1 //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AArch64.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64LegalizerInfo.h"
15 #include "AArch64Subtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/GlobalISel/Utils.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetOpcodes.h"
23 #include "llvm/CodeGen/ValueTypes.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include <initializer_list>
27 #include "llvm/Support/MathExtras.h"
28
29 #define DEBUG_TYPE "aarch64-legalinfo"
30
31 using namespace llvm;
32 using namespace LegalizeActions;
33 using namespace LegalizeMutations;
34 using namespace LegalityPredicates;
35
AArch64LegalizerInfo(const AArch64Subtarget & ST)36 AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST)
37 : ST(&ST) {
38 using namespace TargetOpcode;
39 const LLT p0 = LLT::pointer(0, 64);
40 const LLT s1 = LLT::scalar(1);
41 const LLT s8 = LLT::scalar(8);
42 const LLT s16 = LLT::scalar(16);
43 const LLT s32 = LLT::scalar(32);
44 const LLT s64 = LLT::scalar(64);
45 const LLT s128 = LLT::scalar(128);
46 const LLT s256 = LLT::scalar(256);
47 const LLT s512 = LLT::scalar(512);
48 const LLT v16s8 = LLT::vector(16, 8);
49 const LLT v8s8 = LLT::vector(8, 8);
50 const LLT v4s8 = LLT::vector(4, 8);
51 const LLT v8s16 = LLT::vector(8, 16);
52 const LLT v4s16 = LLT::vector(4, 16);
53 const LLT v2s16 = LLT::vector(2, 16);
54 const LLT v2s32 = LLT::vector(2, 32);
55 const LLT v4s32 = LLT::vector(4, 32);
56 const LLT v2s64 = LLT::vector(2, 64);
57 const LLT v2p0 = LLT::vector(2, p0);
58
59 std::initializer_list<LLT> PackedVectorAllTypeList = {/* Begin 128bit types */
60 v16s8, v8s16, v4s32,
61 v2s64, v2p0,
62 /* End 128bit types */
63 /* Begin 64bit types */
64 v8s8, v4s16, v2s32};
65
66 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
67
68 // FIXME: support subtargets which have neon/fp-armv8 disabled.
69 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
70 computeTables();
71 return;
72 }
73
74 // Some instructions only support s16 if the subtarget has full 16-bit FP
75 // support.
76 const bool HasFP16 = ST.hasFullFP16();
77 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
78
79 getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
80 .legalFor({p0, s1, s8, s16, s32, s64})
81 .legalFor(PackedVectorAllTypeList)
82 .clampScalar(0, s1, s64)
83 .widenScalarToNextPow2(0, 8)
84 .fewerElementsIf(
85 [=](const LegalityQuery &Query) {
86 return Query.Types[0].isVector() &&
87 (Query.Types[0].getElementType() != s64 ||
88 Query.Types[0].getNumElements() != 2);
89 },
90 [=](const LegalityQuery &Query) {
91 LLT EltTy = Query.Types[0].getElementType();
92 if (EltTy == s64)
93 return std::make_pair(0, LLT::vector(2, 64));
94 return std::make_pair(0, EltTy);
95 });
96
97 getActionDefinitionsBuilder(G_PHI).legalFor({p0, s16, s32, s64})
98 .legalFor(PackedVectorAllTypeList)
99 .clampScalar(0, s16, s64)
100 .widenScalarToNextPow2(0);
101
102 getActionDefinitionsBuilder(G_BSWAP)
103 .legalFor({s32, s64, v4s32, v2s32, v2s64})
104 .clampScalar(0, s32, s64)
105 .widenScalarToNextPow2(0);
106
107 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
108 .legalFor({s32, s64, v2s32, v4s32, v4s16, v8s16, v16s8, v8s8})
109 .scalarizeIf(
110 [=](const LegalityQuery &Query) {
111 return Query.Opcode == G_MUL && Query.Types[0] == v2s64;
112 },
113 0)
114 .legalFor({v2s64})
115 .clampScalar(0, s32, s64)
116 .widenScalarToNextPow2(0)
117 .clampNumElements(0, v2s32, v4s32)
118 .clampNumElements(0, v2s64, v2s64)
119 .moreElementsToNextPow2(0);
120
121 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
122 .customIf([=](const LegalityQuery &Query) {
123 const auto &SrcTy = Query.Types[0];
124 const auto &AmtTy = Query.Types[1];
125 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
126 AmtTy.getSizeInBits() == 32;
127 })
128 .legalFor({
129 {s32, s32},
130 {s32, s64},
131 {s64, s64},
132 {v8s8, v8s8},
133 {v16s8, v16s8},
134 {v4s16, v4s16},
135 {v8s16, v8s16},
136 {v2s32, v2s32},
137 {v4s32, v4s32},
138 {v2s64, v2s64},
139 })
140 .clampScalar(1, s32, s64)
141 .clampScalar(0, s32, s64)
142 .widenScalarToNextPow2(0)
143 .clampNumElements(0, v2s32, v4s32)
144 .clampNumElements(0, v2s64, v2s64)
145 .moreElementsToNextPow2(0)
146 .minScalarSameAs(1, 0);
147
148 getActionDefinitionsBuilder(G_PTR_ADD)
149 .legalFor({{p0, s64}, {v2p0, v2s64}})
150 .clampScalar(1, s64, s64);
151
152 getActionDefinitionsBuilder(G_PTRMASK).legalFor({{p0, s64}});
153
154 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
155 .legalFor({s32, s64})
156 .libcallFor({s128})
157 .clampScalar(0, s32, s64)
158 .widenScalarToNextPow2(0)
159 .scalarize(0);
160
161 getActionDefinitionsBuilder({G_SREM, G_UREM})
162 .lowerFor({s1, s8, s16, s32, s64});
163
164 getActionDefinitionsBuilder({G_SMULO, G_UMULO}).lowerFor({{s64, s1}});
165
166 getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64});
167
168 getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO})
169 .legalFor({{s32, s1}, {s64, s1}})
170 .minScalar(0, s32);
171
172 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FNEG})
173 .legalFor({s32, s64, v2s64, v4s32, v2s32})
174 .clampNumElements(0, v2s32, v4s32)
175 .clampNumElements(0, v2s64, v2s64);
176
177 getActionDefinitionsBuilder(G_FREM).libcallFor({s32, s64});
178
179 getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR, G_FRINT,
180 G_FMA, G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
181 G_FNEARBYINT, G_INTRINSIC_LRINT})
182 // If we don't have full FP16 support, then scalarize the elements of
183 // vectors containing fp16 types.
184 .fewerElementsIf(
185 [=, &ST](const LegalityQuery &Query) {
186 const auto &Ty = Query.Types[0];
187 return Ty.isVector() && Ty.getElementType() == s16 &&
188 !ST.hasFullFP16();
189 },
190 [=](const LegalityQuery &Query) { return std::make_pair(0, s16); })
191 // If we don't have full FP16 support, then widen s16 to s32 if we
192 // encounter it.
193 .widenScalarIf(
194 [=, &ST](const LegalityQuery &Query) {
195 return Query.Types[0] == s16 && !ST.hasFullFP16();
196 },
197 [=](const LegalityQuery &Query) { return std::make_pair(0, s32); })
198 .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16});
199
200 getActionDefinitionsBuilder(
201 {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2, G_FPOW})
202 // We need a call for these, so we always need to scalarize.
203 .scalarize(0)
204 // Regardless of FP16 support, widen 16-bit elements to 32-bits.
205 .minScalar(0, s32)
206 .libcallFor({s32, s64, v2s32, v4s32, v2s64});
207
208 getActionDefinitionsBuilder(G_INSERT)
209 .unsupportedIf([=](const LegalityQuery &Query) {
210 return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits();
211 })
212 .legalIf([=](const LegalityQuery &Query) {
213 const LLT &Ty0 = Query.Types[0];
214 const LLT &Ty1 = Query.Types[1];
215 if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0)
216 return false;
217 return isPowerOf2_32(Ty1.getSizeInBits()) &&
218 (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8);
219 })
220 .clampScalar(0, s32, s64)
221 .widenScalarToNextPow2(0)
222 .maxScalarIf(typeInSet(0, {s32}), 1, s16)
223 .maxScalarIf(typeInSet(0, {s64}), 1, s32)
224 .widenScalarToNextPow2(1);
225
226 getActionDefinitionsBuilder(G_EXTRACT)
227 .unsupportedIf([=](const LegalityQuery &Query) {
228 return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits();
229 })
230 .legalIf([=](const LegalityQuery &Query) {
231 const LLT &Ty0 = Query.Types[0];
232 const LLT &Ty1 = Query.Types[1];
233 if (Ty1 != s32 && Ty1 != s64 && Ty1 != s128)
234 return false;
235 if (Ty1 == p0)
236 return true;
237 return isPowerOf2_32(Ty0.getSizeInBits()) &&
238 (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8);
239 })
240 .clampScalar(1, s32, s128)
241 .widenScalarToNextPow2(1)
242 .maxScalarIf(typeInSet(1, {s32}), 0, s16)
243 .maxScalarIf(typeInSet(1, {s64}), 0, s32)
244 .widenScalarToNextPow2(0);
245
246 getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
247 .legalForTypesWithMemDesc({{s32, p0, 8, 8},
248 {s32, p0, 16, 8},
249 {s32, p0, 32, 8},
250 {s64, p0, 8, 2},
251 {s64, p0, 16, 2},
252 {s64, p0, 32, 4},
253 {s64, p0, 64, 8},
254 {p0, p0, 64, 8},
255 {v2s32, p0, 64, 8}})
256 .clampScalar(0, s32, s64)
257 .widenScalarToNextPow2(0)
258 // TODO: We could support sum-of-pow2's but the lowering code doesn't know
259 // how to do that yet.
260 .unsupportedIfMemSizeNotPow2()
261 // Lower anything left over into G_*EXT and G_LOAD
262 .lower();
263
264 auto IsPtrVecPred = [=](const LegalityQuery &Query) {
265 const LLT &ValTy = Query.Types[0];
266 if (!ValTy.isVector())
267 return false;
268 const LLT EltTy = ValTy.getElementType();
269 return EltTy.isPointer() && EltTy.getAddressSpace() == 0;
270 };
271
272 getActionDefinitionsBuilder(G_LOAD)
273 .legalForTypesWithMemDesc({{s8, p0, 8, 8},
274 {s16, p0, 16, 8},
275 {s32, p0, 32, 8},
276 {s64, p0, 64, 8},
277 {p0, p0, 64, 8},
278 {s128, p0, 128, 8},
279 {v8s8, p0, 64, 8},
280 {v16s8, p0, 128, 8},
281 {v4s16, p0, 64, 8},
282 {v8s16, p0, 128, 8},
283 {v2s32, p0, 64, 8},
284 {v4s32, p0, 128, 8},
285 {v2s64, p0, 128, 8}})
286 // These extends are also legal
287 .legalForTypesWithMemDesc({{s32, p0, 8, 8}, {s32, p0, 16, 8}})
288 .clampScalar(0, s8, s64)
289 .lowerIfMemSizeNotPow2()
290 // Lower any any-extending loads left into G_ANYEXT and G_LOAD
291 .lowerIf([=](const LegalityQuery &Query) {
292 return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
293 })
294 .widenScalarToNextPow2(0)
295 .clampMaxNumElements(0, s32, 2)
296 .clampMaxNumElements(0, s64, 1)
297 .customIf(IsPtrVecPred);
298
299 getActionDefinitionsBuilder(G_STORE)
300 .legalForTypesWithMemDesc({{s8, p0, 8, 8},
301 {s16, p0, 16, 8},
302 {s32, p0, 8, 8},
303 {s32, p0, 16, 8},
304 {s32, p0, 32, 8},
305 {s64, p0, 64, 8},
306 {p0, p0, 64, 8},
307 {s128, p0, 128, 8},
308 {v16s8, p0, 128, 8},
309 {v8s8, p0, 64, 8},
310 {v4s16, p0, 64, 8},
311 {v8s16, p0, 128, 8},
312 {v2s32, p0, 64, 8},
313 {v4s32, p0, 128, 8},
314 {v2s64, p0, 128, 8}})
315 .clampScalar(0, s8, s64)
316 .lowerIfMemSizeNotPow2()
317 .lowerIf([=](const LegalityQuery &Query) {
318 return Query.Types[0].isScalar() &&
319 Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits;
320 })
321 .clampMaxNumElements(0, s32, 2)
322 .clampMaxNumElements(0, s64, 1)
323 .customIf(IsPtrVecPred);
324
325 // Constants
326 getActionDefinitionsBuilder(G_CONSTANT)
327 .legalFor({p0, s8, s16, s32, s64})
328 .clampScalar(0, s8, s64)
329 .widenScalarToNextPow2(0);
330 getActionDefinitionsBuilder(G_FCONSTANT)
331 .legalIf([=](const LegalityQuery &Query) {
332 const auto &Ty = Query.Types[0];
333 if (HasFP16 && Ty == s16)
334 return true;
335 return Ty == s32 || Ty == s64;
336 })
337 .clampScalar(0, MinFPScalar, s64);
338
339 getActionDefinitionsBuilder({G_ICMP, G_FCMP})
340 .legalFor({{s32, s32},
341 {s32, s64},
342 {s32, p0},
343 {v4s32, v4s32},
344 {v2s32, v2s32},
345 {v2s64, v2s64},
346 {v2s64, v2p0},
347 {v4s16, v4s16},
348 {v8s16, v8s16},
349 {v8s8, v8s8},
350 {v16s8, v16s8}})
351 .clampScalar(1, s32, s64)
352 .clampScalar(0, s32, s32)
353 .minScalarEltSameAsIf(
354 [=](const LegalityQuery &Query) {
355 const LLT &Ty = Query.Types[0];
356 const LLT &SrcTy = Query.Types[1];
357 return Ty.isVector() && !SrcTy.getElementType().isPointer() &&
358 Ty.getElementType() != SrcTy.getElementType();
359 },
360 0, 1)
361 .minScalarOrEltIf(
362 [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; },
363 1, s32)
364 .minScalarOrEltIf(
365 [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0,
366 s64)
367 .widenScalarOrEltToNextPow2(1)
368 .clampNumElements(0, v2s32, v4s32);
369
370 // Extensions
371 auto ExtLegalFunc = [=](const LegalityQuery &Query) {
372 unsigned DstSize = Query.Types[0].getSizeInBits();
373
374 if (DstSize == 128 && !Query.Types[0].isVector())
375 return false; // Extending to a scalar s128 needs narrowing.
376
377 // Make sure that we have something that will fit in a register, and
378 // make sure it's a power of 2.
379 if (DstSize < 8 || DstSize > 128 || !isPowerOf2_32(DstSize))
380 return false;
381
382 const LLT &SrcTy = Query.Types[1];
383
384 // Special case for s1.
385 if (SrcTy == s1)
386 return true;
387
388 // Make sure we fit in a register otherwise. Don't bother checking that
389 // the source type is below 128 bits. We shouldn't be allowing anything
390 // through which is wider than the destination in the first place.
391 unsigned SrcSize = SrcTy.getSizeInBits();
392 if (SrcSize < 8 || !isPowerOf2_32(SrcSize))
393 return false;
394
395 return true;
396 };
397 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
398 .legalIf(ExtLegalFunc)
399 .clampScalar(0, s64, s64); // Just for s128, others are handled above.
400
401 getActionDefinitionsBuilder(G_TRUNC)
402 .minScalarOrEltIf(
403 [=](const LegalityQuery &Query) { return Query.Types[0].isVector(); },
404 0, s8)
405 .customIf([=](const LegalityQuery &Query) {
406 LLT DstTy = Query.Types[0];
407 LLT SrcTy = Query.Types[1];
408 return DstTy == v8s8 && SrcTy.getSizeInBits() > 128;
409 })
410 .alwaysLegal();
411
412 getActionDefinitionsBuilder(G_SEXT_INREG).legalFor({s32, s64}).lower();
413
414 // FP conversions
415 getActionDefinitionsBuilder(G_FPTRUNC)
416 .legalFor(
417 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
418 .clampMaxNumElements(0, s32, 2);
419 getActionDefinitionsBuilder(G_FPEXT)
420 .legalFor(
421 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
422 .clampMaxNumElements(0, s64, 2);
423
424 // Conversions
425 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
426 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
427 .clampScalar(0, s32, s64)
428 .widenScalarToNextPow2(0)
429 .clampScalar(1, s32, s64)
430 .widenScalarToNextPow2(1);
431
432 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
433 .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32})
434 .clampScalar(1, s32, s64)
435 .minScalarSameAs(1, 0)
436 .clampScalar(0, s32, s64)
437 .widenScalarToNextPow2(0);
438
439 // Control-flow
440 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32});
441 getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
442
443 getActionDefinitionsBuilder(G_SELECT)
444 .legalFor({{s32, s1}, {s64, s1}, {p0, s1}})
445 .clampScalar(0, s32, s64)
446 .widenScalarToNextPow2(0)
447 .minScalarEltSameAsIf(all(isVector(0), isVector(1)), 1, 0)
448 .lowerIf(isVector(0));
449
450 // Pointer-handling
451 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
452
453 if (TM.getCodeModel() == CodeModel::Small)
454 getActionDefinitionsBuilder(G_GLOBAL_VALUE).custom();
455 else
456 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
457
458 getActionDefinitionsBuilder(G_PTRTOINT)
459 .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0})
460 .maxScalar(0, s64)
461 .widenScalarToNextPow2(0, /*Min*/ 8);
462
463 getActionDefinitionsBuilder(G_INTTOPTR)
464 .unsupportedIf([&](const LegalityQuery &Query) {
465 return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits();
466 })
467 .legalFor({{p0, s64}});
468
469 // Casts for 32 and 64-bit width type are just copies.
470 // Same for 128-bit width type, except they are on the FPR bank.
471 getActionDefinitionsBuilder(G_BITCAST)
472 // FIXME: This is wrong since G_BITCAST is not allowed to change the
473 // number of bits but it's what the previous code described and fixing
474 // it breaks tests.
475 .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8,
476 v8s16, v4s16, v2s16, v4s32, v2s32, v2s64,
477 v2p0});
478
479 getActionDefinitionsBuilder(G_VASTART).legalFor({p0});
480
481 // va_list must be a pointer, but most sized types are pretty easy to handle
482 // as the destination.
483 getActionDefinitionsBuilder(G_VAARG)
484 .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0})
485 .clampScalar(0, s8, s64)
486 .widenScalarToNextPow2(0, /*Min*/ 8);
487
488 if (ST.hasLSE()) {
489 getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
490 .lowerIf(all(
491 typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0),
492 atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
493
494 getActionDefinitionsBuilder(
495 {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND,
496 G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX,
497 G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG})
498 .legalIf(all(
499 typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0),
500 atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic)));
501 }
502
503 getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0});
504
505 // Merge/Unmerge
506 for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
507 unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
508 unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
509
510 auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) {
511 const LLT &Ty = Query.Types[TypeIdx];
512 if (Ty.isVector()) {
513 const LLT &EltTy = Ty.getElementType();
514 if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
515 return true;
516 if (!isPowerOf2_32(EltTy.getSizeInBits()))
517 return true;
518 }
519 return false;
520 };
521
522 // FIXME: This rule is horrible, but specifies the same as what we had
523 // before with the particularly strange definitions removed (e.g.
524 // s8 = G_MERGE_VALUES s32, s32).
525 // Part of the complexity comes from these ops being extremely flexible. For
526 // example, you can build/decompose vectors with it, concatenate vectors,
527 // etc. and in addition to this you can also bitcast with it at the same
528 // time. We've been considering breaking it up into multiple ops to make it
529 // more manageable throughout the backend.
530 getActionDefinitionsBuilder(Op)
531 // Break up vectors with weird elements into scalars
532 .fewerElementsIf(
533 [=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
534 scalarize(0))
535 .fewerElementsIf(
536 [=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
537 scalarize(1))
538 // Clamp the big scalar to s8-s512 and make it either a power of 2, 192,
539 // or 384.
540 .clampScalar(BigTyIdx, s8, s512)
541 .widenScalarIf(
542 [=](const LegalityQuery &Query) {
543 const LLT &Ty = Query.Types[BigTyIdx];
544 return !isPowerOf2_32(Ty.getSizeInBits()) &&
545 Ty.getSizeInBits() % 64 != 0;
546 },
547 [=](const LegalityQuery &Query) {
548 // Pick the next power of 2, or a multiple of 64 over 128.
549 // Whichever is smaller.
550 const LLT &Ty = Query.Types[BigTyIdx];
551 unsigned NewSizeInBits = 1
552 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
553 if (NewSizeInBits >= 256) {
554 unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
555 if (RoundedTo < NewSizeInBits)
556 NewSizeInBits = RoundedTo;
557 }
558 return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
559 })
560 // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
561 // worth considering the multiples of 64 since 2*192 and 2*384 are not
562 // valid.
563 .clampScalar(LitTyIdx, s8, s256)
564 .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8)
565 // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384,
566 // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>.
567 // At this point it's simple enough to accept the legal types.
568 .legalIf([=](const LegalityQuery &Query) {
569 const LLT &BigTy = Query.Types[BigTyIdx];
570 const LLT &LitTy = Query.Types[LitTyIdx];
571 if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
572 return false;
573 if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
574 return false;
575 return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0;
576 })
577 // Any vectors left are the wrong size. Scalarize them.
578 .scalarize(0)
579 .scalarize(1);
580 }
581
582 getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
583 .unsupportedIf([=](const LegalityQuery &Query) {
584 const LLT &EltTy = Query.Types[1].getElementType();
585 return Query.Types[0] != EltTy;
586 })
587 .minScalar(2, s64)
588 .legalIf([=](const LegalityQuery &Query) {
589 const LLT &VecTy = Query.Types[1];
590 return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
591 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
592 VecTy == v16s8 || VecTy == v2s32 || VecTy == v2p0;
593 })
594 .minScalarOrEltIf(
595 [=](const LegalityQuery &Query) {
596 // We want to promote to <M x s1> to <M x s64> if that wouldn't
597 // cause the total vec size to be > 128b.
598 return Query.Types[1].getNumElements() <= 2;
599 },
600 0, s64)
601 .minScalarOrEltIf(
602 [=](const LegalityQuery &Query) {
603 return Query.Types[1].getNumElements() <= 4;
604 },
605 0, s32)
606 .minScalarOrEltIf(
607 [=](const LegalityQuery &Query) {
608 return Query.Types[1].getNumElements() <= 8;
609 },
610 0, s16)
611 .minScalarOrEltIf(
612 [=](const LegalityQuery &Query) {
613 return Query.Types[1].getNumElements() <= 16;
614 },
615 0, s8)
616 .minScalarOrElt(0, s8); // Worst case, we need at least s8.
617
618 getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT)
619 .legalIf(typeInSet(0, {v8s16, v2s32, v4s32, v2s64}));
620
621 getActionDefinitionsBuilder(G_BUILD_VECTOR)
622 .legalFor({{v8s8, s8},
623 {v16s8, s8},
624 {v4s16, s16},
625 {v8s16, s16},
626 {v2s32, s32},
627 {v4s32, s32},
628 {v2p0, p0},
629 {v2s64, s64}})
630 .clampNumElements(0, v4s32, v4s32)
631 .clampNumElements(0, v2s64, v2s64)
632
633 // Deal with larger scalar types, which will be implicitly truncated.
634 .legalIf([=](const LegalityQuery &Query) {
635 return Query.Types[0].getScalarSizeInBits() <
636 Query.Types[1].getSizeInBits();
637 })
638 .minScalarSameAs(1, 0);
639
640 getActionDefinitionsBuilder(G_CTLZ)
641 .legalForCartesianProduct(
642 {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
643 .scalarize(1);
644
645 getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
646 .legalIf([=](const LegalityQuery &Query) {
647 const LLT &DstTy = Query.Types[0];
648 const LLT &SrcTy = Query.Types[1];
649 // For now just support the TBL2 variant which needs the source vectors
650 // to be the same size as the dest.
651 if (DstTy != SrcTy)
652 return false;
653 for (auto &Ty : {v2s32, v4s32, v2s64, v2p0, v16s8, v8s16}) {
654 if (DstTy == Ty)
655 return true;
656 }
657 return false;
658 })
659 // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we
660 // just want those lowered into G_BUILD_VECTOR
661 .lowerIf([=](const LegalityQuery &Query) {
662 return !Query.Types[1].isVector();
663 })
664 .clampNumElements(0, v4s32, v4s32)
665 .clampNumElements(0, v2s64, v2s64);
666
667 getActionDefinitionsBuilder(G_CONCAT_VECTORS)
668 .legalFor({{v4s32, v2s32}, {v8s16, v4s16}});
669
670 getActionDefinitionsBuilder(G_JUMP_TABLE).legalFor({{p0}, {s64}});
671
672 getActionDefinitionsBuilder(G_BRJT).legalIf([=](const LegalityQuery &Query) {
673 return Query.Types[0] == p0 && Query.Types[1] == s64;
674 });
675
676 getActionDefinitionsBuilder(G_DYN_STACKALLOC).lower();
677
678 getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
679
680 getActionDefinitionsBuilder(G_ABS).lowerIf(
681 [=](const LegalityQuery &Query) { return Query.Types[0].isScalar(); });
682
683 getActionDefinitionsBuilder(G_VECREDUCE_FADD)
684 // We only have FADDP to do reduction-like operations. Lower the rest.
685 .legalFor({{s32, v2s32}, {s64, v2s64}})
686 .lower();
687
688 getActionDefinitionsBuilder(G_VECREDUCE_ADD)
689 .legalFor({{s8, v16s8}, {s16, v8s16}, {s32, v4s32}, {s64, v2s64}})
690 .lower();
691
692 computeTables();
693 verify(*ST.getInstrInfo());
694 }
695
legalizeCustom(LegalizerHelper & Helper,MachineInstr & MI) const696 bool AArch64LegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
697 MachineInstr &MI) const {
698 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
699 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
700 GISelChangeObserver &Observer = Helper.Observer;
701 switch (MI.getOpcode()) {
702 default:
703 // No idea what to do.
704 return false;
705 case TargetOpcode::G_VAARG:
706 return legalizeVaArg(MI, MRI, MIRBuilder);
707 case TargetOpcode::G_LOAD:
708 case TargetOpcode::G_STORE:
709 return legalizeLoadStore(MI, MRI, MIRBuilder, Observer);
710 case TargetOpcode::G_SHL:
711 case TargetOpcode::G_ASHR:
712 case TargetOpcode::G_LSHR:
713 return legalizeShlAshrLshr(MI, MRI, MIRBuilder, Observer);
714 case TargetOpcode::G_GLOBAL_VALUE:
715 return legalizeSmallCMGlobalValue(MI, MRI, MIRBuilder, Observer);
716 case TargetOpcode::G_TRUNC:
717 return legalizeVectorTrunc(MI, Helper);
718 }
719
720 llvm_unreachable("expected switch to return");
721 }
722
extractParts(Register Reg,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,LLT Ty,int NumParts,SmallVectorImpl<Register> & VRegs)723 static void extractParts(Register Reg, MachineRegisterInfo &MRI,
724 MachineIRBuilder &MIRBuilder, LLT Ty, int NumParts,
725 SmallVectorImpl<Register> &VRegs) {
726 for (int I = 0; I < NumParts; ++I)
727 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
728 MIRBuilder.buildUnmerge(VRegs, Reg);
729 }
730
legalizeVectorTrunc(MachineInstr & MI,LegalizerHelper & Helper) const731 bool AArch64LegalizerInfo::legalizeVectorTrunc(
732 MachineInstr &MI, LegalizerHelper &Helper) const {
733 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
734 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
735 // Similar to how operand splitting is done in SelectiondDAG, we can handle
736 // %res(v8s8) = G_TRUNC %in(v8s32) by generating:
737 // %inlo(<4x s32>), %inhi(<4 x s32>) = G_UNMERGE %in(<8 x s32>)
738 // %lo16(<4 x s16>) = G_TRUNC %inlo
739 // %hi16(<4 x s16>) = G_TRUNC %inhi
740 // %in16(<8 x s16>) = G_CONCAT_VECTORS %lo16, %hi16
741 // %res(<8 x s8>) = G_TRUNC %in16
742
743 Register DstReg = MI.getOperand(0).getReg();
744 Register SrcReg = MI.getOperand(1).getReg();
745 LLT DstTy = MRI.getType(DstReg);
746 LLT SrcTy = MRI.getType(SrcReg);
747 assert(isPowerOf2_32(DstTy.getSizeInBits()) &&
748 isPowerOf2_32(SrcTy.getSizeInBits()));
749
750 // Split input type.
751 LLT SplitSrcTy = SrcTy.changeNumElements(SrcTy.getNumElements() / 2);
752 // First, split the source into two smaller vectors.
753 SmallVector<Register, 2> SplitSrcs;
754 extractParts(SrcReg, MRI, MIRBuilder, SplitSrcTy, 2, SplitSrcs);
755
756 // Truncate the splits into intermediate narrower elements.
757 LLT InterTy = SplitSrcTy.changeElementSize(DstTy.getScalarSizeInBits() * 2);
758 for (unsigned I = 0; I < SplitSrcs.size(); ++I)
759 SplitSrcs[I] = MIRBuilder.buildTrunc(InterTy, SplitSrcs[I]).getReg(0);
760
761 auto Concat = MIRBuilder.buildConcatVectors(
762 DstTy.changeElementSize(DstTy.getScalarSizeInBits() * 2), SplitSrcs);
763
764 Helper.Observer.changingInstr(MI);
765 MI.getOperand(1).setReg(Concat.getReg(0));
766 Helper.Observer.changedInstr(MI);
767 return true;
768 }
769
legalizeSmallCMGlobalValue(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const770 bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
771 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
772 GISelChangeObserver &Observer) const {
773 assert(MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
774 // We do this custom legalization to convert G_GLOBAL_VALUE into target ADRP +
775 // G_ADD_LOW instructions.
776 // By splitting this here, we can optimize accesses in the small code model by
777 // folding in the G_ADD_LOW into the load/store offset.
778 auto GV = MI.getOperand(1).getGlobal();
779 if (GV->isThreadLocal())
780 return true; // Don't want to modify TLS vars.
781
782 auto &TM = ST->getTargetLowering()->getTargetMachine();
783 unsigned OpFlags = ST->ClassifyGlobalReference(GV, TM);
784
785 if (OpFlags & AArch64II::MO_GOT)
786 return true;
787
788 Register DstReg = MI.getOperand(0).getReg();
789 auto ADRP = MIRBuilder.buildInstr(AArch64::ADRP, {LLT::pointer(0, 64)}, {})
790 .addGlobalAddress(GV, 0, OpFlags | AArch64II::MO_PAGE);
791 // Set the regclass on the dest reg too.
792 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
793
794 // MO_TAGGED on the page indicates a tagged address. Set the tag now. We do so
795 // by creating a MOVK that sets bits 48-63 of the register to (global address
796 // + 0x100000000 - PC) >> 48. The additional 0x100000000 offset here is to
797 // prevent an incorrect tag being generated during relocation when the the
798 // global appears before the code section. Without the offset, a global at
799 // `0x0f00'0000'0000'1000` (i.e. at `0x1000` with tag `0xf`) that's referenced
800 // by code at `0x2000` would result in `0x0f00'0000'0000'1000 - 0x2000 =
801 // 0x0eff'ffff'ffff'f000`, meaning the tag would be incorrectly set to `0xe`
802 // instead of `0xf`.
803 // This assumes that we're in the small code model so we can assume a binary
804 // size of <= 4GB, which makes the untagged PC relative offset positive. The
805 // binary must also be loaded into address range [0, 2^48). Both of these
806 // properties need to be ensured at runtime when using tagged addresses.
807 if (OpFlags & AArch64II::MO_TAGGED) {
808 ADRP = MIRBuilder.buildInstr(AArch64::MOVKXi, {LLT::pointer(0, 64)}, {ADRP})
809 .addGlobalAddress(GV, 0x100000000,
810 AArch64II::MO_PREL | AArch64II::MO_G3)
811 .addImm(48);
812 MRI.setRegClass(ADRP.getReg(0), &AArch64::GPR64RegClass);
813 }
814
815 MIRBuilder.buildInstr(AArch64::G_ADD_LOW, {DstReg}, {ADRP})
816 .addGlobalAddress(GV, 0,
817 OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
818 MI.eraseFromParent();
819 return true;
820 }
821
legalizeIntrinsic(LegalizerHelper & Helper,MachineInstr & MI) const822 bool AArch64LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
823 MachineInstr &MI) const {
824 return true;
825 }
826
legalizeShlAshrLshr(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const827 bool AArch64LegalizerInfo::legalizeShlAshrLshr(
828 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
829 GISelChangeObserver &Observer) const {
830 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
831 MI.getOpcode() == TargetOpcode::G_LSHR ||
832 MI.getOpcode() == TargetOpcode::G_SHL);
833 // If the shift amount is a G_CONSTANT, promote it to a 64 bit type so the
834 // imported patterns can select it later. Either way, it will be legal.
835 Register AmtReg = MI.getOperand(2).getReg();
836 auto VRegAndVal = getConstantVRegValWithLookThrough(AmtReg, MRI);
837 if (!VRegAndVal)
838 return true;
839 // Check the shift amount is in range for an immediate form.
840 int64_t Amount = VRegAndVal->Value;
841 if (Amount > 31)
842 return true; // This will have to remain a register variant.
843 auto ExtCst = MIRBuilder.buildConstant(LLT::scalar(64), Amount);
844 MI.getOperand(2).setReg(ExtCst.getReg(0));
845 return true;
846 }
847
legalizeLoadStore(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const848 bool AArch64LegalizerInfo::legalizeLoadStore(
849 MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder,
850 GISelChangeObserver &Observer) const {
851 assert(MI.getOpcode() == TargetOpcode::G_STORE ||
852 MI.getOpcode() == TargetOpcode::G_LOAD);
853 // Here we just try to handle vector loads/stores where our value type might
854 // have pointer elements, which the SelectionDAG importer can't handle. To
855 // allow the existing patterns for s64 to fire for p0, we just try to bitcast
856 // the value to use s64 types.
857
858 // Custom legalization requires the instruction, if not deleted, must be fully
859 // legalized. In order to allow further legalization of the inst, we create
860 // a new instruction and erase the existing one.
861
862 Register ValReg = MI.getOperand(0).getReg();
863 const LLT ValTy = MRI.getType(ValReg);
864
865 if (!ValTy.isVector() || !ValTy.getElementType().isPointer() ||
866 ValTy.getElementType().getAddressSpace() != 0) {
867 LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store");
868 return false;
869 }
870
871 unsigned PtrSize = ValTy.getElementType().getSizeInBits();
872 const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize);
873 auto &MMO = **MI.memoperands_begin();
874 if (MI.getOpcode() == TargetOpcode::G_STORE) {
875 auto Bitcast = MIRBuilder.buildBitcast(NewTy, ValReg);
876 MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1), MMO);
877 } else {
878 auto NewLoad = MIRBuilder.buildLoad(NewTy, MI.getOperand(1), MMO);
879 MIRBuilder.buildBitcast(ValReg, NewLoad);
880 }
881 MI.eraseFromParent();
882 return true;
883 }
884
legalizeVaArg(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder) const885 bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI,
886 MachineRegisterInfo &MRI,
887 MachineIRBuilder &MIRBuilder) const {
888 MachineFunction &MF = MIRBuilder.getMF();
889 Align Alignment(MI.getOperand(2).getImm());
890 Register Dst = MI.getOperand(0).getReg();
891 Register ListPtr = MI.getOperand(1).getReg();
892
893 LLT PtrTy = MRI.getType(ListPtr);
894 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
895
896 const unsigned PtrSize = PtrTy.getSizeInBits() / 8;
897 const Align PtrAlign = Align(PtrSize);
898 auto List = MIRBuilder.buildLoad(
899 PtrTy, ListPtr,
900 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
901 PtrSize, PtrAlign));
902
903 MachineInstrBuilder DstPtr;
904 if (Alignment > PtrAlign) {
905 // Realign the list to the actual required alignment.
906 auto AlignMinus1 =
907 MIRBuilder.buildConstant(IntPtrTy, Alignment.value() - 1);
908 auto ListTmp = MIRBuilder.buildPtrAdd(PtrTy, List, AlignMinus1.getReg(0));
909 DstPtr = MIRBuilder.buildMaskLowPtrBits(PtrTy, ListTmp, Log2(Alignment));
910 } else
911 DstPtr = List;
912
913 uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8;
914 MIRBuilder.buildLoad(
915 Dst, DstPtr,
916 *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad,
917 ValSize, std::max(Alignment, PtrAlign)));
918
919 auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrAlign));
920
921 auto NewList = MIRBuilder.buildPtrAdd(PtrTy, DstPtr, Size.getReg(0));
922
923 MIRBuilder.buildStore(NewList, ListPtr,
924 *MF.getMachineMemOperand(MachinePointerInfo(),
925 MachineMemOperand::MOStore,
926 PtrSize, PtrAlign));
927
928 MI.eraseFromParent();
929 return true;
930 }
931