• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AArch64 specific subclass of TargetSubtarget.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "AArch64Subtarget.h"
14 
15 #include "AArch64.h"
16 #include "AArch64InstrInfo.h"
17 #include "AArch64PBQPRegAlloc.h"
18 #include "AArch64TargetMachine.h"
19 #include "GISel/AArch64CallLowering.h"
20 #include "GISel/AArch64LegalizerInfo.h"
21 #include "GISel/AArch64RegisterBankInfo.h"
22 #include "MCTargetDesc/AArch64AddressingModes.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
24 #include "llvm/CodeGen/MachineScheduler.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/Support/TargetParser.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "aarch64-subtarget"
31 
32 #define GET_SUBTARGETINFO_CTOR
33 #define GET_SUBTARGETINFO_TARGET_DESC
34 #include "AArch64GenSubtargetInfo.inc"
35 
36 static cl::opt<bool>
37 EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
38                      "converter pass"), cl::init(true), cl::Hidden);
39 
40 // If OS supports TBI, use this flag to enable it.
41 static cl::opt<bool>
42 UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
43                          "an address is ignored"), cl::init(false), cl::Hidden);
44 
45 static cl::opt<bool>
46     UseNonLazyBind("aarch64-enable-nonlazybind",
47                    cl::desc("Call nonlazybind functions via direct GOT load"),
48                    cl::init(false), cl::Hidden);
49 
50 static cl::opt<unsigned> SVEVectorBitsMax(
51     "aarch64-sve-vector-bits-max",
52     cl::desc("Assume SVE vector registers are at most this big, "
53              "with zero meaning no maximum size is assumed."),
54     cl::init(0), cl::Hidden);
55 
56 static cl::opt<unsigned> SVEVectorBitsMin(
57     "aarch64-sve-vector-bits-min",
58     cl::desc("Assume SVE vector registers are at least this big, "
59              "with zero meaning no minimum size is assumed."),
60     cl::init(0), cl::Hidden);
61 
62 AArch64Subtarget &
initializeSubtargetDependencies(StringRef FS,StringRef CPUString)63 AArch64Subtarget::initializeSubtargetDependencies(StringRef FS,
64                                                   StringRef CPUString) {
65   // Determine default and user-specified characteristics
66 
67   if (CPUString.empty())
68     CPUString = "generic";
69 
70   ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FS);
71   initializeProperties();
72 
73   return *this;
74 }
75 
initializeProperties()76 void AArch64Subtarget::initializeProperties() {
77   // Initialize CPU specific properties. We should add a tablegen feature for
78   // this in the future so we can specify it together with the subtarget
79   // features.
80   switch (ARMProcFamily) {
81   case Others:
82     break;
83   case Carmel:
84     CacheLineSize = 64;
85     break;
86   case CortexA35:
87     break;
88   case CortexA53:
89     PrefFunctionLogAlignment = 3;
90     break;
91   case CortexA55:
92     break;
93   case CortexA57:
94     MaxInterleaveFactor = 4;
95     PrefFunctionLogAlignment = 4;
96     break;
97   case CortexA65:
98     PrefFunctionLogAlignment = 3;
99     break;
100   case CortexA72:
101   case CortexA73:
102   case CortexA75:
103   case CortexA76:
104   case CortexA77:
105   case CortexA78:
106   case CortexR82:
107   case CortexX1:
108     PrefFunctionLogAlignment = 4;
109     break;
110   case A64FX:
111     CacheLineSize = 256;
112     PrefFunctionLogAlignment = 5;
113     PrefLoopLogAlignment = 5;
114     break;
115   case AppleA7:
116   case AppleA10:
117   case AppleA11:
118   case AppleA12:
119   case AppleA13:
120     CacheLineSize = 64;
121     PrefetchDistance = 280;
122     MinPrefetchStride = 2048;
123     MaxPrefetchIterationsAhead = 3;
124     break;
125   case ExynosM3:
126     MaxInterleaveFactor = 4;
127     MaxJumpTableSize = 20;
128     PrefFunctionLogAlignment = 5;
129     PrefLoopLogAlignment = 4;
130     break;
131   case Falkor:
132     MaxInterleaveFactor = 4;
133     // FIXME: remove this to enable 64-bit SLP if performance looks good.
134     MinVectorRegisterBitWidth = 128;
135     CacheLineSize = 128;
136     PrefetchDistance = 820;
137     MinPrefetchStride = 2048;
138     MaxPrefetchIterationsAhead = 8;
139     break;
140   case Kryo:
141     MaxInterleaveFactor = 4;
142     VectorInsertExtractBaseCost = 2;
143     CacheLineSize = 128;
144     PrefetchDistance = 740;
145     MinPrefetchStride = 1024;
146     MaxPrefetchIterationsAhead = 11;
147     // FIXME: remove this to enable 64-bit SLP if performance looks good.
148     MinVectorRegisterBitWidth = 128;
149     break;
150   case NeoverseE1:
151     PrefFunctionLogAlignment = 3;
152     break;
153   case NeoverseN1:
154   case NeoverseN2:
155   case NeoverseV1:
156     PrefFunctionLogAlignment = 4;
157     break;
158   case Saphira:
159     MaxInterleaveFactor = 4;
160     // FIXME: remove this to enable 64-bit SLP if performance looks good.
161     MinVectorRegisterBitWidth = 128;
162     break;
163   case ThunderX2T99:
164     CacheLineSize = 64;
165     PrefFunctionLogAlignment = 3;
166     PrefLoopLogAlignment = 2;
167     MaxInterleaveFactor = 4;
168     PrefetchDistance = 128;
169     MinPrefetchStride = 1024;
170     MaxPrefetchIterationsAhead = 4;
171     // FIXME: remove this to enable 64-bit SLP if performance looks good.
172     MinVectorRegisterBitWidth = 128;
173     break;
174   case ThunderX:
175   case ThunderXT88:
176   case ThunderXT81:
177   case ThunderXT83:
178     CacheLineSize = 128;
179     PrefFunctionLogAlignment = 3;
180     PrefLoopLogAlignment = 2;
181     // FIXME: remove this to enable 64-bit SLP if performance looks good.
182     MinVectorRegisterBitWidth = 128;
183     break;
184   case TSV110:
185     CacheLineSize = 64;
186     PrefFunctionLogAlignment = 4;
187     PrefLoopLogAlignment = 2;
188     break;
189   case ThunderX3T110:
190     CacheLineSize = 64;
191     PrefFunctionLogAlignment = 4;
192     PrefLoopLogAlignment = 2;
193     MaxInterleaveFactor = 4;
194     PrefetchDistance = 128;
195     MinPrefetchStride = 1024;
196     MaxPrefetchIterationsAhead = 4;
197     // FIXME: remove this to enable 64-bit SLP if performance looks good.
198     MinVectorRegisterBitWidth = 128;
199     break;
200   }
201 }
202 
AArch64Subtarget(const Triple & TT,const std::string & CPU,const std::string & FS,const TargetMachine & TM,bool LittleEndian)203 AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
204                                    const std::string &FS,
205                                    const TargetMachine &TM, bool LittleEndian)
206     : AArch64GenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
207       ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
208       CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
209       IsLittle(LittleEndian),
210       TargetTriple(TT), FrameLowering(),
211       InstrInfo(initializeSubtargetDependencies(FS, CPU)), TSInfo(),
212       TLInfo(TM, *this) {
213   if (AArch64::isX18ReservedByDefault(TT))
214     ReserveXRegister.set(18);
215 
216   CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
217   InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
218   Legalizer.reset(new AArch64LegalizerInfo(*this));
219 
220   auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
221 
222   // FIXME: At this point, we can't rely on Subtarget having RBI.
223   // It's awkward to mix passing RBI and the Subtarget; should we pass
224   // TII/TRI as well?
225   InstSelector.reset(createAArch64InstructionSelector(
226       *static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
227 
228   RegBankInfo.reset(RBI);
229 }
230 
getCallLowering() const231 const CallLowering *AArch64Subtarget::getCallLowering() const {
232   return CallLoweringInfo.get();
233 }
234 
getInlineAsmLowering() const235 const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
236   return InlineAsmLoweringInfo.get();
237 }
238 
getInstructionSelector() const239 InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
240   return InstSelector.get();
241 }
242 
getLegalizerInfo() const243 const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
244   return Legalizer.get();
245 }
246 
getRegBankInfo() const247 const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
248   return RegBankInfo.get();
249 }
250 
251 /// Find the target operand flags that describe how a global value should be
252 /// referenced for the current subtarget.
253 unsigned
ClassifyGlobalReference(const GlobalValue * GV,const TargetMachine & TM) const254 AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
255                                           const TargetMachine &TM) const {
256   // MachO large model always goes via a GOT, simply to get a single 8-byte
257   // absolute relocation on all global addresses.
258   if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
259     return AArch64II::MO_GOT;
260 
261   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) {
262     if (GV->hasDLLImportStorageClass())
263       return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
264     if (getTargetTriple().isOSWindows())
265       return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
266     return AArch64II::MO_GOT;
267   }
268 
269   // The small code model's direct accesses use ADRP, which cannot
270   // necessarily produce the value 0 (if the code is above 4GB).
271   // Same for the tiny code model, where we have a pc relative LDR.
272   if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
273       GV->hasExternalWeakLinkage())
274     return AArch64II::MO_GOT;
275 
276   // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
277   // that their nominal addresses are tagged and outside of the code model. In
278   // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
279   // tag if necessary based on MO_TAGGED.
280   if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
281     return AArch64II::MO_NC | AArch64II::MO_TAGGED;
282 
283   return AArch64II::MO_NO_FLAG;
284 }
285 
classifyGlobalFunctionReference(const GlobalValue * GV,const TargetMachine & TM) const286 unsigned AArch64Subtarget::classifyGlobalFunctionReference(
287     const GlobalValue *GV, const TargetMachine &TM) const {
288   // MachO large model always goes via a GOT, because we don't have the
289   // relocations available to do anything else..
290   if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
291       !GV->hasInternalLinkage())
292     return AArch64II::MO_GOT;
293 
294   // NonLazyBind goes via GOT unless we know it's available locally.
295   auto *F = dyn_cast<Function>(GV);
296   if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) &&
297       !TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
298     return AArch64II::MO_GOT;
299 
300   // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
301   if (getTargetTriple().isOSWindows())
302     return ClassifyGlobalReference(GV, TM);
303 
304   return AArch64II::MO_NO_FLAG;
305 }
306 
overrideSchedPolicy(MachineSchedPolicy & Policy,unsigned NumRegionInstrs) const307 void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
308                                            unsigned NumRegionInstrs) const {
309   // LNT run (at least on Cyclone) showed reasonably significant gains for
310   // bi-directional scheduling. 253.perlbmk.
311   Policy.OnlyTopDown = false;
312   Policy.OnlyBottomUp = false;
313   // Enabling or Disabling the latency heuristic is a close call: It seems to
314   // help nearly no benchmark on out-of-order architectures, on the other hand
315   // it regresses register pressure on a few benchmarking.
316   Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
317 }
318 
enableEarlyIfConversion() const319 bool AArch64Subtarget::enableEarlyIfConversion() const {
320   return EnableEarlyIfConvert;
321 }
322 
supportsAddressTopByteIgnored() const323 bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
324   if (!UseAddressTopByteIgnored)
325     return false;
326 
327   if (TargetTriple.isiOS()) {
328     unsigned Major, Minor, Micro;
329     TargetTriple.getiOSVersion(Major, Minor, Micro);
330     return Major >= 8;
331   }
332 
333   return false;
334 }
335 
336 std::unique_ptr<PBQPRAConstraint>
getCustomPBQPConstraints() const337 AArch64Subtarget::getCustomPBQPConstraints() const {
338   return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
339 }
340 
mirFileLoaded(MachineFunction & MF) const341 void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
342   // We usually compute max call frame size after ISel. Do the computation now
343   // if the .mir file didn't specify it. Note that this will probably give you
344   // bogus values after PEI has eliminated the callframe setup/destroy pseudo
345   // instructions, specify explicitly if you need it to be correct.
346   MachineFrameInfo &MFI = MF.getFrameInfo();
347   if (!MFI.isMaxCallFrameSizeComputed())
348     MFI.computeMaxCallFrameSize(MF);
349 }
350 
getMaxSVEVectorSizeInBits() const351 unsigned AArch64Subtarget::getMaxSVEVectorSizeInBits() const {
352   assert(HasSVE && "Tried to get SVE vector length without SVE support!");
353   assert(SVEVectorBitsMax % 128 == 0 &&
354          "SVE requires vector length in multiples of 128!");
355   assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
356          "Minimum SVE vector size should not be larger than its maximum!");
357   if (SVEVectorBitsMax == 0)
358     return 0;
359   return (std::max(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
360 }
361 
getMinSVEVectorSizeInBits() const362 unsigned AArch64Subtarget::getMinSVEVectorSizeInBits() const {
363   assert(HasSVE && "Tried to get SVE vector length without SVE support!");
364   assert(SVEVectorBitsMin % 128 == 0 &&
365          "SVE requires vector length in multiples of 128!");
366   assert((SVEVectorBitsMax >= SVEVectorBitsMin || SVEVectorBitsMax == 0) &&
367          "Minimum SVE vector size should not be larger than its maximum!");
368   if (SVEVectorBitsMax == 0)
369     return (SVEVectorBitsMin / 128) * 128;
370   return (std::min(SVEVectorBitsMin, SVEVectorBitsMax) / 128) * 128;
371 }
372 
useSVEForFixedLengthVectors() const373 bool AArch64Subtarget::useSVEForFixedLengthVectors() const {
374   // Prefer NEON unless larger SVE registers are available.
375   return hasSVE() && getMinSVEVectorSizeInBits() >= 256;
376 }
377