintType(OpInfo.ConstraintCode);
231     }
232   }
233 }
234 
getNumOpRegs(const MachineInstr & I,unsigned OpIdx)235 static unsigned getNumOpRegs(const MachineInstr &I, unsigned OpIdx) {
236   unsigned Flag = I.getOperand(OpIdx).getImm();
237   return InlineAsm::getNumOperandRegisters(Flag);
238 }
239 
buildAnyextOrCopy(Register Dst,Register Src,MachineIRBuilder & MIRBuilder)240 static bool buildAnyextOrCopy(Register Dst, Register Src,
241                               MachineIRBuilder &MIRBuilder) {
242   const TargetRegisterInfo *TRI =
243       MIRBuilder.getMF().getSubtarget().getRegisterInfo();
244   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
245 
246   auto SrcTy = MRI->getType(Src);
247   if (!SrcTy.isValid()) {
248     LLVM_DEBUG(dbgs() << "Source type for copy is not valid\n");
249     return false;
250   }
251   unsigned SrcSize = TRI->getRegSizeInBits(Src, *MRI);
252   unsigned DstSize = TRI->getRegSizeInBits(Dst, *MRI);
253 
254   if (DstSize < SrcSize) {
255     LLVM_DEBUG(dbgs() << "Input can't fit in destination reg class\n");
256     return false;
257   }
258 
259   // Attempt to anyext small scalar sources.
260   if (DstSize > SrcSize) {
261     if (!SrcTy.isScalar()) {
262       LLVM_DEBUG(dbgs() << "Can't extend non-scalar input to size of"
263                            "destination register class\n");
264       return false;
265     }
266     Src = MIRBuilder.buildAnyExt(LLT::scalar(DstSize), Src).getReg(0);
267   }
268 
269   MIRBuilder.buildCopy(Dst, Src);
270   return true;
271 }
272 
lowerInlineAsm(MachineIRBuilder & MIRBuilder,const CallBase & Call,std::function<ArrayRef<Register> (const Value & Val)> GetOrCreateVRegs) const273 bool InlineAsmLowering::lowerInlineAsm(
274     MachineIRBuilder &MIRBuilder, const CallBase &Call,
275     std::function<ArrayRef<Register>(const Value &Val)> GetOrCreateVRegs)
276     const {
277   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
278 
279   /// ConstraintOperands - Information about all of the constraints.
280   GISelAsmOperandInfoVector ConstraintOperands;
281 
282   MachineFunction &MF = MIRBuilder.getMF();
283   const Function &F = MF.getFunction();
284   const DataLayout &DL = F.getParent()->getDataLayout();
285   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
286 
287   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
288 
289   TargetLowering::AsmOperandInfoVector TargetConstraints =
290       TLI->ParseConstraints(DL, TRI, Call);
291 
292   ExtraFlags ExtraInfo(Call);
293   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
294   unsigned ResNo = 0; // ResNo - The result number of the next output.
295   for (auto &T : TargetConstraints) {
296     ConstraintOperands.push_back(GISelAsmOperandInfo(T));
297     GISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
298 
299     // Compute the value type for each operand.
300     if (OpInfo.Type == InlineAsm::isInput ||
301         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
302 
303       OpInfo.CallOperandVal = const_cast<Value *>(Call.getArgOperand(ArgNo++));
304 
305       if (isa<BasicBlock>(OpInfo.CallOperandVal)) {
306         LLVM_DEBUG(dbgs() << "Basic block input operands not supported yet\n");
307         return false;
308       }
309 
310       Type *OpTy = OpInfo.CallOperandVal->getType();
311 
312       // If this is an indirect operand, the operand is a pointer to the
313       // accessed type.
314       if (OpInfo.isIndirect) {
315         PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
316         if (!PtrTy)
317           report_fatal_error("Indirect operand for inline asm not a pointer!");
318         OpTy = PtrTy->getElementType();
319       }
320 
321       // FIXME: Support aggregate input operands
322       if (!OpTy->isSingleValueType()) {
323         LLVM_DEBUG(
324             dbgs() << "Aggregate input operands are not supported yet\n");
325         return false;
326       }
327 
328       OpInfo.ConstraintVT = TLI->getValueType(DL, OpTy, true).getSimpleVT();
329 
330     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
331       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
332       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
333         OpInfo.ConstraintVT =
334             TLI->getSimpleValueType(DL, STy->getElementType(ResNo));
335       } else {
336         assert(ResNo == 0 && "Asm only has one result!");
337         OpInfo.ConstraintVT = TLI->getSimpleValueType(DL, Call.getType());
338       }
339       ++ResNo;
340     } else {
341       OpInfo.ConstraintVT = MVT::Other;
342     }
343 
344     // Compute the constraint code and ConstraintType to use.
345     computeConstraintToUse(TLI, OpInfo);
346 
347     // The selected constraint type might expose new sideeffects
348     ExtraInfo.update(OpInfo);
349   }
350 
351   // At this point, all operand types are decided.
352   // Create the MachineInstr, but don't insert it yet since input
353   // operands still need to insert instructions before this one
354   auto Inst = MIRBuilder.buildInstrNoInsert(TargetOpcode::INLINEASM)
355                   .addExternalSymbol(IA->getAsmString().c_str())
356                   .addImm(ExtraInfo.get());
357 
358   // Starting from this operand: flag followed by register(s) will be added as
359   // operands to Inst for each constraint. Used for matching input constraints.
360   unsigned StartIdx = Inst->getNumOperands();
361 
362   // Collects the output operands for later processing
363   GISelAsmOperandInfoVector OutputOperands;
364 
365   for (auto &OpInfo : ConstraintOperands) {
366     GISelAsmOperandInfo &RefOpInfo =
367         OpInfo.isMatchingInputConstraint()
368             ? ConstraintOperands[OpInfo.getMatchedOperand()]
369             : OpInfo;
370 
371     // Assign registers for register operands
372     getRegistersForValue(MF, MIRBuilder, OpInfo, RefOpInfo);
373 
374     switch (OpInfo.Type) {
375     case InlineAsm::isOutput:
376       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
377         unsigned ConstraintID =
378             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
379         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
380                "Failed to convert memory constraint code to constraint id.");
381 
382         // Add information to the INLINEASM instruction to know about this
383         // output.
384         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
385         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
386         Inst.addImm(OpFlags);
387         ArrayRef<Register> SourceRegs =
388             GetOrCreateVRegs(*OpInfo.CallOperandVal);
389         assert(
390             SourceRegs.size() == 1 &&
391             "Expected the memory output to fit into a single virtual register");
392         Inst.addReg(SourceRegs[0]);
393       } else {
394         // Otherwise, this outputs to a register (directly for C_Register /
395         // C_RegisterClass. Find a register that we can use.
396         assert(OpInfo.ConstraintType == TargetLowering::C_Register ||
397                OpInfo.ConstraintType == TargetLowering::C_RegisterClass);
398 
399         if (OpInfo.Regs.empty()) {
400           LLVM_DEBUG(dbgs()
401                      << "Couldn't allocate output register for constraint\n");
402           return false;
403         }
404 
405         // Add information to the INLINEASM instruction to know that this
406         // register is set.
407         unsigned Flag = InlineAsm::getFlagWord(
408             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
409                                   : InlineAsm::Kind_RegDef,
410             OpInfo.Regs.size());
411         if (OpInfo.Regs.front().isVirtual()) {
412           // Put the register class of the virtual registers in the flag word.
413           // That way, later passes can recompute register class constraints for
414           // inline assembly as well as normal instructions. Don't do this for
415           // tied operands that can use the regclass information from the def.
416           const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
417           Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
418         }
419 
420         Inst.addImm(Flag);
421 
422         for (Register Reg : OpInfo.Regs) {
423           Inst.addReg(Reg,
424                       RegState::Define | getImplRegState(Reg.isPhysical()) |
425                           (OpInfo.isEarlyClobber ? RegState::EarlyClobber : 0));
426         }
427 
428         // Remember this output operand for later processing
429         OutputOperands.push_back(OpInfo);
430       }
431 
432       break;
433     case InlineAsm::isInput: {
434       if (OpInfo.isMatchingInputConstraint()) {
435         unsigned DefIdx = OpInfo.getMatchedOperand();
436         // Find operand with register def that corresponds to DefIdx.
437         unsigned InstFlagIdx = StartIdx;
438         for (unsigned i = 0; i < DefIdx; ++i)
439           InstFlagIdx += getNumOpRegs(*Inst, InstFlagIdx) + 1;
440         assert(getNumOpRegs(*Inst, InstFlagIdx) == 1 && "Wrong flag");
441 
442         unsigned MatchedOperandFlag = Inst->getOperand(InstFlagIdx).getImm();
443         if (InlineAsm::isMemKind(MatchedOperandFlag)) {
444           LLVM_DEBUG(dbgs() << "Matching input constraint to mem operand not "
445                                "supported. This should be target specific.\n");
446           return false;
447         }
448         if (!InlineAsm::isRegDefKind(MatchedOperandFlag) &&
449             !InlineAsm::isRegDefEarlyClobberKind(MatchedOperandFlag)) {
450           LLVM_DEBUG(dbgs() << "Unknown matching constraint\n");
451           return false;
452         }
453 
454         // We want to tie input to register in next operand.
455         unsigned DefRegIdx = InstFlagIdx + 1;
456         Register Def = Inst->getOperand(DefRegIdx).getReg();
457 
458         ArrayRef<Register> SrcRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
459         assert(SrcRegs.size() == 1 && "Single register is expected here");
460 
461         // When Def is physreg: use given input.
462         Register In = SrcRegs[0];
463         // When Def is vreg: copy input to new vreg with same reg class as Def.
464         if (Def.isVirtual()) {
465           In = MRI->createVirtualRegister(MRI->getRegClass(Def));
466           if (!buildAnyextOrCopy(In, SrcRegs[0], MIRBuilder))
467             return false;
468         }
469 
470         // Add Flag and input register operand (In) to Inst. Tie In to Def.
471         unsigned UseFlag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, 1);
472         unsigned Flag = InlineAsm::getFlagWordForMatchingOp(UseFlag, DefIdx);
473         Inst.addImm(Flag);
474         Inst.addReg(In);
475         Inst->tieOperands(DefRegIdx, Inst->getNumOperands() - 1);
476         break;
477       }
478 
479       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
480           OpInfo.isIndirect) {
481         LLVM_DEBUG(dbgs() << "Indirect input operands with unknown constraint "
482                              "not supported yet\n");
483         return false;
484       }
485 
486       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
487           OpInfo.ConstraintType == TargetLowering::C_Other) {
488 
489         std::vector<MachineOperand> Ops;
490         if (!lowerAsmOperandForConstraint(OpInfo.CallOperandVal,
491                                           OpInfo.ConstraintCode, Ops,
492                                           MIRBuilder)) {
493           LLVM_DEBUG(dbgs() << "Don't support constraint: "
494                             << OpInfo.ConstraintCode << " yet\n");
495           return false;
496         }
497 
498         assert(Ops.size() > 0 &&
499                "Expected constraint to be lowered to at least one operand");
500 
501         // Add information to the INLINEASM node to know about this input.
502         unsigned OpFlags =
503             InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
504         Inst.addImm(OpFlags);
505         Inst.add(Ops);
506         break;
507       }
508 
509       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
510 
511         if (!OpInfo.isIndirect) {
512           LLVM_DEBUG(dbgs()
513                      << "Cannot indirectify memory input operands yet\n");
514           return false;
515         }
516 
517         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
518 
519         unsigned ConstraintID =
520             TLI->getInlineAsmMemConstraint(OpInfo.ConstraintCode);
521         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
522         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
523         Inst.addImm(OpFlags);
524         ArrayRef<Register> SourceRegs =
525             GetOrCreateVRegs(*OpInfo.CallOperandVal);
526         assert(
527             SourceRegs.size() == 1 &&
528             "Expected the memory input to fit into a single virtual register");
529         Inst.addReg(SourceRegs[0]);
530         break;
531       }
532 
533       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
534               OpInfo.ConstraintType == TargetLowering::C_Register) &&
535              "Unknown constraint type!");
536 
537       if (OpInfo.isIndirect) {
538         LLVM_DEBUG(dbgs() << "Can't handle indirect register inputs yet "
539                              "for constraint '"
540                           << OpInfo.ConstraintCode << "'\n");
541         return false;
542       }
543 
544       // Copy the input into the appropriate registers.
545       if (OpInfo.Regs.empty()) {
546         LLVM_DEBUG(
547             dbgs()
548             << "Couldn't allocate input register for register constraint\n");
549         return false;
550       }
551 
552       unsigned NumRegs = OpInfo.Regs.size();
553       ArrayRef<Register> SourceRegs = GetOrCreateVRegs(*OpInfo.CallOperandVal);
554       assert(NumRegs == SourceRegs.size() &&
555              "Expected the number of input registers to match the number of "
556              "source registers");
557 
558       if (NumRegs > 1) {
559         LLVM_DEBUG(dbgs() << "Input operands with multiple input registers are "
560                              "not supported yet\n");
561         return false;
562       }
563 
564       unsigned Flag = InlineAsm::getFlagWord(InlineAsm::Kind_RegUse, NumRegs);
565       if (OpInfo.Regs.front().isVirtual()) {
566         // Put the register class of the virtual registers in the flag word.
567         const TargetRegisterClass *RC = MRI->getRegClass(OpInfo.Regs.front());
568         Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
569       }
570       Inst.addImm(Flag);
571       if (!buildAnyextOrCopy(OpInfo.Regs[0], SourceRegs[0], MIRBuilder))
572         return false;
573       Inst.addReg(OpInfo.Regs[0]);
574       break;
575     }
576 
577     case InlineAsm::isClobber: {
578 
579       unsigned NumRegs = OpInfo.Regs.size();
580       if (NumRegs > 0) {
581         unsigned Flag =
582             InlineAsm::getFlagWord(InlineAsm::Kind_Clobber, NumRegs);
583         Inst.addImm(Flag);
584 
585         for (Register Reg : OpInfo.Regs) {
586           Inst.addReg(Reg, RegState::Define | RegState::EarlyClobber |
587                                getImplRegState(Reg.isPhysical()));
588         }
589       }
590       break;
591     }
592     }
593   }
594 
595   if (const MDNode *SrcLoc = Call.getMetadata("srcloc"))
596     Inst.addMetadata(SrcLoc);
597 
598   // All inputs are handled, insert the instruction now
599   MIRBuilder.insertInstr(Inst);
600 
601   // Finally, copy the output operands into the output registers
602   ArrayRef<Register> ResRegs = GetOrCreateVRegs(Call);
603   if (ResRegs.size() != OutputOperands.size()) {
604     LLVM_DEBUG(dbgs() << "Expected the number of output registers to match the "
605                          "number of destination registers\n");
606     return false;
607   }
608   for (unsigned int i = 0, e = ResRegs.size(); i < e; i++) {
609     GISelAsmOperandInfo &OpInfo = OutputOperands[i];
610 
611     if (OpInfo.Regs.empty())
612       continue;
613 
614     switch (OpInfo.ConstraintType) {
615     case TargetLowering::C_Register:
616     case TargetLowering::C_RegisterClass: {
617       if (OpInfo.Regs.size() > 1) {
618         LLVM_DEBUG(dbgs() << "Output operands with multiple defining "
619                              "registers are not supported yet\n");
620         return false;
621       }
622 
623       Register SrcReg = OpInfo.Regs[0];
624       unsigned SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
625       if (MRI->getType(ResRegs[i]).getSizeInBits() < SrcSize) {
626         // First copy the non-typed virtual register into a generic virtual
627         // register
628         Register Tmp1Reg =
629             MRI->createGenericVirtualRegister(LLT::scalar(SrcSize));
630         MIRBuilder.buildCopy(Tmp1Reg, SrcReg);
631         // Need to truncate the result of the register
632         MIRBuilder.buildTrunc(ResRegs[i], Tmp1Reg);
633       } else {
634         MIRBuilder.buildCopy(ResRegs[i], SrcReg);
635       }
636       break;
637     }
638     case TargetLowering::C_Immediate:
639     case TargetLowering::C_Other:
640       LLVM_DEBUG(
641           dbgs() << "Cannot lower target specific output constraints yet\n");
642       return false;
643     case TargetLowering::C_Memory:
644       break; // Already handled.
645     case TargetLowering::C_Unknown:
646       LLVM_DEBUG(dbgs() << "Unexpected unknown constraint\n");
647       return false;
648     }
649   }
650 
651   return true;
652 }
653 
lowerAsmOperandForConstraint(Value * Val,StringRef Constraint,std::vector<MachineOperand> & Ops,MachineIRBuilder & MIRBuilder) const654 bool InlineAsmLowering::lowerAsmOperandForConstraint(
655     Value *Val, StringRef Constraint, std::vector<MachineOperand> &Ops,
656     MachineIRBuilder &MIRBuilder) const {
657   if (Constraint.size() > 1)
658     return false;
659 
660   char ConstraintLetter = Constraint[0];
661   switch (ConstraintLetter) {
662   default:
663     return false;
664   case 'i': // Simple Integer or Relocatable Constant
665   case 'n': // immediate integer with a known value.
666     if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
667       assert(CI->getBitWidth() <= 64 &&
668              "expected immediate to fit into 64-bits");
669       // Boolean constants should be zero-extended, others are sign-extended
670       bool IsBool = CI->getBitWidth() == 1;
671       int64_t ExtVal = IsBool ? CI->getZExtValue() : CI->getSExtValue();
672       Ops.push_back(MachineOperand::CreateImm(ExtVal));
673       return true;
674     }
675     return false;
676   }
677 }
678