1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "SIDefines.h"
20 #include "SIInstrInfo.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "SIRegisterInfo.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/StringSwitch.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CallingConvLower.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetCallingConv.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/DiagnosticInfo.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/GlobalValue.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MachineValueType.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Target/TargetOptions.h"
76 #include <cassert>
77 #include <cmath>
78 #include <cstdint>
79 #include <iterator>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83
84 using namespace llvm;
85
86 #define DEBUG_TYPE "si-lower"
87
88 STATISTIC(NumTailCalls, "Number of tail calls");
89
90 static cl::opt<bool> DisableLoopAlignment(
91 "amdgpu-disable-loop-alignment",
92 cl::desc("Do not align and prefetch loops"),
93 cl::init(false));
94
95 static cl::opt<bool> VGPRReserveforSGPRSpill(
96 "amdgpu-reserve-vgpr-for-sgpr-spill",
97 cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
98
99 static cl::opt<bool> UseDivergentRegisterIndexing(
100 "amdgpu-use-divergent-register-indexing",
101 cl::Hidden,
102 cl::desc("Use indirect register addressing for divergent indexes"),
103 cl::init(false));
104
hasFP32Denormals(const MachineFunction & MF)105 static bool hasFP32Denormals(const MachineFunction &MF) {
106 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
107 return Info->getMode().allFP32Denormals();
108 }
109
hasFP64FP16Denormals(const MachineFunction & MF)110 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
111 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
112 return Info->getMode().allFP64FP16Denormals();
113 }
114
findFirstFreeSGPR(CCState & CCInfo)115 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
116 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
117 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
118 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
119 return AMDGPU::SGPR0 + Reg;
120 }
121 }
122 llvm_unreachable("Cannot allocate sgpr");
123 }
124
SITargetLowering(const TargetMachine & TM,const GCNSubtarget & STI)125 SITargetLowering::SITargetLowering(const TargetMachine &TM,
126 const GCNSubtarget &STI)
127 : AMDGPUTargetLowering(TM, STI),
128 Subtarget(&STI) {
129 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
130 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
131
132 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
133 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
134
135 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
136 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
137 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
138
139 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
140 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
141
142 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
143 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
144
145 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
146 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
147
148 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
149 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
150
151 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
152 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
153
154 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
155 addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass);
156
157 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
158 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
159
160 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
161 addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass);
162
163 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
164 addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass);
165
166 if (Subtarget->has16BitInsts()) {
167 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
168 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
169
170 // Unless there are also VOP3P operations, not operations are really legal.
171 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
172 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
173 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
174 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
175 }
176
177 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
178 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
179
180 computeRegisterProperties(Subtarget->getRegisterInfo());
181
182 // The boolean content concept here is too inflexible. Compares only ever
183 // really produce a 1-bit result. Any copy/extend from these will turn into a
184 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
185 // it's what most targets use.
186 setBooleanContents(ZeroOrOneBooleanContent);
187 setBooleanVectorContents(ZeroOrOneBooleanContent);
188
189 // We need to custom lower vector stores from local memory
190 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
191 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
192 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
193 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
194 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
195 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
196 setOperationAction(ISD::LOAD, MVT::i1, Custom);
197 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
198
199 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
200 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
201 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
202 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
203 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
204 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
205 setOperationAction(ISD::STORE, MVT::i1, Custom);
206 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
207
208 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
209 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
210 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
211 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
212 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
213 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
214 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
215 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
216 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
217 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
218 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
219 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
220 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
221 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
222 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
223 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
224
225 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
226 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
227 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
228 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
229 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
230
231 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
232 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
233
234 setOperationAction(ISD::SELECT, MVT::i1, Promote);
235 setOperationAction(ISD::SELECT, MVT::i64, Custom);
236 setOperationAction(ISD::SELECT, MVT::f64, Promote);
237 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
238
239 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
240 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
241 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
242 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
243 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
244
245 setOperationAction(ISD::SETCC, MVT::i1, Promote);
246 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
247 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
248 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
249
250 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
251 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
252 setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
253 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
254 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
255 setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
256 setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
257 setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
258
259 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
260 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
261 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
262 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
263 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
265 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
266 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
267
268 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
269 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
270 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
271 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
272 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
273 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
274
275 setOperationAction(ISD::UADDO, MVT::i32, Legal);
276 setOperationAction(ISD::USUBO, MVT::i32, Legal);
277
278 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
279 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
280
281 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
282 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
283 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
284
285 #if 0
286 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
287 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
288 #endif
289
290 // We only support LOAD/STORE and vector manipulation ops for vectors
291 // with > 4 elements.
292 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
293 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
294 MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
295 MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
296 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
297 switch (Op) {
298 case ISD::LOAD:
299 case ISD::STORE:
300 case ISD::BUILD_VECTOR:
301 case ISD::BITCAST:
302 case ISD::EXTRACT_VECTOR_ELT:
303 case ISD::INSERT_VECTOR_ELT:
304 case ISD::INSERT_SUBVECTOR:
305 case ISD::EXTRACT_SUBVECTOR:
306 case ISD::SCALAR_TO_VECTOR:
307 break;
308 case ISD::CONCAT_VECTORS:
309 setOperationAction(Op, VT, Custom);
310 break;
311 default:
312 setOperationAction(Op, VT, Expand);
313 break;
314 }
315 }
316 }
317
318 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
319
320 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
321 // is expanded to avoid having two separate loops in case the index is a VGPR.
322
323 // Most operations are naturally 32-bit vector operations. We only support
324 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
325 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
326 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
327 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
328
329 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
330 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
331
332 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
333 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
334
335 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
336 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
337 }
338
339 for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
340 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
341 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
342
343 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
344 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
345
346 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
347 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
348
349 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
350 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
351 }
352
353 for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
354 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
355 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
356
357 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
358 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
359
360 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
361 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
362
363 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
364 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
365 }
366
367 for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
368 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
369 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
370
371 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
372 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
373
374 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
375 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
376
377 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
378 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
379 }
380
381 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
382 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
383 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
384 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
385
386 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
387 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
388
389 // Avoid stack access for these.
390 // TODO: Generalize to more vector types.
391 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
392 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
393 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
394 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
395
396 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
399 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
400 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
401
402 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
403 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
404 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
405
406 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
407 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
408 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
409 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
410
411 // Deal with vec3 vector operations when widened to vec4.
412 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
413 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
414 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
415 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
416
417 // Deal with vec5 vector operations when widened to vec8.
418 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
419 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
420 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
421 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
422
423 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
424 // and output demarshalling
425 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
426 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
427
428 // We can't return success/failure, only the old value,
429 // let LLVM add the comparison
430 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
431 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
432
433 if (Subtarget->hasFlatAddressSpace()) {
434 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
435 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
436 }
437
438 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
439
440 // FIXME: This should be narrowed to i32, but that only happens if i64 is
441 // illegal.
442 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
443 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
444 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
445
446 // On SI this is s_memtime and s_memrealtime on VI.
447 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
448 setOperationAction(ISD::TRAP, MVT::Other, Custom);
449 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
450
451 if (Subtarget->has16BitInsts()) {
452 setOperationAction(ISD::FPOW, MVT::f16, Promote);
453 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
454 setOperationAction(ISD::FLOG, MVT::f16, Custom);
455 setOperationAction(ISD::FEXP, MVT::f16, Custom);
456 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
457 }
458
459 if (Subtarget->hasMadMacF32Insts())
460 setOperationAction(ISD::FMAD, MVT::f32, Legal);
461
462 if (!Subtarget->hasBFI()) {
463 // fcopysign can be done in a single instruction with BFI.
464 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
465 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466 }
467
468 if (!Subtarget->hasBCNT(32))
469 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
470
471 if (!Subtarget->hasBCNT(64))
472 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
473
474 if (Subtarget->hasFFBH())
475 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
476
477 if (Subtarget->hasFFBL())
478 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
479
480 // We only really have 32-bit BFE instructions (and 16-bit on VI).
481 //
482 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
483 // effort to match them now. We want this to be false for i64 cases when the
484 // extraction isn't restricted to the upper or lower half. Ideally we would
485 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
486 // span the midpoint are probably relatively rare, so don't worry about them
487 // for now.
488 if (Subtarget->hasBFE())
489 setHasExtractBitsInsn(true);
490
491 // Clamp modifier on add/sub
492 if (Subtarget->hasIntClamp()) {
493 setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
494 setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
495 }
496
497 if (Subtarget->hasAddNoCarry()) {
498 setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
499 setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
500 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
501 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
502 }
503
504 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
505 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
506 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
507 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
508
509
510 // These are really only legal for ieee_mode functions. We should be avoiding
511 // them for functions that don't have ieee_mode enabled, so just say they are
512 // legal.
513 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
514 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
515 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
516 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
517
518
519 if (Subtarget->haveRoundOpsF64()) {
520 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
521 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
522 setOperationAction(ISD::FRINT, MVT::f64, Legal);
523 } else {
524 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
525 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
526 setOperationAction(ISD::FRINT, MVT::f64, Custom);
527 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
528 }
529
530 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
531
532 setOperationAction(ISD::FSIN, MVT::f32, Custom);
533 setOperationAction(ISD::FCOS, MVT::f32, Custom);
534 setOperationAction(ISD::FDIV, MVT::f32, Custom);
535 setOperationAction(ISD::FDIV, MVT::f64, Custom);
536
537 if (Subtarget->has16BitInsts()) {
538 setOperationAction(ISD::Constant, MVT::i16, Legal);
539
540 setOperationAction(ISD::SMIN, MVT::i16, Legal);
541 setOperationAction(ISD::SMAX, MVT::i16, Legal);
542
543 setOperationAction(ISD::UMIN, MVT::i16, Legal);
544 setOperationAction(ISD::UMAX, MVT::i16, Legal);
545
546 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
547 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
548
549 setOperationAction(ISD::ROTR, MVT::i16, Expand);
550 setOperationAction(ISD::ROTL, MVT::i16, Expand);
551
552 setOperationAction(ISD::SDIV, MVT::i16, Promote);
553 setOperationAction(ISD::UDIV, MVT::i16, Promote);
554 setOperationAction(ISD::SREM, MVT::i16, Promote);
555 setOperationAction(ISD::UREM, MVT::i16, Promote);
556 setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
557 setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
558
559 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
560
561 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
562 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
563 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
564 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
565 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
566
567 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
568
569 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
570
571 setOperationAction(ISD::LOAD, MVT::i16, Custom);
572
573 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
574
575 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
576 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
577 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
578 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
579
580 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
581 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
582
583 // F16 - Constant Actions.
584 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
585
586 // F16 - Load/Store Actions.
587 setOperationAction(ISD::LOAD, MVT::f16, Promote);
588 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
589 setOperationAction(ISD::STORE, MVT::f16, Promote);
590 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
591
592 // F16 - VOP1 Actions.
593 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
594 setOperationAction(ISD::FCOS, MVT::f16, Custom);
595 setOperationAction(ISD::FSIN, MVT::f16, Custom);
596
597 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
598 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
599
600 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
601 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
602 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
603 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
604 setOperationAction(ISD::FROUND, MVT::f16, Custom);
605
606 // F16 - VOP2 Actions.
607 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
608 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
609
610 setOperationAction(ISD::FDIV, MVT::f16, Custom);
611
612 // F16 - VOP3 Actions.
613 setOperationAction(ISD::FMA, MVT::f16, Legal);
614 if (STI.hasMadF16())
615 setOperationAction(ISD::FMAD, MVT::f16, Legal);
616
617 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
618 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
619 switch (Op) {
620 case ISD::LOAD:
621 case ISD::STORE:
622 case ISD::BUILD_VECTOR:
623 case ISD::BITCAST:
624 case ISD::EXTRACT_VECTOR_ELT:
625 case ISD::INSERT_VECTOR_ELT:
626 case ISD::INSERT_SUBVECTOR:
627 case ISD::EXTRACT_SUBVECTOR:
628 case ISD::SCALAR_TO_VECTOR:
629 break;
630 case ISD::CONCAT_VECTORS:
631 setOperationAction(Op, VT, Custom);
632 break;
633 default:
634 setOperationAction(Op, VT, Expand);
635 break;
636 }
637 }
638 }
639
640 // v_perm_b32 can handle either of these.
641 setOperationAction(ISD::BSWAP, MVT::i16, Legal);
642 setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
643 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
644
645 // XXX - Do these do anything? Vector constants turn into build_vector.
646 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
647 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
648
649 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
650 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
651
652 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
653 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
654 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
655 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
656
657 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
658 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
659 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
660 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
661
662 setOperationAction(ISD::AND, MVT::v2i16, Promote);
663 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
664 setOperationAction(ISD::OR, MVT::v2i16, Promote);
665 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
666 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
667 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
668
669 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
670 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
671 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
672 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
673
674 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
675 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
676 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
677 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
678
679 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
680 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
681 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
682 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
683
684 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
685 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
686 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
687
688 if (!Subtarget->hasVOP3PInsts()) {
689 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
690 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
691 }
692
693 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
694 // This isn't really legal, but this avoids the legalizer unrolling it (and
695 // allows matching fneg (fabs x) patterns)
696 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
697
698 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
699 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
700 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
701 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
702
703 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
704 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
705
706 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
707 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
708 }
709
710 if (Subtarget->hasVOP3PInsts()) {
711 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
712 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
713 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
714 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
715 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
716 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
717 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
718 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
719 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
720 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
721
722 setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
723 setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
724 setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
725 setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
726
727 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
728 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
729 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
730
731 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
732 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
733
734 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
735
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
737 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
738
739 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
740 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
741
742 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
743 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
744 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
745 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
746 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
747 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
748
749 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
750 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
751 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
752 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
753
754 setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
755 setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
756 setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
757 setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
758
759 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
760 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
761 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
762
763 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
764 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
765
766 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
767 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
768 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
769
770 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
771 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
772 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
773 }
774
775 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
776 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
777
778 if (Subtarget->has16BitInsts()) {
779 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
780 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
781 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
782 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
783 } else {
784 // Legalization hack.
785 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
786 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
787
788 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
789 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
790 }
791
792 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
793 setOperationAction(ISD::SELECT, VT, Custom);
794 }
795
796 setOperationAction(ISD::SMULO, MVT::i64, Custom);
797 setOperationAction(ISD::UMULO, MVT::i64, Custom);
798
799 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
800 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
801 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
802 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
803 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
804 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
805 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
806
807 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
808 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
809 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
810 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
811 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
812 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
813 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
814 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
815 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
816 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
817 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
818
819 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
820 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
821 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
822 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
823 setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
824 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
825 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
826 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
827 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
828 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
829
830 setTargetDAGCombine(ISD::ADD);
831 setTargetDAGCombine(ISD::ADDCARRY);
832 setTargetDAGCombine(ISD::SUB);
833 setTargetDAGCombine(ISD::SUBCARRY);
834 setTargetDAGCombine(ISD::FADD);
835 setTargetDAGCombine(ISD::FSUB);
836 setTargetDAGCombine(ISD::FMINNUM);
837 setTargetDAGCombine(ISD::FMAXNUM);
838 setTargetDAGCombine(ISD::FMINNUM_IEEE);
839 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
840 setTargetDAGCombine(ISD::FMA);
841 setTargetDAGCombine(ISD::SMIN);
842 setTargetDAGCombine(ISD::SMAX);
843 setTargetDAGCombine(ISD::UMIN);
844 setTargetDAGCombine(ISD::UMAX);
845 setTargetDAGCombine(ISD::SETCC);
846 setTargetDAGCombine(ISD::AND);
847 setTargetDAGCombine(ISD::OR);
848 setTargetDAGCombine(ISD::XOR);
849 setTargetDAGCombine(ISD::SINT_TO_FP);
850 setTargetDAGCombine(ISD::UINT_TO_FP);
851 setTargetDAGCombine(ISD::FCANONICALIZE);
852 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
853 setTargetDAGCombine(ISD::ZERO_EXTEND);
854 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
855 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
856 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
857
858 // All memory operations. Some folding on the pointer operand is done to help
859 // matching the constant offsets in the addressing modes.
860 setTargetDAGCombine(ISD::LOAD);
861 setTargetDAGCombine(ISD::STORE);
862 setTargetDAGCombine(ISD::ATOMIC_LOAD);
863 setTargetDAGCombine(ISD::ATOMIC_STORE);
864 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
865 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
866 setTargetDAGCombine(ISD::ATOMIC_SWAP);
867 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
868 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
869 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
870 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
871 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
872 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
873 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
874 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
875 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
876 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
877 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
878 setTargetDAGCombine(ISD::INTRINSIC_VOID);
879 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
880
881 // FIXME: In other contexts we pretend this is a per-function property.
882 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
883
884 setSchedulingPreference(Sched::RegPressure);
885 }
886
getSubtarget() const887 const GCNSubtarget *SITargetLowering::getSubtarget() const {
888 return Subtarget;
889 }
890
891 //===----------------------------------------------------------------------===//
892 // TargetLowering queries
893 //===----------------------------------------------------------------------===//
894
895 // v_mad_mix* support a conversion from f16 to f32.
896 //
897 // There is only one special case when denormals are enabled we don't currently,
898 // where this is OK to use.
isFPExtFoldable(const SelectionDAG & DAG,unsigned Opcode,EVT DestVT,EVT SrcVT) const899 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
900 EVT DestVT, EVT SrcVT) const {
901 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
902 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
903 DestVT.getScalarType() == MVT::f32 &&
904 SrcVT.getScalarType() == MVT::f16 &&
905 // TODO: This probably only requires no input flushing?
906 !hasFP32Denormals(DAG.getMachineFunction());
907 }
908
isShuffleMaskLegal(ArrayRef<int>,EVT) const909 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
910 // SI has some legal vector types, but no legal vector operations. Say no
911 // shuffles are legal in order to prefer scalarizing some vector operations.
912 return false;
913 }
914
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const915 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
916 CallingConv::ID CC,
917 EVT VT) const {
918 if (CC == CallingConv::AMDGPU_KERNEL)
919 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
920
921 if (VT.isVector()) {
922 EVT ScalarVT = VT.getScalarType();
923 unsigned Size = ScalarVT.getSizeInBits();
924 if (Size == 16) {
925 if (Subtarget->has16BitInsts())
926 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
927 return VT.isInteger() ? MVT::i32 : MVT::f32;
928 }
929
930 if (Size < 16)
931 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
932 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
933 }
934
935 if (VT.getSizeInBits() > 32)
936 return MVT::i32;
937
938 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
939 }
940
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const941 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
942 CallingConv::ID CC,
943 EVT VT) const {
944 if (CC == CallingConv::AMDGPU_KERNEL)
945 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
946
947 if (VT.isVector()) {
948 unsigned NumElts = VT.getVectorNumElements();
949 EVT ScalarVT = VT.getScalarType();
950 unsigned Size = ScalarVT.getSizeInBits();
951
952 // FIXME: Should probably promote 8-bit vectors to i16.
953 if (Size == 16 && Subtarget->has16BitInsts())
954 return (NumElts + 1) / 2;
955
956 if (Size <= 32)
957 return NumElts;
958
959 if (Size > 32)
960 return NumElts * ((Size + 31) / 32);
961 } else if (VT.getSizeInBits() > 32)
962 return (VT.getSizeInBits() + 31) / 32;
963
964 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
965 }
966
getVectorTypeBreakdownForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const967 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
968 LLVMContext &Context, CallingConv::ID CC,
969 EVT VT, EVT &IntermediateVT,
970 unsigned &NumIntermediates, MVT &RegisterVT) const {
971 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
972 unsigned NumElts = VT.getVectorNumElements();
973 EVT ScalarVT = VT.getScalarType();
974 unsigned Size = ScalarVT.getSizeInBits();
975 // FIXME: We should fix the ABI to be the same on targets without 16-bit
976 // support, but unless we can properly handle 3-vectors, it will be still be
977 // inconsistent.
978 if (Size == 16 && Subtarget->has16BitInsts()) {
979 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
980 IntermediateVT = RegisterVT;
981 NumIntermediates = (NumElts + 1) / 2;
982 return NumIntermediates;
983 }
984
985 if (Size == 32) {
986 RegisterVT = ScalarVT.getSimpleVT();
987 IntermediateVT = RegisterVT;
988 NumIntermediates = NumElts;
989 return NumIntermediates;
990 }
991
992 if (Size < 16 && Subtarget->has16BitInsts()) {
993 // FIXME: Should probably form v2i16 pieces
994 RegisterVT = MVT::i16;
995 IntermediateVT = ScalarVT;
996 NumIntermediates = NumElts;
997 return NumIntermediates;
998 }
999
1000
1001 if (Size != 16 && Size <= 32) {
1002 RegisterVT = MVT::i32;
1003 IntermediateVT = ScalarVT;
1004 NumIntermediates = NumElts;
1005 return NumIntermediates;
1006 }
1007
1008 if (Size > 32) {
1009 RegisterVT = MVT::i32;
1010 IntermediateVT = RegisterVT;
1011 NumIntermediates = NumElts * ((Size + 31) / 32);
1012 return NumIntermediates;
1013 }
1014 }
1015
1016 return TargetLowering::getVectorTypeBreakdownForCallingConv(
1017 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1018 }
1019
memVTFromImageData(Type * Ty,unsigned DMaskLanes)1020 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1021 assert(DMaskLanes != 0);
1022
1023 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1024 unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1025 return EVT::getVectorVT(Ty->getContext(),
1026 EVT::getEVT(VT->getElementType()),
1027 NumElts);
1028 }
1029
1030 return EVT::getEVT(Ty);
1031 }
1032
1033 // Peek through TFE struct returns to only use the data size.
memVTFromImageReturn(Type * Ty,unsigned DMaskLanes)1034 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1035 auto *ST = dyn_cast<StructType>(Ty);
1036 if (!ST)
1037 return memVTFromImageData(Ty, DMaskLanes);
1038
1039 // Some intrinsics return an aggregate type - special case to work out the
1040 // correct memVT.
1041 //
1042 // Only limited forms of aggregate type currently expected.
1043 if (ST->getNumContainedTypes() != 2 ||
1044 !ST->getContainedType(1)->isIntegerTy(32))
1045 return EVT();
1046 return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1047 }
1048
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & CI,MachineFunction & MF,unsigned IntrID) const1049 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1050 const CallInst &CI,
1051 MachineFunction &MF,
1052 unsigned IntrID) const {
1053 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1054 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1055 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1056 (Intrinsic::ID)IntrID);
1057 if (Attr.hasFnAttribute(Attribute::ReadNone))
1058 return false;
1059
1060 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1061
1062 if (RsrcIntr->IsImage) {
1063 Info.ptrVal = MFI->getImagePSV(
1064 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1065 CI.getArgOperand(RsrcIntr->RsrcArg));
1066 Info.align.reset();
1067 } else {
1068 Info.ptrVal = MFI->getBufferPSV(
1069 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1070 CI.getArgOperand(RsrcIntr->RsrcArg));
1071 }
1072
1073 Info.flags = MachineMemOperand::MODereferenceable;
1074 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1075 unsigned DMaskLanes = 4;
1076
1077 if (RsrcIntr->IsImage) {
1078 const AMDGPU::ImageDimIntrinsicInfo *Intr
1079 = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1080 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1081 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1082
1083 if (!BaseOpcode->Gather4) {
1084 // If this isn't a gather, we may have excess loaded elements in the
1085 // IR type. Check the dmask for the real number of elements loaded.
1086 unsigned DMask
1087 = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1088 DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1089 }
1090
1091 Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1092 } else
1093 Info.memVT = EVT::getEVT(CI.getType());
1094
1095 // FIXME: What does alignment mean for an image?
1096 Info.opc = ISD::INTRINSIC_W_CHAIN;
1097 Info.flags |= MachineMemOperand::MOLoad;
1098 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1099 Info.opc = ISD::INTRINSIC_VOID;
1100
1101 Type *DataTy = CI.getArgOperand(0)->getType();
1102 if (RsrcIntr->IsImage) {
1103 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1104 unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1105 Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1106 } else
1107 Info.memVT = EVT::getEVT(DataTy);
1108
1109 Info.flags |= MachineMemOperand::MOStore;
1110 } else {
1111 // Atomic
1112 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1113 ISD::INTRINSIC_W_CHAIN;
1114 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1115 Info.flags = MachineMemOperand::MOLoad |
1116 MachineMemOperand::MOStore |
1117 MachineMemOperand::MODereferenceable;
1118
1119 // XXX - Should this be volatile without known ordering?
1120 Info.flags |= MachineMemOperand::MOVolatile;
1121 }
1122 return true;
1123 }
1124
1125 switch (IntrID) {
1126 case Intrinsic::amdgcn_atomic_inc:
1127 case Intrinsic::amdgcn_atomic_dec:
1128 case Intrinsic::amdgcn_ds_ordered_add:
1129 case Intrinsic::amdgcn_ds_ordered_swap:
1130 case Intrinsic::amdgcn_ds_fadd:
1131 case Intrinsic::amdgcn_ds_fmin:
1132 case Intrinsic::amdgcn_ds_fmax: {
1133 Info.opc = ISD::INTRINSIC_W_CHAIN;
1134 Info.memVT = MVT::getVT(CI.getType());
1135 Info.ptrVal = CI.getOperand(0);
1136 Info.align.reset();
1137 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1138
1139 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1140 if (!Vol->isZero())
1141 Info.flags |= MachineMemOperand::MOVolatile;
1142
1143 return true;
1144 }
1145 case Intrinsic::amdgcn_buffer_atomic_fadd: {
1146 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1147
1148 Info.opc = ISD::INTRINSIC_W_CHAIN;
1149 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1150 Info.ptrVal = MFI->getBufferPSV(
1151 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1152 CI.getArgOperand(1));
1153 Info.align.reset();
1154 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1155
1156 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1157 if (!Vol || !Vol->isZero())
1158 Info.flags |= MachineMemOperand::MOVolatile;
1159
1160 return true;
1161 }
1162 case Intrinsic::amdgcn_ds_append:
1163 case Intrinsic::amdgcn_ds_consume: {
1164 Info.opc = ISD::INTRINSIC_W_CHAIN;
1165 Info.memVT = MVT::getVT(CI.getType());
1166 Info.ptrVal = CI.getOperand(0);
1167 Info.align.reset();
1168 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1169
1170 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1171 if (!Vol->isZero())
1172 Info.flags |= MachineMemOperand::MOVolatile;
1173
1174 return true;
1175 }
1176 case Intrinsic::amdgcn_global_atomic_csub: {
1177 Info.opc = ISD::INTRINSIC_W_CHAIN;
1178 Info.memVT = MVT::getVT(CI.getType());
1179 Info.ptrVal = CI.getOperand(0);
1180 Info.align.reset();
1181 Info.flags = MachineMemOperand::MOLoad |
1182 MachineMemOperand::MOStore |
1183 MachineMemOperand::MOVolatile;
1184 return true;
1185 }
1186 case Intrinsic::amdgcn_global_atomic_fadd: {
1187 Info.opc = ISD::INTRINSIC_W_CHAIN;
1188 Info.memVT = MVT::getVT(CI.getType());
1189 Info.ptrVal = CI.getOperand(0);
1190 Info.align.reset();
1191 Info.flags = MachineMemOperand::MOLoad |
1192 MachineMemOperand::MOStore |
1193 MachineMemOperand::MODereferenceable |
1194 MachineMemOperand::MOVolatile;
1195 return true;
1196 }
1197 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1198 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1199 Info.opc = ISD::INTRINSIC_W_CHAIN;
1200 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1201 Info.ptrVal = MFI->getImagePSV(
1202 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), CI.getArgOperand(5));
1203 Info.align.reset();
1204 Info.flags = MachineMemOperand::MOLoad |
1205 MachineMemOperand::MODereferenceable;
1206 return true;
1207 }
1208 case Intrinsic::amdgcn_ds_gws_init:
1209 case Intrinsic::amdgcn_ds_gws_barrier:
1210 case Intrinsic::amdgcn_ds_gws_sema_v:
1211 case Intrinsic::amdgcn_ds_gws_sema_br:
1212 case Intrinsic::amdgcn_ds_gws_sema_p:
1213 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1214 Info.opc = ISD::INTRINSIC_VOID;
1215
1216 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1217 Info.ptrVal =
1218 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1219
1220 // This is an abstract access, but we need to specify a type and size.
1221 Info.memVT = MVT::i32;
1222 Info.size = 4;
1223 Info.align = Align(4);
1224
1225 Info.flags = MachineMemOperand::MOStore;
1226 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1227 Info.flags = MachineMemOperand::MOLoad;
1228 return true;
1229 }
1230 default:
1231 return false;
1232 }
1233 }
1234
getAddrModeArguments(IntrinsicInst * II,SmallVectorImpl<Value * > & Ops,Type * & AccessTy) const1235 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1236 SmallVectorImpl<Value*> &Ops,
1237 Type *&AccessTy) const {
1238 switch (II->getIntrinsicID()) {
1239 case Intrinsic::amdgcn_atomic_inc:
1240 case Intrinsic::amdgcn_atomic_dec:
1241 case Intrinsic::amdgcn_ds_ordered_add:
1242 case Intrinsic::amdgcn_ds_ordered_swap:
1243 case Intrinsic::amdgcn_ds_append:
1244 case Intrinsic::amdgcn_ds_consume:
1245 case Intrinsic::amdgcn_ds_fadd:
1246 case Intrinsic::amdgcn_ds_fmin:
1247 case Intrinsic::amdgcn_ds_fmax:
1248 case Intrinsic::amdgcn_global_atomic_fadd:
1249 case Intrinsic::amdgcn_global_atomic_csub: {
1250 Value *Ptr = II->getArgOperand(0);
1251 AccessTy = II->getType();
1252 Ops.push_back(Ptr);
1253 return true;
1254 }
1255 default:
1256 return false;
1257 }
1258 }
1259
isLegalFlatAddressingMode(const AddrMode & AM) const1260 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1261 if (!Subtarget->hasFlatInstOffsets()) {
1262 // Flat instructions do not have offsets, and only have the register
1263 // address.
1264 return AM.BaseOffs == 0 && AM.Scale == 0;
1265 }
1266
1267 return AM.Scale == 0 &&
1268 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1269 AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1270 /*Signed=*/false));
1271 }
1272
isLegalGlobalAddressingMode(const AddrMode & AM) const1273 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1274 if (Subtarget->hasFlatGlobalInsts())
1275 return AM.Scale == 0 &&
1276 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1277 AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1278 /*Signed=*/true));
1279
1280 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1281 // Assume the we will use FLAT for all global memory accesses
1282 // on VI.
1283 // FIXME: This assumption is currently wrong. On VI we still use
1284 // MUBUF instructions for the r + i addressing mode. As currently
1285 // implemented, the MUBUF instructions only work on buffer < 4GB.
1286 // It may be possible to support > 4GB buffers with MUBUF instructions,
1287 // by setting the stride value in the resource descriptor which would
1288 // increase the size limit to (stride * 4GB). However, this is risky,
1289 // because it has never been validated.
1290 return isLegalFlatAddressingMode(AM);
1291 }
1292
1293 return isLegalMUBUFAddressingMode(AM);
1294 }
1295
isLegalMUBUFAddressingMode(const AddrMode & AM) const1296 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1297 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1298 // additionally can do r + r + i with addr64. 32-bit has more addressing
1299 // mode options. Depending on the resource constant, it can also do
1300 // (i64 r0) + (i32 r1) * (i14 i).
1301 //
1302 // Private arrays end up using a scratch buffer most of the time, so also
1303 // assume those use MUBUF instructions. Scratch loads / stores are currently
1304 // implemented as mubuf instructions with offen bit set, so slightly
1305 // different than the normal addr64.
1306 if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1307 return false;
1308
1309 // FIXME: Since we can split immediate into soffset and immediate offset,
1310 // would it make sense to allow any immediate?
1311
1312 switch (AM.Scale) {
1313 case 0: // r + i or just i, depending on HasBaseReg.
1314 return true;
1315 case 1:
1316 return true; // We have r + r or r + i.
1317 case 2:
1318 if (AM.HasBaseReg) {
1319 // Reject 2 * r + r.
1320 return false;
1321 }
1322
1323 // Allow 2 * r as r + r
1324 // Or 2 * r + i is allowed as r + r + i.
1325 return true;
1326 default: // Don't allow n * r
1327 return false;
1328 }
1329 }
1330
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1331 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1332 const AddrMode &AM, Type *Ty,
1333 unsigned AS, Instruction *I) const {
1334 // No global is ever allowed as a base.
1335 if (AM.BaseGV)
1336 return false;
1337
1338 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1339 return isLegalGlobalAddressingMode(AM);
1340
1341 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1342 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1343 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1344 // If the offset isn't a multiple of 4, it probably isn't going to be
1345 // correctly aligned.
1346 // FIXME: Can we get the real alignment here?
1347 if (AM.BaseOffs % 4 != 0)
1348 return isLegalMUBUFAddressingMode(AM);
1349
1350 // There are no SMRD extloads, so if we have to do a small type access we
1351 // will use a MUBUF load.
1352 // FIXME?: We also need to do this if unaligned, but we don't know the
1353 // alignment here.
1354 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1355 return isLegalGlobalAddressingMode(AM);
1356
1357 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1358 // SMRD instructions have an 8-bit, dword offset on SI.
1359 if (!isUInt<8>(AM.BaseOffs / 4))
1360 return false;
1361 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1362 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1363 // in 8-bits, it can use a smaller encoding.
1364 if (!isUInt<32>(AM.BaseOffs / 4))
1365 return false;
1366 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1367 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1368 if (!isUInt<20>(AM.BaseOffs))
1369 return false;
1370 } else
1371 llvm_unreachable("unhandled generation");
1372
1373 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1374 return true;
1375
1376 if (AM.Scale == 1 && AM.HasBaseReg)
1377 return true;
1378
1379 return false;
1380
1381 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1382 return isLegalMUBUFAddressingMode(AM);
1383 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1384 AS == AMDGPUAS::REGION_ADDRESS) {
1385 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1386 // field.
1387 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1388 // an 8-bit dword offset but we don't know the alignment here.
1389 if (!isUInt<16>(AM.BaseOffs))
1390 return false;
1391
1392 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1393 return true;
1394
1395 if (AM.Scale == 1 && AM.HasBaseReg)
1396 return true;
1397
1398 return false;
1399 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1400 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1401 // For an unknown address space, this usually means that this is for some
1402 // reason being used for pure arithmetic, and not based on some addressing
1403 // computation. We don't have instructions that compute pointers with any
1404 // addressing modes, so treat them as having no offset like flat
1405 // instructions.
1406 return isLegalFlatAddressingMode(AM);
1407 }
1408
1409 // Assume a user alias of global for unknown address spaces.
1410 return isLegalGlobalAddressingMode(AM);
1411 }
1412
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG) const1413 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1414 const SelectionDAG &DAG) const {
1415 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1416 return (MemVT.getSizeInBits() <= 4 * 32);
1417 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1418 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1419 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1420 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1421 return (MemVT.getSizeInBits() <= 2 * 32);
1422 }
1423 return true;
1424 }
1425
allowsMisalignedMemoryAccessesImpl(unsigned Size,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * IsFast) const1426 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1427 unsigned Size, unsigned AddrSpace, Align Alignment,
1428 MachineMemOperand::Flags Flags, bool *IsFast) const {
1429 if (IsFast)
1430 *IsFast = false;
1431
1432 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1433 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1434 // Check if alignment requirements for ds_read/write instructions are
1435 // disabled.
1436 if (Subtarget->hasUnalignedDSAccessEnabled() &&
1437 !Subtarget->hasLDSMisalignedBug()) {
1438 if (IsFast)
1439 *IsFast = Alignment != Align(2);
1440 return true;
1441 }
1442
1443 if (Size == 64) {
1444 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1445 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1446 // with adjacent offsets.
1447 bool AlignedBy4 = Alignment >= Align(4);
1448 if (IsFast)
1449 *IsFast = AlignedBy4;
1450
1451 return AlignedBy4;
1452 }
1453 if (Size == 96) {
1454 // ds_read/write_b96 require 16-byte alignment on gfx8 and older.
1455 bool Aligned = Alignment >= Align(16);
1456 if (IsFast)
1457 *IsFast = Aligned;
1458
1459 return Aligned;
1460 }
1461 if (Size == 128) {
1462 // ds_read/write_b128 require 16-byte alignment on gfx8 and older, but we
1463 // can do a 8 byte aligned, 16 byte access in a single operation using
1464 // ds_read2/write2_b64.
1465 bool Aligned = Alignment >= Align(8);
1466 if (IsFast)
1467 *IsFast = Aligned;
1468
1469 return Aligned;
1470 }
1471 }
1472
1473 // FIXME: We have to be conservative here and assume that flat operations
1474 // will access scratch. If we had access to the IR function, then we
1475 // could determine if any private memory was used in the function.
1476 if (!Subtarget->hasUnalignedScratchAccess() &&
1477 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1478 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1479 bool AlignedBy4 = Alignment >= Align(4);
1480 if (IsFast)
1481 *IsFast = AlignedBy4;
1482
1483 return AlignedBy4;
1484 }
1485
1486 if (Subtarget->hasUnalignedBufferAccessEnabled() &&
1487 !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1488 AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1489 // If we have an uniform constant load, it still requires using a slow
1490 // buffer instruction if unaligned.
1491 if (IsFast) {
1492 // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1493 // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1494 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1495 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1496 Alignment >= Align(4) : Alignment != Align(2);
1497 }
1498
1499 return true;
1500 }
1501
1502 // Smaller than dword value must be aligned.
1503 if (Size < 32)
1504 return false;
1505
1506 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1507 // byte-address are ignored, thus forcing Dword alignment.
1508 // This applies to private, global, and constant memory.
1509 if (IsFast)
1510 *IsFast = true;
1511
1512 return Size >= 32 && Alignment >= Align(4);
1513 }
1514
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Alignment,MachineMemOperand::Flags Flags,bool * IsFast) const1515 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1516 EVT VT, unsigned AddrSpace, unsigned Alignment,
1517 MachineMemOperand::Flags Flags, bool *IsFast) const {
1518 if (IsFast)
1519 *IsFast = false;
1520
1521 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1522 // which isn't a simple VT.
1523 // Until MVT is extended to handle this, simply check for the size and
1524 // rely on the condition below: allow accesses if the size is a multiple of 4.
1525 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1526 VT.getStoreSize() > 16)) {
1527 return false;
1528 }
1529
1530 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1531 Align(Alignment), Flags, IsFast);
1532 }
1533
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const1534 EVT SITargetLowering::getOptimalMemOpType(
1535 const MemOp &Op, const AttributeList &FuncAttributes) const {
1536 // FIXME: Should account for address space here.
1537
1538 // The default fallback uses the private pointer size as a guess for a type to
1539 // use. Make sure we switch these to 64-bit accesses.
1540
1541 if (Op.size() >= 16 &&
1542 Op.isDstAligned(Align(4))) // XXX: Should only do for global
1543 return MVT::v4i32;
1544
1545 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1546 return MVT::v2i32;
1547
1548 // Use the default.
1549 return MVT::Other;
1550 }
1551
isMemOpHasNoClobberedMemOperand(const SDNode * N) const1552 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1553 const MemSDNode *MemNode = cast<MemSDNode>(N);
1554 const Value *Ptr = MemNode->getMemOperand()->getValue();
1555 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1556 return I && I->getMetadata("amdgpu.noclobber");
1557 }
1558
isFreeAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const1559 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1560 unsigned DestAS) const {
1561 // Flat -> private/local is a simple truncate.
1562 // Flat -> global is no-op
1563 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1564 return true;
1565
1566 const GCNTargetMachine &TM =
1567 static_cast<const GCNTargetMachine &>(getTargetMachine());
1568 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1569 }
1570
isMemOpUniform(const SDNode * N) const1571 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1572 const MemSDNode *MemNode = cast<MemSDNode>(N);
1573
1574 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1575 }
1576
1577 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const1578 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1579 int NumElts = VT.getVectorNumElements();
1580 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1581 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1582 return TargetLoweringBase::getPreferredVectorAction(VT);
1583 }
1584
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const1585 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1586 Type *Ty) const {
1587 // FIXME: Could be smarter if called for vector constants.
1588 return true;
1589 }
1590
isTypeDesirableForOp(unsigned Op,EVT VT) const1591 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1592 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1593 switch (Op) {
1594 case ISD::LOAD:
1595 case ISD::STORE:
1596
1597 // These operations are done with 32-bit instructions anyway.
1598 case ISD::AND:
1599 case ISD::OR:
1600 case ISD::XOR:
1601 case ISD::SELECT:
1602 // TODO: Extensions?
1603 return true;
1604 default:
1605 return false;
1606 }
1607 }
1608
1609 // SimplifySetCC uses this function to determine whether or not it should
1610 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1611 if (VT == MVT::i1 && Op == ISD::SETCC)
1612 return false;
1613
1614 return TargetLowering::isTypeDesirableForOp(Op, VT);
1615 }
1616
lowerKernArgParameterPtr(SelectionDAG & DAG,const SDLoc & SL,SDValue Chain,uint64_t Offset) const1617 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1618 const SDLoc &SL,
1619 SDValue Chain,
1620 uint64_t Offset) const {
1621 const DataLayout &DL = DAG.getDataLayout();
1622 MachineFunction &MF = DAG.getMachineFunction();
1623 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1624
1625 const ArgDescriptor *InputPtrReg;
1626 const TargetRegisterClass *RC;
1627 LLT ArgTy;
1628
1629 std::tie(InputPtrReg, RC, ArgTy) =
1630 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1631
1632 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1633 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1634 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1635 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1636
1637 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1638 }
1639
getImplicitArgPtr(SelectionDAG & DAG,const SDLoc & SL) const1640 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1641 const SDLoc &SL) const {
1642 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1643 FIRST_IMPLICIT);
1644 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1645 }
1646
convertArgType(SelectionDAG & DAG,EVT VT,EVT MemVT,const SDLoc & SL,SDValue Val,bool Signed,const ISD::InputArg * Arg) const1647 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1648 const SDLoc &SL, SDValue Val,
1649 bool Signed,
1650 const ISD::InputArg *Arg) const {
1651 // First, if it is a widened vector, narrow it.
1652 if (VT.isVector() &&
1653 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1654 EVT NarrowedVT =
1655 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1656 VT.getVectorNumElements());
1657 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1658 DAG.getConstant(0, SL, MVT::i32));
1659 }
1660
1661 // Then convert the vector elements or scalar value.
1662 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1663 VT.bitsLT(MemVT)) {
1664 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1665 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1666 }
1667
1668 if (MemVT.isFloatingPoint())
1669 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1670 else if (Signed)
1671 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1672 else
1673 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1674
1675 return Val;
1676 }
1677
lowerKernargMemParameter(SelectionDAG & DAG,EVT VT,EVT MemVT,const SDLoc & SL,SDValue Chain,uint64_t Offset,Align Alignment,bool Signed,const ISD::InputArg * Arg) const1678 SDValue SITargetLowering::lowerKernargMemParameter(
1679 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1680 uint64_t Offset, Align Alignment, bool Signed,
1681 const ISD::InputArg *Arg) const {
1682 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1683
1684 // Try to avoid using an extload by loading earlier than the argument address,
1685 // and extracting the relevant bits. The load should hopefully be merged with
1686 // the previous argument.
1687 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1688 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1689 int64_t AlignDownOffset = alignDown(Offset, 4);
1690 int64_t OffsetDiff = Offset - AlignDownOffset;
1691
1692 EVT IntVT = MemVT.changeTypeToInteger();
1693
1694 // TODO: If we passed in the base kernel offset we could have a better
1695 // alignment than 4, but we don't really need it.
1696 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1697 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1698 MachineMemOperand::MODereferenceable |
1699 MachineMemOperand::MOInvariant);
1700
1701 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1702 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1703
1704 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1705 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1706 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1707
1708
1709 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1710 }
1711
1712 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1713 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1714 MachineMemOperand::MODereferenceable |
1715 MachineMemOperand::MOInvariant);
1716
1717 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1718 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1719 }
1720
lowerStackParameter(SelectionDAG & DAG,CCValAssign & VA,const SDLoc & SL,SDValue Chain,const ISD::InputArg & Arg) const1721 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1722 const SDLoc &SL, SDValue Chain,
1723 const ISD::InputArg &Arg) const {
1724 MachineFunction &MF = DAG.getMachineFunction();
1725 MachineFrameInfo &MFI = MF.getFrameInfo();
1726
1727 if (Arg.Flags.isByVal()) {
1728 unsigned Size = Arg.Flags.getByValSize();
1729 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1730 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1731 }
1732
1733 unsigned ArgOffset = VA.getLocMemOffset();
1734 unsigned ArgSize = VA.getValVT().getStoreSize();
1735
1736 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1737
1738 // Create load nodes to retrieve arguments from the stack.
1739 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1740 SDValue ArgValue;
1741
1742 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1743 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1744 MVT MemVT = VA.getValVT();
1745
1746 switch (VA.getLocInfo()) {
1747 default:
1748 break;
1749 case CCValAssign::BCvt:
1750 MemVT = VA.getLocVT();
1751 break;
1752 case CCValAssign::SExt:
1753 ExtType = ISD::SEXTLOAD;
1754 break;
1755 case CCValAssign::ZExt:
1756 ExtType = ISD::ZEXTLOAD;
1757 break;
1758 case CCValAssign::AExt:
1759 ExtType = ISD::EXTLOAD;
1760 break;
1761 }
1762
1763 ArgValue = DAG.getExtLoad(
1764 ExtType, SL, VA.getLocVT(), Chain, FIN,
1765 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1766 MemVT);
1767 return ArgValue;
1768 }
1769
getPreloadedValue(SelectionDAG & DAG,const SIMachineFunctionInfo & MFI,EVT VT,AMDGPUFunctionArgInfo::PreloadedValue PVID) const1770 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1771 const SIMachineFunctionInfo &MFI,
1772 EVT VT,
1773 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1774 const ArgDescriptor *Reg;
1775 const TargetRegisterClass *RC;
1776 LLT Ty;
1777
1778 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1779 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1780 }
1781
processPSInputArgs(SmallVectorImpl<ISD::InputArg> & Splits,CallingConv::ID CallConv,ArrayRef<ISD::InputArg> Ins,BitVector & Skipped,FunctionType * FType,SIMachineFunctionInfo * Info)1782 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1783 CallingConv::ID CallConv,
1784 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
1785 FunctionType *FType,
1786 SIMachineFunctionInfo *Info) {
1787 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1788 const ISD::InputArg *Arg = &Ins[I];
1789
1790 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1791 "vector type argument should have been split");
1792
1793 // First check if it's a PS input addr.
1794 if (CallConv == CallingConv::AMDGPU_PS &&
1795 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1796 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1797
1798 // Inconveniently only the first part of the split is marked as isSplit,
1799 // so skip to the end. We only want to increment PSInputNum once for the
1800 // entire split argument.
1801 if (Arg->Flags.isSplit()) {
1802 while (!Arg->Flags.isSplitEnd()) {
1803 assert((!Arg->VT.isVector() ||
1804 Arg->VT.getScalarSizeInBits() == 16) &&
1805 "unexpected vector split in ps argument type");
1806 if (!SkipArg)
1807 Splits.push_back(*Arg);
1808 Arg = &Ins[++I];
1809 }
1810 }
1811
1812 if (SkipArg) {
1813 // We can safely skip PS inputs.
1814 Skipped.set(Arg->getOrigArgIndex());
1815 ++PSInputNum;
1816 continue;
1817 }
1818
1819 Info->markPSInputAllocated(PSInputNum);
1820 if (Arg->Used)
1821 Info->markPSInputEnabled(PSInputNum);
1822
1823 ++PSInputNum;
1824 }
1825
1826 Splits.push_back(*Arg);
1827 }
1828 }
1829
1830 // Allocate special inputs passed in VGPRs.
allocateSpecialEntryInputVGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1831 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1832 MachineFunction &MF,
1833 const SIRegisterInfo &TRI,
1834 SIMachineFunctionInfo &Info) const {
1835 const LLT S32 = LLT::scalar(32);
1836 MachineRegisterInfo &MRI = MF.getRegInfo();
1837
1838 if (Info.hasWorkItemIDX()) {
1839 Register Reg = AMDGPU::VGPR0;
1840 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1841
1842 CCInfo.AllocateReg(Reg);
1843 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1844 }
1845
1846 if (Info.hasWorkItemIDY()) {
1847 Register Reg = AMDGPU::VGPR1;
1848 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1849
1850 CCInfo.AllocateReg(Reg);
1851 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1852 }
1853
1854 if (Info.hasWorkItemIDZ()) {
1855 Register Reg = AMDGPU::VGPR2;
1856 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1857
1858 CCInfo.AllocateReg(Reg);
1859 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1860 }
1861 }
1862
1863 // Try to allocate a VGPR at the end of the argument list, or if no argument
1864 // VGPRs are left allocating a stack slot.
1865 // If \p Mask is is given it indicates bitfield position in the register.
1866 // If \p Arg is given use it with new ]p Mask instead of allocating new.
allocateVGPR32Input(CCState & CCInfo,unsigned Mask=~0u,ArgDescriptor Arg=ArgDescriptor ())1867 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1868 ArgDescriptor Arg = ArgDescriptor()) {
1869 if (Arg.isSet())
1870 return ArgDescriptor::createArg(Arg, Mask);
1871
1872 ArrayRef<MCPhysReg> ArgVGPRs
1873 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1874 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1875 if (RegIdx == ArgVGPRs.size()) {
1876 // Spill to stack required.
1877 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1878
1879 return ArgDescriptor::createStack(Offset, Mask);
1880 }
1881
1882 unsigned Reg = ArgVGPRs[RegIdx];
1883 Reg = CCInfo.AllocateReg(Reg);
1884 assert(Reg != AMDGPU::NoRegister);
1885
1886 MachineFunction &MF = CCInfo.getMachineFunction();
1887 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1888 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1889 return ArgDescriptor::createRegister(Reg, Mask);
1890 }
1891
allocateSGPR32InputImpl(CCState & CCInfo,const TargetRegisterClass * RC,unsigned NumArgRegs)1892 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1893 const TargetRegisterClass *RC,
1894 unsigned NumArgRegs) {
1895 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1896 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1897 if (RegIdx == ArgSGPRs.size())
1898 report_fatal_error("ran out of SGPRs for arguments");
1899
1900 unsigned Reg = ArgSGPRs[RegIdx];
1901 Reg = CCInfo.AllocateReg(Reg);
1902 assert(Reg != AMDGPU::NoRegister);
1903
1904 MachineFunction &MF = CCInfo.getMachineFunction();
1905 MF.addLiveIn(Reg, RC);
1906 return ArgDescriptor::createRegister(Reg);
1907 }
1908
allocateSGPR32Input(CCState & CCInfo)1909 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1910 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1911 }
1912
allocateSGPR64Input(CCState & CCInfo)1913 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1914 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1915 }
1916
1917 /// Allocate implicit function VGPR arguments at the end of allocated user
1918 /// arguments.
allocateSpecialInputVGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1919 void SITargetLowering::allocateSpecialInputVGPRs(
1920 CCState &CCInfo, MachineFunction &MF,
1921 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1922 const unsigned Mask = 0x3ff;
1923 ArgDescriptor Arg;
1924
1925 if (Info.hasWorkItemIDX()) {
1926 Arg = allocateVGPR32Input(CCInfo, Mask);
1927 Info.setWorkItemIDX(Arg);
1928 }
1929
1930 if (Info.hasWorkItemIDY()) {
1931 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1932 Info.setWorkItemIDY(Arg);
1933 }
1934
1935 if (Info.hasWorkItemIDZ())
1936 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1937 }
1938
1939 /// Allocate implicit function VGPR arguments in fixed registers.
allocateSpecialInputVGPRsFixed(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1940 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1941 CCState &CCInfo, MachineFunction &MF,
1942 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1943 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1944 if (!Reg)
1945 report_fatal_error("failed to allocated VGPR for implicit arguments");
1946
1947 const unsigned Mask = 0x3ff;
1948 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1949 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1950 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1951 }
1952
allocateSpecialInputSGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1953 void SITargetLowering::allocateSpecialInputSGPRs(
1954 CCState &CCInfo,
1955 MachineFunction &MF,
1956 const SIRegisterInfo &TRI,
1957 SIMachineFunctionInfo &Info) const {
1958 auto &ArgInfo = Info.getArgInfo();
1959
1960 // TODO: Unify handling with private memory pointers.
1961
1962 if (Info.hasDispatchPtr())
1963 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1964
1965 if (Info.hasQueuePtr())
1966 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1967
1968 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1969 // constant offset from the kernarg segment.
1970 if (Info.hasImplicitArgPtr())
1971 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1972
1973 if (Info.hasDispatchID())
1974 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1975
1976 // flat_scratch_init is not applicable for non-kernel functions.
1977
1978 if (Info.hasWorkGroupIDX())
1979 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1980
1981 if (Info.hasWorkGroupIDY())
1982 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1983
1984 if (Info.hasWorkGroupIDZ())
1985 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1986 }
1987
1988 // Allocate special inputs passed in user SGPRs.
allocateHSAUserSGPRs(CCState & CCInfo,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info) const1989 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1990 MachineFunction &MF,
1991 const SIRegisterInfo &TRI,
1992 SIMachineFunctionInfo &Info) const {
1993 if (Info.hasImplicitBufferPtr()) {
1994 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1995 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1996 CCInfo.AllocateReg(ImplicitBufferPtrReg);
1997 }
1998
1999 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2000 if (Info.hasPrivateSegmentBuffer()) {
2001 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2002 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2003 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2004 }
2005
2006 if (Info.hasDispatchPtr()) {
2007 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2008 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2009 CCInfo.AllocateReg(DispatchPtrReg);
2010 }
2011
2012 if (Info.hasQueuePtr()) {
2013 Register QueuePtrReg = Info.addQueuePtr(TRI);
2014 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2015 CCInfo.AllocateReg(QueuePtrReg);
2016 }
2017
2018 if (Info.hasKernargSegmentPtr()) {
2019 MachineRegisterInfo &MRI = MF.getRegInfo();
2020 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2021 CCInfo.AllocateReg(InputPtrReg);
2022
2023 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2024 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2025 }
2026
2027 if (Info.hasDispatchID()) {
2028 Register DispatchIDReg = Info.addDispatchID(TRI);
2029 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2030 CCInfo.AllocateReg(DispatchIDReg);
2031 }
2032
2033 if (Info.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2034 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2035 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2036 CCInfo.AllocateReg(FlatScratchInitReg);
2037 }
2038
2039 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2040 // these from the dispatch pointer.
2041 }
2042
2043 // Allocate special input registers that are initialized per-wave.
allocateSystemSGPRs(CCState & CCInfo,MachineFunction & MF,SIMachineFunctionInfo & Info,CallingConv::ID CallConv,bool IsShader) const2044 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2045 MachineFunction &MF,
2046 SIMachineFunctionInfo &Info,
2047 CallingConv::ID CallConv,
2048 bool IsShader) const {
2049 if (Info.hasWorkGroupIDX()) {
2050 Register Reg = Info.addWorkGroupIDX();
2051 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2052 CCInfo.AllocateReg(Reg);
2053 }
2054
2055 if (Info.hasWorkGroupIDY()) {
2056 Register Reg = Info.addWorkGroupIDY();
2057 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2058 CCInfo.AllocateReg(Reg);
2059 }
2060
2061 if (Info.hasWorkGroupIDZ()) {
2062 Register Reg = Info.addWorkGroupIDZ();
2063 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2064 CCInfo.AllocateReg(Reg);
2065 }
2066
2067 if (Info.hasWorkGroupInfo()) {
2068 Register Reg = Info.addWorkGroupInfo();
2069 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2070 CCInfo.AllocateReg(Reg);
2071 }
2072
2073 if (Info.hasPrivateSegmentWaveByteOffset()) {
2074 // Scratch wave offset passed in system SGPR.
2075 unsigned PrivateSegmentWaveByteOffsetReg;
2076
2077 if (IsShader) {
2078 PrivateSegmentWaveByteOffsetReg =
2079 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2080
2081 // This is true if the scratch wave byte offset doesn't have a fixed
2082 // location.
2083 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2084 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2085 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2086 }
2087 } else
2088 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2089
2090 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2091 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2092 }
2093 }
2094
reservePrivateMemoryRegs(const TargetMachine & TM,MachineFunction & MF,const SIRegisterInfo & TRI,SIMachineFunctionInfo & Info)2095 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2096 MachineFunction &MF,
2097 const SIRegisterInfo &TRI,
2098 SIMachineFunctionInfo &Info) {
2099 // Now that we've figured out where the scratch register inputs are, see if
2100 // should reserve the arguments and use them directly.
2101 MachineFrameInfo &MFI = MF.getFrameInfo();
2102 bool HasStackObjects = MFI.hasStackObjects();
2103 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2104
2105 // Record that we know we have non-spill stack objects so we don't need to
2106 // check all stack objects later.
2107 if (HasStackObjects)
2108 Info.setHasNonSpillStackObjects(true);
2109
2110 // Everything live out of a block is spilled with fast regalloc, so it's
2111 // almost certain that spilling will be required.
2112 if (TM.getOptLevel() == CodeGenOpt::None)
2113 HasStackObjects = true;
2114
2115 // For now assume stack access is needed in any callee functions, so we need
2116 // the scratch registers to pass in.
2117 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2118
2119 if (!ST.enableFlatScratch()) {
2120 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2121 // If we have stack objects, we unquestionably need the private buffer
2122 // resource. For the Code Object V2 ABI, this will be the first 4 user
2123 // SGPR inputs. We can reserve those and use them directly.
2124
2125 Register PrivateSegmentBufferReg =
2126 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2127 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2128 } else {
2129 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2130 // We tentatively reserve the last registers (skipping the last registers
2131 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2132 // we'll replace these with the ones immediately after those which were
2133 // really allocated. In the prologue copies will be inserted from the
2134 // argument to these reserved registers.
2135
2136 // Without HSA, relocations are used for the scratch pointer and the
2137 // buffer resource setup is always inserted in the prologue. Scratch wave
2138 // offset is still in an input SGPR.
2139 Info.setScratchRSrcReg(ReservedBufferReg);
2140 }
2141 }
2142
2143 MachineRegisterInfo &MRI = MF.getRegInfo();
2144
2145 // For entry functions we have to set up the stack pointer if we use it,
2146 // whereas non-entry functions get this "for free". This means there is no
2147 // intrinsic advantage to using S32 over S34 in cases where we do not have
2148 // calls but do need a frame pointer (i.e. if we are requested to have one
2149 // because frame pointer elimination is disabled). To keep things simple we
2150 // only ever use S32 as the call ABI stack pointer, and so using it does not
2151 // imply we need a separate frame pointer.
2152 //
2153 // Try to use s32 as the SP, but move it if it would interfere with input
2154 // arguments. This won't work with calls though.
2155 //
2156 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2157 // registers.
2158 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2159 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2160 } else {
2161 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2162
2163 if (MFI.hasCalls())
2164 report_fatal_error("call in graphics shader with too many input SGPRs");
2165
2166 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2167 if (!MRI.isLiveIn(Reg)) {
2168 Info.setStackPtrOffsetReg(Reg);
2169 break;
2170 }
2171 }
2172
2173 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2174 report_fatal_error("failed to find register for SP");
2175 }
2176
2177 // hasFP should be accurate for entry functions even before the frame is
2178 // finalized, because it does not rely on the known stack size, only
2179 // properties like whether variable sized objects are present.
2180 if (ST.getFrameLowering()->hasFP(MF)) {
2181 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2182 }
2183 }
2184
supportSplitCSR(MachineFunction * MF) const2185 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2186 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2187 return !Info->isEntryFunction();
2188 }
2189
initializeSplitCSR(MachineBasicBlock * Entry) const2190 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2191
2192 }
2193
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const2194 void SITargetLowering::insertCopiesSplitCSR(
2195 MachineBasicBlock *Entry,
2196 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2197 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2198
2199 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2200 if (!IStart)
2201 return;
2202
2203 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2204 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2205 MachineBasicBlock::iterator MBBI = Entry->begin();
2206 for (const MCPhysReg *I = IStart; *I; ++I) {
2207 const TargetRegisterClass *RC = nullptr;
2208 if (AMDGPU::SReg_64RegClass.contains(*I))
2209 RC = &AMDGPU::SGPR_64RegClass;
2210 else if (AMDGPU::SReg_32RegClass.contains(*I))
2211 RC = &AMDGPU::SGPR_32RegClass;
2212 else
2213 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2214
2215 Register NewVR = MRI->createVirtualRegister(RC);
2216 // Create copy from CSR to a virtual register.
2217 Entry->addLiveIn(*I);
2218 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2219 .addReg(*I);
2220
2221 // Insert the copy-back instructions right before the terminator.
2222 for (auto *Exit : Exits)
2223 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2224 TII->get(TargetOpcode::COPY), *I)
2225 .addReg(NewVR);
2226 }
2227 }
2228
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2229 SDValue SITargetLowering::LowerFormalArguments(
2230 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2231 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2232 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2233 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2234
2235 MachineFunction &MF = DAG.getMachineFunction();
2236 const Function &Fn = MF.getFunction();
2237 FunctionType *FType = MF.getFunction().getFunctionType();
2238 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2239
2240 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2241 DiagnosticInfoUnsupported NoGraphicsHSA(
2242 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2243 DAG.getContext()->diagnose(NoGraphicsHSA);
2244 return DAG.getEntryNode();
2245 }
2246
2247 SmallVector<ISD::InputArg, 16> Splits;
2248 SmallVector<CCValAssign, 16> ArgLocs;
2249 BitVector Skipped(Ins.size());
2250 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2251 *DAG.getContext());
2252
2253 bool IsGraphics = AMDGPU::isGraphics(CallConv);
2254 bool IsKernel = AMDGPU::isKernel(CallConv);
2255 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2256
2257 if (IsGraphics) {
2258 assert(!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() &&
2259 (!Info->hasFlatScratchInit() || Subtarget->enableFlatScratch()) &&
2260 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2261 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2262 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2263 !Info->hasWorkItemIDZ());
2264 }
2265
2266 if (CallConv == CallingConv::AMDGPU_PS) {
2267 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2268
2269 // At least one interpolation mode must be enabled or else the GPU will
2270 // hang.
2271 //
2272 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2273 // set PSInputAddr, the user wants to enable some bits after the compilation
2274 // based on run-time states. Since we can't know what the final PSInputEna
2275 // will look like, so we shouldn't do anything here and the user should take
2276 // responsibility for the correct programming.
2277 //
2278 // Otherwise, the following restrictions apply:
2279 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2280 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2281 // enabled too.
2282 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2283 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2284 CCInfo.AllocateReg(AMDGPU::VGPR0);
2285 CCInfo.AllocateReg(AMDGPU::VGPR1);
2286 Info->markPSInputAllocated(0);
2287 Info->markPSInputEnabled(0);
2288 }
2289 if (Subtarget->isAmdPalOS()) {
2290 // For isAmdPalOS, the user does not enable some bits after compilation
2291 // based on run-time states; the register values being generated here are
2292 // the final ones set in hardware. Therefore we need to apply the
2293 // workaround to PSInputAddr and PSInputEnable together. (The case where
2294 // a bit is set in PSInputAddr but not PSInputEnable is where the
2295 // frontend set up an input arg for a particular interpolation mode, but
2296 // nothing uses that input arg. Really we should have an earlier pass
2297 // that removes such an arg.)
2298 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2299 if ((PsInputBits & 0x7F) == 0 ||
2300 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2301 Info->markPSInputEnabled(
2302 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2303 }
2304 } else if (IsKernel) {
2305 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2306 } else {
2307 Splits.append(Ins.begin(), Ins.end());
2308 }
2309
2310 if (IsEntryFunc) {
2311 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2312 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2313 } else {
2314 // For the fixed ABI, pass workitem IDs in the last argument register.
2315 if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2316 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2317 }
2318
2319 if (IsKernel) {
2320 analyzeFormalArgumentsCompute(CCInfo, Ins);
2321 } else {
2322 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2323 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2324 }
2325
2326 SmallVector<SDValue, 16> Chains;
2327
2328 // FIXME: This is the minimum kernel argument alignment. We should improve
2329 // this to the maximum alignment of the arguments.
2330 //
2331 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2332 // kern arg offset.
2333 const Align KernelArgBaseAlign = Align(16);
2334
2335 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2336 const ISD::InputArg &Arg = Ins[i];
2337 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2338 InVals.push_back(DAG.getUNDEF(Arg.VT));
2339 continue;
2340 }
2341
2342 CCValAssign &VA = ArgLocs[ArgIdx++];
2343 MVT VT = VA.getLocVT();
2344
2345 if (IsEntryFunc && VA.isMemLoc()) {
2346 VT = Ins[i].VT;
2347 EVT MemVT = VA.getLocVT();
2348
2349 const uint64_t Offset = VA.getLocMemOffset();
2350 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2351
2352 if (Arg.Flags.isByRef()) {
2353 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2354
2355 const GCNTargetMachine &TM =
2356 static_cast<const GCNTargetMachine &>(getTargetMachine());
2357 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2358 Arg.Flags.getPointerAddrSpace())) {
2359 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2360 Arg.Flags.getPointerAddrSpace());
2361 }
2362
2363 InVals.push_back(Ptr);
2364 continue;
2365 }
2366
2367 SDValue Arg = lowerKernargMemParameter(
2368 DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2369 Chains.push_back(Arg.getValue(1));
2370
2371 auto *ParamTy =
2372 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2373 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2374 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2375 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2376 // On SI local pointers are just offsets into LDS, so they are always
2377 // less than 16-bits. On CI and newer they could potentially be
2378 // real pointers, so we can't guarantee their size.
2379 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2380 DAG.getValueType(MVT::i16));
2381 }
2382
2383 InVals.push_back(Arg);
2384 continue;
2385 } else if (!IsEntryFunc && VA.isMemLoc()) {
2386 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2387 InVals.push_back(Val);
2388 if (!Arg.Flags.isByVal())
2389 Chains.push_back(Val.getValue(1));
2390 continue;
2391 }
2392
2393 assert(VA.isRegLoc() && "Parameter must be in a register!");
2394
2395 Register Reg = VA.getLocReg();
2396 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2397 EVT ValVT = VA.getValVT();
2398
2399 Reg = MF.addLiveIn(Reg, RC);
2400 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2401
2402 if (Arg.Flags.isSRet()) {
2403 // The return object should be reasonably addressable.
2404
2405 // FIXME: This helps when the return is a real sret. If it is a
2406 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2407 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2408 unsigned NumBits
2409 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2410 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2411 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2412 }
2413
2414 // If this is an 8 or 16-bit value, it is really passed promoted
2415 // to 32 bits. Insert an assert[sz]ext to capture this, then
2416 // truncate to the right size.
2417 switch (VA.getLocInfo()) {
2418 case CCValAssign::Full:
2419 break;
2420 case CCValAssign::BCvt:
2421 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2422 break;
2423 case CCValAssign::SExt:
2424 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2425 DAG.getValueType(ValVT));
2426 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2427 break;
2428 case CCValAssign::ZExt:
2429 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2430 DAG.getValueType(ValVT));
2431 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2432 break;
2433 case CCValAssign::AExt:
2434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2435 break;
2436 default:
2437 llvm_unreachable("Unknown loc info!");
2438 }
2439
2440 InVals.push_back(Val);
2441 }
2442
2443 if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2444 // Special inputs come after user arguments.
2445 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2446 }
2447
2448 // Start adding system SGPRs.
2449 if (IsEntryFunc) {
2450 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
2451 } else {
2452 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2453 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2454 }
2455
2456 auto &ArgUsageInfo =
2457 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2458 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2459
2460 unsigned StackArgSize = CCInfo.getNextStackOffset();
2461 Info->setBytesInStackArgArea(StackArgSize);
2462
2463 return Chains.empty() ? Chain :
2464 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2465 }
2466
2467 // TODO: If return values can't fit in registers, we should return as many as
2468 // possible in registers before passing on stack.
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2469 bool SITargetLowering::CanLowerReturn(
2470 CallingConv::ID CallConv,
2471 MachineFunction &MF, bool IsVarArg,
2472 const SmallVectorImpl<ISD::OutputArg> &Outs,
2473 LLVMContext &Context) const {
2474 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2475 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2476 // for shaders. Vector types should be explicitly handled by CC.
2477 if (AMDGPU::isEntryFunctionCC(CallConv))
2478 return true;
2479
2480 SmallVector<CCValAssign, 16> RVLocs;
2481 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2482 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2483 }
2484
2485 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const2486 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2487 bool isVarArg,
2488 const SmallVectorImpl<ISD::OutputArg> &Outs,
2489 const SmallVectorImpl<SDValue> &OutVals,
2490 const SDLoc &DL, SelectionDAG &DAG) const {
2491 MachineFunction &MF = DAG.getMachineFunction();
2492 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2493
2494 if (AMDGPU::isKernel(CallConv)) {
2495 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2496 OutVals, DL, DAG);
2497 }
2498
2499 bool IsShader = AMDGPU::isShader(CallConv);
2500
2501 Info->setIfReturnsVoid(Outs.empty());
2502 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2503
2504 // CCValAssign - represent the assignment of the return value to a location.
2505 SmallVector<CCValAssign, 48> RVLocs;
2506 SmallVector<ISD::OutputArg, 48> Splits;
2507
2508 // CCState - Info about the registers and stack slots.
2509 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2510 *DAG.getContext());
2511
2512 // Analyze outgoing return values.
2513 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2514
2515 SDValue Flag;
2516 SmallVector<SDValue, 48> RetOps;
2517 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2518
2519 // Add return address for callable functions.
2520 if (!Info->isEntryFunction()) {
2521 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2522 SDValue ReturnAddrReg = CreateLiveInRegister(
2523 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2524
2525 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2526 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2527 MVT::i64);
2528 Chain =
2529 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2530 Flag = Chain.getValue(1);
2531 RetOps.push_back(ReturnAddrVirtualReg);
2532 }
2533
2534 // Copy the result values into the output registers.
2535 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2536 ++I, ++RealRVLocIdx) {
2537 CCValAssign &VA = RVLocs[I];
2538 assert(VA.isRegLoc() && "Can only return in registers!");
2539 // TODO: Partially return in registers if return values don't fit.
2540 SDValue Arg = OutVals[RealRVLocIdx];
2541
2542 // Copied from other backends.
2543 switch (VA.getLocInfo()) {
2544 case CCValAssign::Full:
2545 break;
2546 case CCValAssign::BCvt:
2547 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2548 break;
2549 case CCValAssign::SExt:
2550 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2551 break;
2552 case CCValAssign::ZExt:
2553 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2554 break;
2555 case CCValAssign::AExt:
2556 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2557 break;
2558 default:
2559 llvm_unreachable("Unknown loc info!");
2560 }
2561
2562 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2563 Flag = Chain.getValue(1);
2564 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2565 }
2566
2567 // FIXME: Does sret work properly?
2568 if (!Info->isEntryFunction()) {
2569 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2570 const MCPhysReg *I =
2571 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2572 if (I) {
2573 for (; *I; ++I) {
2574 if (AMDGPU::SReg_64RegClass.contains(*I))
2575 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2576 else if (AMDGPU::SReg_32RegClass.contains(*I))
2577 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2578 else
2579 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2580 }
2581 }
2582 }
2583
2584 // Update chain and glue.
2585 RetOps[0] = Chain;
2586 if (Flag.getNode())
2587 RetOps.push_back(Flag);
2588
2589 unsigned Opc = AMDGPUISD::ENDPGM;
2590 if (!IsWaveEnd)
2591 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2592 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2593 }
2594
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool IsThisReturn,SDValue ThisVal) const2595 SDValue SITargetLowering::LowerCallResult(
2596 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2597 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2598 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2599 SDValue ThisVal) const {
2600 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2601
2602 // Assign locations to each value returned by this call.
2603 SmallVector<CCValAssign, 16> RVLocs;
2604 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2605 *DAG.getContext());
2606 CCInfo.AnalyzeCallResult(Ins, RetCC);
2607
2608 // Copy all of the result registers out of their specified physreg.
2609 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2610 CCValAssign VA = RVLocs[i];
2611 SDValue Val;
2612
2613 if (VA.isRegLoc()) {
2614 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2615 Chain = Val.getValue(1);
2616 InFlag = Val.getValue(2);
2617 } else if (VA.isMemLoc()) {
2618 report_fatal_error("TODO: return values in memory");
2619 } else
2620 llvm_unreachable("unknown argument location type");
2621
2622 switch (VA.getLocInfo()) {
2623 case CCValAssign::Full:
2624 break;
2625 case CCValAssign::BCvt:
2626 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2627 break;
2628 case CCValAssign::ZExt:
2629 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2630 DAG.getValueType(VA.getValVT()));
2631 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2632 break;
2633 case CCValAssign::SExt:
2634 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2635 DAG.getValueType(VA.getValVT()));
2636 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2637 break;
2638 case CCValAssign::AExt:
2639 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2640 break;
2641 default:
2642 llvm_unreachable("Unknown loc info!");
2643 }
2644
2645 InVals.push_back(Val);
2646 }
2647
2648 return Chain;
2649 }
2650
2651 // Add code to pass special inputs required depending on used features separate
2652 // from the explicit user arguments present in the IR.
passSpecialInputs(CallLoweringInfo & CLI,CCState & CCInfo,const SIMachineFunctionInfo & Info,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & MemOpChains,SDValue Chain) const2653 void SITargetLowering::passSpecialInputs(
2654 CallLoweringInfo &CLI,
2655 CCState &CCInfo,
2656 const SIMachineFunctionInfo &Info,
2657 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2658 SmallVectorImpl<SDValue> &MemOpChains,
2659 SDValue Chain) const {
2660 // If we don't have a call site, this was a call inserted by
2661 // legalization. These can never use special inputs.
2662 if (!CLI.CB)
2663 return;
2664
2665 SelectionDAG &DAG = CLI.DAG;
2666 const SDLoc &DL = CLI.DL;
2667
2668 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2669 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2670
2671 const AMDGPUFunctionArgInfo *CalleeArgInfo
2672 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2673 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2674 auto &ArgUsageInfo =
2675 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2676 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2677 }
2678
2679 // TODO: Unify with private memory register handling. This is complicated by
2680 // the fact that at least in kernels, the input argument is not necessarily
2681 // in the same location as the input.
2682 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2683 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2684 AMDGPUFunctionArgInfo::QUEUE_PTR,
2685 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2686 AMDGPUFunctionArgInfo::DISPATCH_ID,
2687 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2688 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2689 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2690 };
2691
2692 for (auto InputID : InputRegs) {
2693 const ArgDescriptor *OutgoingArg;
2694 const TargetRegisterClass *ArgRC;
2695 LLT ArgTy;
2696
2697 std::tie(OutgoingArg, ArgRC, ArgTy) =
2698 CalleeArgInfo->getPreloadedValue(InputID);
2699 if (!OutgoingArg)
2700 continue;
2701
2702 const ArgDescriptor *IncomingArg;
2703 const TargetRegisterClass *IncomingArgRC;
2704 LLT Ty;
2705 std::tie(IncomingArg, IncomingArgRC, Ty) =
2706 CallerArgInfo.getPreloadedValue(InputID);
2707 assert(IncomingArgRC == ArgRC);
2708
2709 // All special arguments are ints for now.
2710 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2711 SDValue InputReg;
2712
2713 if (IncomingArg) {
2714 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2715 } else {
2716 // The implicit arg ptr is special because it doesn't have a corresponding
2717 // input for kernels, and is computed from the kernarg segment pointer.
2718 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2719 InputReg = getImplicitArgPtr(DAG, DL);
2720 }
2721
2722 if (OutgoingArg->isRegister()) {
2723 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2724 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2725 report_fatal_error("failed to allocate implicit input argument");
2726 } else {
2727 unsigned SpecialArgOffset =
2728 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2729 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2730 SpecialArgOffset);
2731 MemOpChains.push_back(ArgStore);
2732 }
2733 }
2734
2735 // Pack workitem IDs into a single register or pass it as is if already
2736 // packed.
2737 const ArgDescriptor *OutgoingArg;
2738 const TargetRegisterClass *ArgRC;
2739 LLT Ty;
2740
2741 std::tie(OutgoingArg, ArgRC, Ty) =
2742 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2743 if (!OutgoingArg)
2744 std::tie(OutgoingArg, ArgRC, Ty) =
2745 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2746 if (!OutgoingArg)
2747 std::tie(OutgoingArg, ArgRC, Ty) =
2748 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2749 if (!OutgoingArg)
2750 return;
2751
2752 const ArgDescriptor *IncomingArgX = std::get<0>(
2753 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2754 const ArgDescriptor *IncomingArgY = std::get<0>(
2755 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2756 const ArgDescriptor *IncomingArgZ = std::get<0>(
2757 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2758
2759 SDValue InputReg;
2760 SDLoc SL;
2761
2762 // If incoming ids are not packed we need to pack them.
2763 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2764 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2765
2766 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2767 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2768 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2769 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2770 InputReg = InputReg.getNode() ?
2771 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2772 }
2773
2774 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2775 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2776 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2777 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2778 InputReg = InputReg.getNode() ?
2779 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2780 }
2781
2782 if (!InputReg.getNode()) {
2783 // Workitem ids are already packed, any of present incoming arguments
2784 // will carry all required fields.
2785 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2786 IncomingArgX ? *IncomingArgX :
2787 IncomingArgY ? *IncomingArgY :
2788 *IncomingArgZ, ~0u);
2789 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2790 }
2791
2792 if (OutgoingArg->isRegister()) {
2793 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2794 CCInfo.AllocateReg(OutgoingArg->getRegister());
2795 } else {
2796 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2797 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2798 SpecialArgOffset);
2799 MemOpChains.push_back(ArgStore);
2800 }
2801 }
2802
canGuaranteeTCO(CallingConv::ID CC)2803 static bool canGuaranteeTCO(CallingConv::ID CC) {
2804 return CC == CallingConv::Fast;
2805 }
2806
2807 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)2808 static bool mayTailCallThisCC(CallingConv::ID CC) {
2809 switch (CC) {
2810 case CallingConv::C:
2811 return true;
2812 default:
2813 return canGuaranteeTCO(CC);
2814 }
2815 }
2816
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2817 bool SITargetLowering::isEligibleForTailCallOptimization(
2818 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2819 const SmallVectorImpl<ISD::OutputArg> &Outs,
2820 const SmallVectorImpl<SDValue> &OutVals,
2821 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2822 if (!mayTailCallThisCC(CalleeCC))
2823 return false;
2824
2825 MachineFunction &MF = DAG.getMachineFunction();
2826 const Function &CallerF = MF.getFunction();
2827 CallingConv::ID CallerCC = CallerF.getCallingConv();
2828 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2829 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2830
2831 // Kernels aren't callable, and don't have a live in return address so it
2832 // doesn't make sense to do a tail call with entry functions.
2833 if (!CallerPreserved)
2834 return false;
2835
2836 bool CCMatch = CallerCC == CalleeCC;
2837
2838 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2839 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2840 return true;
2841 return false;
2842 }
2843
2844 // TODO: Can we handle var args?
2845 if (IsVarArg)
2846 return false;
2847
2848 for (const Argument &Arg : CallerF.args()) {
2849 if (Arg.hasByValAttr())
2850 return false;
2851 }
2852
2853 LLVMContext &Ctx = *DAG.getContext();
2854
2855 // Check that the call results are passed in the same way.
2856 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2857 CCAssignFnForCall(CalleeCC, IsVarArg),
2858 CCAssignFnForCall(CallerCC, IsVarArg)))
2859 return false;
2860
2861 // The callee has to preserve all registers the caller needs to preserve.
2862 if (!CCMatch) {
2863 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2864 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2865 return false;
2866 }
2867
2868 // Nothing more to check if the callee is taking no arguments.
2869 if (Outs.empty())
2870 return true;
2871
2872 SmallVector<CCValAssign, 16> ArgLocs;
2873 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2874
2875 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2876
2877 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2878 // If the stack arguments for this call do not fit into our own save area then
2879 // the call cannot be made tail.
2880 // TODO: Is this really necessary?
2881 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2882 return false;
2883
2884 const MachineRegisterInfo &MRI = MF.getRegInfo();
2885 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2886 }
2887
mayBeEmittedAsTailCall(const CallInst * CI) const2888 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2889 if (!CI->isTailCall())
2890 return false;
2891
2892 const Function *ParentFn = CI->getParent()->getParent();
2893 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2894 return false;
2895 return true;
2896 }
2897
2898 // The wave scratch offset register is used as the global base pointer.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2899 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2900 SmallVectorImpl<SDValue> &InVals) const {
2901 SelectionDAG &DAG = CLI.DAG;
2902 const SDLoc &DL = CLI.DL;
2903 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2904 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2905 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2906 SDValue Chain = CLI.Chain;
2907 SDValue Callee = CLI.Callee;
2908 bool &IsTailCall = CLI.IsTailCall;
2909 CallingConv::ID CallConv = CLI.CallConv;
2910 bool IsVarArg = CLI.IsVarArg;
2911 bool IsSibCall = false;
2912 bool IsThisReturn = false;
2913 MachineFunction &MF = DAG.getMachineFunction();
2914
2915 if (Callee.isUndef() || isNullConstant(Callee)) {
2916 if (!CLI.IsTailCall) {
2917 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2918 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2919 }
2920
2921 return Chain;
2922 }
2923
2924 if (IsVarArg) {
2925 return lowerUnhandledCall(CLI, InVals,
2926 "unsupported call to variadic function ");
2927 }
2928
2929 if (!CLI.CB)
2930 report_fatal_error("unsupported libcall legalization");
2931
2932 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
2933 !CLI.CB->getCalledFunction() && CallConv != CallingConv::AMDGPU_Gfx) {
2934 return lowerUnhandledCall(CLI, InVals,
2935 "unsupported indirect call to function ");
2936 }
2937
2938 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2939 return lowerUnhandledCall(CLI, InVals,
2940 "unsupported required tail call to function ");
2941 }
2942
2943 if (AMDGPU::isShader(CallConv)) {
2944 // Note the issue is with the CC of the called function, not of the call
2945 // itself.
2946 return lowerUnhandledCall(CLI, InVals,
2947 "unsupported call to a shader function ");
2948 }
2949
2950 if (AMDGPU::isShader(MF.getFunction().getCallingConv()) &&
2951 CallConv != CallingConv::AMDGPU_Gfx) {
2952 // Only allow calls with specific calling conventions.
2953 return lowerUnhandledCall(CLI, InVals,
2954 "unsupported calling convention for call from "
2955 "graphics shader of function ");
2956 }
2957
2958 if (IsTailCall) {
2959 IsTailCall = isEligibleForTailCallOptimization(
2960 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2961 if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2962 report_fatal_error("failed to perform tail call elimination on a call "
2963 "site marked musttail");
2964 }
2965
2966 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2967
2968 // A sibling call is one where we're under the usual C ABI and not planning
2969 // to change that but can still do a tail call:
2970 if (!TailCallOpt && IsTailCall)
2971 IsSibCall = true;
2972
2973 if (IsTailCall)
2974 ++NumTailCalls;
2975 }
2976
2977 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2978 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2979 SmallVector<SDValue, 8> MemOpChains;
2980
2981 // Analyze operands of the call, assigning locations to each operand.
2982 SmallVector<CCValAssign, 16> ArgLocs;
2983 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2984 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2985
2986 if (AMDGPUTargetMachine::EnableFixedFunctionABI &&
2987 CallConv != CallingConv::AMDGPU_Gfx) {
2988 // With a fixed ABI, allocate fixed registers before user arguments.
2989 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2990 }
2991
2992 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2993
2994 // Get a count of how many bytes are to be pushed on the stack.
2995 unsigned NumBytes = CCInfo.getNextStackOffset();
2996
2997 if (IsSibCall) {
2998 // Since we're not changing the ABI to make this a tail call, the memory
2999 // operands are already available in the caller's incoming argument space.
3000 NumBytes = 0;
3001 }
3002
3003 // FPDiff is the byte offset of the call's argument area from the callee's.
3004 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3005 // by this amount for a tail call. In a sibling call it must be 0 because the
3006 // caller will deallocate the entire stack and the callee still expects its
3007 // arguments to begin at SP+0. Completely unused for non-tail calls.
3008 int32_t FPDiff = 0;
3009 MachineFrameInfo &MFI = MF.getFrameInfo();
3010
3011 // Adjust the stack pointer for the new arguments...
3012 // These operations are automatically eliminated by the prolog/epilog pass
3013 if (!IsSibCall) {
3014 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3015
3016 if (!Subtarget->enableFlatScratch()) {
3017 SmallVector<SDValue, 4> CopyFromChains;
3018
3019 // In the HSA case, this should be an identity copy.
3020 SDValue ScratchRSrcReg
3021 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3022 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3023 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3024 Chain = DAG.getTokenFactor(DL, CopyFromChains);
3025 }
3026 }
3027
3028 MVT PtrVT = MVT::i32;
3029
3030 // Walk the register/memloc assignments, inserting copies/loads.
3031 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3032 CCValAssign &VA = ArgLocs[i];
3033 SDValue Arg = OutVals[i];
3034
3035 // Promote the value if needed.
3036 switch (VA.getLocInfo()) {
3037 case CCValAssign::Full:
3038 break;
3039 case CCValAssign::BCvt:
3040 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3041 break;
3042 case CCValAssign::ZExt:
3043 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3044 break;
3045 case CCValAssign::SExt:
3046 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3047 break;
3048 case CCValAssign::AExt:
3049 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3050 break;
3051 case CCValAssign::FPExt:
3052 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3053 break;
3054 default:
3055 llvm_unreachable("Unknown loc info!");
3056 }
3057
3058 if (VA.isRegLoc()) {
3059 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3060 } else {
3061 assert(VA.isMemLoc());
3062
3063 SDValue DstAddr;
3064 MachinePointerInfo DstInfo;
3065
3066 unsigned LocMemOffset = VA.getLocMemOffset();
3067 int32_t Offset = LocMemOffset;
3068
3069 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3070 MaybeAlign Alignment;
3071
3072 if (IsTailCall) {
3073 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3074 unsigned OpSize = Flags.isByVal() ?
3075 Flags.getByValSize() : VA.getValVT().getStoreSize();
3076
3077 // FIXME: We can have better than the minimum byval required alignment.
3078 Alignment =
3079 Flags.isByVal()
3080 ? Flags.getNonZeroByValAlign()
3081 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3082
3083 Offset = Offset + FPDiff;
3084 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3085
3086 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3087 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3088
3089 // Make sure any stack arguments overlapping with where we're storing
3090 // are loaded before this eventual operation. Otherwise they'll be
3091 // clobbered.
3092
3093 // FIXME: Why is this really necessary? This seems to just result in a
3094 // lot of code to copy the stack and write them back to the same
3095 // locations, which are supposed to be immutable?
3096 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3097 } else {
3098 DstAddr = PtrOff;
3099 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3100 Alignment =
3101 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3102 }
3103
3104 if (Outs[i].Flags.isByVal()) {
3105 SDValue SizeNode =
3106 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3107 SDValue Cpy =
3108 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3109 Outs[i].Flags.getNonZeroByValAlign(),
3110 /*isVol = */ false, /*AlwaysInline = */ true,
3111 /*isTailCall = */ false, DstInfo,
3112 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3113
3114 MemOpChains.push_back(Cpy);
3115 } else {
3116 SDValue Store =
3117 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3118 MemOpChains.push_back(Store);
3119 }
3120 }
3121 }
3122
3123 if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
3124 CallConv != CallingConv::AMDGPU_Gfx) {
3125 // Copy special input registers after user input arguments.
3126 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3127 }
3128
3129 if (!MemOpChains.empty())
3130 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3131
3132 // Build a sequence of copy-to-reg nodes chained together with token chain
3133 // and flag operands which copy the outgoing args into the appropriate regs.
3134 SDValue InFlag;
3135 for (auto &RegToPass : RegsToPass) {
3136 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3137 RegToPass.second, InFlag);
3138 InFlag = Chain.getValue(1);
3139 }
3140
3141
3142 SDValue PhysReturnAddrReg;
3143 if (IsTailCall) {
3144 // Since the return is being combined with the call, we need to pass on the
3145 // return address.
3146
3147 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3148 SDValue ReturnAddrReg = CreateLiveInRegister(
3149 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3150
3151 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3152 MVT::i64);
3153 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3154 InFlag = Chain.getValue(1);
3155 }
3156
3157 // We don't usually want to end the call-sequence here because we would tidy
3158 // the frame up *after* the call, however in the ABI-changing tail-call case
3159 // we've carefully laid out the parameters so that when sp is reset they'll be
3160 // in the correct location.
3161 if (IsTailCall && !IsSibCall) {
3162 Chain = DAG.getCALLSEQ_END(Chain,
3163 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3164 DAG.getTargetConstant(0, DL, MVT::i32),
3165 InFlag, DL);
3166 InFlag = Chain.getValue(1);
3167 }
3168
3169 std::vector<SDValue> Ops;
3170 Ops.push_back(Chain);
3171 Ops.push_back(Callee);
3172 // Add a redundant copy of the callee global which will not be legalized, as
3173 // we need direct access to the callee later.
3174 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3175 const GlobalValue *GV = GSD->getGlobal();
3176 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3177 } else {
3178 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3179 }
3180
3181 if (IsTailCall) {
3182 // Each tail call may have to adjust the stack by a different amount, so
3183 // this information must travel along with the operation for eventual
3184 // consumption by emitEpilogue.
3185 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3186
3187 Ops.push_back(PhysReturnAddrReg);
3188 }
3189
3190 // Add argument registers to the end of the list so that they are known live
3191 // into the call.
3192 for (auto &RegToPass : RegsToPass) {
3193 Ops.push_back(DAG.getRegister(RegToPass.first,
3194 RegToPass.second.getValueType()));
3195 }
3196
3197 // Add a register mask operand representing the call-preserved registers.
3198
3199 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3200 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3201 assert(Mask && "Missing call preserved mask for calling convention");
3202 Ops.push_back(DAG.getRegisterMask(Mask));
3203
3204 if (InFlag.getNode())
3205 Ops.push_back(InFlag);
3206
3207 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3208
3209 // If we're doing a tall call, use a TC_RETURN here rather than an
3210 // actual call instruction.
3211 if (IsTailCall) {
3212 MFI.setHasTailCall();
3213 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3214 }
3215
3216 // Returns a chain and a flag for retval copy to use.
3217 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3218 Chain = Call.getValue(0);
3219 InFlag = Call.getValue(1);
3220
3221 uint64_t CalleePopBytes = NumBytes;
3222 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3223 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3224 InFlag, DL);
3225 if (!Ins.empty())
3226 InFlag = Chain.getValue(1);
3227
3228 // Handle result values, copying them out of physregs into vregs that we
3229 // return.
3230 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3231 InVals, IsThisReturn,
3232 IsThisReturn ? OutVals[0] : SDValue());
3233 }
3234
3235 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3236 // except for applying the wave size scale to the increment amount.
lowerDYNAMIC_STACKALLOCImpl(SDValue Op,SelectionDAG & DAG) const3237 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3238 SDValue Op, SelectionDAG &DAG) const {
3239 const MachineFunction &MF = DAG.getMachineFunction();
3240 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3241
3242 SDLoc dl(Op);
3243 EVT VT = Op.getValueType();
3244 SDValue Tmp1 = Op;
3245 SDValue Tmp2 = Op.getValue(1);
3246 SDValue Tmp3 = Op.getOperand(2);
3247 SDValue Chain = Tmp1.getOperand(0);
3248
3249 Register SPReg = Info->getStackPtrOffsetReg();
3250
3251 // Chain the dynamic stack allocation so that it doesn't modify the stack
3252 // pointer when other instructions are using the stack.
3253 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3254
3255 SDValue Size = Tmp2.getOperand(1);
3256 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3257 Chain = SP.getValue(1);
3258 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3259 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3260 const TargetFrameLowering *TFL = ST.getFrameLowering();
3261 unsigned Opc =
3262 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3263 ISD::ADD : ISD::SUB;
3264
3265 SDValue ScaledSize = DAG.getNode(
3266 ISD::SHL, dl, VT, Size,
3267 DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3268
3269 Align StackAlign = TFL->getStackAlign();
3270 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3271 if (Alignment && *Alignment > StackAlign) {
3272 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3273 DAG.getConstant(-(uint64_t)Alignment->value()
3274 << ST.getWavefrontSizeLog2(),
3275 dl, VT));
3276 }
3277
3278 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
3279 Tmp2 = DAG.getCALLSEQ_END(
3280 Chain, DAG.getIntPtrConstant(0, dl, true),
3281 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3282
3283 return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3284 }
3285
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const3286 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3287 SelectionDAG &DAG) const {
3288 // We only handle constant sizes here to allow non-entry block, static sized
3289 // allocas. A truly dynamic value is more difficult to support because we
3290 // don't know if the size value is uniform or not. If the size isn't uniform,
3291 // we would need to do a wave reduction to get the maximum size to know how
3292 // much to increment the uniform stack pointer.
3293 SDValue Size = Op.getOperand(1);
3294 if (isa<ConstantSDNode>(Size))
3295 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3296
3297 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3298 }
3299
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const3300 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3301 const MachineFunction &MF) const {
3302 Register Reg = StringSwitch<Register>(RegName)
3303 .Case("m0", AMDGPU::M0)
3304 .Case("exec", AMDGPU::EXEC)
3305 .Case("exec_lo", AMDGPU::EXEC_LO)
3306 .Case("exec_hi", AMDGPU::EXEC_HI)
3307 .Case("flat_scratch", AMDGPU::FLAT_SCR)
3308 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3309 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3310 .Default(Register());
3311
3312 if (Reg == AMDGPU::NoRegister) {
3313 report_fatal_error(Twine("invalid register name \""
3314 + StringRef(RegName) + "\"."));
3315
3316 }
3317
3318 if (!Subtarget->hasFlatScrRegister() &&
3319 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3320 report_fatal_error(Twine("invalid register \""
3321 + StringRef(RegName) + "\" for subtarget."));
3322 }
3323
3324 switch (Reg) {
3325 case AMDGPU::M0:
3326 case AMDGPU::EXEC_LO:
3327 case AMDGPU::EXEC_HI:
3328 case AMDGPU::FLAT_SCR_LO:
3329 case AMDGPU::FLAT_SCR_HI:
3330 if (VT.getSizeInBits() == 32)
3331 return Reg;
3332 break;
3333 case AMDGPU::EXEC:
3334 case AMDGPU::FLAT_SCR:
3335 if (VT.getSizeInBits() == 64)
3336 return Reg;
3337 break;
3338 default:
3339 llvm_unreachable("missing register type checking");
3340 }
3341
3342 report_fatal_error(Twine("invalid type for register \""
3343 + StringRef(RegName) + "\"."));
3344 }
3345
3346 // If kill is not the last instruction, split the block so kill is always a
3347 // proper terminator.
3348 MachineBasicBlock *
splitKillBlock(MachineInstr & MI,MachineBasicBlock * BB) const3349 SITargetLowering::splitKillBlock(MachineInstr &MI,
3350 MachineBasicBlock *BB) const {
3351 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3352 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3353 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3354 return SplitBB;
3355 }
3356
3357 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3358 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3359 // be the first instruction in the remainder block.
3360 //
3361 /// \returns { LoopBody, Remainder }
3362 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
splitBlockForLoop(MachineInstr & MI,MachineBasicBlock & MBB,bool InstInLoop)3363 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3364 MachineFunction *MF = MBB.getParent();
3365 MachineBasicBlock::iterator I(&MI);
3366
3367 // To insert the loop we need to split the block. Move everything after this
3368 // point to a new block, and insert a new empty block between the two.
3369 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3370 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3371 MachineFunction::iterator MBBI(MBB);
3372 ++MBBI;
3373
3374 MF->insert(MBBI, LoopBB);
3375 MF->insert(MBBI, RemainderBB);
3376
3377 LoopBB->addSuccessor(LoopBB);
3378 LoopBB->addSuccessor(RemainderBB);
3379
3380 // Move the rest of the block into a new block.
3381 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3382
3383 if (InstInLoop) {
3384 auto Next = std::next(I);
3385
3386 // Move instruction to loop body.
3387 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3388
3389 // Move the rest of the block.
3390 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3391 } else {
3392 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3393 }
3394
3395 MBB.addSuccessor(LoopBB);
3396
3397 return std::make_pair(LoopBB, RemainderBB);
3398 }
3399
3400 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
bundleInstWithWaitcnt(MachineInstr & MI) const3401 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3402 MachineBasicBlock *MBB = MI.getParent();
3403 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3404 auto I = MI.getIterator();
3405 auto E = std::next(I);
3406
3407 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3408 .addImm(0);
3409
3410 MIBundleBuilder Bundler(*MBB, I, E);
3411 finalizeBundle(*MBB, Bundler.begin());
3412 }
3413
3414 MachineBasicBlock *
emitGWSMemViolTestLoop(MachineInstr & MI,MachineBasicBlock * BB) const3415 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3416 MachineBasicBlock *BB) const {
3417 const DebugLoc &DL = MI.getDebugLoc();
3418
3419 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3420
3421 MachineBasicBlock *LoopBB;
3422 MachineBasicBlock *RemainderBB;
3423 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3424
3425 // Apparently kill flags are only valid if the def is in the same block?
3426 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3427 Src->setIsKill(false);
3428
3429 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3430
3431 MachineBasicBlock::iterator I = LoopBB->end();
3432
3433 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3434 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3435
3436 // Clear TRAP_STS.MEM_VIOL
3437 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3438 .addImm(0)
3439 .addImm(EncodedReg);
3440
3441 bundleInstWithWaitcnt(MI);
3442
3443 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3444
3445 // Load and check TRAP_STS.MEM_VIOL
3446 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3447 .addImm(EncodedReg);
3448
3449 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3450 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3451 .addReg(Reg, RegState::Kill)
3452 .addImm(0);
3453 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3454 .addMBB(LoopBB);
3455
3456 return RemainderBB;
3457 }
3458
3459 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3460 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3461 // will only do one iteration. In the worst case, this will loop 64 times.
3462 //
3463 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3464 static MachineBasicBlock::iterator
emitLoadM0FromVGPRLoop(const SIInstrInfo * TII,MachineRegisterInfo & MRI,MachineBasicBlock & OrigBB,MachineBasicBlock & LoopBB,const DebugLoc & DL,const MachineOperand & Idx,unsigned InitReg,unsigned ResultReg,unsigned PhiReg,unsigned InitSaveExecReg,int Offset,bool UseGPRIdxMode,Register & SGPRIdxReg)3465 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
3466 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
3467 const DebugLoc &DL, const MachineOperand &Idx,
3468 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
3469 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
3470 Register &SGPRIdxReg) {
3471
3472 MachineFunction *MF = OrigBB.getParent();
3473 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3474 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3475 MachineBasicBlock::iterator I = LoopBB.begin();
3476
3477 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3478 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3479 Register NewExec = MRI.createVirtualRegister(BoolRC);
3480 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3481 Register CondReg = MRI.createVirtualRegister(BoolRC);
3482
3483 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3484 .addReg(InitReg)
3485 .addMBB(&OrigBB)
3486 .addReg(ResultReg)
3487 .addMBB(&LoopBB);
3488
3489 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3490 .addReg(InitSaveExecReg)
3491 .addMBB(&OrigBB)
3492 .addReg(NewExec)
3493 .addMBB(&LoopBB);
3494
3495 // Read the next variant <- also loop target.
3496 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3497 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
3498
3499 // Compare the just read M0 value to all possible Idx values.
3500 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3501 .addReg(CurrentIdxReg)
3502 .addReg(Idx.getReg(), 0, Idx.getSubReg());
3503
3504 // Update EXEC, save the original EXEC value to VCC.
3505 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3506 : AMDGPU::S_AND_SAVEEXEC_B64),
3507 NewExec)
3508 .addReg(CondReg, RegState::Kill);
3509
3510 MRI.setSimpleHint(NewExec, CondReg);
3511
3512 if (UseGPRIdxMode) {
3513 if (Offset == 0) {
3514 SGPRIdxReg = CurrentIdxReg;
3515 } else {
3516 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3517 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
3518 .addReg(CurrentIdxReg, RegState::Kill)
3519 .addImm(Offset);
3520 }
3521 } else {
3522 // Move index from VCC into M0
3523 if (Offset == 0) {
3524 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3525 .addReg(CurrentIdxReg, RegState::Kill);
3526 } else {
3527 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3528 .addReg(CurrentIdxReg, RegState::Kill)
3529 .addImm(Offset);
3530 }
3531 }
3532
3533 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3534 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3535 MachineInstr *InsertPt =
3536 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3537 : AMDGPU::S_XOR_B64_term), Exec)
3538 .addReg(Exec)
3539 .addReg(NewExec);
3540
3541 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3542 // s_cbranch_scc0?
3543
3544 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3545 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3546 .addMBB(&LoopBB);
3547
3548 return InsertPt->getIterator();
3549 }
3550
3551 // This has slightly sub-optimal regalloc when the source vector is killed by
3552 // the read. The register allocator does not understand that the kill is
3553 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3554 // subregister from it, using 1 more VGPR than necessary. This was saved when
3555 // this was expanded after register allocation.
3556 static MachineBasicBlock::iterator
loadM0FromVGPR(const SIInstrInfo * TII,MachineBasicBlock & MBB,MachineInstr & MI,unsigned InitResultReg,unsigned PhiReg,int Offset,bool UseGPRIdxMode,Register & SGPRIdxReg)3557 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
3558 unsigned InitResultReg, unsigned PhiReg, int Offset,
3559 bool UseGPRIdxMode, Register &SGPRIdxReg) {
3560 MachineFunction *MF = MBB.getParent();
3561 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3562 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3563 MachineRegisterInfo &MRI = MF->getRegInfo();
3564 const DebugLoc &DL = MI.getDebugLoc();
3565 MachineBasicBlock::iterator I(&MI);
3566
3567 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3568 Register DstReg = MI.getOperand(0).getReg();
3569 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3570 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3571 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3572 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3573
3574 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3575
3576 // Save the EXEC mask
3577 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3578 .addReg(Exec);
3579
3580 MachineBasicBlock *LoopBB;
3581 MachineBasicBlock *RemainderBB;
3582 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3583
3584 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3585
3586 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3587 InitResultReg, DstReg, PhiReg, TmpExec,
3588 Offset, UseGPRIdxMode, SGPRIdxReg);
3589
3590 MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3591 MachineFunction::iterator MBBI(LoopBB);
3592 ++MBBI;
3593 MF->insert(MBBI, LandingPad);
3594 LoopBB->removeSuccessor(RemainderBB);
3595 LandingPad->addSuccessor(RemainderBB);
3596 LoopBB->addSuccessor(LandingPad);
3597 MachineBasicBlock::iterator First = LandingPad->begin();
3598 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3599 .addReg(SaveExec);
3600
3601 return InsPt;
3602 }
3603
3604 // Returns subreg index, offset
3605 static std::pair<unsigned, int>
computeIndirectRegAndOffset(const SIRegisterInfo & TRI,const TargetRegisterClass * SuperRC,unsigned VecReg,int Offset)3606 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3607 const TargetRegisterClass *SuperRC,
3608 unsigned VecReg,
3609 int Offset) {
3610 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3611
3612 // Skip out of bounds offsets, or else we would end up using an undefined
3613 // register.
3614 if (Offset >= NumElts || Offset < 0)
3615 return std::make_pair(AMDGPU::sub0, Offset);
3616
3617 return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3618 }
3619
setM0ToIndexFromSGPR(const SIInstrInfo * TII,MachineRegisterInfo & MRI,MachineInstr & MI,int Offset)3620 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3621 MachineRegisterInfo &MRI, MachineInstr &MI,
3622 int Offset) {
3623 MachineBasicBlock *MBB = MI.getParent();
3624 const DebugLoc &DL = MI.getDebugLoc();
3625 MachineBasicBlock::iterator I(&MI);
3626
3627 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3628
3629 assert(Idx->getReg() != AMDGPU::NoRegister);
3630
3631 if (Offset == 0) {
3632 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).add(*Idx);
3633 } else {
3634 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3635 .add(*Idx)
3636 .addImm(Offset);
3637 }
3638 }
3639
getIndirectSGPRIdx(const SIInstrInfo * TII,MachineRegisterInfo & MRI,MachineInstr & MI,int Offset)3640 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
3641 MachineRegisterInfo &MRI, MachineInstr &MI,
3642 int Offset) {
3643 MachineBasicBlock *MBB = MI.getParent();
3644 const DebugLoc &DL = MI.getDebugLoc();
3645 MachineBasicBlock::iterator I(&MI);
3646
3647 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3648
3649 if (Offset == 0)
3650 return Idx->getReg();
3651
3652 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3653 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3654 .add(*Idx)
3655 .addImm(Offset);
3656 return Tmp;
3657 }
3658
emitIndirectSrc(MachineInstr & MI,MachineBasicBlock & MBB,const GCNSubtarget & ST)3659 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3660 MachineBasicBlock &MBB,
3661 const GCNSubtarget &ST) {
3662 const SIInstrInfo *TII = ST.getInstrInfo();
3663 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3664 MachineFunction *MF = MBB.getParent();
3665 MachineRegisterInfo &MRI = MF->getRegInfo();
3666
3667 Register Dst = MI.getOperand(0).getReg();
3668 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3669 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3670 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3671
3672 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3673 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3674
3675 unsigned SubReg;
3676 std::tie(SubReg, Offset)
3677 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3678
3679 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3680
3681 // Check for a SGPR index.
3682 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3683 MachineBasicBlock::iterator I(&MI);
3684 const DebugLoc &DL = MI.getDebugLoc();
3685
3686 if (UseGPRIdxMode) {
3687 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3688 // to avoid interfering with other uses, so probably requires a new
3689 // optimization pass.
3690 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3691
3692 const MCInstrDesc &GPRIDXDesc =
3693 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3694 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3695 .addReg(SrcReg)
3696 .addReg(Idx)
3697 .addImm(SubReg);
3698 } else {
3699 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3700
3701 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3702 .addReg(SrcReg, 0, SubReg)
3703 .addReg(SrcReg, RegState::Implicit);
3704 }
3705
3706 MI.eraseFromParent();
3707
3708 return &MBB;
3709 }
3710
3711 // Control flow needs to be inserted if indexing with a VGPR.
3712 const DebugLoc &DL = MI.getDebugLoc();
3713 MachineBasicBlock::iterator I(&MI);
3714
3715 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3716 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3717
3718 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3719
3720 Register SGPRIdxReg;
3721 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
3722 UseGPRIdxMode, SGPRIdxReg);
3723
3724 MachineBasicBlock *LoopBB = InsPt->getParent();
3725
3726 if (UseGPRIdxMode) {
3727 const MCInstrDesc &GPRIDXDesc =
3728 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
3729
3730 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3731 .addReg(SrcReg)
3732 .addReg(SGPRIdxReg)
3733 .addImm(SubReg);
3734 } else {
3735 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3736 .addReg(SrcReg, 0, SubReg)
3737 .addReg(SrcReg, RegState::Implicit);
3738 }
3739
3740 MI.eraseFromParent();
3741
3742 return LoopBB;
3743 }
3744
emitIndirectDst(MachineInstr & MI,MachineBasicBlock & MBB,const GCNSubtarget & ST)3745 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3746 MachineBasicBlock &MBB,
3747 const GCNSubtarget &ST) {
3748 const SIInstrInfo *TII = ST.getInstrInfo();
3749 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3750 MachineFunction *MF = MBB.getParent();
3751 MachineRegisterInfo &MRI = MF->getRegInfo();
3752
3753 Register Dst = MI.getOperand(0).getReg();
3754 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3755 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3756 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3757 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3758 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3759 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3760
3761 // This can be an immediate, but will be folded later.
3762 assert(Val->getReg());
3763
3764 unsigned SubReg;
3765 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3766 SrcVec->getReg(),
3767 Offset);
3768 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3769
3770 if (Idx->getReg() == AMDGPU::NoRegister) {
3771 MachineBasicBlock::iterator I(&MI);
3772 const DebugLoc &DL = MI.getDebugLoc();
3773
3774 assert(Offset == 0);
3775
3776 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3777 .add(*SrcVec)
3778 .add(*Val)
3779 .addImm(SubReg);
3780
3781 MI.eraseFromParent();
3782 return &MBB;
3783 }
3784
3785 // Check for a SGPR index.
3786 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
3787 MachineBasicBlock::iterator I(&MI);
3788 const DebugLoc &DL = MI.getDebugLoc();
3789
3790 if (UseGPRIdxMode) {
3791 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
3792
3793 const MCInstrDesc &GPRIDXDesc =
3794 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3795 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
3796 .addReg(SrcVec->getReg())
3797 .add(*Val)
3798 .addReg(Idx)
3799 .addImm(SubReg);
3800 } else {
3801 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
3802
3803 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3804 TRI.getRegSizeInBits(*VecRC), 32, false);
3805 BuildMI(MBB, I, DL, MovRelDesc, Dst)
3806 .addReg(SrcVec->getReg())
3807 .add(*Val)
3808 .addImm(SubReg);
3809 }
3810 MI.eraseFromParent();
3811 return &MBB;
3812 }
3813
3814 // Control flow needs to be inserted if indexing with a VGPR.
3815 if (Val->isReg())
3816 MRI.clearKillFlags(Val->getReg());
3817
3818 const DebugLoc &DL = MI.getDebugLoc();
3819
3820 Register PhiReg = MRI.createVirtualRegister(VecRC);
3821
3822 Register SGPRIdxReg;
3823 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
3824 UseGPRIdxMode, SGPRIdxReg);
3825 MachineBasicBlock *LoopBB = InsPt->getParent();
3826
3827 if (UseGPRIdxMode) {
3828 const MCInstrDesc &GPRIDXDesc =
3829 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
3830
3831 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
3832 .addReg(PhiReg)
3833 .add(*Val)
3834 .addReg(SGPRIdxReg)
3835 .addImm(AMDGPU::sub0);
3836 } else {
3837 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
3838 TRI.getRegSizeInBits(*VecRC), 32, false);
3839 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3840 .addReg(PhiReg)
3841 .add(*Val)
3842 .addImm(AMDGPU::sub0);
3843 }
3844
3845 MI.eraseFromParent();
3846 return LoopBB;
3847 }
3848
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const3849 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3850 MachineInstr &MI, MachineBasicBlock *BB) const {
3851
3852 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3853 MachineFunction *MF = BB->getParent();
3854 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3855
3856 switch (MI.getOpcode()) {
3857 case AMDGPU::S_UADDO_PSEUDO:
3858 case AMDGPU::S_USUBO_PSEUDO: {
3859 const DebugLoc &DL = MI.getDebugLoc();
3860 MachineOperand &Dest0 = MI.getOperand(0);
3861 MachineOperand &Dest1 = MI.getOperand(1);
3862 MachineOperand &Src0 = MI.getOperand(2);
3863 MachineOperand &Src1 = MI.getOperand(3);
3864
3865 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3866 ? AMDGPU::S_ADD_I32
3867 : AMDGPU::S_SUB_I32;
3868 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3869
3870 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3871 .addImm(1)
3872 .addImm(0);
3873
3874 MI.eraseFromParent();
3875 return BB;
3876 }
3877 case AMDGPU::S_ADD_U64_PSEUDO:
3878 case AMDGPU::S_SUB_U64_PSEUDO: {
3879 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3880 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3881 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3882 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3883 const DebugLoc &DL = MI.getDebugLoc();
3884
3885 MachineOperand &Dest = MI.getOperand(0);
3886 MachineOperand &Src0 = MI.getOperand(1);
3887 MachineOperand &Src1 = MI.getOperand(2);
3888
3889 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3890 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3891
3892 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3893 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3894 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3895 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3896
3897 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3898 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3899 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3900 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3901
3902 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3903
3904 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3905 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3906 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3907 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3908 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3909 .addReg(DestSub0)
3910 .addImm(AMDGPU::sub0)
3911 .addReg(DestSub1)
3912 .addImm(AMDGPU::sub1);
3913 MI.eraseFromParent();
3914 return BB;
3915 }
3916 case AMDGPU::V_ADD_U64_PSEUDO:
3917 case AMDGPU::V_SUB_U64_PSEUDO: {
3918 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3919 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3920 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3921 const DebugLoc &DL = MI.getDebugLoc();
3922
3923 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3924
3925 const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3926
3927 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3928 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3929
3930 Register CarryReg = MRI.createVirtualRegister(CarryRC);
3931 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3932
3933 MachineOperand &Dest = MI.getOperand(0);
3934 MachineOperand &Src0 = MI.getOperand(1);
3935 MachineOperand &Src1 = MI.getOperand(2);
3936
3937 const TargetRegisterClass *Src0RC = Src0.isReg()
3938 ? MRI.getRegClass(Src0.getReg())
3939 : &AMDGPU::VReg_64RegClass;
3940 const TargetRegisterClass *Src1RC = Src1.isReg()
3941 ? MRI.getRegClass(Src1.getReg())
3942 : &AMDGPU::VReg_64RegClass;
3943
3944 const TargetRegisterClass *Src0SubRC =
3945 TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3946 const TargetRegisterClass *Src1SubRC =
3947 TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3948
3949 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3950 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3951 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3952 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3953
3954 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3955 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3956 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3957 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3958
3959 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
3960 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3961 .addReg(CarryReg, RegState::Define)
3962 .add(SrcReg0Sub0)
3963 .add(SrcReg1Sub0)
3964 .addImm(0); // clamp bit
3965
3966 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3967 MachineInstr *HiHalf =
3968 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3969 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3970 .add(SrcReg0Sub1)
3971 .add(SrcReg1Sub1)
3972 .addReg(CarryReg, RegState::Kill)
3973 .addImm(0); // clamp bit
3974
3975 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3976 .addReg(DestSub0)
3977 .addImm(AMDGPU::sub0)
3978 .addReg(DestSub1)
3979 .addImm(AMDGPU::sub1);
3980 TII->legalizeOperands(*LoHalf);
3981 TII->legalizeOperands(*HiHalf);
3982 MI.eraseFromParent();
3983 return BB;
3984 }
3985 case AMDGPU::S_ADD_CO_PSEUDO:
3986 case AMDGPU::S_SUB_CO_PSEUDO: {
3987 // This pseudo has a chance to be selected
3988 // only from uniform add/subcarry node. All the VGPR operands
3989 // therefore assumed to be splat vectors.
3990 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3991 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3992 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3993 MachineBasicBlock::iterator MII = MI;
3994 const DebugLoc &DL = MI.getDebugLoc();
3995 MachineOperand &Dest = MI.getOperand(0);
3996 MachineOperand &CarryDest = MI.getOperand(1);
3997 MachineOperand &Src0 = MI.getOperand(2);
3998 MachineOperand &Src1 = MI.getOperand(3);
3999 MachineOperand &Src2 = MI.getOperand(4);
4000 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
4001 ? AMDGPU::S_ADDC_U32
4002 : AMDGPU::S_SUBB_U32;
4003 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
4004 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4005 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
4006 .addReg(Src0.getReg());
4007 Src0.setReg(RegOp0);
4008 }
4009 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
4010 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4011 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
4012 .addReg(Src1.getReg());
4013 Src1.setReg(RegOp1);
4014 }
4015 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4016 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4017 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4018 .addReg(Src2.getReg());
4019 Src2.setReg(RegOp2);
4020 }
4021
4022 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4023 if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4024 if (ST.hasScalarCompareEq64()) {
4025 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4026 .addReg(Src2.getReg())
4027 .addImm(0);
4028 } else {
4029 const TargetRegisterClass *SubRC =
4030 TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4031 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4032 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4033 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4034 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4035 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4036
4037 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4038 .add(Src2Sub0)
4039 .add(Src2Sub1);
4040
4041 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4042 .addReg(Src2_32, RegState::Kill)
4043 .addImm(0);
4044 }
4045 } else {
4046 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4047 .addReg(Src2.getReg())
4048 .addImm(0);
4049 }
4050
4051 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4052
4053 BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4054 .addReg(AMDGPU::SCC);
4055 MI.eraseFromParent();
4056 return BB;
4057 }
4058 case AMDGPU::SI_INIT_M0: {
4059 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4060 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4061 .add(MI.getOperand(0));
4062 MI.eraseFromParent();
4063 return BB;
4064 }
4065 case AMDGPU::SI_INIT_EXEC:
4066 // This should be before all vector instructions.
4067 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
4068 AMDGPU::EXEC)
4069 .addImm(MI.getOperand(0).getImm());
4070 MI.eraseFromParent();
4071 return BB;
4072
4073 case AMDGPU::SI_INIT_EXEC_LO:
4074 // This should be before all vector instructions.
4075 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
4076 AMDGPU::EXEC_LO)
4077 .addImm(MI.getOperand(0).getImm());
4078 MI.eraseFromParent();
4079 return BB;
4080
4081 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
4082 // Extract the thread count from an SGPR input and set EXEC accordingly.
4083 // Since BFM can't shift by 64, handle that case with CMP + CMOV.
4084 //
4085 // S_BFE_U32 count, input, {shift, 7}
4086 // S_BFM_B64 exec, count, 0
4087 // S_CMP_EQ_U32 count, 64
4088 // S_CMOV_B64 exec, -1
4089 MachineInstr *FirstMI = &*BB->begin();
4090 MachineRegisterInfo &MRI = MF->getRegInfo();
4091 Register InputReg = MI.getOperand(0).getReg();
4092 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4093 bool Found = false;
4094
4095 // Move the COPY of the input reg to the beginning, so that we can use it.
4096 for (auto I = BB->begin(); I != &MI; I++) {
4097 if (I->getOpcode() != TargetOpcode::COPY ||
4098 I->getOperand(0).getReg() != InputReg)
4099 continue;
4100
4101 if (I == FirstMI) {
4102 FirstMI = &*++BB->begin();
4103 } else {
4104 I->removeFromParent();
4105 BB->insert(FirstMI, &*I);
4106 }
4107 Found = true;
4108 break;
4109 }
4110 assert(Found);
4111 (void)Found;
4112
4113 // This should be before all vector instructions.
4114 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
4115 bool isWave32 = getSubtarget()->isWave32();
4116 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4117 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
4118 .addReg(InputReg)
4119 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
4120 BuildMI(*BB, FirstMI, DebugLoc(),
4121 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
4122 Exec)
4123 .addReg(CountReg)
4124 .addImm(0);
4125 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
4126 .addReg(CountReg, RegState::Kill)
4127 .addImm(getSubtarget()->getWavefrontSize());
4128 BuildMI(*BB, FirstMI, DebugLoc(),
4129 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
4130 Exec)
4131 .addImm(-1);
4132 MI.eraseFromParent();
4133 return BB;
4134 }
4135
4136 case AMDGPU::GET_GROUPSTATICSIZE: {
4137 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4138 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4139 DebugLoc DL = MI.getDebugLoc();
4140 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4141 .add(MI.getOperand(0))
4142 .addImm(MFI->getLDSSize());
4143 MI.eraseFromParent();
4144 return BB;
4145 }
4146 case AMDGPU::SI_INDIRECT_SRC_V1:
4147 case AMDGPU::SI_INDIRECT_SRC_V2:
4148 case AMDGPU::SI_INDIRECT_SRC_V4:
4149 case AMDGPU::SI_INDIRECT_SRC_V8:
4150 case AMDGPU::SI_INDIRECT_SRC_V16:
4151 case AMDGPU::SI_INDIRECT_SRC_V32:
4152 return emitIndirectSrc(MI, *BB, *getSubtarget());
4153 case AMDGPU::SI_INDIRECT_DST_V1:
4154 case AMDGPU::SI_INDIRECT_DST_V2:
4155 case AMDGPU::SI_INDIRECT_DST_V4:
4156 case AMDGPU::SI_INDIRECT_DST_V8:
4157 case AMDGPU::SI_INDIRECT_DST_V16:
4158 case AMDGPU::SI_INDIRECT_DST_V32:
4159 return emitIndirectDst(MI, *BB, *getSubtarget());
4160 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4161 case AMDGPU::SI_KILL_I1_PSEUDO:
4162 return splitKillBlock(MI, BB);
4163 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4164 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4165 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4166 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4167
4168 Register Dst = MI.getOperand(0).getReg();
4169 Register Src0 = MI.getOperand(1).getReg();
4170 Register Src1 = MI.getOperand(2).getReg();
4171 const DebugLoc &DL = MI.getDebugLoc();
4172 Register SrcCond = MI.getOperand(3).getReg();
4173
4174 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4175 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4176 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4177 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4178
4179 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4180 .addReg(SrcCond);
4181 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4182 .addImm(0)
4183 .addReg(Src0, 0, AMDGPU::sub0)
4184 .addImm(0)
4185 .addReg(Src1, 0, AMDGPU::sub0)
4186 .addReg(SrcCondCopy);
4187 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4188 .addImm(0)
4189 .addReg(Src0, 0, AMDGPU::sub1)
4190 .addImm(0)
4191 .addReg(Src1, 0, AMDGPU::sub1)
4192 .addReg(SrcCondCopy);
4193
4194 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4195 .addReg(DstLo)
4196 .addImm(AMDGPU::sub0)
4197 .addReg(DstHi)
4198 .addImm(AMDGPU::sub1);
4199 MI.eraseFromParent();
4200 return BB;
4201 }
4202 case AMDGPU::SI_BR_UNDEF: {
4203 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4204 const DebugLoc &DL = MI.getDebugLoc();
4205 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4206 .add(MI.getOperand(0));
4207 Br->getOperand(1).setIsUndef(true); // read undef SCC
4208 MI.eraseFromParent();
4209 return BB;
4210 }
4211 case AMDGPU::ADJCALLSTACKUP:
4212 case AMDGPU::ADJCALLSTACKDOWN: {
4213 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4214 MachineInstrBuilder MIB(*MF, &MI);
4215 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4216 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4217 return BB;
4218 }
4219 case AMDGPU::SI_CALL_ISEL: {
4220 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4221 const DebugLoc &DL = MI.getDebugLoc();
4222
4223 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4224
4225 MachineInstrBuilder MIB;
4226 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4227
4228 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4229 MIB.add(MI.getOperand(I));
4230
4231 MIB.cloneMemRefs(MI);
4232 MI.eraseFromParent();
4233 return BB;
4234 }
4235 case AMDGPU::V_ADD_CO_U32_e32:
4236 case AMDGPU::V_SUB_CO_U32_e32:
4237 case AMDGPU::V_SUBREV_CO_U32_e32: {
4238 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4239 const DebugLoc &DL = MI.getDebugLoc();
4240 unsigned Opc = MI.getOpcode();
4241
4242 bool NeedClampOperand = false;
4243 if (TII->pseudoToMCOpcode(Opc) == -1) {
4244 Opc = AMDGPU::getVOPe64(Opc);
4245 NeedClampOperand = true;
4246 }
4247
4248 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4249 if (TII->isVOP3(*I)) {
4250 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4251 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4252 I.addReg(TRI->getVCC(), RegState::Define);
4253 }
4254 I.add(MI.getOperand(1))
4255 .add(MI.getOperand(2));
4256 if (NeedClampOperand)
4257 I.addImm(0); // clamp bit for e64 encoding
4258
4259 TII->legalizeOperands(*I);
4260
4261 MI.eraseFromParent();
4262 return BB;
4263 }
4264 case AMDGPU::DS_GWS_INIT:
4265 case AMDGPU::DS_GWS_SEMA_V:
4266 case AMDGPU::DS_GWS_SEMA_BR:
4267 case AMDGPU::DS_GWS_SEMA_P:
4268 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4269 case AMDGPU::DS_GWS_BARRIER:
4270 // A s_waitcnt 0 is required to be the instruction immediately following.
4271 if (getSubtarget()->hasGWSAutoReplay()) {
4272 bundleInstWithWaitcnt(MI);
4273 return BB;
4274 }
4275
4276 return emitGWSMemViolTestLoop(MI, BB);
4277 case AMDGPU::S_SETREG_B32: {
4278 // Try to optimize cases that only set the denormal mode or rounding mode.
4279 //
4280 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4281 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4282 // instead.
4283 //
4284 // FIXME: This could be predicates on the immediate, but tablegen doesn't
4285 // allow you to have a no side effect instruction in the output of a
4286 // sideeffecting pattern.
4287 unsigned ID, Offset, Width;
4288 AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4289 if (ID != AMDGPU::Hwreg::ID_MODE)
4290 return BB;
4291
4292 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4293 const unsigned SetMask = WidthMask << Offset;
4294
4295 if (getSubtarget()->hasDenormModeInst()) {
4296 unsigned SetDenormOp = 0;
4297 unsigned SetRoundOp = 0;
4298
4299 // The dedicated instructions can only set the whole denorm or round mode
4300 // at once, not a subset of bits in either.
4301 if (SetMask ==
4302 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4303 // If this fully sets both the round and denorm mode, emit the two
4304 // dedicated instructions for these.
4305 SetRoundOp = AMDGPU::S_ROUND_MODE;
4306 SetDenormOp = AMDGPU::S_DENORM_MODE;
4307 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4308 SetRoundOp = AMDGPU::S_ROUND_MODE;
4309 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4310 SetDenormOp = AMDGPU::S_DENORM_MODE;
4311 }
4312
4313 if (SetRoundOp || SetDenormOp) {
4314 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4315 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4316 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4317 unsigned ImmVal = Def->getOperand(1).getImm();
4318 if (SetRoundOp) {
4319 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4320 .addImm(ImmVal & 0xf);
4321
4322 // If we also have the denorm mode, get just the denorm mode bits.
4323 ImmVal >>= 4;
4324 }
4325
4326 if (SetDenormOp) {
4327 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4328 .addImm(ImmVal & 0xf);
4329 }
4330
4331 MI.eraseFromParent();
4332 return BB;
4333 }
4334 }
4335 }
4336
4337 // If only FP bits are touched, used the no side effects pseudo.
4338 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4339 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4340 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4341
4342 return BB;
4343 }
4344 default:
4345 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4346 }
4347 }
4348
hasBitPreservingFPLogic(EVT VT) const4349 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4350 return isTypeLegal(VT.getScalarType());
4351 }
4352
enableAggressiveFMAFusion(EVT VT) const4353 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4354 // This currently forces unfolding various combinations of fsub into fma with
4355 // free fneg'd operands. As long as we have fast FMA (controlled by
4356 // isFMAFasterThanFMulAndFAdd), we should perform these.
4357
4358 // When fma is quarter rate, for f64 where add / sub are at best half rate,
4359 // most of these combines appear to be cycle neutral but save on instruction
4360 // count / code size.
4361 return true;
4362 }
4363
getSetCCResultType(const DataLayout & DL,LLVMContext & Ctx,EVT VT) const4364 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4365 EVT VT) const {
4366 if (!VT.isVector()) {
4367 return MVT::i1;
4368 }
4369 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4370 }
4371
getScalarShiftAmountTy(const DataLayout &,EVT VT) const4372 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4373 // TODO: Should i16 be used always if legal? For now it would force VALU
4374 // shifts.
4375 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4376 }
4377
getPreferredShiftAmountTy(LLT Ty) const4378 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4379 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4380 ? Ty.changeElementSize(16)
4381 : Ty.changeElementSize(32);
4382 }
4383
4384 // Answering this is somewhat tricky and depends on the specific device which
4385 // have different rates for fma or all f64 operations.
4386 //
4387 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4388 // regardless of which device (although the number of cycles differs between
4389 // devices), so it is always profitable for f64.
4390 //
4391 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4392 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4393 // which we can always do even without fused FP ops since it returns the same
4394 // result as the separate operations and since it is always full
4395 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4396 // however does not support denormals, so we do report fma as faster if we have
4397 // a fast fma device and require denormals.
4398 //
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const4399 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4400 EVT VT) const {
4401 VT = VT.getScalarType();
4402
4403 switch (VT.getSimpleVT().SimpleTy) {
4404 case MVT::f32: {
4405 // If mad is not available this depends only on if f32 fma is full rate.
4406 if (!Subtarget->hasMadMacF32Insts())
4407 return Subtarget->hasFastFMAF32();
4408
4409 // Otherwise f32 mad is always full rate and returns the same result as
4410 // the separate operations so should be preferred over fma.
4411 // However does not support denomals.
4412 if (hasFP32Denormals(MF))
4413 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4414
4415 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4416 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4417 }
4418 case MVT::f64:
4419 return true;
4420 case MVT::f16:
4421 return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4422 default:
4423 break;
4424 }
4425
4426 return false;
4427 }
4428
isFMADLegal(const SelectionDAG & DAG,const SDNode * N) const4429 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4430 const SDNode *N) const {
4431 // TODO: Check future ftz flag
4432 // v_mad_f32/v_mac_f32 do not support denormals.
4433 EVT VT = N->getValueType(0);
4434 if (VT == MVT::f32)
4435 return Subtarget->hasMadMacF32Insts() &&
4436 !hasFP32Denormals(DAG.getMachineFunction());
4437 if (VT == MVT::f16) {
4438 return Subtarget->hasMadF16() &&
4439 !hasFP64FP16Denormals(DAG.getMachineFunction());
4440 }
4441
4442 return false;
4443 }
4444
4445 //===----------------------------------------------------------------------===//
4446 // Custom DAG Lowering Operations
4447 //===----------------------------------------------------------------------===//
4448
4449 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4450 // wider vector type is legal.
splitUnaryVectorOp(SDValue Op,SelectionDAG & DAG) const4451 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4452 SelectionDAG &DAG) const {
4453 unsigned Opc = Op.getOpcode();
4454 EVT VT = Op.getValueType();
4455 assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4456
4457 SDValue Lo, Hi;
4458 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4459
4460 SDLoc SL(Op);
4461 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4462 Op->getFlags());
4463 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4464 Op->getFlags());
4465
4466 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4467 }
4468
4469 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4470 // wider vector type is legal.
splitBinaryVectorOp(SDValue Op,SelectionDAG & DAG) const4471 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4472 SelectionDAG &DAG) const {
4473 unsigned Opc = Op.getOpcode();
4474 EVT VT = Op.getValueType();
4475 assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4476
4477 SDValue Lo0, Hi0;
4478 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4479 SDValue Lo1, Hi1;
4480 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4481
4482 SDLoc SL(Op);
4483
4484 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4485 Op->getFlags());
4486 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4487 Op->getFlags());
4488
4489 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4490 }
4491
splitTernaryVectorOp(SDValue Op,SelectionDAG & DAG) const4492 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4493 SelectionDAG &DAG) const {
4494 unsigned Opc = Op.getOpcode();
4495 EVT VT = Op.getValueType();
4496 assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4497
4498 SDValue Lo0, Hi0;
4499 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4500 SDValue Lo1, Hi1;
4501 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4502 SDValue Lo2, Hi2;
4503 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4504
4505 SDLoc SL(Op);
4506
4507 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4508 Op->getFlags());
4509 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4510 Op->getFlags());
4511
4512 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4513 }
4514
4515
LowerOperation(SDValue Op,SelectionDAG & DAG) const4516 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4517 switch (Op.getOpcode()) {
4518 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4519 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4520 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4521 case ISD::LOAD: {
4522 SDValue Result = LowerLOAD(Op, DAG);
4523 assert((!Result.getNode() ||
4524 Result.getNode()->getNumValues() == 2) &&
4525 "Load should return a value and a chain");
4526 return Result;
4527 }
4528
4529 case ISD::FSIN:
4530 case ISD::FCOS:
4531 return LowerTrig(Op, DAG);
4532 case ISD::SELECT: return LowerSELECT(Op, DAG);
4533 case ISD::FDIV: return LowerFDIV(Op, DAG);
4534 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4535 case ISD::STORE: return LowerSTORE(Op, DAG);
4536 case ISD::GlobalAddress: {
4537 MachineFunction &MF = DAG.getMachineFunction();
4538 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4539 return LowerGlobalAddress(MFI, Op, DAG);
4540 }
4541 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4542 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4543 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4544 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4545 case ISD::INSERT_SUBVECTOR:
4546 return lowerINSERT_SUBVECTOR(Op, DAG);
4547 case ISD::INSERT_VECTOR_ELT:
4548 return lowerINSERT_VECTOR_ELT(Op, DAG);
4549 case ISD::EXTRACT_VECTOR_ELT:
4550 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4551 case ISD::VECTOR_SHUFFLE:
4552 return lowerVECTOR_SHUFFLE(Op, DAG);
4553 case ISD::BUILD_VECTOR:
4554 return lowerBUILD_VECTOR(Op, DAG);
4555 case ISD::FP_ROUND:
4556 return lowerFP_ROUND(Op, DAG);
4557 case ISD::TRAP:
4558 return lowerTRAP(Op, DAG);
4559 case ISD::DEBUGTRAP:
4560 return lowerDEBUGTRAP(Op, DAG);
4561 case ISD::FABS:
4562 case ISD::FNEG:
4563 case ISD::FCANONICALIZE:
4564 case ISD::BSWAP:
4565 return splitUnaryVectorOp(Op, DAG);
4566 case ISD::FMINNUM:
4567 case ISD::FMAXNUM:
4568 return lowerFMINNUM_FMAXNUM(Op, DAG);
4569 case ISD::FMA:
4570 return splitTernaryVectorOp(Op, DAG);
4571 case ISD::SHL:
4572 case ISD::SRA:
4573 case ISD::SRL:
4574 case ISD::ADD:
4575 case ISD::SUB:
4576 case ISD::MUL:
4577 case ISD::SMIN:
4578 case ISD::SMAX:
4579 case ISD::UMIN:
4580 case ISD::UMAX:
4581 case ISD::FADD:
4582 case ISD::FMUL:
4583 case ISD::FMINNUM_IEEE:
4584 case ISD::FMAXNUM_IEEE:
4585 case ISD::UADDSAT:
4586 case ISD::USUBSAT:
4587 case ISD::SADDSAT:
4588 case ISD::SSUBSAT:
4589 return splitBinaryVectorOp(Op, DAG);
4590 case ISD::SMULO:
4591 case ISD::UMULO:
4592 return lowerXMULO(Op, DAG);
4593 case ISD::DYNAMIC_STACKALLOC:
4594 return LowerDYNAMIC_STACKALLOC(Op, DAG);
4595 }
4596 return SDValue();
4597 }
4598
4599 // Used for D16: Casts the result of an instruction into the right vector,
4600 // packs values if loads return unpacked values.
adjustLoadValueTypeImpl(SDValue Result,EVT LoadVT,const SDLoc & DL,SelectionDAG & DAG,bool Unpacked)4601 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4602 const SDLoc &DL,
4603 SelectionDAG &DAG, bool Unpacked) {
4604 if (!LoadVT.isVector())
4605 return Result;
4606
4607 // Cast back to the original packed type or to a larger type that is a
4608 // multiple of 32 bit for D16. Widening the return type is a required for
4609 // legalization.
4610 EVT FittingLoadVT = LoadVT;
4611 if ((LoadVT.getVectorNumElements() % 2) == 1) {
4612 FittingLoadVT =
4613 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4614 LoadVT.getVectorNumElements() + 1);
4615 }
4616
4617 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4618 // Truncate to v2i16/v4i16.
4619 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4620
4621 // Workaround legalizer not scalarizing truncate after vector op
4622 // legalization but not creating intermediate vector trunc.
4623 SmallVector<SDValue, 4> Elts;
4624 DAG.ExtractVectorElements(Result, Elts);
4625 for (SDValue &Elt : Elts)
4626 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4627
4628 // Pad illegal v1i16/v3fi6 to v4i16
4629 if ((LoadVT.getVectorNumElements() % 2) == 1)
4630 Elts.push_back(DAG.getUNDEF(MVT::i16));
4631
4632 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4633
4634 // Bitcast to original type (v2f16/v4f16).
4635 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4636 }
4637
4638 // Cast back to the original packed type.
4639 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4640 }
4641
adjustLoadValueType(unsigned Opcode,MemSDNode * M,SelectionDAG & DAG,ArrayRef<SDValue> Ops,bool IsIntrinsic) const4642 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4643 MemSDNode *M,
4644 SelectionDAG &DAG,
4645 ArrayRef<SDValue> Ops,
4646 bool IsIntrinsic) const {
4647 SDLoc DL(M);
4648
4649 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4650 EVT LoadVT = M->getValueType(0);
4651
4652 EVT EquivLoadVT = LoadVT;
4653 if (LoadVT.isVector()) {
4654 if (Unpacked) {
4655 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4656 LoadVT.getVectorNumElements());
4657 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4658 // Widen v3f16 to legal type
4659 EquivLoadVT =
4660 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4661 LoadVT.getVectorNumElements() + 1);
4662 }
4663 }
4664
4665 // Change from v4f16/v2f16 to EquivLoadVT.
4666 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4667
4668 SDValue Load
4669 = DAG.getMemIntrinsicNode(
4670 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4671 VTList, Ops, M->getMemoryVT(),
4672 M->getMemOperand());
4673
4674 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4675
4676 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4677 }
4678
lowerIntrinsicLoad(MemSDNode * M,bool IsFormat,SelectionDAG & DAG,ArrayRef<SDValue> Ops) const4679 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4680 SelectionDAG &DAG,
4681 ArrayRef<SDValue> Ops) const {
4682 SDLoc DL(M);
4683 EVT LoadVT = M->getValueType(0);
4684 EVT EltType = LoadVT.getScalarType();
4685 EVT IntVT = LoadVT.changeTypeToInteger();
4686
4687 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4688
4689 unsigned Opc =
4690 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4691
4692 if (IsD16) {
4693 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4694 }
4695
4696 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4697 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4698 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4699
4700 if (isTypeLegal(LoadVT)) {
4701 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4702 M->getMemOperand(), DAG);
4703 }
4704
4705 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4706 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4707 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4708 M->getMemOperand(), DAG);
4709 return DAG.getMergeValues(
4710 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4711 DL);
4712 }
4713
lowerICMPIntrinsic(const SITargetLowering & TLI,SDNode * N,SelectionDAG & DAG)4714 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4715 SDNode *N, SelectionDAG &DAG) {
4716 EVT VT = N->getValueType(0);
4717 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4718 unsigned CondCode = CD->getZExtValue();
4719 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4720 return DAG.getUNDEF(VT);
4721
4722 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4723
4724 SDValue LHS = N->getOperand(1);
4725 SDValue RHS = N->getOperand(2);
4726
4727 SDLoc DL(N);
4728
4729 EVT CmpVT = LHS.getValueType();
4730 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4731 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4732 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4733 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4734 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4735 }
4736
4737 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4738
4739 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4740 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4741
4742 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4743 DAG.getCondCode(CCOpcode));
4744 if (VT.bitsEq(CCVT))
4745 return SetCC;
4746 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4747 }
4748
lowerFCMPIntrinsic(const SITargetLowering & TLI,SDNode * N,SelectionDAG & DAG)4749 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4750 SDNode *N, SelectionDAG &DAG) {
4751 EVT VT = N->getValueType(0);
4752 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4753
4754 unsigned CondCode = CD->getZExtValue();
4755 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4756 return DAG.getUNDEF(VT);
4757
4758 SDValue Src0 = N->getOperand(1);
4759 SDValue Src1 = N->getOperand(2);
4760 EVT CmpVT = Src0.getValueType();
4761 SDLoc SL(N);
4762
4763 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4764 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4765 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4766 }
4767
4768 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4769 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4770 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4771 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4772 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4773 Src1, DAG.getCondCode(CCOpcode));
4774 if (VT.bitsEq(CCVT))
4775 return SetCC;
4776 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4777 }
4778
lowerBALLOTIntrinsic(const SITargetLowering & TLI,SDNode * N,SelectionDAG & DAG)4779 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4780 SelectionDAG &DAG) {
4781 EVT VT = N->getValueType(0);
4782 SDValue Src = N->getOperand(1);
4783 SDLoc SL(N);
4784
4785 if (Src.getOpcode() == ISD::SETCC) {
4786 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4787 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4788 Src.getOperand(1), Src.getOperand(2));
4789 }
4790 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4791 // (ballot 0) -> 0
4792 if (Arg->isNullValue())
4793 return DAG.getConstant(0, SL, VT);
4794
4795 // (ballot 1) -> EXEC/EXEC_LO
4796 if (Arg->isOne()) {
4797 Register Exec;
4798 if (VT.getScalarSizeInBits() == 32)
4799 Exec = AMDGPU::EXEC_LO;
4800 else if (VT.getScalarSizeInBits() == 64)
4801 Exec = AMDGPU::EXEC;
4802 else
4803 return SDValue();
4804
4805 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4806 }
4807 }
4808
4809 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4810 // ISD::SETNE)
4811 return DAG.getNode(
4812 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4813 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4814 }
4815
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4816 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4817 SmallVectorImpl<SDValue> &Results,
4818 SelectionDAG &DAG) const {
4819 switch (N->getOpcode()) {
4820 case ISD::INSERT_VECTOR_ELT: {
4821 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4822 Results.push_back(Res);
4823 return;
4824 }
4825 case ISD::EXTRACT_VECTOR_ELT: {
4826 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4827 Results.push_back(Res);
4828 return;
4829 }
4830 case ISD::INTRINSIC_WO_CHAIN: {
4831 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4832 switch (IID) {
4833 case Intrinsic::amdgcn_cvt_pkrtz: {
4834 SDValue Src0 = N->getOperand(1);
4835 SDValue Src1 = N->getOperand(2);
4836 SDLoc SL(N);
4837 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4838 Src0, Src1);
4839 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4840 return;
4841 }
4842 case Intrinsic::amdgcn_cvt_pknorm_i16:
4843 case Intrinsic::amdgcn_cvt_pknorm_u16:
4844 case Intrinsic::amdgcn_cvt_pk_i16:
4845 case Intrinsic::amdgcn_cvt_pk_u16: {
4846 SDValue Src0 = N->getOperand(1);
4847 SDValue Src1 = N->getOperand(2);
4848 SDLoc SL(N);
4849 unsigned Opcode;
4850
4851 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4852 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4853 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4854 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4855 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4856 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4857 else
4858 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4859
4860 EVT VT = N->getValueType(0);
4861 if (isTypeLegal(VT))
4862 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4863 else {
4864 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4865 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4866 }
4867 return;
4868 }
4869 }
4870 break;
4871 }
4872 case ISD::INTRINSIC_W_CHAIN: {
4873 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4874 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4875 // FIXME: Hacky
4876 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4877 Results.push_back(Res.getOperand(I));
4878 }
4879 } else {
4880 Results.push_back(Res);
4881 Results.push_back(Res.getValue(1));
4882 }
4883 return;
4884 }
4885
4886 break;
4887 }
4888 case ISD::SELECT: {
4889 SDLoc SL(N);
4890 EVT VT = N->getValueType(0);
4891 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4892 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4893 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4894
4895 EVT SelectVT = NewVT;
4896 if (NewVT.bitsLT(MVT::i32)) {
4897 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4898 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4899 SelectVT = MVT::i32;
4900 }
4901
4902 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4903 N->getOperand(0), LHS, RHS);
4904
4905 if (NewVT != SelectVT)
4906 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4907 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4908 return;
4909 }
4910 case ISD::FNEG: {
4911 if (N->getValueType(0) != MVT::v2f16)
4912 break;
4913
4914 SDLoc SL(N);
4915 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4916
4917 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4918 BC,
4919 DAG.getConstant(0x80008000, SL, MVT::i32));
4920 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4921 return;
4922 }
4923 case ISD::FABS: {
4924 if (N->getValueType(0) != MVT::v2f16)
4925 break;
4926
4927 SDLoc SL(N);
4928 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4929
4930 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4931 BC,
4932 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4933 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4934 return;
4935 }
4936 default:
4937 break;
4938 }
4939 }
4940
4941 /// Helper function for LowerBRCOND
findUser(SDValue Value,unsigned Opcode)4942 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4943
4944 SDNode *Parent = Value.getNode();
4945 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4946 I != E; ++I) {
4947
4948 if (I.getUse().get() != Value)
4949 continue;
4950
4951 if (I->getOpcode() == Opcode)
4952 return *I;
4953 }
4954 return nullptr;
4955 }
4956
isCFIntrinsic(const SDNode * Intr) const4957 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4958 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4959 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4960 case Intrinsic::amdgcn_if:
4961 return AMDGPUISD::IF;
4962 case Intrinsic::amdgcn_else:
4963 return AMDGPUISD::ELSE;
4964 case Intrinsic::amdgcn_loop:
4965 return AMDGPUISD::LOOP;
4966 case Intrinsic::amdgcn_end_cf:
4967 llvm_unreachable("should not occur");
4968 default:
4969 return 0;
4970 }
4971 }
4972
4973 // break, if_break, else_break are all only used as inputs to loop, not
4974 // directly as branch conditions.
4975 return 0;
4976 }
4977
shouldEmitFixup(const GlobalValue * GV) const4978 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4979 const Triple &TT = getTargetMachine().getTargetTriple();
4980 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4981 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4982 AMDGPU::shouldEmitConstantsToTextSection(TT);
4983 }
4984
shouldEmitGOTReloc(const GlobalValue * GV) const4985 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4986 // FIXME: Either avoid relying on address space here or change the default
4987 // address space for functions to avoid the explicit check.
4988 return (GV->getValueType()->isFunctionTy() ||
4989 !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4990 !shouldEmitFixup(GV) &&
4991 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4992 }
4993
shouldEmitPCReloc(const GlobalValue * GV) const4994 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4995 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4996 }
4997
shouldUseLDSConstAddress(const GlobalValue * GV) const4998 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
4999 if (!GV->hasExternalLinkage())
5000 return true;
5001
5002 const auto OS = getTargetMachine().getTargetTriple().getOS();
5003 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
5004 }
5005
5006 /// This transforms the control flow intrinsics to get the branch destination as
5007 /// last parameter, also switches branch target with BR if the need arise
LowerBRCOND(SDValue BRCOND,SelectionDAG & DAG) const5008 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
5009 SelectionDAG &DAG) const {
5010 SDLoc DL(BRCOND);
5011
5012 SDNode *Intr = BRCOND.getOperand(1).getNode();
5013 SDValue Target = BRCOND.getOperand(2);
5014 SDNode *BR = nullptr;
5015 SDNode *SetCC = nullptr;
5016
5017 if (Intr->getOpcode() == ISD::SETCC) {
5018 // As long as we negate the condition everything is fine
5019 SetCC = Intr;
5020 Intr = SetCC->getOperand(0).getNode();
5021
5022 } else {
5023 // Get the target from BR if we don't negate the condition
5024 BR = findUser(BRCOND, ISD::BR);
5025 assert(BR && "brcond missing unconditional branch user");
5026 Target = BR->getOperand(1);
5027 }
5028
5029 unsigned CFNode = isCFIntrinsic(Intr);
5030 if (CFNode == 0) {
5031 // This is a uniform branch so we don't need to legalize.
5032 return BRCOND;
5033 }
5034
5035 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5036 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5037
5038 assert(!SetCC ||
5039 (SetCC->getConstantOperandVal(1) == 1 &&
5040 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5041 ISD::SETNE));
5042
5043 // operands of the new intrinsic call
5044 SmallVector<SDValue, 4> Ops;
5045 if (HaveChain)
5046 Ops.push_back(BRCOND.getOperand(0));
5047
5048 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
5049 Ops.push_back(Target);
5050
5051 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5052
5053 // build the new intrinsic call
5054 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5055
5056 if (!HaveChain) {
5057 SDValue Ops[] = {
5058 SDValue(Result, 0),
5059 BRCOND.getOperand(0)
5060 };
5061
5062 Result = DAG.getMergeValues(Ops, DL).getNode();
5063 }
5064
5065 if (BR) {
5066 // Give the branch instruction our target
5067 SDValue Ops[] = {
5068 BR->getOperand(0),
5069 BRCOND.getOperand(2)
5070 };
5071 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5072 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5073 }
5074
5075 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5076
5077 // Copy the intrinsic results to registers
5078 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5079 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5080 if (!CopyToReg)
5081 continue;
5082
5083 Chain = DAG.getCopyToReg(
5084 Chain, DL,
5085 CopyToReg->getOperand(1),
5086 SDValue(Result, i - 1),
5087 SDValue());
5088
5089 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5090 }
5091
5092 // Remove the old intrinsic from the chain
5093 DAG.ReplaceAllUsesOfValueWith(
5094 SDValue(Intr, Intr->getNumValues() - 1),
5095 Intr->getOperand(0));
5096
5097 return Chain;
5098 }
5099
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5100 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5101 SelectionDAG &DAG) const {
5102 MVT VT = Op.getSimpleValueType();
5103 SDLoc DL(Op);
5104 // Checking the depth
5105 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5106 return DAG.getConstant(0, DL, VT);
5107
5108 MachineFunction &MF = DAG.getMachineFunction();
5109 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5110 // Check for kernel and shader functions
5111 if (Info->isEntryFunction())
5112 return DAG.getConstant(0, DL, VT);
5113
5114 MachineFrameInfo &MFI = MF.getFrameInfo();
5115 // There is a call to @llvm.returnaddress in this function
5116 MFI.setReturnAddressIsTaken(true);
5117
5118 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5119 // Get the return address reg and mark it as an implicit live-in
5120 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5121
5122 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5123 }
5124
getFPExtOrFPRound(SelectionDAG & DAG,SDValue Op,const SDLoc & DL,EVT VT) const5125 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5126 SDValue Op,
5127 const SDLoc &DL,
5128 EVT VT) const {
5129 return Op.getValueType().bitsLE(VT) ?
5130 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5131 DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5132 DAG.getTargetConstant(0, DL, MVT::i32));
5133 }
5134
lowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const5135 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5136 assert(Op.getValueType() == MVT::f16 &&
5137 "Do not know how to custom lower FP_ROUND for non-f16 type");
5138
5139 SDValue Src = Op.getOperand(0);
5140 EVT SrcVT = Src.getValueType();
5141 if (SrcVT != MVT::f64)
5142 return Op;
5143
5144 SDLoc DL(Op);
5145
5146 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5147 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5148 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5149 }
5150
lowerFMINNUM_FMAXNUM(SDValue Op,SelectionDAG & DAG) const5151 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5152 SelectionDAG &DAG) const {
5153 EVT VT = Op.getValueType();
5154 const MachineFunction &MF = DAG.getMachineFunction();
5155 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5156 bool IsIEEEMode = Info->getMode().IEEE;
5157
5158 // FIXME: Assert during selection that this is only selected for
5159 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5160 // mode functions, but this happens to be OK since it's only done in cases
5161 // where there is known no sNaN.
5162 if (IsIEEEMode)
5163 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5164
5165 if (VT == MVT::v4f16)
5166 return splitBinaryVectorOp(Op, DAG);
5167 return Op;
5168 }
5169
lowerXMULO(SDValue Op,SelectionDAG & DAG) const5170 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5171 EVT VT = Op.getValueType();
5172 SDLoc SL(Op);
5173 SDValue LHS = Op.getOperand(0);
5174 SDValue RHS = Op.getOperand(1);
5175 bool isSigned = Op.getOpcode() == ISD::SMULO;
5176
5177 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5178 const APInt &C = RHSC->getAPIntValue();
5179 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5180 if (C.isPowerOf2()) {
5181 // smulo(x, signed_min) is same as umulo(x, signed_min).
5182 bool UseArithShift = isSigned && !C.isMinSignedValue();
5183 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5184 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5185 SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5186 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5187 SL, VT, Result, ShiftAmt),
5188 LHS, ISD::SETNE);
5189 return DAG.getMergeValues({ Result, Overflow }, SL);
5190 }
5191 }
5192
5193 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5194 SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5195 SL, VT, LHS, RHS);
5196
5197 SDValue Sign = isSigned
5198 ? DAG.getNode(ISD::SRA, SL, VT, Result,
5199 DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5200 : DAG.getConstant(0, SL, VT);
5201 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5202
5203 return DAG.getMergeValues({ Result, Overflow }, SL);
5204 }
5205
lowerTRAP(SDValue Op,SelectionDAG & DAG) const5206 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5207 SDLoc SL(Op);
5208 SDValue Chain = Op.getOperand(0);
5209
5210 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5211 !Subtarget->isTrapHandlerEnabled())
5212 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5213
5214 MachineFunction &MF = DAG.getMachineFunction();
5215 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5216 Register UserSGPR = Info->getQueuePtrUserSGPR();
5217 assert(UserSGPR != AMDGPU::NoRegister);
5218 SDValue QueuePtr = CreateLiveInRegister(
5219 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5220 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5221 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5222 QueuePtr, SDValue());
5223 SDValue Ops[] = {
5224 ToReg,
5225 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
5226 SGPR01,
5227 ToReg.getValue(1)
5228 };
5229 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5230 }
5231
lowerDEBUGTRAP(SDValue Op,SelectionDAG & DAG) const5232 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5233 SDLoc SL(Op);
5234 SDValue Chain = Op.getOperand(0);
5235 MachineFunction &MF = DAG.getMachineFunction();
5236
5237 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5238 !Subtarget->isTrapHandlerEnabled()) {
5239 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5240 "debugtrap handler not supported",
5241 Op.getDebugLoc(),
5242 DS_Warning);
5243 LLVMContext &Ctx = MF.getFunction().getContext();
5244 Ctx.diagnose(NoTrap);
5245 return Chain;
5246 }
5247
5248 SDValue Ops[] = {
5249 Chain,
5250 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
5251 };
5252 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5253 }
5254
getSegmentAperture(unsigned AS,const SDLoc & DL,SelectionDAG & DAG) const5255 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5256 SelectionDAG &DAG) const {
5257 // FIXME: Use inline constants (src_{shared, private}_base) instead.
5258 if (Subtarget->hasApertureRegs()) {
5259 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5260 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5261 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5262 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5263 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5264 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5265 unsigned Encoding =
5266 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5267 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5268 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5269
5270 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5271 SDValue ApertureReg = SDValue(
5272 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5273 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5274 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5275 }
5276
5277 MachineFunction &MF = DAG.getMachineFunction();
5278 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5279 Register UserSGPR = Info->getQueuePtrUserSGPR();
5280 assert(UserSGPR != AMDGPU::NoRegister);
5281
5282 SDValue QueuePtr = CreateLiveInRegister(
5283 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5284
5285 // Offset into amd_queue_t for group_segment_aperture_base_hi /
5286 // private_segment_aperture_base_hi.
5287 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5288
5289 SDValue Ptr =
5290 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5291
5292 // TODO: Use custom target PseudoSourceValue.
5293 // TODO: We should use the value from the IR intrinsic call, but it might not
5294 // be available and how do we get it?
5295 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5296 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5297 commonAlignment(Align(64), StructOffset),
5298 MachineMemOperand::MODereferenceable |
5299 MachineMemOperand::MOInvariant);
5300 }
5301
lowerADDRSPACECAST(SDValue Op,SelectionDAG & DAG) const5302 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5303 SelectionDAG &DAG) const {
5304 SDLoc SL(Op);
5305 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5306
5307 SDValue Src = ASC->getOperand(0);
5308 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5309
5310 const AMDGPUTargetMachine &TM =
5311 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5312
5313 // flat -> local/private
5314 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5315 unsigned DestAS = ASC->getDestAddressSpace();
5316
5317 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5318 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5319 unsigned NullVal = TM.getNullPointerValue(DestAS);
5320 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5321 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5322 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5323
5324 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5325 NonNull, Ptr, SegmentNullPtr);
5326 }
5327 }
5328
5329 // local/private -> flat
5330 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5331 unsigned SrcAS = ASC->getSrcAddressSpace();
5332
5333 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5334 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5335 unsigned NullVal = TM.getNullPointerValue(SrcAS);
5336 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5337
5338 SDValue NonNull
5339 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5340
5341 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5342 SDValue CvtPtr
5343 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5344
5345 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5346 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5347 FlatNullPtr);
5348 }
5349 }
5350
5351 if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5352 Src.getValueType() == MVT::i64)
5353 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5354
5355 // global <-> flat are no-ops and never emitted.
5356
5357 const MachineFunction &MF = DAG.getMachineFunction();
5358 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5359 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5360 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5361
5362 return DAG.getUNDEF(ASC->getValueType(0));
5363 }
5364
5365 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5366 // the small vector and inserting them into the big vector. That is better than
5367 // the default expansion of doing it via a stack slot. Even though the use of
5368 // the stack slot would be optimized away afterwards, the stack slot itself
5369 // remains.
lowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const5370 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5371 SelectionDAG &DAG) const {
5372 SDValue Vec = Op.getOperand(0);
5373 SDValue Ins = Op.getOperand(1);
5374 SDValue Idx = Op.getOperand(2);
5375 EVT VecVT = Vec.getValueType();
5376 EVT InsVT = Ins.getValueType();
5377 EVT EltVT = VecVT.getVectorElementType();
5378 unsigned InsNumElts = InsVT.getVectorNumElements();
5379 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5380 SDLoc SL(Op);
5381
5382 for (unsigned I = 0; I != InsNumElts; ++I) {
5383 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5384 DAG.getConstant(I, SL, MVT::i32));
5385 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5386 DAG.getConstant(IdxVal + I, SL, MVT::i32));
5387 }
5388 return Vec;
5389 }
5390
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5391 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5392 SelectionDAG &DAG) const {
5393 SDValue Vec = Op.getOperand(0);
5394 SDValue InsVal = Op.getOperand(1);
5395 SDValue Idx = Op.getOperand(2);
5396 EVT VecVT = Vec.getValueType();
5397 EVT EltVT = VecVT.getVectorElementType();
5398 unsigned VecSize = VecVT.getSizeInBits();
5399 unsigned EltSize = EltVT.getSizeInBits();
5400
5401
5402 assert(VecSize <= 64);
5403
5404 unsigned NumElts = VecVT.getVectorNumElements();
5405 SDLoc SL(Op);
5406 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5407
5408 if (NumElts == 4 && EltSize == 16 && KIdx) {
5409 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5410
5411 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5412 DAG.getConstant(0, SL, MVT::i32));
5413 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5414 DAG.getConstant(1, SL, MVT::i32));
5415
5416 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5417 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5418
5419 unsigned Idx = KIdx->getZExtValue();
5420 bool InsertLo = Idx < 2;
5421 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5422 InsertLo ? LoVec : HiVec,
5423 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5424 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5425
5426 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5427
5428 SDValue Concat = InsertLo ?
5429 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5430 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5431
5432 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5433 }
5434
5435 if (isa<ConstantSDNode>(Idx))
5436 return SDValue();
5437
5438 MVT IntVT = MVT::getIntegerVT(VecSize);
5439
5440 // Avoid stack access for dynamic indexing.
5441 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5442
5443 // Create a congruent vector with the target value in each element so that
5444 // the required element can be masked and ORed into the target vector.
5445 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5446 DAG.getSplatBuildVector(VecVT, SL, InsVal));
5447
5448 assert(isPowerOf2_32(EltSize));
5449 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5450
5451 // Convert vector index to bit-index.
5452 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5453
5454 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5455 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5456 DAG.getConstant(0xffff, SL, IntVT),
5457 ScaledIdx);
5458
5459 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5460 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5461 DAG.getNOT(SL, BFM, IntVT), BCVec);
5462
5463 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5464 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5465 }
5466
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const5467 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5468 SelectionDAG &DAG) const {
5469 SDLoc SL(Op);
5470
5471 EVT ResultVT = Op.getValueType();
5472 SDValue Vec = Op.getOperand(0);
5473 SDValue Idx = Op.getOperand(1);
5474 EVT VecVT = Vec.getValueType();
5475 unsigned VecSize = VecVT.getSizeInBits();
5476 EVT EltVT = VecVT.getVectorElementType();
5477 assert(VecSize <= 64);
5478
5479 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5480
5481 // Make sure we do any optimizations that will make it easier to fold
5482 // source modifiers before obscuring it with bit operations.
5483
5484 // XXX - Why doesn't this get called when vector_shuffle is expanded?
5485 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5486 return Combined;
5487
5488 unsigned EltSize = EltVT.getSizeInBits();
5489 assert(isPowerOf2_32(EltSize));
5490
5491 MVT IntVT = MVT::getIntegerVT(VecSize);
5492 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5493
5494 // Convert vector index to bit-index (* EltSize)
5495 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5496
5497 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5498 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5499
5500 if (ResultVT == MVT::f16) {
5501 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5502 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5503 }
5504
5505 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5506 }
5507
elementPairIsContiguous(ArrayRef<int> Mask,int Elt)5508 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5509 assert(Elt % 2 == 0);
5510 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5511 }
5512
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5513 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5514 SelectionDAG &DAG) const {
5515 SDLoc SL(Op);
5516 EVT ResultVT = Op.getValueType();
5517 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5518
5519 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5520 EVT EltVT = PackVT.getVectorElementType();
5521 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5522
5523 // vector_shuffle <0,1,6,7> lhs, rhs
5524 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5525 //
5526 // vector_shuffle <6,7,2,3> lhs, rhs
5527 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5528 //
5529 // vector_shuffle <6,7,0,1> lhs, rhs
5530 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5531
5532 // Avoid scalarizing when both halves are reading from consecutive elements.
5533 SmallVector<SDValue, 4> Pieces;
5534 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5535 if (elementPairIsContiguous(SVN->getMask(), I)) {
5536 const int Idx = SVN->getMaskElt(I);
5537 int VecIdx = Idx < SrcNumElts ? 0 : 1;
5538 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5539 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5540 PackVT, SVN->getOperand(VecIdx),
5541 DAG.getConstant(EltIdx, SL, MVT::i32));
5542 Pieces.push_back(SubVec);
5543 } else {
5544 const int Idx0 = SVN->getMaskElt(I);
5545 const int Idx1 = SVN->getMaskElt(I + 1);
5546 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5547 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5548 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5549 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5550
5551 SDValue Vec0 = SVN->getOperand(VecIdx0);
5552 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5553 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5554
5555 SDValue Vec1 = SVN->getOperand(VecIdx1);
5556 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5557 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5558 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5559 }
5560 }
5561
5562 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5563 }
5564
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5565 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5566 SelectionDAG &DAG) const {
5567 SDLoc SL(Op);
5568 EVT VT = Op.getValueType();
5569
5570 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5571 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5572
5573 // Turn into pair of packed build_vectors.
5574 // TODO: Special case for constants that can be materialized with s_mov_b64.
5575 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5576 { Op.getOperand(0), Op.getOperand(1) });
5577 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5578 { Op.getOperand(2), Op.getOperand(3) });
5579
5580 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5581 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5582
5583 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5584 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5585 }
5586
5587 assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5588 assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5589
5590 SDValue Lo = Op.getOperand(0);
5591 SDValue Hi = Op.getOperand(1);
5592
5593 // Avoid adding defined bits with the zero_extend.
5594 if (Hi.isUndef()) {
5595 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5596 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5597 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5598 }
5599
5600 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5601 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5602
5603 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5604 DAG.getConstant(16, SL, MVT::i32));
5605 if (Lo.isUndef())
5606 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5607
5608 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5609 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5610
5611 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5612 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5613 }
5614
5615 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const5616 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5617 // We can fold offsets for anything that doesn't require a GOT relocation.
5618 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5619 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5620 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5621 !shouldEmitGOTReloc(GA->getGlobal());
5622 }
5623
5624 static SDValue
buildPCRelGlobalAddress(SelectionDAG & DAG,const GlobalValue * GV,const SDLoc & DL,int64_t Offset,EVT PtrVT,unsigned GAFlags=SIInstrInfo::MO_NONE)5625 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5626 const SDLoc &DL, int64_t Offset, EVT PtrVT,
5627 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5628 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5629 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5630 // lowered to the following code sequence:
5631 //
5632 // For constant address space:
5633 // s_getpc_b64 s[0:1]
5634 // s_add_u32 s0, s0, $symbol
5635 // s_addc_u32 s1, s1, 0
5636 //
5637 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5638 // a fixup or relocation is emitted to replace $symbol with a literal
5639 // constant, which is a pc-relative offset from the encoding of the $symbol
5640 // operand to the global variable.
5641 //
5642 // For global address space:
5643 // s_getpc_b64 s[0:1]
5644 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5645 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5646 //
5647 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5648 // fixups or relocations are emitted to replace $symbol@*@lo and
5649 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5650 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5651 // operand to the global variable.
5652 //
5653 // What we want here is an offset from the value returned by s_getpc
5654 // (which is the address of the s_add_u32 instruction) to the global
5655 // variable, but since the encoding of $symbol starts 4 bytes after the start
5656 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5657 // small. This requires us to add 4 to the global variable offset in order to
5658 // compute the correct address. Similarly for the s_addc_u32 instruction, the
5659 // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5660 // instruction.
5661 SDValue PtrLo =
5662 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5663 SDValue PtrHi;
5664 if (GAFlags == SIInstrInfo::MO_NONE) {
5665 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5666 } else {
5667 PtrHi =
5668 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5669 }
5670 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5671 }
5672
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const5673 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5674 SDValue Op,
5675 SelectionDAG &DAG) const {
5676 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5677 SDLoc DL(GSD);
5678 EVT PtrVT = Op.getValueType();
5679
5680 const GlobalValue *GV = GSD->getGlobal();
5681 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5682 shouldUseLDSConstAddress(GV)) ||
5683 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5684 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5685 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5686 GV->hasExternalLinkage()) {
5687 Type *Ty = GV->getValueType();
5688 // HIP uses an unsized array `extern __shared__ T s[]` or similar
5689 // zero-sized type in other languages to declare the dynamic shared
5690 // memory which size is not known at the compile time. They will be
5691 // allocated by the runtime and placed directly after the static
5692 // allocated ones. They all share the same offset.
5693 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5694 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5695 // Adjust alignment for that dynamic shared memory array.
5696 MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5697 return SDValue(
5698 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5699 }
5700 }
5701 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5702 }
5703
5704 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5705 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5706 SIInstrInfo::MO_ABS32_LO);
5707 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5708 }
5709
5710 if (shouldEmitFixup(GV))
5711 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5712 else if (shouldEmitPCReloc(GV))
5713 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5714 SIInstrInfo::MO_REL32);
5715
5716 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5717 SIInstrInfo::MO_GOTPCREL32);
5718
5719 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5720 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5721 const DataLayout &DataLayout = DAG.getDataLayout();
5722 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5723 MachinePointerInfo PtrInfo
5724 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5725
5726 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5727 MachineMemOperand::MODereferenceable |
5728 MachineMemOperand::MOInvariant);
5729 }
5730
copyToM0(SelectionDAG & DAG,SDValue Chain,const SDLoc & DL,SDValue V) const5731 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5732 const SDLoc &DL, SDValue V) const {
5733 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5734 // the destination register.
5735 //
5736 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5737 // so we will end up with redundant moves to m0.
5738 //
5739 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5740
5741 // A Null SDValue creates a glue result.
5742 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5743 V, Chain);
5744 return SDValue(M0, 0);
5745 }
5746
lowerImplicitZextParam(SelectionDAG & DAG,SDValue Op,MVT VT,unsigned Offset) const5747 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5748 SDValue Op,
5749 MVT VT,
5750 unsigned Offset) const {
5751 SDLoc SL(Op);
5752 SDValue Param = lowerKernargMemParameter(
5753 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5754 // The local size values will have the hi 16-bits as zero.
5755 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5756 DAG.getValueType(VT));
5757 }
5758
emitNonHSAIntrinsicError(SelectionDAG & DAG,const SDLoc & DL,EVT VT)5759 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5760 EVT VT) {
5761 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5762 "non-hsa intrinsic with hsa target",
5763 DL.getDebugLoc());
5764 DAG.getContext()->diagnose(BadIntrin);
5765 return DAG.getUNDEF(VT);
5766 }
5767
emitRemovedIntrinsicError(SelectionDAG & DAG,const SDLoc & DL,EVT VT)5768 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5769 EVT VT) {
5770 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5771 "intrinsic not supported on subtarget",
5772 DL.getDebugLoc());
5773 DAG.getContext()->diagnose(BadIntrin);
5774 return DAG.getUNDEF(VT);
5775 }
5776
getBuildDwordsVector(SelectionDAG & DAG,SDLoc DL,ArrayRef<SDValue> Elts)5777 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5778 ArrayRef<SDValue> Elts) {
5779 assert(!Elts.empty());
5780 MVT Type;
5781 unsigned NumElts;
5782
5783 if (Elts.size() == 1) {
5784 Type = MVT::f32;
5785 NumElts = 1;
5786 } else if (Elts.size() == 2) {
5787 Type = MVT::v2f32;
5788 NumElts = 2;
5789 } else if (Elts.size() == 3) {
5790 Type = MVT::v3f32;
5791 NumElts = 3;
5792 } else if (Elts.size() <= 4) {
5793 Type = MVT::v4f32;
5794 NumElts = 4;
5795 } else if (Elts.size() <= 8) {
5796 Type = MVT::v8f32;
5797 NumElts = 8;
5798 } else {
5799 assert(Elts.size() <= 16);
5800 Type = MVT::v16f32;
5801 NumElts = 16;
5802 }
5803
5804 SmallVector<SDValue, 16> VecElts(NumElts);
5805 for (unsigned i = 0; i < Elts.size(); ++i) {
5806 SDValue Elt = Elts[i];
5807 if (Elt.getValueType() != MVT::f32)
5808 Elt = DAG.getBitcast(MVT::f32, Elt);
5809 VecElts[i] = Elt;
5810 }
5811 for (unsigned i = Elts.size(); i < NumElts; ++i)
5812 VecElts[i] = DAG.getUNDEF(MVT::f32);
5813
5814 if (NumElts == 1)
5815 return VecElts[0];
5816 return DAG.getBuildVector(Type, DL, VecElts);
5817 }
5818
parseCachePolicy(SDValue CachePolicy,SelectionDAG & DAG,SDValue * GLC,SDValue * SLC,SDValue * DLC)5819 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5820 SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5821 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5822
5823 uint64_t Value = CachePolicyConst->getZExtValue();
5824 SDLoc DL(CachePolicy);
5825 if (GLC) {
5826 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5827 Value &= ~(uint64_t)0x1;
5828 }
5829 if (SLC) {
5830 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5831 Value &= ~(uint64_t)0x2;
5832 }
5833 if (DLC) {
5834 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5835 Value &= ~(uint64_t)0x4;
5836 }
5837
5838 return Value == 0;
5839 }
5840
padEltsToUndef(SelectionDAG & DAG,const SDLoc & DL,EVT CastVT,SDValue Src,int ExtraElts)5841 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5842 SDValue Src, int ExtraElts) {
5843 EVT SrcVT = Src.getValueType();
5844
5845 SmallVector<SDValue, 8> Elts;
5846
5847 if (SrcVT.isVector())
5848 DAG.ExtractVectorElements(Src, Elts);
5849 else
5850 Elts.push_back(Src);
5851
5852 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5853 while (ExtraElts--)
5854 Elts.push_back(Undef);
5855
5856 return DAG.getBuildVector(CastVT, DL, Elts);
5857 }
5858
5859 // Re-construct the required return value for a image load intrinsic.
5860 // This is more complicated due to the optional use TexFailCtrl which means the required
5861 // return type is an aggregate
constructRetValue(SelectionDAG & DAG,MachineSDNode * Result,ArrayRef<EVT> ResultTypes,bool IsTexFail,bool Unpacked,bool IsD16,int DMaskPop,int NumVDataDwords,const SDLoc & DL,LLVMContext & Context)5862 static SDValue constructRetValue(SelectionDAG &DAG,
5863 MachineSDNode *Result,
5864 ArrayRef<EVT> ResultTypes,
5865 bool IsTexFail, bool Unpacked, bool IsD16,
5866 int DMaskPop, int NumVDataDwords,
5867 const SDLoc &DL, LLVMContext &Context) {
5868 // Determine the required return type. This is the same regardless of IsTexFail flag
5869 EVT ReqRetVT = ResultTypes[0];
5870 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5871 int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5872 ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5873
5874 int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5875 DMaskPop : (DMaskPop + 1) / 2;
5876
5877 MVT DataDwordVT = NumDataDwords == 1 ?
5878 MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5879
5880 MVT MaskPopVT = MaskPopDwords == 1 ?
5881 MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5882
5883 SDValue Data(Result, 0);
5884 SDValue TexFail;
5885
5886 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5887 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5888 if (MaskPopVT.isVector()) {
5889 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5890 SDValue(Result, 0), ZeroIdx);
5891 } else {
5892 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5893 SDValue(Result, 0), ZeroIdx);
5894 }
5895 }
5896
5897 if (DataDwordVT.isVector())
5898 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5899 NumDataDwords - MaskPopDwords);
5900
5901 if (IsD16)
5902 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5903
5904 EVT LegalReqRetVT = ReqRetVT;
5905 if (!ReqRetVT.isVector()) {
5906 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5907 } else {
5908 // We need to widen the return vector to a legal type
5909 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5910 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5911 LegalReqRetVT =
5912 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5913 ReqRetVT.getVectorNumElements() + 1);
5914 }
5915 }
5916 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5917
5918 if (IsTexFail) {
5919 TexFail =
5920 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5921 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5922
5923 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5924 }
5925
5926 if (Result->getNumValues() == 1)
5927 return Data;
5928
5929 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5930 }
5931
parseTexFail(SDValue TexFailCtrl,SelectionDAG & DAG,SDValue * TFE,SDValue * LWE,bool & IsTexFail)5932 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5933 SDValue *LWE, bool &IsTexFail) {
5934 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5935
5936 uint64_t Value = TexFailCtrlConst->getZExtValue();
5937 if (Value) {
5938 IsTexFail = true;
5939 }
5940
5941 SDLoc DL(TexFailCtrlConst);
5942 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5943 Value &= ~(uint64_t)0x1;
5944 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5945 Value &= ~(uint64_t)0x2;
5946
5947 return Value == 0;
5948 }
5949
packImageA16AddressToDwords(SelectionDAG & DAG,SDValue Op,MVT PackVectorVT,SmallVectorImpl<SDValue> & PackedAddrs,unsigned DimIdx,unsigned EndIdx,unsigned NumGradients)5950 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op,
5951 MVT PackVectorVT,
5952 SmallVectorImpl<SDValue> &PackedAddrs,
5953 unsigned DimIdx, unsigned EndIdx,
5954 unsigned NumGradients) {
5955 SDLoc DL(Op);
5956 for (unsigned I = DimIdx; I < EndIdx; I++) {
5957 SDValue Addr = Op.getOperand(I);
5958
5959 // Gradients are packed with undef for each coordinate.
5960 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5961 // 1D: undef,dx/dh; undef,dx/dv
5962 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5963 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5964 if (((I + 1) >= EndIdx) ||
5965 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5966 I == DimIdx + NumGradients - 1))) {
5967 if (Addr.getValueType() != MVT::i16)
5968 Addr = DAG.getBitcast(MVT::i16, Addr);
5969 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5970 } else {
5971 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5972 I++;
5973 }
5974 Addr = DAG.getBitcast(MVT::f32, Addr);
5975 PackedAddrs.push_back(Addr);
5976 }
5977 }
5978
lowerImage(SDValue Op,const AMDGPU::ImageDimIntrinsicInfo * Intr,SelectionDAG & DAG,bool WithChain) const5979 SDValue SITargetLowering::lowerImage(SDValue Op,
5980 const AMDGPU::ImageDimIntrinsicInfo *Intr,
5981 SelectionDAG &DAG, bool WithChain) const {
5982 SDLoc DL(Op);
5983 MachineFunction &MF = DAG.getMachineFunction();
5984 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5985 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5986 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5987 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5988 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5989 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5990 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5991 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5992 unsigned IntrOpcode = Intr->BaseOpcode;
5993 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
5994
5995 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5996 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5997 bool IsD16 = false;
5998 bool IsG16 = false;
5999 bool IsA16 = false;
6000 SDValue VData;
6001 int NumVDataDwords;
6002 bool AdjustRetType = false;
6003
6004 // Offset of intrinsic arguments
6005 const unsigned ArgOffset = WithChain ? 2 : 1;
6006
6007 unsigned DMask;
6008 unsigned DMaskLanes = 0;
6009
6010 if (BaseOpcode->Atomic) {
6011 VData = Op.getOperand(2);
6012
6013 bool Is64Bit = VData.getValueType() == MVT::i64;
6014 if (BaseOpcode->AtomicX2) {
6015 SDValue VData2 = Op.getOperand(3);
6016 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6017 {VData, VData2});
6018 if (Is64Bit)
6019 VData = DAG.getBitcast(MVT::v4i32, VData);
6020
6021 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6022 DMask = Is64Bit ? 0xf : 0x3;
6023 NumVDataDwords = Is64Bit ? 4 : 2;
6024 } else {
6025 DMask = Is64Bit ? 0x3 : 0x1;
6026 NumVDataDwords = Is64Bit ? 2 : 1;
6027 }
6028 } else {
6029 auto *DMaskConst =
6030 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6031 DMask = DMaskConst->getZExtValue();
6032 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6033
6034 if (BaseOpcode->Store) {
6035 VData = Op.getOperand(2);
6036
6037 MVT StoreVT = VData.getSimpleValueType();
6038 if (StoreVT.getScalarType() == MVT::f16) {
6039 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6040 return Op; // D16 is unsupported for this instruction
6041
6042 IsD16 = true;
6043 VData = handleD16VData(VData, DAG, true);
6044 }
6045
6046 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6047 } else {
6048 // Work out the num dwords based on the dmask popcount and underlying type
6049 // and whether packing is supported.
6050 MVT LoadVT = ResultTypes[0].getSimpleVT();
6051 if (LoadVT.getScalarType() == MVT::f16) {
6052 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6053 return Op; // D16 is unsupported for this instruction
6054
6055 IsD16 = true;
6056 }
6057
6058 // Confirm that the return type is large enough for the dmask specified
6059 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6060 (!LoadVT.isVector() && DMaskLanes > 1))
6061 return Op;
6062
6063 // The sq block of gfx8 and gfx9 do not estimate register use correctly
6064 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6065 // instructions.
6066 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6067 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6068 NumVDataDwords = (DMaskLanes + 1) / 2;
6069 else
6070 NumVDataDwords = DMaskLanes;
6071
6072 AdjustRetType = true;
6073 }
6074 }
6075
6076 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6077 SmallVector<SDValue, 4> VAddrs;
6078
6079 // Optimize _L to _LZ when _L is zero
6080 if (LZMappingInfo) {
6081 if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6082 Op.getOperand(ArgOffset + Intr->LodIndex))) {
6083 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6084 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
6085 VAddrEnd--; // remove 'lod'
6086 }
6087 }
6088 }
6089
6090 // Optimize _mip away, when 'lod' is zero
6091 if (MIPMappingInfo) {
6092 if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6093 Op.getOperand(ArgOffset + Intr->MipIndex))) {
6094 if (ConstantLod->isNullValue()) {
6095 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
6096 VAddrEnd--; // remove 'mip'
6097 }
6098 }
6099 }
6100
6101 // Push back extra arguments.
6102 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6103 VAddrs.push_back(Op.getOperand(ArgOffset + I));
6104
6105 // Check for 16 bit addresses or derivatives and pack if true.
6106 MVT VAddrVT =
6107 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6108 MVT VAddrScalarVT = VAddrVT.getScalarType();
6109 MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6110 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6111
6112 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6113 VAddrScalarVT = VAddrVT.getScalarType();
6114 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6115 if (IsA16 || IsG16) {
6116 if (IsA16) {
6117 if (!ST->hasA16()) {
6118 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6119 "support 16 bit addresses\n");
6120 return Op;
6121 }
6122 if (!IsG16) {
6123 LLVM_DEBUG(
6124 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6125 "need 16 bit derivatives but got 32 bit derivatives\n");
6126 return Op;
6127 }
6128 } else if (!ST->hasG16()) {
6129 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6130 "support 16 bit derivatives\n");
6131 return Op;
6132 }
6133
6134 if (BaseOpcode->Gradients && !IsA16) {
6135 if (!ST->hasG16()) {
6136 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6137 "support 16 bit derivatives\n");
6138 return Op;
6139 }
6140 // Activate g16
6141 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6142 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6143 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6144 }
6145
6146 // Don't compress addresses for G16
6147 const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6148 packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs,
6149 ArgOffset + Intr->GradientStart, PackEndIdx,
6150 Intr->NumGradients);
6151
6152 if (!IsA16) {
6153 // Add uncompressed address
6154 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6155 VAddrs.push_back(Op.getOperand(I));
6156 }
6157 } else {
6158 for (unsigned I = ArgOffset + Intr->GradientStart; I < VAddrEnd; I++)
6159 VAddrs.push_back(Op.getOperand(I));
6160 }
6161
6162 // If the register allocator cannot place the address registers contiguously
6163 // without introducing moves, then using the non-sequential address encoding
6164 // is always preferable, since it saves VALU instructions and is usually a
6165 // wash in terms of code size or even better.
6166 //
6167 // However, we currently have no way of hinting to the register allocator that
6168 // MIMG addresses should be placed contiguously when it is possible to do so,
6169 // so force non-NSA for the common 2-address case as a heuristic.
6170 //
6171 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6172 // allocation when possible.
6173 bool UseNSA =
6174 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6175 SDValue VAddr;
6176 if (!UseNSA)
6177 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6178
6179 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6180 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6181 SDValue Unorm;
6182 if (!BaseOpcode->Sampler) {
6183 Unorm = True;
6184 } else {
6185 auto UnormConst =
6186 cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6187
6188 Unorm = UnormConst->getZExtValue() ? True : False;
6189 }
6190
6191 SDValue TFE;
6192 SDValue LWE;
6193 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6194 bool IsTexFail = false;
6195 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6196 return Op;
6197
6198 if (IsTexFail) {
6199 if (!DMaskLanes) {
6200 // Expecting to get an error flag since TFC is on - and dmask is 0
6201 // Force dmask to be at least 1 otherwise the instruction will fail
6202 DMask = 0x1;
6203 DMaskLanes = 1;
6204 NumVDataDwords = 1;
6205 }
6206 NumVDataDwords += 1;
6207 AdjustRetType = true;
6208 }
6209
6210 // Has something earlier tagged that the return type needs adjusting
6211 // This happens if the instruction is a load or has set TexFailCtrl flags
6212 if (AdjustRetType) {
6213 // NumVDataDwords reflects the true number of dwords required in the return type
6214 if (DMaskLanes == 0 && !BaseOpcode->Store) {
6215 // This is a no-op load. This can be eliminated
6216 SDValue Undef = DAG.getUNDEF(Op.getValueType());
6217 if (isa<MemSDNode>(Op))
6218 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6219 return Undef;
6220 }
6221
6222 EVT NewVT = NumVDataDwords > 1 ?
6223 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6224 : MVT::i32;
6225
6226 ResultTypes[0] = NewVT;
6227 if (ResultTypes.size() == 3) {
6228 // Original result was aggregate type used for TexFailCtrl results
6229 // The actual instruction returns as a vector type which has now been
6230 // created. Remove the aggregate result.
6231 ResultTypes.erase(&ResultTypes[1]);
6232 }
6233 }
6234
6235 SDValue GLC;
6236 SDValue SLC;
6237 SDValue DLC;
6238 if (BaseOpcode->Atomic) {
6239 GLC = True; // TODO no-return optimization
6240 if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6241 DAG, nullptr, &SLC, IsGFX10Plus ? &DLC : nullptr))
6242 return Op;
6243 } else {
6244 if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6245 DAG, &GLC, &SLC, IsGFX10Plus ? &DLC : nullptr))
6246 return Op;
6247 }
6248
6249 SmallVector<SDValue, 26> Ops;
6250 if (BaseOpcode->Store || BaseOpcode->Atomic)
6251 Ops.push_back(VData); // vdata
6252 if (UseNSA) {
6253 for (const SDValue &Addr : VAddrs)
6254 Ops.push_back(Addr);
6255 } else {
6256 Ops.push_back(VAddr);
6257 }
6258 Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6259 if (BaseOpcode->Sampler)
6260 Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6261 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6262 if (IsGFX10Plus)
6263 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6264 Ops.push_back(Unorm);
6265 if (IsGFX10Plus)
6266 Ops.push_back(DLC);
6267 Ops.push_back(GLC);
6268 Ops.push_back(SLC);
6269 Ops.push_back(IsA16 && // r128, a16 for gfx9
6270 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6271 if (IsGFX10Plus)
6272 Ops.push_back(IsA16 ? True : False);
6273 Ops.push_back(TFE);
6274 Ops.push_back(LWE);
6275 if (!IsGFX10Plus)
6276 Ops.push_back(DimInfo->DA ? True : False);
6277 if (BaseOpcode->HasD16)
6278 Ops.push_back(IsD16 ? True : False);
6279 if (isa<MemSDNode>(Op))
6280 Ops.push_back(Op.getOperand(0)); // chain
6281
6282 int NumVAddrDwords =
6283 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6284 int Opcode = -1;
6285
6286 if (IsGFX10Plus) {
6287 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6288 UseNSA ? AMDGPU::MIMGEncGfx10NSA
6289 : AMDGPU::MIMGEncGfx10Default,
6290 NumVDataDwords, NumVAddrDwords);
6291 } else {
6292 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6293 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6294 NumVDataDwords, NumVAddrDwords);
6295 if (Opcode == -1)
6296 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6297 NumVDataDwords, NumVAddrDwords);
6298 }
6299 assert(Opcode != -1);
6300
6301 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6302 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6303 MachineMemOperand *MemRef = MemOp->getMemOperand();
6304 DAG.setNodeMemRefs(NewNode, {MemRef});
6305 }
6306
6307 if (BaseOpcode->AtomicX2) {
6308 SmallVector<SDValue, 1> Elt;
6309 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6310 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6311 } else if (!BaseOpcode->Store) {
6312 return constructRetValue(DAG, NewNode,
6313 OrigResultTypes, IsTexFail,
6314 Subtarget->hasUnpackedD16VMem(), IsD16,
6315 DMaskLanes, NumVDataDwords, DL,
6316 *DAG.getContext());
6317 }
6318
6319 return SDValue(NewNode, 0);
6320 }
6321
lowerSBuffer(EVT VT,SDLoc DL,SDValue Rsrc,SDValue Offset,SDValue CachePolicy,SelectionDAG & DAG) const6322 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6323 SDValue Offset, SDValue CachePolicy,
6324 SelectionDAG &DAG) const {
6325 MachineFunction &MF = DAG.getMachineFunction();
6326
6327 const DataLayout &DataLayout = DAG.getDataLayout();
6328 Align Alignment =
6329 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6330
6331 MachineMemOperand *MMO = MF.getMachineMemOperand(
6332 MachinePointerInfo(),
6333 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6334 MachineMemOperand::MOInvariant,
6335 VT.getStoreSize(), Alignment);
6336
6337 if (!Offset->isDivergent()) {
6338 SDValue Ops[] = {
6339 Rsrc,
6340 Offset, // Offset
6341 CachePolicy
6342 };
6343
6344 // Widen vec3 load to vec4.
6345 if (VT.isVector() && VT.getVectorNumElements() == 3) {
6346 EVT WidenedVT =
6347 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6348 auto WidenedOp = DAG.getMemIntrinsicNode(
6349 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6350 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6351 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6352 DAG.getVectorIdxConstant(0, DL));
6353 return Subvector;
6354 }
6355
6356 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6357 DAG.getVTList(VT), Ops, VT, MMO);
6358 }
6359
6360 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6361 // assume that the buffer is unswizzled.
6362 SmallVector<SDValue, 4> Loads;
6363 unsigned NumLoads = 1;
6364 MVT LoadVT = VT.getSimpleVT();
6365 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6366 assert((LoadVT.getScalarType() == MVT::i32 ||
6367 LoadVT.getScalarType() == MVT::f32));
6368
6369 if (NumElts == 8 || NumElts == 16) {
6370 NumLoads = NumElts / 4;
6371 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6372 }
6373
6374 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6375 SDValue Ops[] = {
6376 DAG.getEntryNode(), // Chain
6377 Rsrc, // rsrc
6378 DAG.getConstant(0, DL, MVT::i32), // vindex
6379 {}, // voffset
6380 {}, // soffset
6381 {}, // offset
6382 CachePolicy, // cachepolicy
6383 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6384 };
6385
6386 // Use the alignment to ensure that the required offsets will fit into the
6387 // immediate offsets.
6388 setBufferOffsets(Offset, DAG, &Ops[3],
6389 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6390
6391 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6392 for (unsigned i = 0; i < NumLoads; ++i) {
6393 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6394 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6395 LoadVT, MMO, DAG));
6396 }
6397
6398 if (NumElts == 8 || NumElts == 16)
6399 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6400
6401 return Loads[0];
6402 }
6403
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const6404 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6405 SelectionDAG &DAG) const {
6406 MachineFunction &MF = DAG.getMachineFunction();
6407 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6408
6409 EVT VT = Op.getValueType();
6410 SDLoc DL(Op);
6411 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6412
6413 // TODO: Should this propagate fast-math-flags?
6414
6415 switch (IntrinsicID) {
6416 case Intrinsic::amdgcn_implicit_buffer_ptr: {
6417 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6418 return emitNonHSAIntrinsicError(DAG, DL, VT);
6419 return getPreloadedValue(DAG, *MFI, VT,
6420 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6421 }
6422 case Intrinsic::amdgcn_dispatch_ptr:
6423 case Intrinsic::amdgcn_queue_ptr: {
6424 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6425 DiagnosticInfoUnsupported BadIntrin(
6426 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6427 DL.getDebugLoc());
6428 DAG.getContext()->diagnose(BadIntrin);
6429 return DAG.getUNDEF(VT);
6430 }
6431
6432 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6433 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6434 return getPreloadedValue(DAG, *MFI, VT, RegID);
6435 }
6436 case Intrinsic::amdgcn_implicitarg_ptr: {
6437 if (MFI->isEntryFunction())
6438 return getImplicitArgPtr(DAG, DL);
6439 return getPreloadedValue(DAG, *MFI, VT,
6440 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6441 }
6442 case Intrinsic::amdgcn_kernarg_segment_ptr: {
6443 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6444 // This only makes sense to call in a kernel, so just lower to null.
6445 return DAG.getConstant(0, DL, VT);
6446 }
6447
6448 return getPreloadedValue(DAG, *MFI, VT,
6449 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6450 }
6451 case Intrinsic::amdgcn_dispatch_id: {
6452 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6453 }
6454 case Intrinsic::amdgcn_rcp:
6455 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6456 case Intrinsic::amdgcn_rsq:
6457 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6458 case Intrinsic::amdgcn_rsq_legacy:
6459 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6460 return emitRemovedIntrinsicError(DAG, DL, VT);
6461 return SDValue();
6462 case Intrinsic::amdgcn_rcp_legacy:
6463 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6464 return emitRemovedIntrinsicError(DAG, DL, VT);
6465 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6466 case Intrinsic::amdgcn_rsq_clamp: {
6467 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6468 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6469
6470 Type *Type = VT.getTypeForEVT(*DAG.getContext());
6471 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6472 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6473
6474 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6475 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6476 DAG.getConstantFP(Max, DL, VT));
6477 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6478 DAG.getConstantFP(Min, DL, VT));
6479 }
6480 case Intrinsic::r600_read_ngroups_x:
6481 if (Subtarget->isAmdHsaOS())
6482 return emitNonHSAIntrinsicError(DAG, DL, VT);
6483
6484 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6485 SI::KernelInputOffsets::NGROUPS_X, Align(4),
6486 false);
6487 case Intrinsic::r600_read_ngroups_y:
6488 if (Subtarget->isAmdHsaOS())
6489 return emitNonHSAIntrinsicError(DAG, DL, VT);
6490
6491 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6492 SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6493 false);
6494 case Intrinsic::r600_read_ngroups_z:
6495 if (Subtarget->isAmdHsaOS())
6496 return emitNonHSAIntrinsicError(DAG, DL, VT);
6497
6498 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6499 SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6500 false);
6501 case Intrinsic::r600_read_global_size_x:
6502 if (Subtarget->isAmdHsaOS())
6503 return emitNonHSAIntrinsicError(DAG, DL, VT);
6504
6505 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6506 SI::KernelInputOffsets::GLOBAL_SIZE_X,
6507 Align(4), false);
6508 case Intrinsic::r600_read_global_size_y:
6509 if (Subtarget->isAmdHsaOS())
6510 return emitNonHSAIntrinsicError(DAG, DL, VT);
6511
6512 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6513 SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6514 Align(4), false);
6515 case Intrinsic::r600_read_global_size_z:
6516 if (Subtarget->isAmdHsaOS())
6517 return emitNonHSAIntrinsicError(DAG, DL, VT);
6518
6519 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6520 SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6521 Align(4), false);
6522 case Intrinsic::r600_read_local_size_x:
6523 if (Subtarget->isAmdHsaOS())
6524 return emitNonHSAIntrinsicError(DAG, DL, VT);
6525
6526 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6527 SI::KernelInputOffsets::LOCAL_SIZE_X);
6528 case Intrinsic::r600_read_local_size_y:
6529 if (Subtarget->isAmdHsaOS())
6530 return emitNonHSAIntrinsicError(DAG, DL, VT);
6531
6532 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6533 SI::KernelInputOffsets::LOCAL_SIZE_Y);
6534 case Intrinsic::r600_read_local_size_z:
6535 if (Subtarget->isAmdHsaOS())
6536 return emitNonHSAIntrinsicError(DAG, DL, VT);
6537
6538 return lowerImplicitZextParam(DAG, Op, MVT::i16,
6539 SI::KernelInputOffsets::LOCAL_SIZE_Z);
6540 case Intrinsic::amdgcn_workgroup_id_x:
6541 return getPreloadedValue(DAG, *MFI, VT,
6542 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6543 case Intrinsic::amdgcn_workgroup_id_y:
6544 return getPreloadedValue(DAG, *MFI, VT,
6545 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6546 case Intrinsic::amdgcn_workgroup_id_z:
6547 return getPreloadedValue(DAG, *MFI, VT,
6548 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6549 case Intrinsic::amdgcn_workitem_id_x:
6550 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6551 SDLoc(DAG.getEntryNode()),
6552 MFI->getArgInfo().WorkItemIDX);
6553 case Intrinsic::amdgcn_workitem_id_y:
6554 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6555 SDLoc(DAG.getEntryNode()),
6556 MFI->getArgInfo().WorkItemIDY);
6557 case Intrinsic::amdgcn_workitem_id_z:
6558 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6559 SDLoc(DAG.getEntryNode()),
6560 MFI->getArgInfo().WorkItemIDZ);
6561 case Intrinsic::amdgcn_wavefrontsize:
6562 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6563 SDLoc(Op), MVT::i32);
6564 case Intrinsic::amdgcn_s_buffer_load: {
6565 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
6566 SDValue GLC;
6567 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
6568 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
6569 IsGFX10Plus ? &DLC : nullptr))
6570 return Op;
6571 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6572 DAG);
6573 }
6574 case Intrinsic::amdgcn_fdiv_fast:
6575 return lowerFDIV_FAST(Op, DAG);
6576 case Intrinsic::amdgcn_sin:
6577 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6578
6579 case Intrinsic::amdgcn_cos:
6580 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6581
6582 case Intrinsic::amdgcn_mul_u24:
6583 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6584 case Intrinsic::amdgcn_mul_i24:
6585 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6586
6587 case Intrinsic::amdgcn_log_clamp: {
6588 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6589 return SDValue();
6590
6591 DiagnosticInfoUnsupported BadIntrin(
6592 MF.getFunction(), "intrinsic not supported on subtarget",
6593 DL.getDebugLoc());
6594 DAG.getContext()->diagnose(BadIntrin);
6595 return DAG.getUNDEF(VT);
6596 }
6597 case Intrinsic::amdgcn_ldexp:
6598 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6599 Op.getOperand(1), Op.getOperand(2));
6600
6601 case Intrinsic::amdgcn_fract:
6602 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6603
6604 case Intrinsic::amdgcn_class:
6605 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6606 Op.getOperand(1), Op.getOperand(2));
6607 case Intrinsic::amdgcn_div_fmas:
6608 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6609 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6610 Op.getOperand(4));
6611
6612 case Intrinsic::amdgcn_div_fixup:
6613 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6614 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6615
6616 case Intrinsic::amdgcn_div_scale: {
6617 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6618
6619 // Translate to the operands expected by the machine instruction. The
6620 // first parameter must be the same as the first instruction.
6621 SDValue Numerator = Op.getOperand(1);
6622 SDValue Denominator = Op.getOperand(2);
6623
6624 // Note this order is opposite of the machine instruction's operations,
6625 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6626 // intrinsic has the numerator as the first operand to match a normal
6627 // division operation.
6628
6629 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6630
6631 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6632 Denominator, Numerator);
6633 }
6634 case Intrinsic::amdgcn_icmp: {
6635 // There is a Pat that handles this variant, so return it as-is.
6636 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6637 Op.getConstantOperandVal(2) == 0 &&
6638 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6639 return Op;
6640 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6641 }
6642 case Intrinsic::amdgcn_fcmp: {
6643 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6644 }
6645 case Intrinsic::amdgcn_ballot:
6646 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6647 case Intrinsic::amdgcn_fmed3:
6648 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6649 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6650 case Intrinsic::amdgcn_fdot2:
6651 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6652 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6653 Op.getOperand(4));
6654 case Intrinsic::amdgcn_fmul_legacy:
6655 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6656 Op.getOperand(1), Op.getOperand(2));
6657 case Intrinsic::amdgcn_sffbh:
6658 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6659 case Intrinsic::amdgcn_sbfe:
6660 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6661 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6662 case Intrinsic::amdgcn_ubfe:
6663 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6664 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6665 case Intrinsic::amdgcn_cvt_pkrtz:
6666 case Intrinsic::amdgcn_cvt_pknorm_i16:
6667 case Intrinsic::amdgcn_cvt_pknorm_u16:
6668 case Intrinsic::amdgcn_cvt_pk_i16:
6669 case Intrinsic::amdgcn_cvt_pk_u16: {
6670 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6671 EVT VT = Op.getValueType();
6672 unsigned Opcode;
6673
6674 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6675 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6676 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6677 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6678 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6679 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6680 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6681 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6682 else
6683 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6684
6685 if (isTypeLegal(VT))
6686 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6687
6688 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6689 Op.getOperand(1), Op.getOperand(2));
6690 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6691 }
6692 case Intrinsic::amdgcn_fmad_ftz:
6693 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6694 Op.getOperand(2), Op.getOperand(3));
6695
6696 case Intrinsic::amdgcn_if_break:
6697 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6698 Op->getOperand(1), Op->getOperand(2)), 0);
6699
6700 case Intrinsic::amdgcn_groupstaticsize: {
6701 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6702 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6703 return Op;
6704
6705 const Module *M = MF.getFunction().getParent();
6706 const GlobalValue *GV =
6707 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6708 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6709 SIInstrInfo::MO_ABS32_LO);
6710 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6711 }
6712 case Intrinsic::amdgcn_is_shared:
6713 case Intrinsic::amdgcn_is_private: {
6714 SDLoc SL(Op);
6715 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6716 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6717 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6718 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6719 Op.getOperand(1));
6720
6721 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6722 DAG.getConstant(1, SL, MVT::i32));
6723 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6724 }
6725 case Intrinsic::amdgcn_alignbit:
6726 return DAG.getNode(ISD::FSHR, DL, VT,
6727 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6728 case Intrinsic::amdgcn_reloc_constant: {
6729 Module *M = const_cast<Module *>(MF.getFunction().getParent());
6730 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6731 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6732 auto RelocSymbol = cast<GlobalVariable>(
6733 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6734 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6735 SIInstrInfo::MO_ABS32_LO);
6736 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6737 }
6738 default:
6739 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6740 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6741 return lowerImage(Op, ImageDimIntr, DAG, false);
6742
6743 return Op;
6744 }
6745 }
6746
6747 // This function computes an appropriate offset to pass to
6748 // MachineMemOperand::setOffset() based on the offset inputs to
6749 // an intrinsic. If any of the offsets are non-contstant or
6750 // if VIndex is non-zero then this function returns 0. Otherwise,
6751 // it returns the sum of VOffset, SOffset, and Offset.
getBufferOffsetForMMO(SDValue VOffset,SDValue SOffset,SDValue Offset,SDValue VIndex=SDValue ())6752 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6753 SDValue SOffset,
6754 SDValue Offset,
6755 SDValue VIndex = SDValue()) {
6756
6757 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6758 !isa<ConstantSDNode>(Offset))
6759 return 0;
6760
6761 if (VIndex) {
6762 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6763 return 0;
6764 }
6765
6766 return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6767 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6768 cast<ConstantSDNode>(Offset)->getSExtValue();
6769 }
6770
lowerRawBufferAtomicIntrin(SDValue Op,SelectionDAG & DAG,unsigned NewOpcode) const6771 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6772 SelectionDAG &DAG,
6773 unsigned NewOpcode) const {
6774 SDLoc DL(Op);
6775
6776 SDValue VData = Op.getOperand(2);
6777 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6778 SDValue Ops[] = {
6779 Op.getOperand(0), // Chain
6780 VData, // vdata
6781 Op.getOperand(3), // rsrc
6782 DAG.getConstant(0, DL, MVT::i32), // vindex
6783 Offsets.first, // voffset
6784 Op.getOperand(5), // soffset
6785 Offsets.second, // offset
6786 Op.getOperand(6), // cachepolicy
6787 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6788 };
6789
6790 auto *M = cast<MemSDNode>(Op);
6791 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6792
6793 EVT MemVT = VData.getValueType();
6794 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6795 M->getMemOperand());
6796 }
6797
6798 SDValue
lowerStructBufferAtomicIntrin(SDValue Op,SelectionDAG & DAG,unsigned NewOpcode) const6799 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6800 unsigned NewOpcode) const {
6801 SDLoc DL(Op);
6802
6803 SDValue VData = Op.getOperand(2);
6804 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6805 SDValue Ops[] = {
6806 Op.getOperand(0), // Chain
6807 VData, // vdata
6808 Op.getOperand(3), // rsrc
6809 Op.getOperand(4), // vindex
6810 Offsets.first, // voffset
6811 Op.getOperand(6), // soffset
6812 Offsets.second, // offset
6813 Op.getOperand(7), // cachepolicy
6814 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6815 };
6816
6817 auto *M = cast<MemSDNode>(Op);
6818 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6819 Ops[3]));
6820
6821 EVT MemVT = VData.getValueType();
6822 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6823 M->getMemOperand());
6824 }
6825
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const6826 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6827 SelectionDAG &DAG) const {
6828 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6829 SDLoc DL(Op);
6830
6831 switch (IntrID) {
6832 case Intrinsic::amdgcn_ds_ordered_add:
6833 case Intrinsic::amdgcn_ds_ordered_swap: {
6834 MemSDNode *M = cast<MemSDNode>(Op);
6835 SDValue Chain = M->getOperand(0);
6836 SDValue M0 = M->getOperand(2);
6837 SDValue Value = M->getOperand(3);
6838 unsigned IndexOperand = M->getConstantOperandVal(7);
6839 unsigned WaveRelease = M->getConstantOperandVal(8);
6840 unsigned WaveDone = M->getConstantOperandVal(9);
6841
6842 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6843 IndexOperand &= ~0x3f;
6844 unsigned CountDw = 0;
6845
6846 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6847 CountDw = (IndexOperand >> 24) & 0xf;
6848 IndexOperand &= ~(0xf << 24);
6849
6850 if (CountDw < 1 || CountDw > 4) {
6851 report_fatal_error(
6852 "ds_ordered_count: dword count must be between 1 and 4");
6853 }
6854 }
6855
6856 if (IndexOperand)
6857 report_fatal_error("ds_ordered_count: bad index operand");
6858
6859 if (WaveDone && !WaveRelease)
6860 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6861
6862 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6863 unsigned ShaderType =
6864 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6865 unsigned Offset0 = OrderedCountIndex << 2;
6866 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6867 (Instruction << 4);
6868
6869 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6870 Offset1 |= (CountDw - 1) << 6;
6871
6872 unsigned Offset = Offset0 | (Offset1 << 8);
6873
6874 SDValue Ops[] = {
6875 Chain,
6876 Value,
6877 DAG.getTargetConstant(Offset, DL, MVT::i16),
6878 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6879 };
6880 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6881 M->getVTList(), Ops, M->getMemoryVT(),
6882 M->getMemOperand());
6883 }
6884 case Intrinsic::amdgcn_ds_fadd: {
6885 MemSDNode *M = cast<MemSDNode>(Op);
6886 unsigned Opc;
6887 switch (IntrID) {
6888 case Intrinsic::amdgcn_ds_fadd:
6889 Opc = ISD::ATOMIC_LOAD_FADD;
6890 break;
6891 }
6892
6893 return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6894 M->getOperand(0), M->getOperand(2), M->getOperand(3),
6895 M->getMemOperand());
6896 }
6897 case Intrinsic::amdgcn_atomic_inc:
6898 case Intrinsic::amdgcn_atomic_dec:
6899 case Intrinsic::amdgcn_ds_fmin:
6900 case Intrinsic::amdgcn_ds_fmax: {
6901 MemSDNode *M = cast<MemSDNode>(Op);
6902 unsigned Opc;
6903 switch (IntrID) {
6904 case Intrinsic::amdgcn_atomic_inc:
6905 Opc = AMDGPUISD::ATOMIC_INC;
6906 break;
6907 case Intrinsic::amdgcn_atomic_dec:
6908 Opc = AMDGPUISD::ATOMIC_DEC;
6909 break;
6910 case Intrinsic::amdgcn_ds_fmin:
6911 Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6912 break;
6913 case Intrinsic::amdgcn_ds_fmax:
6914 Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6915 break;
6916 default:
6917 llvm_unreachable("Unknown intrinsic!");
6918 }
6919 SDValue Ops[] = {
6920 M->getOperand(0), // Chain
6921 M->getOperand(2), // Ptr
6922 M->getOperand(3) // Value
6923 };
6924
6925 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6926 M->getMemoryVT(), M->getMemOperand());
6927 }
6928 case Intrinsic::amdgcn_buffer_load:
6929 case Intrinsic::amdgcn_buffer_load_format: {
6930 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6931 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6932 unsigned IdxEn = 1;
6933 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6934 IdxEn = Idx->getZExtValue() != 0;
6935 SDValue Ops[] = {
6936 Op.getOperand(0), // Chain
6937 Op.getOperand(2), // rsrc
6938 Op.getOperand(3), // vindex
6939 SDValue(), // voffset -- will be set by setBufferOffsets
6940 SDValue(), // soffset -- will be set by setBufferOffsets
6941 SDValue(), // offset -- will be set by setBufferOffsets
6942 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6943 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6944 };
6945
6946 unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6947 // We don't know the offset if vindex is non-zero, so clear it.
6948 if (IdxEn)
6949 Offset = 0;
6950
6951 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6952 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6953
6954 EVT VT = Op.getValueType();
6955 EVT IntVT = VT.changeTypeToInteger();
6956 auto *M = cast<MemSDNode>(Op);
6957 M->getMemOperand()->setOffset(Offset);
6958 EVT LoadVT = Op.getValueType();
6959
6960 if (LoadVT.getScalarType() == MVT::f16)
6961 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6962 M, DAG, Ops);
6963
6964 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6965 if (LoadVT.getScalarType() == MVT::i8 ||
6966 LoadVT.getScalarType() == MVT::i16)
6967 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6968
6969 return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6970 M->getMemOperand(), DAG);
6971 }
6972 case Intrinsic::amdgcn_raw_buffer_load:
6973 case Intrinsic::amdgcn_raw_buffer_load_format: {
6974 const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6975
6976 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6977 SDValue Ops[] = {
6978 Op.getOperand(0), // Chain
6979 Op.getOperand(2), // rsrc
6980 DAG.getConstant(0, DL, MVT::i32), // vindex
6981 Offsets.first, // voffset
6982 Op.getOperand(4), // soffset
6983 Offsets.second, // offset
6984 Op.getOperand(5), // cachepolicy, swizzled buffer
6985 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6986 };
6987
6988 auto *M = cast<MemSDNode>(Op);
6989 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6990 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6991 }
6992 case Intrinsic::amdgcn_struct_buffer_load:
6993 case Intrinsic::amdgcn_struct_buffer_load_format: {
6994 const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6995
6996 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6997 SDValue Ops[] = {
6998 Op.getOperand(0), // Chain
6999 Op.getOperand(2), // rsrc
7000 Op.getOperand(3), // vindex
7001 Offsets.first, // voffset
7002 Op.getOperand(5), // soffset
7003 Offsets.second, // offset
7004 Op.getOperand(6), // cachepolicy, swizzled buffer
7005 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7006 };
7007
7008 auto *M = cast<MemSDNode>(Op);
7009 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
7010 Ops[2]));
7011 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
7012 }
7013 case Intrinsic::amdgcn_tbuffer_load: {
7014 MemSDNode *M = cast<MemSDNode>(Op);
7015 EVT LoadVT = Op.getValueType();
7016
7017 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7018 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7019 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7020 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7021 unsigned IdxEn = 1;
7022 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
7023 IdxEn = Idx->getZExtValue() != 0;
7024 SDValue Ops[] = {
7025 Op.getOperand(0), // Chain
7026 Op.getOperand(2), // rsrc
7027 Op.getOperand(3), // vindex
7028 Op.getOperand(4), // voffset
7029 Op.getOperand(5), // soffset
7030 Op.getOperand(6), // offset
7031 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7032 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7033 DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7034 };
7035
7036 if (LoadVT.getScalarType() == MVT::f16)
7037 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7038 M, DAG, Ops);
7039 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7040 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7041 DAG);
7042 }
7043 case Intrinsic::amdgcn_raw_tbuffer_load: {
7044 MemSDNode *M = cast<MemSDNode>(Op);
7045 EVT LoadVT = Op.getValueType();
7046 auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7047
7048 SDValue Ops[] = {
7049 Op.getOperand(0), // Chain
7050 Op.getOperand(2), // rsrc
7051 DAG.getConstant(0, DL, MVT::i32), // vindex
7052 Offsets.first, // voffset
7053 Op.getOperand(4), // soffset
7054 Offsets.second, // offset
7055 Op.getOperand(5), // format
7056 Op.getOperand(6), // cachepolicy, swizzled buffer
7057 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7058 };
7059
7060 if (LoadVT.getScalarType() == MVT::f16)
7061 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7062 M, DAG, Ops);
7063 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7064 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7065 DAG);
7066 }
7067 case Intrinsic::amdgcn_struct_tbuffer_load: {
7068 MemSDNode *M = cast<MemSDNode>(Op);
7069 EVT LoadVT = Op.getValueType();
7070 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7071
7072 SDValue Ops[] = {
7073 Op.getOperand(0), // Chain
7074 Op.getOperand(2), // rsrc
7075 Op.getOperand(3), // vindex
7076 Offsets.first, // voffset
7077 Op.getOperand(5), // soffset
7078 Offsets.second, // offset
7079 Op.getOperand(6), // format
7080 Op.getOperand(7), // cachepolicy, swizzled buffer
7081 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7082 };
7083
7084 if (LoadVT.getScalarType() == MVT::f16)
7085 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7086 M, DAG, Ops);
7087 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7088 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7089 DAG);
7090 }
7091 case Intrinsic::amdgcn_buffer_atomic_swap:
7092 case Intrinsic::amdgcn_buffer_atomic_add:
7093 case Intrinsic::amdgcn_buffer_atomic_sub:
7094 case Intrinsic::amdgcn_buffer_atomic_csub:
7095 case Intrinsic::amdgcn_buffer_atomic_smin:
7096 case Intrinsic::amdgcn_buffer_atomic_umin:
7097 case Intrinsic::amdgcn_buffer_atomic_smax:
7098 case Intrinsic::amdgcn_buffer_atomic_umax:
7099 case Intrinsic::amdgcn_buffer_atomic_and:
7100 case Intrinsic::amdgcn_buffer_atomic_or:
7101 case Intrinsic::amdgcn_buffer_atomic_xor:
7102 case Intrinsic::amdgcn_buffer_atomic_fadd: {
7103 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7104 unsigned IdxEn = 1;
7105 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7106 IdxEn = Idx->getZExtValue() != 0;
7107 SDValue Ops[] = {
7108 Op.getOperand(0), // Chain
7109 Op.getOperand(2), // vdata
7110 Op.getOperand(3), // rsrc
7111 Op.getOperand(4), // vindex
7112 SDValue(), // voffset -- will be set by setBufferOffsets
7113 SDValue(), // soffset -- will be set by setBufferOffsets
7114 SDValue(), // offset -- will be set by setBufferOffsets
7115 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7116 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7117 };
7118 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7119 // We don't know the offset if vindex is non-zero, so clear it.
7120 if (IdxEn)
7121 Offset = 0;
7122 EVT VT = Op.getValueType();
7123
7124 auto *M = cast<MemSDNode>(Op);
7125 M->getMemOperand()->setOffset(Offset);
7126 unsigned Opcode = 0;
7127
7128 switch (IntrID) {
7129 case Intrinsic::amdgcn_buffer_atomic_swap:
7130 Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7131 break;
7132 case Intrinsic::amdgcn_buffer_atomic_add:
7133 Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7134 break;
7135 case Intrinsic::amdgcn_buffer_atomic_sub:
7136 Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7137 break;
7138 case Intrinsic::amdgcn_buffer_atomic_csub:
7139 Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7140 break;
7141 case Intrinsic::amdgcn_buffer_atomic_smin:
7142 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7143 break;
7144 case Intrinsic::amdgcn_buffer_atomic_umin:
7145 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7146 break;
7147 case Intrinsic::amdgcn_buffer_atomic_smax:
7148 Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7149 break;
7150 case Intrinsic::amdgcn_buffer_atomic_umax:
7151 Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7152 break;
7153 case Intrinsic::amdgcn_buffer_atomic_and:
7154 Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7155 break;
7156 case Intrinsic::amdgcn_buffer_atomic_or:
7157 Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7158 break;
7159 case Intrinsic::amdgcn_buffer_atomic_xor:
7160 Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7161 break;
7162 case Intrinsic::amdgcn_buffer_atomic_fadd:
7163 if (!Op.getValue(0).use_empty()) {
7164 DiagnosticInfoUnsupported
7165 NoFpRet(DAG.getMachineFunction().getFunction(),
7166 "return versions of fp atomics not supported",
7167 DL.getDebugLoc(), DS_Error);
7168 DAG.getContext()->diagnose(NoFpRet);
7169 return SDValue();
7170 }
7171 Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7172 break;
7173 default:
7174 llvm_unreachable("unhandled atomic opcode");
7175 }
7176
7177 return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7178 M->getMemOperand());
7179 }
7180 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7181 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7182 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7183 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7184 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7185 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7186 case Intrinsic::amdgcn_raw_buffer_atomic_add:
7187 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7188 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7189 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7190 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7191 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7192 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7193 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7194 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7195 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7196 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7197 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7198 case Intrinsic::amdgcn_raw_buffer_atomic_and:
7199 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7200 case Intrinsic::amdgcn_raw_buffer_atomic_or:
7201 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7202 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7203 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7204 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7205 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7206 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7207 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7208 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7209 return lowerStructBufferAtomicIntrin(Op, DAG,
7210 AMDGPUISD::BUFFER_ATOMIC_SWAP);
7211 case Intrinsic::amdgcn_struct_buffer_atomic_add:
7212 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7213 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7214 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7215 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7216 return lowerStructBufferAtomicIntrin(Op, DAG,
7217 AMDGPUISD::BUFFER_ATOMIC_SMIN);
7218 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7219 return lowerStructBufferAtomicIntrin(Op, DAG,
7220 AMDGPUISD::BUFFER_ATOMIC_UMIN);
7221 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7222 return lowerStructBufferAtomicIntrin(Op, DAG,
7223 AMDGPUISD::BUFFER_ATOMIC_SMAX);
7224 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7225 return lowerStructBufferAtomicIntrin(Op, DAG,
7226 AMDGPUISD::BUFFER_ATOMIC_UMAX);
7227 case Intrinsic::amdgcn_struct_buffer_atomic_and:
7228 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7229 case Intrinsic::amdgcn_struct_buffer_atomic_or:
7230 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7231 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7232 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7233 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7234 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7235 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7236 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7237
7238 case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7239 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7240 unsigned IdxEn = 1;
7241 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7242 IdxEn = Idx->getZExtValue() != 0;
7243 SDValue Ops[] = {
7244 Op.getOperand(0), // Chain
7245 Op.getOperand(2), // src
7246 Op.getOperand(3), // cmp
7247 Op.getOperand(4), // rsrc
7248 Op.getOperand(5), // vindex
7249 SDValue(), // voffset -- will be set by setBufferOffsets
7250 SDValue(), // soffset -- will be set by setBufferOffsets
7251 SDValue(), // offset -- will be set by setBufferOffsets
7252 DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7253 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7254 };
7255 unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7256 // We don't know the offset if vindex is non-zero, so clear it.
7257 if (IdxEn)
7258 Offset = 0;
7259 EVT VT = Op.getValueType();
7260 auto *M = cast<MemSDNode>(Op);
7261 M->getMemOperand()->setOffset(Offset);
7262
7263 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7264 Op->getVTList(), Ops, VT, M->getMemOperand());
7265 }
7266 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7267 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7268 SDValue Ops[] = {
7269 Op.getOperand(0), // Chain
7270 Op.getOperand(2), // src
7271 Op.getOperand(3), // cmp
7272 Op.getOperand(4), // rsrc
7273 DAG.getConstant(0, DL, MVT::i32), // vindex
7274 Offsets.first, // voffset
7275 Op.getOperand(6), // soffset
7276 Offsets.second, // offset
7277 Op.getOperand(7), // cachepolicy
7278 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7279 };
7280 EVT VT = Op.getValueType();
7281 auto *M = cast<MemSDNode>(Op);
7282 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7283
7284 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7285 Op->getVTList(), Ops, VT, M->getMemOperand());
7286 }
7287 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7288 auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7289 SDValue Ops[] = {
7290 Op.getOperand(0), // Chain
7291 Op.getOperand(2), // src
7292 Op.getOperand(3), // cmp
7293 Op.getOperand(4), // rsrc
7294 Op.getOperand(5), // vindex
7295 Offsets.first, // voffset
7296 Op.getOperand(7), // soffset
7297 Offsets.second, // offset
7298 Op.getOperand(8), // cachepolicy
7299 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7300 };
7301 EVT VT = Op.getValueType();
7302 auto *M = cast<MemSDNode>(Op);
7303 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7304 Ops[4]));
7305
7306 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7307 Op->getVTList(), Ops, VT, M->getMemOperand());
7308 }
7309 case Intrinsic::amdgcn_global_atomic_fadd: {
7310 if (!Op.getValue(0).use_empty()) {
7311 DiagnosticInfoUnsupported
7312 NoFpRet(DAG.getMachineFunction().getFunction(),
7313 "return versions of fp atomics not supported",
7314 DL.getDebugLoc(), DS_Error);
7315 DAG.getContext()->diagnose(NoFpRet);
7316 return SDValue();
7317 }
7318 MemSDNode *M = cast<MemSDNode>(Op);
7319 SDValue Ops[] = {
7320 M->getOperand(0), // Chain
7321 M->getOperand(2), // Ptr
7322 M->getOperand(3) // Value
7323 };
7324
7325 EVT VT = Op.getOperand(3).getValueType();
7326 return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7327 DAG.getVTList(VT, MVT::Other), Ops,
7328 M->getMemOperand());
7329 }
7330 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7331 SDLoc DL(Op);
7332 MemSDNode *M = cast<MemSDNode>(Op);
7333 SDValue NodePtr = M->getOperand(2);
7334 SDValue RayExtent = M->getOperand(3);
7335 SDValue RayOrigin = M->getOperand(4);
7336 SDValue RayDir = M->getOperand(5);
7337 SDValue RayInvDir = M->getOperand(6);
7338 SDValue TDescr = M->getOperand(7);
7339
7340 assert(NodePtr.getValueType() == MVT::i32 ||
7341 NodePtr.getValueType() == MVT::i64);
7342 assert(RayDir.getValueType() == MVT::v4f16 ||
7343 RayDir.getValueType() == MVT::v4f32);
7344
7345 bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7346 bool Is64 = NodePtr.getValueType() == MVT::i64;
7347 unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7348 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7349 : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7350 : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7351
7352 SmallVector<SDValue, 16> Ops;
7353
7354 auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7355 SmallVector<SDValue, 3> Lanes;
7356 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7357 if (Lanes[0].getValueSizeInBits() == 32) {
7358 for (unsigned I = 0; I < 3; ++I)
7359 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7360 } else {
7361 if (IsAligned) {
7362 Ops.push_back(
7363 DAG.getBitcast(MVT::i32,
7364 DAG.getBuildVector(MVT::v2f16, DL,
7365 { Lanes[0], Lanes[1] })));
7366 Ops.push_back(Lanes[2]);
7367 } else {
7368 SDValue Elt0 = Ops.pop_back_val();
7369 Ops.push_back(
7370 DAG.getBitcast(MVT::i32,
7371 DAG.getBuildVector(MVT::v2f16, DL,
7372 { Elt0, Lanes[0] })));
7373 Ops.push_back(
7374 DAG.getBitcast(MVT::i32,
7375 DAG.getBuildVector(MVT::v2f16, DL,
7376 { Lanes[1], Lanes[2] })));
7377 }
7378 }
7379 };
7380
7381 if (Is64)
7382 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7383 else
7384 Ops.push_back(NodePtr);
7385
7386 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7387 packLanes(RayOrigin, true);
7388 packLanes(RayDir, true);
7389 packLanes(RayInvDir, false);
7390 Ops.push_back(TDescr);
7391 if (IsA16)
7392 Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7393 Ops.push_back(M->getChain());
7394
7395 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7396 MachineMemOperand *MemRef = M->getMemOperand();
7397 DAG.setNodeMemRefs(NewNode, {MemRef});
7398 return SDValue(NewNode, 0);
7399 }
7400 default:
7401 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7402 AMDGPU::getImageDimIntrinsicInfo(IntrID))
7403 return lowerImage(Op, ImageDimIntr, DAG, true);
7404
7405 return SDValue();
7406 }
7407 }
7408
7409 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7410 // dwordx4 if on SI.
getMemIntrinsicNode(unsigned Opcode,const SDLoc & DL,SDVTList VTList,ArrayRef<SDValue> Ops,EVT MemVT,MachineMemOperand * MMO,SelectionDAG & DAG) const7411 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7412 SDVTList VTList,
7413 ArrayRef<SDValue> Ops, EVT MemVT,
7414 MachineMemOperand *MMO,
7415 SelectionDAG &DAG) const {
7416 EVT VT = VTList.VTs[0];
7417 EVT WidenedVT = VT;
7418 EVT WidenedMemVT = MemVT;
7419 if (!Subtarget->hasDwordx3LoadStores() &&
7420 (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7421 WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7422 WidenedVT.getVectorElementType(), 4);
7423 WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7424 WidenedMemVT.getVectorElementType(), 4);
7425 MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7426 }
7427
7428 assert(VTList.NumVTs == 2);
7429 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7430
7431 auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7432 WidenedMemVT, MMO);
7433 if (WidenedVT != VT) {
7434 auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7435 DAG.getVectorIdxConstant(0, DL));
7436 NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7437 }
7438 return NewOp;
7439 }
7440
handleD16VData(SDValue VData,SelectionDAG & DAG,bool ImageStore) const7441 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7442 bool ImageStore) const {
7443 EVT StoreVT = VData.getValueType();
7444
7445 // No change for f16 and legal vector D16 types.
7446 if (!StoreVT.isVector())
7447 return VData;
7448
7449 SDLoc DL(VData);
7450 unsigned NumElements = StoreVT.getVectorNumElements();
7451
7452 if (Subtarget->hasUnpackedD16VMem()) {
7453 // We need to unpack the packed data to store.
7454 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7455 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7456
7457 EVT EquivStoreVT =
7458 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7459 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7460 return DAG.UnrollVectorOp(ZExt.getNode());
7461 }
7462
7463 // The sq block of gfx8.1 does not estimate register use correctly for d16
7464 // image store instructions. The data operand is computed as if it were not a
7465 // d16 image instruction.
7466 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7467 // Bitcast to i16
7468 EVT IntStoreVT = StoreVT.changeTypeToInteger();
7469 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7470
7471 // Decompose into scalars
7472 SmallVector<SDValue, 4> Elts;
7473 DAG.ExtractVectorElements(IntVData, Elts);
7474
7475 // Group pairs of i16 into v2i16 and bitcast to i32
7476 SmallVector<SDValue, 4> PackedElts;
7477 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7478 SDValue Pair =
7479 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7480 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7481 PackedElts.push_back(IntPair);
7482 }
7483 if ((NumElements % 2) == 1) {
7484 // Handle v3i16
7485 unsigned I = Elts.size() / 2;
7486 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
7487 {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
7488 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7489 PackedElts.push_back(IntPair);
7490 }
7491
7492 // Pad using UNDEF
7493 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
7494
7495 // Build final vector
7496 EVT VecVT =
7497 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7498 return DAG.getBuildVector(VecVT, DL, PackedElts);
7499 }
7500
7501 if (NumElements == 3) {
7502 EVT IntStoreVT =
7503 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7504 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7505
7506 EVT WidenedStoreVT = EVT::getVectorVT(
7507 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7508 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7509 WidenedStoreVT.getStoreSizeInBits());
7510 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7511 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7512 }
7513
7514 assert(isTypeLegal(StoreVT));
7515 return VData;
7516 }
7517
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const7518 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7519 SelectionDAG &DAG) const {
7520 SDLoc DL(Op);
7521 SDValue Chain = Op.getOperand(0);
7522 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7523 MachineFunction &MF = DAG.getMachineFunction();
7524
7525 switch (IntrinsicID) {
7526 case Intrinsic::amdgcn_exp_compr: {
7527 SDValue Src0 = Op.getOperand(4);
7528 SDValue Src1 = Op.getOperand(5);
7529 // Hack around illegal type on SI by directly selecting it.
7530 if (isTypeLegal(Src0.getValueType()))
7531 return SDValue();
7532
7533 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7534 SDValue Undef = DAG.getUNDEF(MVT::f32);
7535 const SDValue Ops[] = {
7536 Op.getOperand(2), // tgt
7537 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7538 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7539 Undef, // src2
7540 Undef, // src3
7541 Op.getOperand(7), // vm
7542 DAG.getTargetConstant(1, DL, MVT::i1), // compr
7543 Op.getOperand(3), // en
7544 Op.getOperand(0) // Chain
7545 };
7546
7547 unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7548 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7549 }
7550 case Intrinsic::amdgcn_s_barrier: {
7551 if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7552 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7553 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7554 if (WGSize <= ST.getWavefrontSize())
7555 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7556 Op.getOperand(0)), 0);
7557 }
7558 return SDValue();
7559 };
7560 case Intrinsic::amdgcn_tbuffer_store: {
7561 SDValue VData = Op.getOperand(2);
7562 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7563 if (IsD16)
7564 VData = handleD16VData(VData, DAG);
7565 unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7566 unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7567 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7568 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7569 unsigned IdxEn = 1;
7570 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7571 IdxEn = Idx->getZExtValue() != 0;
7572 SDValue Ops[] = {
7573 Chain,
7574 VData, // vdata
7575 Op.getOperand(3), // rsrc
7576 Op.getOperand(4), // vindex
7577 Op.getOperand(5), // voffset
7578 Op.getOperand(6), // soffset
7579 Op.getOperand(7), // offset
7580 DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7581 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7582 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7583 };
7584 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7585 AMDGPUISD::TBUFFER_STORE_FORMAT;
7586 MemSDNode *M = cast<MemSDNode>(Op);
7587 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7588 M->getMemoryVT(), M->getMemOperand());
7589 }
7590
7591 case Intrinsic::amdgcn_struct_tbuffer_store: {
7592 SDValue VData = Op.getOperand(2);
7593 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7594 if (IsD16)
7595 VData = handleD16VData(VData, DAG);
7596 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7597 SDValue Ops[] = {
7598 Chain,
7599 VData, // vdata
7600 Op.getOperand(3), // rsrc
7601 Op.getOperand(4), // vindex
7602 Offsets.first, // voffset
7603 Op.getOperand(6), // soffset
7604 Offsets.second, // offset
7605 Op.getOperand(7), // format
7606 Op.getOperand(8), // cachepolicy, swizzled buffer
7607 DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7608 };
7609 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7610 AMDGPUISD::TBUFFER_STORE_FORMAT;
7611 MemSDNode *M = cast<MemSDNode>(Op);
7612 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7613 M->getMemoryVT(), M->getMemOperand());
7614 }
7615
7616 case Intrinsic::amdgcn_raw_tbuffer_store: {
7617 SDValue VData = Op.getOperand(2);
7618 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7619 if (IsD16)
7620 VData = handleD16VData(VData, DAG);
7621 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7622 SDValue Ops[] = {
7623 Chain,
7624 VData, // vdata
7625 Op.getOperand(3), // rsrc
7626 DAG.getConstant(0, DL, MVT::i32), // vindex
7627 Offsets.first, // voffset
7628 Op.getOperand(5), // soffset
7629 Offsets.second, // offset
7630 Op.getOperand(6), // format
7631 Op.getOperand(7), // cachepolicy, swizzled buffer
7632 DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7633 };
7634 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7635 AMDGPUISD::TBUFFER_STORE_FORMAT;
7636 MemSDNode *M = cast<MemSDNode>(Op);
7637 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7638 M->getMemoryVT(), M->getMemOperand());
7639 }
7640
7641 case Intrinsic::amdgcn_buffer_store:
7642 case Intrinsic::amdgcn_buffer_store_format: {
7643 SDValue VData = Op.getOperand(2);
7644 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7645 if (IsD16)
7646 VData = handleD16VData(VData, DAG);
7647 unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7648 unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7649 unsigned IdxEn = 1;
7650 if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7651 IdxEn = Idx->getZExtValue() != 0;
7652 SDValue Ops[] = {
7653 Chain,
7654 VData,
7655 Op.getOperand(3), // rsrc
7656 Op.getOperand(4), // vindex
7657 SDValue(), // voffset -- will be set by setBufferOffsets
7658 SDValue(), // soffset -- will be set by setBufferOffsets
7659 SDValue(), // offset -- will be set by setBufferOffsets
7660 DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7661 DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7662 };
7663 unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7664 // We don't know the offset if vindex is non-zero, so clear it.
7665 if (IdxEn)
7666 Offset = 0;
7667 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7668 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7669 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7670 MemSDNode *M = cast<MemSDNode>(Op);
7671 M->getMemOperand()->setOffset(Offset);
7672
7673 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7674 EVT VDataType = VData.getValueType().getScalarType();
7675 if (VDataType == MVT::i8 || VDataType == MVT::i16)
7676 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7677
7678 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7679 M->getMemoryVT(), M->getMemOperand());
7680 }
7681
7682 case Intrinsic::amdgcn_raw_buffer_store:
7683 case Intrinsic::amdgcn_raw_buffer_store_format: {
7684 const bool IsFormat =
7685 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7686
7687 SDValue VData = Op.getOperand(2);
7688 EVT VDataVT = VData.getValueType();
7689 EVT EltType = VDataVT.getScalarType();
7690 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7691 if (IsD16) {
7692 VData = handleD16VData(VData, DAG);
7693 VDataVT = VData.getValueType();
7694 }
7695
7696 if (!isTypeLegal(VDataVT)) {
7697 VData =
7698 DAG.getNode(ISD::BITCAST, DL,
7699 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7700 }
7701
7702 auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7703 SDValue Ops[] = {
7704 Chain,
7705 VData,
7706 Op.getOperand(3), // rsrc
7707 DAG.getConstant(0, DL, MVT::i32), // vindex
7708 Offsets.first, // voffset
7709 Op.getOperand(5), // soffset
7710 Offsets.second, // offset
7711 Op.getOperand(6), // cachepolicy, swizzled buffer
7712 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7713 };
7714 unsigned Opc =
7715 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7716 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7717 MemSDNode *M = cast<MemSDNode>(Op);
7718 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7719
7720 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7721 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7722 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7723
7724 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7725 M->getMemoryVT(), M->getMemOperand());
7726 }
7727
7728 case Intrinsic::amdgcn_struct_buffer_store:
7729 case Intrinsic::amdgcn_struct_buffer_store_format: {
7730 const bool IsFormat =
7731 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7732
7733 SDValue VData = Op.getOperand(2);
7734 EVT VDataVT = VData.getValueType();
7735 EVT EltType = VDataVT.getScalarType();
7736 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7737
7738 if (IsD16) {
7739 VData = handleD16VData(VData, DAG);
7740 VDataVT = VData.getValueType();
7741 }
7742
7743 if (!isTypeLegal(VDataVT)) {
7744 VData =
7745 DAG.getNode(ISD::BITCAST, DL,
7746 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7747 }
7748
7749 auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7750 SDValue Ops[] = {
7751 Chain,
7752 VData,
7753 Op.getOperand(3), // rsrc
7754 Op.getOperand(4), // vindex
7755 Offsets.first, // voffset
7756 Op.getOperand(6), // soffset
7757 Offsets.second, // offset
7758 Op.getOperand(7), // cachepolicy, swizzled buffer
7759 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7760 };
7761 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7762 AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7763 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7764 MemSDNode *M = cast<MemSDNode>(Op);
7765 M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7766 Ops[3]));
7767
7768 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7769 EVT VDataType = VData.getValueType().getScalarType();
7770 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7771 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7772
7773 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7774 M->getMemoryVT(), M->getMemOperand());
7775 }
7776 case Intrinsic::amdgcn_end_cf:
7777 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7778 Op->getOperand(2), Chain), 0);
7779
7780 default: {
7781 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7782 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7783 return lowerImage(Op, ImageDimIntr, DAG, true);
7784
7785 return Op;
7786 }
7787 }
7788 }
7789
7790 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7791 // offset (the offset that is included in bounds checking and swizzling, to be
7792 // split between the instruction's voffset and immoffset fields) and soffset
7793 // (the offset that is excluded from bounds checking and swizzling, to go in
7794 // the instruction's soffset field). This function takes the first kind of
7795 // offset and figures out how to split it between voffset and immoffset.
splitBufferOffsets(SDValue Offset,SelectionDAG & DAG) const7796 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7797 SDValue Offset, SelectionDAG &DAG) const {
7798 SDLoc DL(Offset);
7799 const unsigned MaxImm = 4095;
7800 SDValue N0 = Offset;
7801 ConstantSDNode *C1 = nullptr;
7802
7803 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7804 N0 = SDValue();
7805 else if (DAG.isBaseWithConstantOffset(N0)) {
7806 C1 = cast<ConstantSDNode>(N0.getOperand(1));
7807 N0 = N0.getOperand(0);
7808 }
7809
7810 if (C1) {
7811 unsigned ImmOffset = C1->getZExtValue();
7812 // If the immediate value is too big for the immoffset field, put the value
7813 // and -4096 into the immoffset field so that the value that is copied/added
7814 // for the voffset field is a multiple of 4096, and it stands more chance
7815 // of being CSEd with the copy/add for another similar load/store.
7816 // However, do not do that rounding down to a multiple of 4096 if that is a
7817 // negative number, as it appears to be illegal to have a negative offset
7818 // in the vgpr, even if adding the immediate offset makes it positive.
7819 unsigned Overflow = ImmOffset & ~MaxImm;
7820 ImmOffset -= Overflow;
7821 if ((int32_t)Overflow < 0) {
7822 Overflow += ImmOffset;
7823 ImmOffset = 0;
7824 }
7825 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7826 if (Overflow) {
7827 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7828 if (!N0)
7829 N0 = OverflowVal;
7830 else {
7831 SDValue Ops[] = { N0, OverflowVal };
7832 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7833 }
7834 }
7835 }
7836 if (!N0)
7837 N0 = DAG.getConstant(0, DL, MVT::i32);
7838 if (!C1)
7839 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7840 return {N0, SDValue(C1, 0)};
7841 }
7842
7843 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7844 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7845 // pointed to by Offsets.
setBufferOffsets(SDValue CombinedOffset,SelectionDAG & DAG,SDValue * Offsets,Align Alignment) const7846 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7847 SelectionDAG &DAG, SDValue *Offsets,
7848 Align Alignment) const {
7849 SDLoc DL(CombinedOffset);
7850 if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7851 uint32_t Imm = C->getZExtValue();
7852 uint32_t SOffset, ImmOffset;
7853 if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7854 Alignment)) {
7855 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7856 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7857 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7858 return SOffset + ImmOffset;
7859 }
7860 }
7861 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7862 SDValue N0 = CombinedOffset.getOperand(0);
7863 SDValue N1 = CombinedOffset.getOperand(1);
7864 uint32_t SOffset, ImmOffset;
7865 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7866 if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7867 Subtarget, Alignment)) {
7868 Offsets[0] = N0;
7869 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7870 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7871 return 0;
7872 }
7873 }
7874 Offsets[0] = CombinedOffset;
7875 Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7876 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7877 return 0;
7878 }
7879
7880 // Handle 8 bit and 16 bit buffer loads
handleByteShortBufferLoads(SelectionDAG & DAG,EVT LoadVT,SDLoc DL,ArrayRef<SDValue> Ops,MemSDNode * M) const7881 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7882 EVT LoadVT, SDLoc DL,
7883 ArrayRef<SDValue> Ops,
7884 MemSDNode *M) const {
7885 EVT IntVT = LoadVT.changeTypeToInteger();
7886 unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7887 AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7888
7889 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7890 SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7891 Ops, IntVT,
7892 M->getMemOperand());
7893 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7894 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7895
7896 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7897 }
7898
7899 // Handle 8 bit and 16 bit buffer stores
handleByteShortBufferStores(SelectionDAG & DAG,EVT VDataType,SDLoc DL,SDValue Ops[],MemSDNode * M) const7900 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7901 EVT VDataType, SDLoc DL,
7902 SDValue Ops[],
7903 MemSDNode *M) const {
7904 if (VDataType == MVT::f16)
7905 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7906
7907 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7908 Ops[1] = BufferStoreExt;
7909 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7910 AMDGPUISD::BUFFER_STORE_SHORT;
7911 ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7912 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7913 M->getMemOperand());
7914 }
7915
getLoadExtOrTrunc(SelectionDAG & DAG,ISD::LoadExtType ExtType,SDValue Op,const SDLoc & SL,EVT VT)7916 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7917 ISD::LoadExtType ExtType, SDValue Op,
7918 const SDLoc &SL, EVT VT) {
7919 if (VT.bitsLT(Op.getValueType()))
7920 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7921
7922 switch (ExtType) {
7923 case ISD::SEXTLOAD:
7924 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7925 case ISD::ZEXTLOAD:
7926 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7927 case ISD::EXTLOAD:
7928 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7929 case ISD::NON_EXTLOAD:
7930 return Op;
7931 }
7932
7933 llvm_unreachable("invalid ext type");
7934 }
7935
widenLoad(LoadSDNode * Ld,DAGCombinerInfo & DCI) const7936 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7937 SelectionDAG &DAG = DCI.DAG;
7938 if (Ld->getAlignment() < 4 || Ld->isDivergent())
7939 return SDValue();
7940
7941 // FIXME: Constant loads should all be marked invariant.
7942 unsigned AS = Ld->getAddressSpace();
7943 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7944 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7945 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7946 return SDValue();
7947
7948 // Don't do this early, since it may interfere with adjacent load merging for
7949 // illegal types. We can avoid losing alignment information for exotic types
7950 // pre-legalize.
7951 EVT MemVT = Ld->getMemoryVT();
7952 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7953 MemVT.getSizeInBits() >= 32)
7954 return SDValue();
7955
7956 SDLoc SL(Ld);
7957
7958 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7959 "unexpected vector extload");
7960
7961 // TODO: Drop only high part of range.
7962 SDValue Ptr = Ld->getBasePtr();
7963 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7964 MVT::i32, SL, Ld->getChain(), Ptr,
7965 Ld->getOffset(),
7966 Ld->getPointerInfo(), MVT::i32,
7967 Ld->getAlignment(),
7968 Ld->getMemOperand()->getFlags(),
7969 Ld->getAAInfo(),
7970 nullptr); // Drop ranges
7971
7972 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7973 if (MemVT.isFloatingPoint()) {
7974 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7975 "unexpected fp extload");
7976 TruncVT = MemVT.changeTypeToInteger();
7977 }
7978
7979 SDValue Cvt = NewLoad;
7980 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7981 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7982 DAG.getValueType(TruncVT));
7983 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7984 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7985 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7986 } else {
7987 assert(Ld->getExtensionType() == ISD::EXTLOAD);
7988 }
7989
7990 EVT VT = Ld->getValueType(0);
7991 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7992
7993 DCI.AddToWorklist(Cvt.getNode());
7994
7995 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7996 // the appropriate extension from the 32-bit load.
7997 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7998 DCI.AddToWorklist(Cvt.getNode());
7999
8000 // Handle conversion back to floating point if necessary.
8001 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
8002
8003 return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
8004 }
8005
LowerLOAD(SDValue Op,SelectionDAG & DAG) const8006 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
8007 SDLoc DL(Op);
8008 LoadSDNode *Load = cast<LoadSDNode>(Op);
8009 ISD::LoadExtType ExtType = Load->getExtensionType();
8010 EVT MemVT = Load->getMemoryVT();
8011
8012 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
8013 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
8014 return SDValue();
8015
8016 // FIXME: Copied from PPC
8017 // First, load into 32 bits, then truncate to 1 bit.
8018
8019 SDValue Chain = Load->getChain();
8020 SDValue BasePtr = Load->getBasePtr();
8021 MachineMemOperand *MMO = Load->getMemOperand();
8022
8023 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8024
8025 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8026 BasePtr, RealMemVT, MMO);
8027
8028 if (!MemVT.isVector()) {
8029 SDValue Ops[] = {
8030 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8031 NewLD.getValue(1)
8032 };
8033
8034 return DAG.getMergeValues(Ops, DL);
8035 }
8036
8037 SmallVector<SDValue, 3> Elts;
8038 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8039 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8040 DAG.getConstant(I, DL, MVT::i32));
8041
8042 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8043 }
8044
8045 SDValue Ops[] = {
8046 DAG.getBuildVector(MemVT, DL, Elts),
8047 NewLD.getValue(1)
8048 };
8049
8050 return DAG.getMergeValues(Ops, DL);
8051 }
8052
8053 if (!MemVT.isVector())
8054 return SDValue();
8055
8056 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8057 "Custom lowering for non-i32 vectors hasn't been implemented.");
8058
8059 unsigned Alignment = Load->getAlignment();
8060 unsigned AS = Load->getAddressSpace();
8061 if (Subtarget->hasLDSMisalignedBug() &&
8062 AS == AMDGPUAS::FLAT_ADDRESS &&
8063 Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8064 return SplitVectorLoad(Op, DAG);
8065 }
8066
8067 MachineFunction &MF = DAG.getMachineFunction();
8068 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8069 // If there is a possibilty that flat instruction access scratch memory
8070 // then we need to use the same legalization rules we use for private.
8071 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8072 !Subtarget->hasMultiDwordFlatScratchAddressing())
8073 AS = MFI->hasFlatScratchInit() ?
8074 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8075
8076 unsigned NumElements = MemVT.getVectorNumElements();
8077
8078 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8079 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8080 if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8081 if (MemVT.isPow2VectorType())
8082 return SDValue();
8083 return WidenOrSplitVectorLoad(Op, DAG);
8084 }
8085 // Non-uniform loads will be selected to MUBUF instructions, so they
8086 // have the same legalization requirements as global and private
8087 // loads.
8088 //
8089 }
8090
8091 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8092 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8093 AS == AMDGPUAS::GLOBAL_ADDRESS) {
8094 if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8095 Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8096 Alignment >= 4 && NumElements < 32) {
8097 if (MemVT.isPow2VectorType())
8098 return SDValue();
8099 return WidenOrSplitVectorLoad(Op, DAG);
8100 }
8101 // Non-uniform loads will be selected to MUBUF instructions, so they
8102 // have the same legalization requirements as global and private
8103 // loads.
8104 //
8105 }
8106 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8107 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8108 AS == AMDGPUAS::GLOBAL_ADDRESS ||
8109 AS == AMDGPUAS::FLAT_ADDRESS) {
8110 if (NumElements > 4)
8111 return SplitVectorLoad(Op, DAG);
8112 // v3 loads not supported on SI.
8113 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8114 return WidenOrSplitVectorLoad(Op, DAG);
8115
8116 // v3 and v4 loads are supported for private and global memory.
8117 return SDValue();
8118 }
8119 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8120 // Depending on the setting of the private_element_size field in the
8121 // resource descriptor, we can only make private accesses up to a certain
8122 // size.
8123 switch (Subtarget->getMaxPrivateElementSize()) {
8124 case 4: {
8125 SDValue Ops[2];
8126 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8127 return DAG.getMergeValues(Ops, DL);
8128 }
8129 case 8:
8130 if (NumElements > 2)
8131 return SplitVectorLoad(Op, DAG);
8132 return SDValue();
8133 case 16:
8134 // Same as global/flat
8135 if (NumElements > 4)
8136 return SplitVectorLoad(Op, DAG);
8137 // v3 loads not supported on SI.
8138 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8139 return WidenOrSplitVectorLoad(Op, DAG);
8140
8141 return SDValue();
8142 default:
8143 llvm_unreachable("unsupported private_element_size");
8144 }
8145 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8146 // Use ds_read_b128 or ds_read_b96 when possible.
8147 if (Subtarget->hasDS96AndDS128() &&
8148 ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8149 MemVT.getStoreSize() == 12) &&
8150 allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8151 Load->getAlign()))
8152 return SDValue();
8153
8154 if (NumElements > 2)
8155 return SplitVectorLoad(Op, DAG);
8156
8157 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8158 // address is negative, then the instruction is incorrectly treated as
8159 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8160 // loads here to avoid emitting ds_read2_b32. We may re-combine the
8161 // load later in the SILoadStoreOptimizer.
8162 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8163 NumElements == 2 && MemVT.getStoreSize() == 8 &&
8164 Load->getAlignment() < 8) {
8165 return SplitVectorLoad(Op, DAG);
8166 }
8167 }
8168
8169 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8170 MemVT, *Load->getMemOperand())) {
8171 SDValue Ops[2];
8172 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8173 return DAG.getMergeValues(Ops, DL);
8174 }
8175
8176 return SDValue();
8177 }
8178
LowerSELECT(SDValue Op,SelectionDAG & DAG) const8179 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8180 EVT VT = Op.getValueType();
8181 assert(VT.getSizeInBits() == 64);
8182
8183 SDLoc DL(Op);
8184 SDValue Cond = Op.getOperand(0);
8185
8186 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8187 SDValue One = DAG.getConstant(1, DL, MVT::i32);
8188
8189 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8190 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8191
8192 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8193 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8194
8195 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8196
8197 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8198 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8199
8200 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8201
8202 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8203 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8204 }
8205
8206 // Catch division cases where we can use shortcuts with rcp and rsq
8207 // instructions.
lowerFastUnsafeFDIV(SDValue Op,SelectionDAG & DAG) const8208 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8209 SelectionDAG &DAG) const {
8210 SDLoc SL(Op);
8211 SDValue LHS = Op.getOperand(0);
8212 SDValue RHS = Op.getOperand(1);
8213 EVT VT = Op.getValueType();
8214 const SDNodeFlags Flags = Op->getFlags();
8215
8216 bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath ||
8217 Flags.hasApproximateFuncs();
8218
8219 // Without !fpmath accuracy information, we can't do more because we don't
8220 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8221 if (!AllowInaccurateRcp)
8222 return SDValue();
8223
8224 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8225 if (CLHS->isExactlyValue(1.0)) {
8226 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8227 // the CI documentation has a worst case error of 1 ulp.
8228 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8229 // use it as long as we aren't trying to use denormals.
8230 //
8231 // v_rcp_f16 and v_rsq_f16 DO support denormals.
8232
8233 // 1.0 / sqrt(x) -> rsq(x)
8234
8235 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8236 // error seems really high at 2^29 ULP.
8237 if (RHS.getOpcode() == ISD::FSQRT)
8238 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8239
8240 // 1.0 / x -> rcp(x)
8241 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8242 }
8243
8244 // Same as for 1.0, but expand the sign out of the constant.
8245 if (CLHS->isExactlyValue(-1.0)) {
8246 // -1.0 / x -> rcp (fneg x)
8247 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8248 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8249 }
8250 }
8251
8252 // Turn into multiply by the reciprocal.
8253 // x / y -> x * (1.0 / y)
8254 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8255 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8256 }
8257
getFPBinOp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & SL,EVT VT,SDValue A,SDValue B,SDValue GlueChain,SDNodeFlags Flags)8258 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8259 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8260 SDNodeFlags Flags) {
8261 if (GlueChain->getNumValues() <= 1) {
8262 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8263 }
8264
8265 assert(GlueChain->getNumValues() == 3);
8266
8267 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8268 switch (Opcode) {
8269 default: llvm_unreachable("no chain equivalent for opcode");
8270 case ISD::FMUL:
8271 Opcode = AMDGPUISD::FMUL_W_CHAIN;
8272 break;
8273 }
8274
8275 return DAG.getNode(Opcode, SL, VTList,
8276 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8277 Flags);
8278 }
8279
getFPTernOp(SelectionDAG & DAG,unsigned Opcode,const SDLoc & SL,EVT VT,SDValue A,SDValue B,SDValue C,SDValue GlueChain,SDNodeFlags Flags)8280 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8281 EVT VT, SDValue A, SDValue B, SDValue C,
8282 SDValue GlueChain, SDNodeFlags Flags) {
8283 if (GlueChain->getNumValues() <= 1) {
8284 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8285 }
8286
8287 assert(GlueChain->getNumValues() == 3);
8288
8289 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8290 switch (Opcode) {
8291 default: llvm_unreachable("no chain equivalent for opcode");
8292 case ISD::FMA:
8293 Opcode = AMDGPUISD::FMA_W_CHAIN;
8294 break;
8295 }
8296
8297 return DAG.getNode(Opcode, SL, VTList,
8298 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8299 Flags);
8300 }
8301
LowerFDIV16(SDValue Op,SelectionDAG & DAG) const8302 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8303 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8304 return FastLowered;
8305
8306 SDLoc SL(Op);
8307 SDValue Src0 = Op.getOperand(0);
8308 SDValue Src1 = Op.getOperand(1);
8309
8310 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8311 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8312
8313 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8314 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8315
8316 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8317 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8318
8319 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8320 }
8321
8322 // Faster 2.5 ULP division that does not support denormals.
lowerFDIV_FAST(SDValue Op,SelectionDAG & DAG) const8323 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8324 SDLoc SL(Op);
8325 SDValue LHS = Op.getOperand(1);
8326 SDValue RHS = Op.getOperand(2);
8327
8328 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8329
8330 const APFloat K0Val(BitsToFloat(0x6f800000));
8331 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8332
8333 const APFloat K1Val(BitsToFloat(0x2f800000));
8334 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8335
8336 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8337
8338 EVT SetCCVT =
8339 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8340
8341 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8342
8343 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8344
8345 // TODO: Should this propagate fast-math-flags?
8346 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8347
8348 // rcp does not support denormals.
8349 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8350
8351 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8352
8353 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8354 }
8355
8356 // Returns immediate value for setting the F32 denorm mode when using the
8357 // S_DENORM_MODE instruction.
getSPDenormModeValue(int SPDenormMode,SelectionDAG & DAG,const SDLoc & SL,const GCNSubtarget * ST)8358 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8359 const SDLoc &SL, const GCNSubtarget *ST) {
8360 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8361 int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8362 ? FP_DENORM_FLUSH_NONE
8363 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8364
8365 int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8366 return DAG.getTargetConstant(Mode, SL, MVT::i32);
8367 }
8368
LowerFDIV32(SDValue Op,SelectionDAG & DAG) const8369 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8370 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8371 return FastLowered;
8372
8373 // The selection matcher assumes anything with a chain selecting to a
8374 // mayRaiseFPException machine instruction. Since we're introducing a chain
8375 // here, we need to explicitly report nofpexcept for the regular fdiv
8376 // lowering.
8377 SDNodeFlags Flags = Op->getFlags();
8378 Flags.setNoFPExcept(true);
8379
8380 SDLoc SL(Op);
8381 SDValue LHS = Op.getOperand(0);
8382 SDValue RHS = Op.getOperand(1);
8383
8384 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8385
8386 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8387
8388 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8389 {RHS, RHS, LHS}, Flags);
8390 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8391 {LHS, RHS, LHS}, Flags);
8392
8393 // Denominator is scaled to not be denormal, so using rcp is ok.
8394 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8395 DenominatorScaled, Flags);
8396 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8397 DenominatorScaled, Flags);
8398
8399 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8400 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8401 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8402 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8403
8404 const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8405
8406 if (!HasFP32Denormals) {
8407 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8408 // lowering. The chain dependence is insufficient, and we need glue. We do
8409 // not need the glue variants in a strictfp function.
8410
8411 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8412
8413 SDNode *EnableDenorm;
8414 if (Subtarget->hasDenormModeInst()) {
8415 const SDValue EnableDenormValue =
8416 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8417
8418 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8419 DAG.getEntryNode(), EnableDenormValue).getNode();
8420 } else {
8421 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8422 SL, MVT::i32);
8423 EnableDenorm =
8424 DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8425 {EnableDenormValue, BitField, DAG.getEntryNode()});
8426 }
8427
8428 SDValue Ops[3] = {
8429 NegDivScale0,
8430 SDValue(EnableDenorm, 0),
8431 SDValue(EnableDenorm, 1)
8432 };
8433
8434 NegDivScale0 = DAG.getMergeValues(Ops, SL);
8435 }
8436
8437 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8438 ApproxRcp, One, NegDivScale0, Flags);
8439
8440 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8441 ApproxRcp, Fma0, Flags);
8442
8443 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8444 Fma1, Fma1, Flags);
8445
8446 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8447 NumeratorScaled, Mul, Flags);
8448
8449 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8450 Fma2, Fma1, Mul, Fma2, Flags);
8451
8452 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8453 NumeratorScaled, Fma3, Flags);
8454
8455 if (!HasFP32Denormals) {
8456 SDNode *DisableDenorm;
8457 if (Subtarget->hasDenormModeInst()) {
8458 const SDValue DisableDenormValue =
8459 getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8460
8461 DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8462 Fma4.getValue(1), DisableDenormValue,
8463 Fma4.getValue(2)).getNode();
8464 } else {
8465 const SDValue DisableDenormValue =
8466 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8467
8468 DisableDenorm = DAG.getMachineNode(
8469 AMDGPU::S_SETREG_B32, SL, MVT::Other,
8470 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8471 }
8472
8473 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8474 SDValue(DisableDenorm, 0), DAG.getRoot());
8475 DAG.setRoot(OutputChain);
8476 }
8477
8478 SDValue Scale = NumeratorScaled.getValue(1);
8479 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8480 {Fma4, Fma1, Fma3, Scale}, Flags);
8481
8482 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8483 }
8484
LowerFDIV64(SDValue Op,SelectionDAG & DAG) const8485 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8486 if (DAG.getTarget().Options.UnsafeFPMath)
8487 return lowerFastUnsafeFDIV(Op, DAG);
8488
8489 SDLoc SL(Op);
8490 SDValue X = Op.getOperand(0);
8491 SDValue Y = Op.getOperand(1);
8492
8493 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8494
8495 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8496
8497 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8498
8499 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8500
8501 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8502
8503 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8504
8505 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8506
8507 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8508
8509 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8510
8511 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8512 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8513
8514 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8515 NegDivScale0, Mul, DivScale1);
8516
8517 SDValue Scale;
8518
8519 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8520 // Workaround a hardware bug on SI where the condition output from div_scale
8521 // is not usable.
8522
8523 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8524
8525 // Figure out if the scale to use for div_fmas.
8526 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8527 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8528 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8529 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8530
8531 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8532 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8533
8534 SDValue Scale0Hi
8535 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8536 SDValue Scale1Hi
8537 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8538
8539 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8540 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8541 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8542 } else {
8543 Scale = DivScale1.getValue(1);
8544 }
8545
8546 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8547 Fma4, Fma3, Mul, Scale);
8548
8549 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8550 }
8551
LowerFDIV(SDValue Op,SelectionDAG & DAG) const8552 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8553 EVT VT = Op.getValueType();
8554
8555 if (VT == MVT::f32)
8556 return LowerFDIV32(Op, DAG);
8557
8558 if (VT == MVT::f64)
8559 return LowerFDIV64(Op, DAG);
8560
8561 if (VT == MVT::f16)
8562 return LowerFDIV16(Op, DAG);
8563
8564 llvm_unreachable("Unexpected type for fdiv");
8565 }
8566
LowerSTORE(SDValue Op,SelectionDAG & DAG) const8567 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8568 SDLoc DL(Op);
8569 StoreSDNode *Store = cast<StoreSDNode>(Op);
8570 EVT VT = Store->getMemoryVT();
8571
8572 if (VT == MVT::i1) {
8573 return DAG.getTruncStore(Store->getChain(), DL,
8574 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8575 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8576 }
8577
8578 assert(VT.isVector() &&
8579 Store->getValue().getValueType().getScalarType() == MVT::i32);
8580
8581 unsigned AS = Store->getAddressSpace();
8582 if (Subtarget->hasLDSMisalignedBug() &&
8583 AS == AMDGPUAS::FLAT_ADDRESS &&
8584 Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8585 return SplitVectorStore(Op, DAG);
8586 }
8587
8588 MachineFunction &MF = DAG.getMachineFunction();
8589 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8590 // If there is a possibilty that flat instruction access scratch memory
8591 // then we need to use the same legalization rules we use for private.
8592 if (AS == AMDGPUAS::FLAT_ADDRESS &&
8593 !Subtarget->hasMultiDwordFlatScratchAddressing())
8594 AS = MFI->hasFlatScratchInit() ?
8595 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8596
8597 unsigned NumElements = VT.getVectorNumElements();
8598 if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8599 AS == AMDGPUAS::FLAT_ADDRESS) {
8600 if (NumElements > 4)
8601 return SplitVectorStore(Op, DAG);
8602 // v3 stores not supported on SI.
8603 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8604 return SplitVectorStore(Op, DAG);
8605
8606 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8607 VT, *Store->getMemOperand()))
8608 return expandUnalignedStore(Store, DAG);
8609
8610 return SDValue();
8611 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8612 switch (Subtarget->getMaxPrivateElementSize()) {
8613 case 4:
8614 return scalarizeVectorStore(Store, DAG);
8615 case 8:
8616 if (NumElements > 2)
8617 return SplitVectorStore(Op, DAG);
8618 return SDValue();
8619 case 16:
8620 if (NumElements > 4 ||
8621 (NumElements == 3 && !Subtarget->enableFlatScratch()))
8622 return SplitVectorStore(Op, DAG);
8623 return SDValue();
8624 default:
8625 llvm_unreachable("unsupported private_element_size");
8626 }
8627 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8628 // Use ds_write_b128 or ds_write_b96 when possible.
8629 if (Subtarget->hasDS96AndDS128() &&
8630 ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8631 (VT.getStoreSize() == 12)) &&
8632 allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8633 Store->getAlign()))
8634 return SDValue();
8635
8636 if (NumElements > 2)
8637 return SplitVectorStore(Op, DAG);
8638
8639 // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8640 // address is negative, then the instruction is incorrectly treated as
8641 // out-of-bounds even if base + offsets is in bounds. Split vectorized
8642 // stores here to avoid emitting ds_write2_b32. We may re-combine the
8643 // store later in the SILoadStoreOptimizer.
8644 if (!Subtarget->hasUsableDSOffset() &&
8645 NumElements == 2 && VT.getStoreSize() == 8 &&
8646 Store->getAlignment() < 8) {
8647 return SplitVectorStore(Op, DAG);
8648 }
8649
8650 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8651 VT, *Store->getMemOperand())) {
8652 if (VT.isVector())
8653 return SplitVectorStore(Op, DAG);
8654 return expandUnalignedStore(Store, DAG);
8655 }
8656
8657 return SDValue();
8658 } else {
8659 llvm_unreachable("unhandled address space");
8660 }
8661 }
8662
LowerTrig(SDValue Op,SelectionDAG & DAG) const8663 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8664 SDLoc DL(Op);
8665 EVT VT = Op.getValueType();
8666 SDValue Arg = Op.getOperand(0);
8667 SDValue TrigVal;
8668
8669 // Propagate fast-math flags so that the multiply we introduce can be folded
8670 // if Arg is already the result of a multiply by constant.
8671 auto Flags = Op->getFlags();
8672
8673 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8674
8675 if (Subtarget->hasTrigReducedRange()) {
8676 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8677 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8678 } else {
8679 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8680 }
8681
8682 switch (Op.getOpcode()) {
8683 case ISD::FCOS:
8684 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8685 case ISD::FSIN:
8686 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8687 default:
8688 llvm_unreachable("Wrong trig opcode");
8689 }
8690 }
8691
LowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const8692 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8693 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8694 assert(AtomicNode->isCompareAndSwap());
8695 unsigned AS = AtomicNode->getAddressSpace();
8696
8697 // No custom lowering required for local address space
8698 if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8699 return Op;
8700
8701 // Non-local address space requires custom lowering for atomic compare
8702 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8703 SDLoc DL(Op);
8704 SDValue ChainIn = Op.getOperand(0);
8705 SDValue Addr = Op.getOperand(1);
8706 SDValue Old = Op.getOperand(2);
8707 SDValue New = Op.getOperand(3);
8708 EVT VT = Op.getValueType();
8709 MVT SimpleVT = VT.getSimpleVT();
8710 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8711
8712 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8713 SDValue Ops[] = { ChainIn, Addr, NewOld };
8714
8715 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8716 Ops, VT, AtomicNode->getMemOperand());
8717 }
8718
8719 //===----------------------------------------------------------------------===//
8720 // Custom DAG optimizations
8721 //===----------------------------------------------------------------------===//
8722
performUCharToFloatCombine(SDNode * N,DAGCombinerInfo & DCI) const8723 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8724 DAGCombinerInfo &DCI) const {
8725 EVT VT = N->getValueType(0);
8726 EVT ScalarVT = VT.getScalarType();
8727 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8728 return SDValue();
8729
8730 SelectionDAG &DAG = DCI.DAG;
8731 SDLoc DL(N);
8732
8733 SDValue Src = N->getOperand(0);
8734 EVT SrcVT = Src.getValueType();
8735
8736 // TODO: We could try to match extracting the higher bytes, which would be
8737 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8738 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8739 // about in practice.
8740 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8741 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8742 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8743 DCI.AddToWorklist(Cvt.getNode());
8744
8745 // For the f16 case, fold to a cast to f32 and then cast back to f16.
8746 if (ScalarVT != MVT::f32) {
8747 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8748 DAG.getTargetConstant(0, DL, MVT::i32));
8749 }
8750 return Cvt;
8751 }
8752 }
8753
8754 return SDValue();
8755 }
8756
8757 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8758
8759 // This is a variant of
8760 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8761 //
8762 // The normal DAG combiner will do this, but only if the add has one use since
8763 // that would increase the number of instructions.
8764 //
8765 // This prevents us from seeing a constant offset that can be folded into a
8766 // memory instruction's addressing mode. If we know the resulting add offset of
8767 // a pointer can be folded into an addressing offset, we can replace the pointer
8768 // operand with the add of new constant offset. This eliminates one of the uses,
8769 // and may allow the remaining use to also be simplified.
8770 //
performSHLPtrCombine(SDNode * N,unsigned AddrSpace,EVT MemVT,DAGCombinerInfo & DCI) const8771 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8772 unsigned AddrSpace,
8773 EVT MemVT,
8774 DAGCombinerInfo &DCI) const {
8775 SDValue N0 = N->getOperand(0);
8776 SDValue N1 = N->getOperand(1);
8777
8778 // We only do this to handle cases where it's profitable when there are
8779 // multiple uses of the add, so defer to the standard combine.
8780 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8781 N0->hasOneUse())
8782 return SDValue();
8783
8784 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8785 if (!CN1)
8786 return SDValue();
8787
8788 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8789 if (!CAdd)
8790 return SDValue();
8791
8792 // If the resulting offset is too large, we can't fold it into the addressing
8793 // mode offset.
8794 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8795 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8796
8797 AddrMode AM;
8798 AM.HasBaseReg = true;
8799 AM.BaseOffs = Offset.getSExtValue();
8800 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8801 return SDValue();
8802
8803 SelectionDAG &DAG = DCI.DAG;
8804 SDLoc SL(N);
8805 EVT VT = N->getValueType(0);
8806
8807 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8808 SDValue COffset = DAG.getConstant(Offset, SL, VT);
8809
8810 SDNodeFlags Flags;
8811 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8812 (N0.getOpcode() == ISD::OR ||
8813 N0->getFlags().hasNoUnsignedWrap()));
8814
8815 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8816 }
8817
8818 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8819 /// by the chain and intrinsic ID. Theoretically we would also need to check the
8820 /// specific intrinsic, but they all place the pointer operand first.
getBasePtrIndex(const MemSDNode * N)8821 static unsigned getBasePtrIndex(const MemSDNode *N) {
8822 switch (N->getOpcode()) {
8823 case ISD::STORE:
8824 case ISD::INTRINSIC_W_CHAIN:
8825 case ISD::INTRINSIC_VOID:
8826 return 2;
8827 default:
8828 return 1;
8829 }
8830 }
8831
performMemSDNodeCombine(MemSDNode * N,DAGCombinerInfo & DCI) const8832 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8833 DAGCombinerInfo &DCI) const {
8834 SelectionDAG &DAG = DCI.DAG;
8835 SDLoc SL(N);
8836
8837 unsigned PtrIdx = getBasePtrIndex(N);
8838 SDValue Ptr = N->getOperand(PtrIdx);
8839
8840 // TODO: We could also do this for multiplies.
8841 if (Ptr.getOpcode() == ISD::SHL) {
8842 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
8843 N->getMemoryVT(), DCI);
8844 if (NewPtr) {
8845 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8846
8847 NewOps[PtrIdx] = NewPtr;
8848 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8849 }
8850 }
8851
8852 return SDValue();
8853 }
8854
bitOpWithConstantIsReducible(unsigned Opc,uint32_t Val)8855 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8856 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8857 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8858 (Opc == ISD::XOR && Val == 0);
8859 }
8860
8861 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8862 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8863 // integer combine opportunities since most 64-bit operations are decomposed
8864 // this way. TODO: We won't want this for SALU especially if it is an inline
8865 // immediate.
splitBinaryBitConstantOp(DAGCombinerInfo & DCI,const SDLoc & SL,unsigned Opc,SDValue LHS,const ConstantSDNode * CRHS) const8866 SDValue SITargetLowering::splitBinaryBitConstantOp(
8867 DAGCombinerInfo &DCI,
8868 const SDLoc &SL,
8869 unsigned Opc, SDValue LHS,
8870 const ConstantSDNode *CRHS) const {
8871 uint64_t Val = CRHS->getZExtValue();
8872 uint32_t ValLo = Lo_32(Val);
8873 uint32_t ValHi = Hi_32(Val);
8874 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8875
8876 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8877 bitOpWithConstantIsReducible(Opc, ValHi)) ||
8878 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8879 // If we need to materialize a 64-bit immediate, it will be split up later
8880 // anyway. Avoid creating the harder to understand 64-bit immediate
8881 // materialization.
8882 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8883 }
8884
8885 return SDValue();
8886 }
8887
8888 // Returns true if argument is a boolean value which is not serialized into
8889 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
isBoolSGPR(SDValue V)8890 static bool isBoolSGPR(SDValue V) {
8891 if (V.getValueType() != MVT::i1)
8892 return false;
8893 switch (V.getOpcode()) {
8894 default: break;
8895 case ISD::SETCC:
8896 case ISD::AND:
8897 case ISD::OR:
8898 case ISD::XOR:
8899 case AMDGPUISD::FP_CLASS:
8900 return true;
8901 }
8902 return false;
8903 }
8904
8905 // If a constant has all zeroes or all ones within each byte return it.
8906 // Otherwise return 0.
getConstantPermuteMask(uint32_t C)8907 static uint32_t getConstantPermuteMask(uint32_t C) {
8908 // 0xff for any zero byte in the mask
8909 uint32_t ZeroByteMask = 0;
8910 if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8911 if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8912 if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8913 if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8914 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8915 if ((NonZeroByteMask & C) != NonZeroByteMask)
8916 return 0; // Partial bytes selected.
8917 return C;
8918 }
8919
8920 // Check if a node selects whole bytes from its operand 0 starting at a byte
8921 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8922 // or -1 if not succeeded.
8923 // Note byte select encoding:
8924 // value 0-3 selects corresponding source byte;
8925 // value 0xc selects zero;
8926 // value 0xff selects 0xff.
getPermuteMask(SelectionDAG & DAG,SDValue V)8927 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8928 assert(V.getValueSizeInBits() == 32);
8929
8930 if (V.getNumOperands() != 2)
8931 return ~0;
8932
8933 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8934 if (!N1)
8935 return ~0;
8936
8937 uint32_t C = N1->getZExtValue();
8938
8939 switch (V.getOpcode()) {
8940 default:
8941 break;
8942 case ISD::AND:
8943 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8944 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8945 }
8946 break;
8947
8948 case ISD::OR:
8949 if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8950 return (0x03020100 & ~ConstMask) | ConstMask;
8951 }
8952 break;
8953
8954 case ISD::SHL:
8955 if (C % 8)
8956 return ~0;
8957
8958 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8959
8960 case ISD::SRL:
8961 if (C % 8)
8962 return ~0;
8963
8964 return uint32_t(0x0c0c0c0c03020100ull >> C);
8965 }
8966
8967 return ~0;
8968 }
8969
performAndCombine(SDNode * N,DAGCombinerInfo & DCI) const8970 SDValue SITargetLowering::performAndCombine(SDNode *N,
8971 DAGCombinerInfo &DCI) const {
8972 if (DCI.isBeforeLegalize())
8973 return SDValue();
8974
8975 SelectionDAG &DAG = DCI.DAG;
8976 EVT VT = N->getValueType(0);
8977 SDValue LHS = N->getOperand(0);
8978 SDValue RHS = N->getOperand(1);
8979
8980
8981 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8982 if (VT == MVT::i64 && CRHS) {
8983 if (SDValue Split
8984 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8985 return Split;
8986 }
8987
8988 if (CRHS && VT == MVT::i32) {
8989 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8990 // nb = number of trailing zeroes in mask
8991 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8992 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8993 uint64_t Mask = CRHS->getZExtValue();
8994 unsigned Bits = countPopulation(Mask);
8995 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8996 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8997 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8998 unsigned Shift = CShift->getZExtValue();
8999 unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
9000 unsigned Offset = NB + Shift;
9001 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
9002 SDLoc SL(N);
9003 SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
9004 LHS->getOperand(0),
9005 DAG.getConstant(Offset, SL, MVT::i32),
9006 DAG.getConstant(Bits, SL, MVT::i32));
9007 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9008 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
9009 DAG.getValueType(NarrowVT));
9010 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
9011 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
9012 return Shl;
9013 }
9014 }
9015 }
9016
9017 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9018 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
9019 isa<ConstantSDNode>(LHS.getOperand(2))) {
9020 uint32_t Sel = getConstantPermuteMask(Mask);
9021 if (!Sel)
9022 return SDValue();
9023
9024 // Select 0xc for all zero bytes
9025 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9026 SDLoc DL(N);
9027 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9028 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9029 }
9030 }
9031
9032 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9033 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9034 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9035 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9036 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9037
9038 SDValue X = LHS.getOperand(0);
9039 SDValue Y = RHS.getOperand(0);
9040 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9041 return SDValue();
9042
9043 if (LCC == ISD::SETO) {
9044 if (X != LHS.getOperand(1))
9045 return SDValue();
9046
9047 if (RCC == ISD::SETUNE) {
9048 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9049 if (!C1 || !C1->isInfinity() || C1->isNegative())
9050 return SDValue();
9051
9052 const uint32_t Mask = SIInstrFlags::N_NORMAL |
9053 SIInstrFlags::N_SUBNORMAL |
9054 SIInstrFlags::N_ZERO |
9055 SIInstrFlags::P_ZERO |
9056 SIInstrFlags::P_SUBNORMAL |
9057 SIInstrFlags::P_NORMAL;
9058
9059 static_assert(((~(SIInstrFlags::S_NAN |
9060 SIInstrFlags::Q_NAN |
9061 SIInstrFlags::N_INFINITY |
9062 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9063 "mask not equal");
9064
9065 SDLoc DL(N);
9066 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9067 X, DAG.getConstant(Mask, DL, MVT::i32));
9068 }
9069 }
9070 }
9071
9072 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9073 std::swap(LHS, RHS);
9074
9075 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9076 RHS.hasOneUse()) {
9077 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9078 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9079 // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9080 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9081 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9082 (RHS.getOperand(0) == LHS.getOperand(0) &&
9083 LHS.getOperand(0) == LHS.getOperand(1))) {
9084 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9085 unsigned NewMask = LCC == ISD::SETO ?
9086 Mask->getZExtValue() & ~OrdMask :
9087 Mask->getZExtValue() & OrdMask;
9088
9089 SDLoc DL(N);
9090 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9091 DAG.getConstant(NewMask, DL, MVT::i32));
9092 }
9093 }
9094
9095 if (VT == MVT::i32 &&
9096 (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9097 // and x, (sext cc from i1) => select cc, x, 0
9098 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9099 std::swap(LHS, RHS);
9100 if (isBoolSGPR(RHS.getOperand(0)))
9101 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9102 LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9103 }
9104
9105 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9106 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9107 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9108 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9109 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9110 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9111 if (LHSMask != ~0u && RHSMask != ~0u) {
9112 // Canonicalize the expression in an attempt to have fewer unique masks
9113 // and therefore fewer registers used to hold the masks.
9114 if (LHSMask > RHSMask) {
9115 std::swap(LHSMask, RHSMask);
9116 std::swap(LHS, RHS);
9117 }
9118
9119 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9120 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9121 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9122 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9123
9124 // Check of we need to combine values from two sources within a byte.
9125 if (!(LHSUsedLanes & RHSUsedLanes) &&
9126 // If we select high and lower word keep it for SDWA.
9127 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9128 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9129 // Each byte in each mask is either selector mask 0-3, or has higher
9130 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9131 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9132 // mask which is not 0xff wins. By anding both masks we have a correct
9133 // result except that 0x0c shall be corrected to give 0x0c only.
9134 uint32_t Mask = LHSMask & RHSMask;
9135 for (unsigned I = 0; I < 32; I += 8) {
9136 uint32_t ByteSel = 0xff << I;
9137 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9138 Mask &= (0x0c << I) & 0xffffffff;
9139 }
9140
9141 // Add 4 to each active LHS lane. It will not affect any existing 0xff
9142 // or 0x0c.
9143 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9144 SDLoc DL(N);
9145
9146 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9147 LHS.getOperand(0), RHS.getOperand(0),
9148 DAG.getConstant(Sel, DL, MVT::i32));
9149 }
9150 }
9151 }
9152
9153 return SDValue();
9154 }
9155
performOrCombine(SDNode * N,DAGCombinerInfo & DCI) const9156 SDValue SITargetLowering::performOrCombine(SDNode *N,
9157 DAGCombinerInfo &DCI) const {
9158 SelectionDAG &DAG = DCI.DAG;
9159 SDValue LHS = N->getOperand(0);
9160 SDValue RHS = N->getOperand(1);
9161
9162 EVT VT = N->getValueType(0);
9163 if (VT == MVT::i1) {
9164 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9165 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9166 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9167 SDValue Src = LHS.getOperand(0);
9168 if (Src != RHS.getOperand(0))
9169 return SDValue();
9170
9171 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9172 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9173 if (!CLHS || !CRHS)
9174 return SDValue();
9175
9176 // Only 10 bits are used.
9177 static const uint32_t MaxMask = 0x3ff;
9178
9179 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9180 SDLoc DL(N);
9181 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9182 Src, DAG.getConstant(NewMask, DL, MVT::i32));
9183 }
9184
9185 return SDValue();
9186 }
9187
9188 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9189 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9190 LHS.getOpcode() == AMDGPUISD::PERM &&
9191 isa<ConstantSDNode>(LHS.getOperand(2))) {
9192 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9193 if (!Sel)
9194 return SDValue();
9195
9196 Sel |= LHS.getConstantOperandVal(2);
9197 SDLoc DL(N);
9198 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9199 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9200 }
9201
9202 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9203 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9204 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9205 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9206 uint32_t LHSMask = getPermuteMask(DAG, LHS);
9207 uint32_t RHSMask = getPermuteMask(DAG, RHS);
9208 if (LHSMask != ~0u && RHSMask != ~0u) {
9209 // Canonicalize the expression in an attempt to have fewer unique masks
9210 // and therefore fewer registers used to hold the masks.
9211 if (LHSMask > RHSMask) {
9212 std::swap(LHSMask, RHSMask);
9213 std::swap(LHS, RHS);
9214 }
9215
9216 // Select 0xc for each lane used from source operand. Zero has 0xc mask
9217 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9218 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9219 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9220
9221 // Check of we need to combine values from two sources within a byte.
9222 if (!(LHSUsedLanes & RHSUsedLanes) &&
9223 // If we select high and lower word keep it for SDWA.
9224 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9225 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9226 // Kill zero bytes selected by other mask. Zero value is 0xc.
9227 LHSMask &= ~RHSUsedLanes;
9228 RHSMask &= ~LHSUsedLanes;
9229 // Add 4 to each active LHS lane
9230 LHSMask |= LHSUsedLanes & 0x04040404;
9231 // Combine masks
9232 uint32_t Sel = LHSMask | RHSMask;
9233 SDLoc DL(N);
9234
9235 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9236 LHS.getOperand(0), RHS.getOperand(0),
9237 DAG.getConstant(Sel, DL, MVT::i32));
9238 }
9239 }
9240 }
9241
9242 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9243 return SDValue();
9244
9245 // TODO: This could be a generic combine with a predicate for extracting the
9246 // high half of an integer being free.
9247
9248 // (or i64:x, (zero_extend i32:y)) ->
9249 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9250 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9251 RHS.getOpcode() != ISD::ZERO_EXTEND)
9252 std::swap(LHS, RHS);
9253
9254 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9255 SDValue ExtSrc = RHS.getOperand(0);
9256 EVT SrcVT = ExtSrc.getValueType();
9257 if (SrcVT == MVT::i32) {
9258 SDLoc SL(N);
9259 SDValue LowLHS, HiBits;
9260 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9261 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9262
9263 DCI.AddToWorklist(LowOr.getNode());
9264 DCI.AddToWorklist(HiBits.getNode());
9265
9266 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9267 LowOr, HiBits);
9268 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9269 }
9270 }
9271
9272 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9273 if (CRHS) {
9274 if (SDValue Split
9275 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9276 return Split;
9277 }
9278
9279 return SDValue();
9280 }
9281
performXorCombine(SDNode * N,DAGCombinerInfo & DCI) const9282 SDValue SITargetLowering::performXorCombine(SDNode *N,
9283 DAGCombinerInfo &DCI) const {
9284 EVT VT = N->getValueType(0);
9285 if (VT != MVT::i64)
9286 return SDValue();
9287
9288 SDValue LHS = N->getOperand(0);
9289 SDValue RHS = N->getOperand(1);
9290
9291 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9292 if (CRHS) {
9293 if (SDValue Split
9294 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9295 return Split;
9296 }
9297
9298 return SDValue();
9299 }
9300
9301 // Instructions that will be lowered with a final instruction that zeros the
9302 // high result bits.
9303 // XXX - probably only need to list legal operations.
fp16SrcZerosHighBits(unsigned Opc)9304 static bool fp16SrcZerosHighBits(unsigned Opc) {
9305 switch (Opc) {
9306 case ISD::FADD:
9307 case ISD::FSUB:
9308 case ISD::FMUL:
9309 case ISD::FDIV:
9310 case ISD::FREM:
9311 case ISD::FMA:
9312 case ISD::FMAD:
9313 case ISD::FCANONICALIZE:
9314 case ISD::FP_ROUND:
9315 case ISD::UINT_TO_FP:
9316 case ISD::SINT_TO_FP:
9317 case ISD::FABS:
9318 // Fabs is lowered to a bit operation, but it's an and which will clear the
9319 // high bits anyway.
9320 case ISD::FSQRT:
9321 case ISD::FSIN:
9322 case ISD::FCOS:
9323 case ISD::FPOWI:
9324 case ISD::FPOW:
9325 case ISD::FLOG:
9326 case ISD::FLOG2:
9327 case ISD::FLOG10:
9328 case ISD::FEXP:
9329 case ISD::FEXP2:
9330 case ISD::FCEIL:
9331 case ISD::FTRUNC:
9332 case ISD::FRINT:
9333 case ISD::FNEARBYINT:
9334 case ISD::FROUND:
9335 case ISD::FFLOOR:
9336 case ISD::FMINNUM:
9337 case ISD::FMAXNUM:
9338 case AMDGPUISD::FRACT:
9339 case AMDGPUISD::CLAMP:
9340 case AMDGPUISD::COS_HW:
9341 case AMDGPUISD::SIN_HW:
9342 case AMDGPUISD::FMIN3:
9343 case AMDGPUISD::FMAX3:
9344 case AMDGPUISD::FMED3:
9345 case AMDGPUISD::FMAD_FTZ:
9346 case AMDGPUISD::RCP:
9347 case AMDGPUISD::RSQ:
9348 case AMDGPUISD::RCP_IFLAG:
9349 case AMDGPUISD::LDEXP:
9350 return true;
9351 default:
9352 // fcopysign, select and others may be lowered to 32-bit bit operations
9353 // which don't zero the high bits.
9354 return false;
9355 }
9356 }
9357
performZeroExtendCombine(SDNode * N,DAGCombinerInfo & DCI) const9358 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9359 DAGCombinerInfo &DCI) const {
9360 if (!Subtarget->has16BitInsts() ||
9361 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9362 return SDValue();
9363
9364 EVT VT = N->getValueType(0);
9365 if (VT != MVT::i32)
9366 return SDValue();
9367
9368 SDValue Src = N->getOperand(0);
9369 if (Src.getValueType() != MVT::i16)
9370 return SDValue();
9371
9372 // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9373 // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9374 if (Src.getOpcode() == ISD::BITCAST) {
9375 SDValue BCSrc = Src.getOperand(0);
9376 if (BCSrc.getValueType() == MVT::f16 &&
9377 fp16SrcZerosHighBits(BCSrc.getOpcode()))
9378 return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9379 }
9380
9381 return SDValue();
9382 }
9383
performSignExtendInRegCombine(SDNode * N,DAGCombinerInfo & DCI) const9384 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9385 DAGCombinerInfo &DCI)
9386 const {
9387 SDValue Src = N->getOperand(0);
9388 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9389
9390 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9391 VTSign->getVT() == MVT::i8) ||
9392 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9393 VTSign->getVT() == MVT::i16)) &&
9394 Src.hasOneUse()) {
9395 auto *M = cast<MemSDNode>(Src);
9396 SDValue Ops[] = {
9397 Src.getOperand(0), // Chain
9398 Src.getOperand(1), // rsrc
9399 Src.getOperand(2), // vindex
9400 Src.getOperand(3), // voffset
9401 Src.getOperand(4), // soffset
9402 Src.getOperand(5), // offset
9403 Src.getOperand(6),
9404 Src.getOperand(7)
9405 };
9406 // replace with BUFFER_LOAD_BYTE/SHORT
9407 SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9408 Src.getOperand(0).getValueType());
9409 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9410 AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9411 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9412 ResList,
9413 Ops, M->getMemoryVT(),
9414 M->getMemOperand());
9415 return DCI.DAG.getMergeValues({BufferLoadSignExt,
9416 BufferLoadSignExt.getValue(1)}, SDLoc(N));
9417 }
9418 return SDValue();
9419 }
9420
performClassCombine(SDNode * N,DAGCombinerInfo & DCI) const9421 SDValue SITargetLowering::performClassCombine(SDNode *N,
9422 DAGCombinerInfo &DCI) const {
9423 SelectionDAG &DAG = DCI.DAG;
9424 SDValue Mask = N->getOperand(1);
9425
9426 // fp_class x, 0 -> false
9427 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9428 if (CMask->isNullValue())
9429 return DAG.getConstant(0, SDLoc(N), MVT::i1);
9430 }
9431
9432 if (N->getOperand(0).isUndef())
9433 return DAG.getUNDEF(MVT::i1);
9434
9435 return SDValue();
9436 }
9437
performRcpCombine(SDNode * N,DAGCombinerInfo & DCI) const9438 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9439 DAGCombinerInfo &DCI) const {
9440 EVT VT = N->getValueType(0);
9441 SDValue N0 = N->getOperand(0);
9442
9443 if (N0.isUndef())
9444 return N0;
9445
9446 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9447 N0.getOpcode() == ISD::SINT_TO_FP)) {
9448 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9449 N->getFlags());
9450 }
9451
9452 if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9453 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9454 N0.getOperand(0), N->getFlags());
9455 }
9456
9457 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9458 }
9459
isCanonicalized(SelectionDAG & DAG,SDValue Op,unsigned MaxDepth) const9460 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9461 unsigned MaxDepth) const {
9462 unsigned Opcode = Op.getOpcode();
9463 if (Opcode == ISD::FCANONICALIZE)
9464 return true;
9465
9466 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9467 auto F = CFP->getValueAPF();
9468 if (F.isNaN() && F.isSignaling())
9469 return false;
9470 return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9471 }
9472
9473 // If source is a result of another standard FP operation it is already in
9474 // canonical form.
9475 if (MaxDepth == 0)
9476 return false;
9477
9478 switch (Opcode) {
9479 // These will flush denorms if required.
9480 case ISD::FADD:
9481 case ISD::FSUB:
9482 case ISD::FMUL:
9483 case ISD::FCEIL:
9484 case ISD::FFLOOR:
9485 case ISD::FMA:
9486 case ISD::FMAD:
9487 case ISD::FSQRT:
9488 case ISD::FDIV:
9489 case ISD::FREM:
9490 case ISD::FP_ROUND:
9491 case ISD::FP_EXTEND:
9492 case AMDGPUISD::FMUL_LEGACY:
9493 case AMDGPUISD::FMAD_FTZ:
9494 case AMDGPUISD::RCP:
9495 case AMDGPUISD::RSQ:
9496 case AMDGPUISD::RSQ_CLAMP:
9497 case AMDGPUISD::RCP_LEGACY:
9498 case AMDGPUISD::RCP_IFLAG:
9499 case AMDGPUISD::DIV_SCALE:
9500 case AMDGPUISD::DIV_FMAS:
9501 case AMDGPUISD::DIV_FIXUP:
9502 case AMDGPUISD::FRACT:
9503 case AMDGPUISD::LDEXP:
9504 case AMDGPUISD::CVT_PKRTZ_F16_F32:
9505 case AMDGPUISD::CVT_F32_UBYTE0:
9506 case AMDGPUISD::CVT_F32_UBYTE1:
9507 case AMDGPUISD::CVT_F32_UBYTE2:
9508 case AMDGPUISD::CVT_F32_UBYTE3:
9509 return true;
9510
9511 // It can/will be lowered or combined as a bit operation.
9512 // Need to check their input recursively to handle.
9513 case ISD::FNEG:
9514 case ISD::FABS:
9515 case ISD::FCOPYSIGN:
9516 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9517
9518 case ISD::FSIN:
9519 case ISD::FCOS:
9520 case ISD::FSINCOS:
9521 return Op.getValueType().getScalarType() != MVT::f16;
9522
9523 case ISD::FMINNUM:
9524 case ISD::FMAXNUM:
9525 case ISD::FMINNUM_IEEE:
9526 case ISD::FMAXNUM_IEEE:
9527 case AMDGPUISD::CLAMP:
9528 case AMDGPUISD::FMED3:
9529 case AMDGPUISD::FMAX3:
9530 case AMDGPUISD::FMIN3: {
9531 // FIXME: Shouldn't treat the generic operations different based these.
9532 // However, we aren't really required to flush the result from
9533 // minnum/maxnum..
9534
9535 // snans will be quieted, so we only need to worry about denormals.
9536 if (Subtarget->supportsMinMaxDenormModes() ||
9537 denormalsEnabledForType(DAG, Op.getValueType()))
9538 return true;
9539
9540 // Flushing may be required.
9541 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9542 // targets need to check their input recursively.
9543
9544 // FIXME: Does this apply with clamp? It's implemented with max.
9545 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9546 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9547 return false;
9548 }
9549
9550 return true;
9551 }
9552 case ISD::SELECT: {
9553 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9554 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9555 }
9556 case ISD::BUILD_VECTOR: {
9557 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9558 SDValue SrcOp = Op.getOperand(i);
9559 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9560 return false;
9561 }
9562
9563 return true;
9564 }
9565 case ISD::EXTRACT_VECTOR_ELT:
9566 case ISD::EXTRACT_SUBVECTOR: {
9567 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9568 }
9569 case ISD::INSERT_VECTOR_ELT: {
9570 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9571 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9572 }
9573 case ISD::UNDEF:
9574 // Could be anything.
9575 return false;
9576
9577 case ISD::BITCAST: {
9578 // Hack round the mess we make when legalizing extract_vector_elt
9579 SDValue Src = Op.getOperand(0);
9580 if (Src.getValueType() == MVT::i16 &&
9581 Src.getOpcode() == ISD::TRUNCATE) {
9582 SDValue TruncSrc = Src.getOperand(0);
9583 if (TruncSrc.getValueType() == MVT::i32 &&
9584 TruncSrc.getOpcode() == ISD::BITCAST &&
9585 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9586 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9587 }
9588 }
9589
9590 return false;
9591 }
9592 case ISD::INTRINSIC_WO_CHAIN: {
9593 unsigned IntrinsicID
9594 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9595 // TODO: Handle more intrinsics
9596 switch (IntrinsicID) {
9597 case Intrinsic::amdgcn_cvt_pkrtz:
9598 case Intrinsic::amdgcn_cubeid:
9599 case Intrinsic::amdgcn_frexp_mant:
9600 case Intrinsic::amdgcn_fdot2:
9601 case Intrinsic::amdgcn_rcp:
9602 case Intrinsic::amdgcn_rsq:
9603 case Intrinsic::amdgcn_rsq_clamp:
9604 case Intrinsic::amdgcn_rcp_legacy:
9605 case Intrinsic::amdgcn_rsq_legacy:
9606 case Intrinsic::amdgcn_trig_preop:
9607 return true;
9608 default:
9609 break;
9610 }
9611
9612 LLVM_FALLTHROUGH;
9613 }
9614 default:
9615 return denormalsEnabledForType(DAG, Op.getValueType()) &&
9616 DAG.isKnownNeverSNaN(Op);
9617 }
9618
9619 llvm_unreachable("invalid operation");
9620 }
9621
9622 // Constant fold canonicalize.
getCanonicalConstantFP(SelectionDAG & DAG,const SDLoc & SL,EVT VT,const APFloat & C) const9623 SDValue SITargetLowering::getCanonicalConstantFP(
9624 SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9625 // Flush denormals to 0 if not enabled.
9626 if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9627 return DAG.getConstantFP(0.0, SL, VT);
9628
9629 if (C.isNaN()) {
9630 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9631 if (C.isSignaling()) {
9632 // Quiet a signaling NaN.
9633 // FIXME: Is this supposed to preserve payload bits?
9634 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9635 }
9636
9637 // Make sure it is the canonical NaN bitpattern.
9638 //
9639 // TODO: Can we use -1 as the canonical NaN value since it's an inline
9640 // immediate?
9641 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9642 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9643 }
9644
9645 // Already canonical.
9646 return DAG.getConstantFP(C, SL, VT);
9647 }
9648
vectorEltWillFoldAway(SDValue Op)9649 static bool vectorEltWillFoldAway(SDValue Op) {
9650 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9651 }
9652
performFCanonicalizeCombine(SDNode * N,DAGCombinerInfo & DCI) const9653 SDValue SITargetLowering::performFCanonicalizeCombine(
9654 SDNode *N,
9655 DAGCombinerInfo &DCI) const {
9656 SelectionDAG &DAG = DCI.DAG;
9657 SDValue N0 = N->getOperand(0);
9658 EVT VT = N->getValueType(0);
9659
9660 // fcanonicalize undef -> qnan
9661 if (N0.isUndef()) {
9662 APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9663 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9664 }
9665
9666 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9667 EVT VT = N->getValueType(0);
9668 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9669 }
9670
9671 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9672 // (fcanonicalize k)
9673 //
9674 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9675
9676 // TODO: This could be better with wider vectors that will be split to v2f16,
9677 // and to consider uses since there aren't that many packed operations.
9678 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9679 isTypeLegal(MVT::v2f16)) {
9680 SDLoc SL(N);
9681 SDValue NewElts[2];
9682 SDValue Lo = N0.getOperand(0);
9683 SDValue Hi = N0.getOperand(1);
9684 EVT EltVT = Lo.getValueType();
9685
9686 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9687 for (unsigned I = 0; I != 2; ++I) {
9688 SDValue Op = N0.getOperand(I);
9689 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9690 NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9691 CFP->getValueAPF());
9692 } else if (Op.isUndef()) {
9693 // Handled below based on what the other operand is.
9694 NewElts[I] = Op;
9695 } else {
9696 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9697 }
9698 }
9699
9700 // If one half is undef, and one is constant, perfer a splat vector rather
9701 // than the normal qNaN. If it's a register, prefer 0.0 since that's
9702 // cheaper to use and may be free with a packed operation.
9703 if (NewElts[0].isUndef()) {
9704 if (isa<ConstantFPSDNode>(NewElts[1]))
9705 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9706 NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9707 }
9708
9709 if (NewElts[1].isUndef()) {
9710 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9711 NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9712 }
9713
9714 return DAG.getBuildVector(VT, SL, NewElts);
9715 }
9716 }
9717
9718 unsigned SrcOpc = N0.getOpcode();
9719
9720 // If it's free to do so, push canonicalizes further up the source, which may
9721 // find a canonical source.
9722 //
9723 // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9724 // sNaNs.
9725 if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9726 auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9727 if (CRHS && N0.hasOneUse()) {
9728 SDLoc SL(N);
9729 SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9730 N0.getOperand(0));
9731 SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9732 DCI.AddToWorklist(Canon0.getNode());
9733
9734 return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9735 }
9736 }
9737
9738 return isCanonicalized(DAG, N0) ? N0 : SDValue();
9739 }
9740
minMaxOpcToMin3Max3Opc(unsigned Opc)9741 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9742 switch (Opc) {
9743 case ISD::FMAXNUM:
9744 case ISD::FMAXNUM_IEEE:
9745 return AMDGPUISD::FMAX3;
9746 case ISD::SMAX:
9747 return AMDGPUISD::SMAX3;
9748 case ISD::UMAX:
9749 return AMDGPUISD::UMAX3;
9750 case ISD::FMINNUM:
9751 case ISD::FMINNUM_IEEE:
9752 return AMDGPUISD::FMIN3;
9753 case ISD::SMIN:
9754 return AMDGPUISD::SMIN3;
9755 case ISD::UMIN:
9756 return AMDGPUISD::UMIN3;
9757 default:
9758 llvm_unreachable("Not a min/max opcode");
9759 }
9760 }
9761
performIntMed3ImmCombine(SelectionDAG & DAG,const SDLoc & SL,SDValue Op0,SDValue Op1,bool Signed) const9762 SDValue SITargetLowering::performIntMed3ImmCombine(
9763 SelectionDAG &DAG, const SDLoc &SL,
9764 SDValue Op0, SDValue Op1, bool Signed) const {
9765 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9766 if (!K1)
9767 return SDValue();
9768
9769 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9770 if (!K0)
9771 return SDValue();
9772
9773 if (Signed) {
9774 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9775 return SDValue();
9776 } else {
9777 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9778 return SDValue();
9779 }
9780
9781 EVT VT = K0->getValueType(0);
9782 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9783 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9784 return DAG.getNode(Med3Opc, SL, VT,
9785 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9786 }
9787
9788 // If there isn't a 16-bit med3 operation, convert to 32-bit.
9789 MVT NVT = MVT::i32;
9790 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9791
9792 SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9793 SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9794 SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9795
9796 SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9797 return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9798 }
9799
getSplatConstantFP(SDValue Op)9800 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9801 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9802 return C;
9803
9804 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9805 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9806 return C;
9807 }
9808
9809 return nullptr;
9810 }
9811
performFPMed3ImmCombine(SelectionDAG & DAG,const SDLoc & SL,SDValue Op0,SDValue Op1) const9812 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9813 const SDLoc &SL,
9814 SDValue Op0,
9815 SDValue Op1) const {
9816 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9817 if (!K1)
9818 return SDValue();
9819
9820 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9821 if (!K0)
9822 return SDValue();
9823
9824 // Ordered >= (although NaN inputs should have folded away by now).
9825 if (K0->getValueAPF() > K1->getValueAPF())
9826 return SDValue();
9827
9828 const MachineFunction &MF = DAG.getMachineFunction();
9829 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9830
9831 // TODO: Check IEEE bit enabled?
9832 EVT VT = Op0.getValueType();
9833 if (Info->getMode().DX10Clamp) {
9834 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9835 // hardware fmed3 behavior converting to a min.
9836 // FIXME: Should this be allowing -0.0?
9837 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9838 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9839 }
9840
9841 // med3 for f16 is only available on gfx9+, and not available for v2f16.
9842 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9843 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9844 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9845 // then give the other result, which is different from med3 with a NaN
9846 // input.
9847 SDValue Var = Op0.getOperand(0);
9848 if (!DAG.isKnownNeverSNaN(Var))
9849 return SDValue();
9850
9851 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9852
9853 if ((!K0->hasOneUse() ||
9854 TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9855 (!K1->hasOneUse() ||
9856 TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9857 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9858 Var, SDValue(K0, 0), SDValue(K1, 0));
9859 }
9860 }
9861
9862 return SDValue();
9863 }
9864
performMinMaxCombine(SDNode * N,DAGCombinerInfo & DCI) const9865 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9866 DAGCombinerInfo &DCI) const {
9867 SelectionDAG &DAG = DCI.DAG;
9868
9869 EVT VT = N->getValueType(0);
9870 unsigned Opc = N->getOpcode();
9871 SDValue Op0 = N->getOperand(0);
9872 SDValue Op1 = N->getOperand(1);
9873
9874 // Only do this if the inner op has one use since this will just increases
9875 // register pressure for no benefit.
9876
9877 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9878 !VT.isVector() &&
9879 (VT == MVT::i32 || VT == MVT::f32 ||
9880 ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9881 // max(max(a, b), c) -> max3(a, b, c)
9882 // min(min(a, b), c) -> min3(a, b, c)
9883 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9884 SDLoc DL(N);
9885 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9886 DL,
9887 N->getValueType(0),
9888 Op0.getOperand(0),
9889 Op0.getOperand(1),
9890 Op1);
9891 }
9892
9893 // Try commuted.
9894 // max(a, max(b, c)) -> max3(a, b, c)
9895 // min(a, min(b, c)) -> min3(a, b, c)
9896 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9897 SDLoc DL(N);
9898 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9899 DL,
9900 N->getValueType(0),
9901 Op0,
9902 Op1.getOperand(0),
9903 Op1.getOperand(1));
9904 }
9905 }
9906
9907 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9908 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9909 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9910 return Med3;
9911 }
9912
9913 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9914 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9915 return Med3;
9916 }
9917
9918 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9919 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9920 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9921 (Opc == AMDGPUISD::FMIN_LEGACY &&
9922 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9923 (VT == MVT::f32 || VT == MVT::f64 ||
9924 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9925 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9926 Op0.hasOneUse()) {
9927 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9928 return Res;
9929 }
9930
9931 return SDValue();
9932 }
9933
isClampZeroToOne(SDValue A,SDValue B)9934 static bool isClampZeroToOne(SDValue A, SDValue B) {
9935 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9936 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9937 // FIXME: Should this be allowing -0.0?
9938 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9939 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9940 }
9941 }
9942
9943 return false;
9944 }
9945
9946 // FIXME: Should only worry about snans for version with chain.
performFMed3Combine(SDNode * N,DAGCombinerInfo & DCI) const9947 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9948 DAGCombinerInfo &DCI) const {
9949 EVT VT = N->getValueType(0);
9950 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9951 // NaNs. With a NaN input, the order of the operands may change the result.
9952
9953 SelectionDAG &DAG = DCI.DAG;
9954 SDLoc SL(N);
9955
9956 SDValue Src0 = N->getOperand(0);
9957 SDValue Src1 = N->getOperand(1);
9958 SDValue Src2 = N->getOperand(2);
9959
9960 if (isClampZeroToOne(Src0, Src1)) {
9961 // const_a, const_b, x -> clamp is safe in all cases including signaling
9962 // nans.
9963 // FIXME: Should this be allowing -0.0?
9964 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9965 }
9966
9967 const MachineFunction &MF = DAG.getMachineFunction();
9968 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9969
9970 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9971 // handling no dx10-clamp?
9972 if (Info->getMode().DX10Clamp) {
9973 // If NaNs is clamped to 0, we are free to reorder the inputs.
9974
9975 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9976 std::swap(Src0, Src1);
9977
9978 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9979 std::swap(Src1, Src2);
9980
9981 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9982 std::swap(Src0, Src1);
9983
9984 if (isClampZeroToOne(Src1, Src2))
9985 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9986 }
9987
9988 return SDValue();
9989 }
9990
performCvtPkRTZCombine(SDNode * N,DAGCombinerInfo & DCI) const9991 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9992 DAGCombinerInfo &DCI) const {
9993 SDValue Src0 = N->getOperand(0);
9994 SDValue Src1 = N->getOperand(1);
9995 if (Src0.isUndef() && Src1.isUndef())
9996 return DCI.DAG.getUNDEF(N->getValueType(0));
9997 return SDValue();
9998 }
9999
10000 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
10001 // expanded into a set of cmp/select instructions.
shouldExpandVectorDynExt(unsigned EltSize,unsigned NumElem,bool IsDivergentIdx)10002 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
10003 unsigned NumElem,
10004 bool IsDivergentIdx) {
10005 if (UseDivergentRegisterIndexing)
10006 return false;
10007
10008 unsigned VecSize = EltSize * NumElem;
10009
10010 // Sub-dword vectors of size 2 dword or less have better implementation.
10011 if (VecSize <= 64 && EltSize < 32)
10012 return false;
10013
10014 // Always expand the rest of sub-dword instructions, otherwise it will be
10015 // lowered via memory.
10016 if (EltSize < 32)
10017 return true;
10018
10019 // Always do this if var-idx is divergent, otherwise it will become a loop.
10020 if (IsDivergentIdx)
10021 return true;
10022
10023 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10024 unsigned NumInsts = NumElem /* Number of compares */ +
10025 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10026 return NumInsts <= 16;
10027 }
10028
shouldExpandVectorDynExt(SDNode * N)10029 static bool shouldExpandVectorDynExt(SDNode *N) {
10030 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10031 if (isa<ConstantSDNode>(Idx))
10032 return false;
10033
10034 SDValue Vec = N->getOperand(0);
10035 EVT VecVT = Vec.getValueType();
10036 EVT EltVT = VecVT.getVectorElementType();
10037 unsigned EltSize = EltVT.getSizeInBits();
10038 unsigned NumElem = VecVT.getVectorNumElements();
10039
10040 return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10041 Idx->isDivergent());
10042 }
10043
performExtractVectorEltCombine(SDNode * N,DAGCombinerInfo & DCI) const10044 SDValue SITargetLowering::performExtractVectorEltCombine(
10045 SDNode *N, DAGCombinerInfo &DCI) const {
10046 SDValue Vec = N->getOperand(0);
10047 SelectionDAG &DAG = DCI.DAG;
10048
10049 EVT VecVT = Vec.getValueType();
10050 EVT EltVT = VecVT.getVectorElementType();
10051
10052 if ((Vec.getOpcode() == ISD::FNEG ||
10053 Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10054 SDLoc SL(N);
10055 EVT EltVT = N->getValueType(0);
10056 SDValue Idx = N->getOperand(1);
10057 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10058 Vec.getOperand(0), Idx);
10059 return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10060 }
10061
10062 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10063 // =>
10064 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10065 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10066 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10067 if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10068 SDLoc SL(N);
10069 EVT EltVT = N->getValueType(0);
10070 SDValue Idx = N->getOperand(1);
10071 unsigned Opc = Vec.getOpcode();
10072
10073 switch(Opc) {
10074 default:
10075 break;
10076 // TODO: Support other binary operations.
10077 case ISD::FADD:
10078 case ISD::FSUB:
10079 case ISD::FMUL:
10080 case ISD::ADD:
10081 case ISD::UMIN:
10082 case ISD::UMAX:
10083 case ISD::SMIN:
10084 case ISD::SMAX:
10085 case ISD::FMAXNUM:
10086 case ISD::FMINNUM:
10087 case ISD::FMAXNUM_IEEE:
10088 case ISD::FMINNUM_IEEE: {
10089 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10090 Vec.getOperand(0), Idx);
10091 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10092 Vec.getOperand(1), Idx);
10093
10094 DCI.AddToWorklist(Elt0.getNode());
10095 DCI.AddToWorklist(Elt1.getNode());
10096 return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10097 }
10098 }
10099 }
10100
10101 unsigned VecSize = VecVT.getSizeInBits();
10102 unsigned EltSize = EltVT.getSizeInBits();
10103
10104 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10105 if (::shouldExpandVectorDynExt(N)) {
10106 SDLoc SL(N);
10107 SDValue Idx = N->getOperand(1);
10108 SDValue V;
10109 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10110 SDValue IC = DAG.getVectorIdxConstant(I, SL);
10111 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10112 if (I == 0)
10113 V = Elt;
10114 else
10115 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10116 }
10117 return V;
10118 }
10119
10120 if (!DCI.isBeforeLegalize())
10121 return SDValue();
10122
10123 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10124 // elements. This exposes more load reduction opportunities by replacing
10125 // multiple small extract_vector_elements with a single 32-bit extract.
10126 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10127 if (isa<MemSDNode>(Vec) &&
10128 EltSize <= 16 &&
10129 EltVT.isByteSized() &&
10130 VecSize > 32 &&
10131 VecSize % 32 == 0 &&
10132 Idx) {
10133 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10134
10135 unsigned BitIndex = Idx->getZExtValue() * EltSize;
10136 unsigned EltIdx = BitIndex / 32;
10137 unsigned LeftoverBitIdx = BitIndex % 32;
10138 SDLoc SL(N);
10139
10140 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10141 DCI.AddToWorklist(Cast.getNode());
10142
10143 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10144 DAG.getConstant(EltIdx, SL, MVT::i32));
10145 DCI.AddToWorklist(Elt.getNode());
10146 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10147 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10148 DCI.AddToWorklist(Srl.getNode());
10149
10150 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10151 DCI.AddToWorklist(Trunc.getNode());
10152 return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10153 }
10154
10155 return SDValue();
10156 }
10157
10158 SDValue
performInsertVectorEltCombine(SDNode * N,DAGCombinerInfo & DCI) const10159 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10160 DAGCombinerInfo &DCI) const {
10161 SDValue Vec = N->getOperand(0);
10162 SDValue Idx = N->getOperand(2);
10163 EVT VecVT = Vec.getValueType();
10164 EVT EltVT = VecVT.getVectorElementType();
10165
10166 // INSERT_VECTOR_ELT (<n x e>, var-idx)
10167 // => BUILD_VECTOR n x select (e, const-idx)
10168 if (!::shouldExpandVectorDynExt(N))
10169 return SDValue();
10170
10171 SelectionDAG &DAG = DCI.DAG;
10172 SDLoc SL(N);
10173 SDValue Ins = N->getOperand(1);
10174 EVT IdxVT = Idx.getValueType();
10175
10176 SmallVector<SDValue, 16> Ops;
10177 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10178 SDValue IC = DAG.getConstant(I, SL, IdxVT);
10179 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10180 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10181 Ops.push_back(V);
10182 }
10183
10184 return DAG.getBuildVector(VecVT, SL, Ops);
10185 }
10186
getFusedOpcode(const SelectionDAG & DAG,const SDNode * N0,const SDNode * N1) const10187 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10188 const SDNode *N0,
10189 const SDNode *N1) const {
10190 EVT VT = N0->getValueType(0);
10191
10192 // Only do this if we are not trying to support denormals. v_mad_f32 does not
10193 // support denormals ever.
10194 if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10195 (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10196 getSubtarget()->hasMadF16())) &&
10197 isOperationLegal(ISD::FMAD, VT))
10198 return ISD::FMAD;
10199
10200 const TargetOptions &Options = DAG.getTarget().Options;
10201 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10202 (N0->getFlags().hasAllowContract() &&
10203 N1->getFlags().hasAllowContract())) &&
10204 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10205 return ISD::FMA;
10206 }
10207
10208 return 0;
10209 }
10210
10211 // For a reassociatable opcode perform:
10212 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
reassociateScalarOps(SDNode * N,SelectionDAG & DAG) const10213 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10214 SelectionDAG &DAG) const {
10215 EVT VT = N->getValueType(0);
10216 if (VT != MVT::i32 && VT != MVT::i64)
10217 return SDValue();
10218
10219 unsigned Opc = N->getOpcode();
10220 SDValue Op0 = N->getOperand(0);
10221 SDValue Op1 = N->getOperand(1);
10222
10223 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10224 return SDValue();
10225
10226 if (Op0->isDivergent())
10227 std::swap(Op0, Op1);
10228
10229 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10230 return SDValue();
10231
10232 SDValue Op2 = Op1.getOperand(1);
10233 Op1 = Op1.getOperand(0);
10234 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10235 return SDValue();
10236
10237 if (Op1->isDivergent())
10238 std::swap(Op1, Op2);
10239
10240 // If either operand is constant this will conflict with
10241 // DAGCombiner::ReassociateOps().
10242 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10243 DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10244 return SDValue();
10245
10246 SDLoc SL(N);
10247 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10248 return DAG.getNode(Opc, SL, VT, Add1, Op2);
10249 }
10250
getMad64_32(SelectionDAG & DAG,const SDLoc & SL,EVT VT,SDValue N0,SDValue N1,SDValue N2,bool Signed)10251 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10252 EVT VT,
10253 SDValue N0, SDValue N1, SDValue N2,
10254 bool Signed) {
10255 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10256 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10257 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10258 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10259 }
10260
performAddCombine(SDNode * N,DAGCombinerInfo & DCI) const10261 SDValue SITargetLowering::performAddCombine(SDNode *N,
10262 DAGCombinerInfo &DCI) const {
10263 SelectionDAG &DAG = DCI.DAG;
10264 EVT VT = N->getValueType(0);
10265 SDLoc SL(N);
10266 SDValue LHS = N->getOperand(0);
10267 SDValue RHS = N->getOperand(1);
10268
10269 if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10270 && Subtarget->hasMad64_32() &&
10271 !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10272 VT.getScalarSizeInBits() <= 64) {
10273 if (LHS.getOpcode() != ISD::MUL)
10274 std::swap(LHS, RHS);
10275
10276 SDValue MulLHS = LHS.getOperand(0);
10277 SDValue MulRHS = LHS.getOperand(1);
10278 SDValue AddRHS = RHS;
10279
10280 // TODO: Maybe restrict if SGPR inputs.
10281 if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10282 numBitsUnsigned(MulRHS, DAG) <= 32) {
10283 MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10284 MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10285 AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10286 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10287 }
10288
10289 if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10290 MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10291 MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10292 AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10293 return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10294 }
10295
10296 return SDValue();
10297 }
10298
10299 if (SDValue V = reassociateScalarOps(N, DAG)) {
10300 return V;
10301 }
10302
10303 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10304 return SDValue();
10305
10306 // add x, zext (setcc) => addcarry x, 0, setcc
10307 // add x, sext (setcc) => subcarry x, 0, setcc
10308 unsigned Opc = LHS.getOpcode();
10309 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10310 Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10311 std::swap(RHS, LHS);
10312
10313 Opc = RHS.getOpcode();
10314 switch (Opc) {
10315 default: break;
10316 case ISD::ZERO_EXTEND:
10317 case ISD::SIGN_EXTEND:
10318 case ISD::ANY_EXTEND: {
10319 auto Cond = RHS.getOperand(0);
10320 // If this won't be a real VOPC output, we would still need to insert an
10321 // extra instruction anyway.
10322 if (!isBoolSGPR(Cond))
10323 break;
10324 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10325 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10326 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10327 return DAG.getNode(Opc, SL, VTList, Args);
10328 }
10329 case ISD::ADDCARRY: {
10330 // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10331 auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10332 if (!C || C->getZExtValue() != 0) break;
10333 SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10334 return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10335 }
10336 }
10337 return SDValue();
10338 }
10339
performSubCombine(SDNode * N,DAGCombinerInfo & DCI) const10340 SDValue SITargetLowering::performSubCombine(SDNode *N,
10341 DAGCombinerInfo &DCI) const {
10342 SelectionDAG &DAG = DCI.DAG;
10343 EVT VT = N->getValueType(0);
10344
10345 if (VT != MVT::i32)
10346 return SDValue();
10347
10348 SDLoc SL(N);
10349 SDValue LHS = N->getOperand(0);
10350 SDValue RHS = N->getOperand(1);
10351
10352 // sub x, zext (setcc) => subcarry x, 0, setcc
10353 // sub x, sext (setcc) => addcarry x, 0, setcc
10354 unsigned Opc = RHS.getOpcode();
10355 switch (Opc) {
10356 default: break;
10357 case ISD::ZERO_EXTEND:
10358 case ISD::SIGN_EXTEND:
10359 case ISD::ANY_EXTEND: {
10360 auto Cond = RHS.getOperand(0);
10361 // If this won't be a real VOPC output, we would still need to insert an
10362 // extra instruction anyway.
10363 if (!isBoolSGPR(Cond))
10364 break;
10365 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10366 SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10367 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10368 return DAG.getNode(Opc, SL, VTList, Args);
10369 }
10370 }
10371
10372 if (LHS.getOpcode() == ISD::SUBCARRY) {
10373 // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10374 auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10375 if (!C || !C->isNullValue())
10376 return SDValue();
10377 SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10378 return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10379 }
10380 return SDValue();
10381 }
10382
performAddCarrySubCarryCombine(SDNode * N,DAGCombinerInfo & DCI) const10383 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10384 DAGCombinerInfo &DCI) const {
10385
10386 if (N->getValueType(0) != MVT::i32)
10387 return SDValue();
10388
10389 auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10390 if (!C || C->getZExtValue() != 0)
10391 return SDValue();
10392
10393 SelectionDAG &DAG = DCI.DAG;
10394 SDValue LHS = N->getOperand(0);
10395
10396 // addcarry (add x, y), 0, cc => addcarry x, y, cc
10397 // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10398 unsigned LHSOpc = LHS.getOpcode();
10399 unsigned Opc = N->getOpcode();
10400 if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10401 (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10402 SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10403 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10404 }
10405 return SDValue();
10406 }
10407
performFAddCombine(SDNode * N,DAGCombinerInfo & DCI) const10408 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10409 DAGCombinerInfo &DCI) const {
10410 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10411 return SDValue();
10412
10413 SelectionDAG &DAG = DCI.DAG;
10414 EVT VT = N->getValueType(0);
10415
10416 SDLoc SL(N);
10417 SDValue LHS = N->getOperand(0);
10418 SDValue RHS = N->getOperand(1);
10419
10420 // These should really be instruction patterns, but writing patterns with
10421 // source modiifiers is a pain.
10422
10423 // fadd (fadd (a, a), b) -> mad 2.0, a, b
10424 if (LHS.getOpcode() == ISD::FADD) {
10425 SDValue A = LHS.getOperand(0);
10426 if (A == LHS.getOperand(1)) {
10427 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10428 if (FusedOp != 0) {
10429 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10430 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10431 }
10432 }
10433 }
10434
10435 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10436 if (RHS.getOpcode() == ISD::FADD) {
10437 SDValue A = RHS.getOperand(0);
10438 if (A == RHS.getOperand(1)) {
10439 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10440 if (FusedOp != 0) {
10441 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10442 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10443 }
10444 }
10445 }
10446
10447 return SDValue();
10448 }
10449
performFSubCombine(SDNode * N,DAGCombinerInfo & DCI) const10450 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10451 DAGCombinerInfo &DCI) const {
10452 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10453 return SDValue();
10454
10455 SelectionDAG &DAG = DCI.DAG;
10456 SDLoc SL(N);
10457 EVT VT = N->getValueType(0);
10458 assert(!VT.isVector());
10459
10460 // Try to get the fneg to fold into the source modifier. This undoes generic
10461 // DAG combines and folds them into the mad.
10462 //
10463 // Only do this if we are not trying to support denormals. v_mad_f32 does
10464 // not support denormals ever.
10465 SDValue LHS = N->getOperand(0);
10466 SDValue RHS = N->getOperand(1);
10467 if (LHS.getOpcode() == ISD::FADD) {
10468 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10469 SDValue A = LHS.getOperand(0);
10470 if (A == LHS.getOperand(1)) {
10471 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10472 if (FusedOp != 0){
10473 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10474 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10475
10476 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10477 }
10478 }
10479 }
10480
10481 if (RHS.getOpcode() == ISD::FADD) {
10482 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10483
10484 SDValue A = RHS.getOperand(0);
10485 if (A == RHS.getOperand(1)) {
10486 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10487 if (FusedOp != 0){
10488 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10489 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10490 }
10491 }
10492 }
10493
10494 return SDValue();
10495 }
10496
performFMACombine(SDNode * N,DAGCombinerInfo & DCI) const10497 SDValue SITargetLowering::performFMACombine(SDNode *N,
10498 DAGCombinerInfo &DCI) const {
10499 SelectionDAG &DAG = DCI.DAG;
10500 EVT VT = N->getValueType(0);
10501 SDLoc SL(N);
10502
10503 if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
10504 return SDValue();
10505
10506 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10507 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10508 SDValue Op1 = N->getOperand(0);
10509 SDValue Op2 = N->getOperand(1);
10510 SDValue FMA = N->getOperand(2);
10511
10512 if (FMA.getOpcode() != ISD::FMA ||
10513 Op1.getOpcode() != ISD::FP_EXTEND ||
10514 Op2.getOpcode() != ISD::FP_EXTEND)
10515 return SDValue();
10516
10517 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10518 // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10519 // is sufficient to allow generaing fdot2.
10520 const TargetOptions &Options = DAG.getTarget().Options;
10521 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10522 (N->getFlags().hasAllowContract() &&
10523 FMA->getFlags().hasAllowContract())) {
10524 Op1 = Op1.getOperand(0);
10525 Op2 = Op2.getOperand(0);
10526 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10527 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10528 return SDValue();
10529
10530 SDValue Vec1 = Op1.getOperand(0);
10531 SDValue Idx1 = Op1.getOperand(1);
10532 SDValue Vec2 = Op2.getOperand(0);
10533
10534 SDValue FMAOp1 = FMA.getOperand(0);
10535 SDValue FMAOp2 = FMA.getOperand(1);
10536 SDValue FMAAcc = FMA.getOperand(2);
10537
10538 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10539 FMAOp2.getOpcode() != ISD::FP_EXTEND)
10540 return SDValue();
10541
10542 FMAOp1 = FMAOp1.getOperand(0);
10543 FMAOp2 = FMAOp2.getOperand(0);
10544 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10545 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10546 return SDValue();
10547
10548 SDValue Vec3 = FMAOp1.getOperand(0);
10549 SDValue Vec4 = FMAOp2.getOperand(0);
10550 SDValue Idx2 = FMAOp1.getOperand(1);
10551
10552 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10553 // Idx1 and Idx2 cannot be the same.
10554 Idx1 == Idx2)
10555 return SDValue();
10556
10557 if (Vec1 == Vec2 || Vec3 == Vec4)
10558 return SDValue();
10559
10560 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10561 return SDValue();
10562
10563 if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10564 (Vec1 == Vec4 && Vec2 == Vec3)) {
10565 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10566 DAG.getTargetConstant(0, SL, MVT::i1));
10567 }
10568 }
10569 return SDValue();
10570 }
10571
performSetCCCombine(SDNode * N,DAGCombinerInfo & DCI) const10572 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10573 DAGCombinerInfo &DCI) const {
10574 SelectionDAG &DAG = DCI.DAG;
10575 SDLoc SL(N);
10576
10577 SDValue LHS = N->getOperand(0);
10578 SDValue RHS = N->getOperand(1);
10579 EVT VT = LHS.getValueType();
10580 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10581
10582 auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10583 if (!CRHS) {
10584 CRHS = dyn_cast<ConstantSDNode>(LHS);
10585 if (CRHS) {
10586 std::swap(LHS, RHS);
10587 CC = getSetCCSwappedOperands(CC);
10588 }
10589 }
10590
10591 if (CRHS) {
10592 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10593 isBoolSGPR(LHS.getOperand(0))) {
10594 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10595 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10596 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
10597 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
10598 if ((CRHS->isAllOnesValue() &&
10599 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10600 (CRHS->isNullValue() &&
10601 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10602 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10603 DAG.getConstant(-1, SL, MVT::i1));
10604 if ((CRHS->isAllOnesValue() &&
10605 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10606 (CRHS->isNullValue() &&
10607 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10608 return LHS.getOperand(0);
10609 }
10610
10611 uint64_t CRHSVal = CRHS->getZExtValue();
10612 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10613 LHS.getOpcode() == ISD::SELECT &&
10614 isa<ConstantSDNode>(LHS.getOperand(1)) &&
10615 isa<ConstantSDNode>(LHS.getOperand(2)) &&
10616 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10617 isBoolSGPR(LHS.getOperand(0))) {
10618 // Given CT != FT:
10619 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10620 // setcc (select cc, CT, CF), CF, ne => cc
10621 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10622 // setcc (select cc, CT, CF), CT, eq => cc
10623 uint64_t CT = LHS.getConstantOperandVal(1);
10624 uint64_t CF = LHS.getConstantOperandVal(2);
10625
10626 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10627 (CT == CRHSVal && CC == ISD::SETNE))
10628 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10629 DAG.getConstant(-1, SL, MVT::i1));
10630 if ((CF == CRHSVal && CC == ISD::SETNE) ||
10631 (CT == CRHSVal && CC == ISD::SETEQ))
10632 return LHS.getOperand(0);
10633 }
10634 }
10635
10636 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10637 VT != MVT::f16))
10638 return SDValue();
10639
10640 // Match isinf/isfinite pattern
10641 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10642 // (fcmp one (fabs x), inf) -> (fp_class x,
10643 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10644 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10645 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10646 if (!CRHS)
10647 return SDValue();
10648
10649 const APFloat &APF = CRHS->getValueAPF();
10650 if (APF.isInfinity() && !APF.isNegative()) {
10651 const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10652 SIInstrFlags::N_INFINITY;
10653 const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10654 SIInstrFlags::P_ZERO |
10655 SIInstrFlags::N_NORMAL |
10656 SIInstrFlags::P_NORMAL |
10657 SIInstrFlags::N_SUBNORMAL |
10658 SIInstrFlags::P_SUBNORMAL;
10659 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10660 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10661 DAG.getConstant(Mask, SL, MVT::i32));
10662 }
10663 }
10664
10665 return SDValue();
10666 }
10667
performCvtF32UByteNCombine(SDNode * N,DAGCombinerInfo & DCI) const10668 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10669 DAGCombinerInfo &DCI) const {
10670 SelectionDAG &DAG = DCI.DAG;
10671 SDLoc SL(N);
10672 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10673
10674 SDValue Src = N->getOperand(0);
10675 SDValue Shift = N->getOperand(0);
10676
10677 // TODO: Extend type shouldn't matter (assuming legal types).
10678 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10679 Shift = Shift.getOperand(0);
10680
10681 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10682 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
10683 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10684 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10685 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10686 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
10687 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10688 Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10689 SDLoc(Shift.getOperand(0)), MVT::i32);
10690
10691 unsigned ShiftOffset = 8 * Offset;
10692 if (Shift.getOpcode() == ISD::SHL)
10693 ShiftOffset -= C->getZExtValue();
10694 else
10695 ShiftOffset += C->getZExtValue();
10696
10697 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10698 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10699 MVT::f32, Shift);
10700 }
10701 }
10702 }
10703
10704 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10705 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10706 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10707 // We simplified Src. If this node is not dead, visit it again so it is
10708 // folded properly.
10709 if (N->getOpcode() != ISD::DELETED_NODE)
10710 DCI.AddToWorklist(N);
10711 return SDValue(N, 0);
10712 }
10713
10714 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10715 if (SDValue DemandedSrc =
10716 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10717 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10718
10719 return SDValue();
10720 }
10721
performClampCombine(SDNode * N,DAGCombinerInfo & DCI) const10722 SDValue SITargetLowering::performClampCombine(SDNode *N,
10723 DAGCombinerInfo &DCI) const {
10724 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10725 if (!CSrc)
10726 return SDValue();
10727
10728 const MachineFunction &MF = DCI.DAG.getMachineFunction();
10729 const APFloat &F = CSrc->getValueAPF();
10730 APFloat Zero = APFloat::getZero(F.getSemantics());
10731 if (F < Zero ||
10732 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10733 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10734 }
10735
10736 APFloat One(F.getSemantics(), "1.0");
10737 if (F > One)
10738 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10739
10740 return SDValue(CSrc, 0);
10741 }
10742
10743
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const10744 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10745 DAGCombinerInfo &DCI) const {
10746 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10747 return SDValue();
10748 switch (N->getOpcode()) {
10749 case ISD::ADD:
10750 return performAddCombine(N, DCI);
10751 case ISD::SUB:
10752 return performSubCombine(N, DCI);
10753 case ISD::ADDCARRY:
10754 case ISD::SUBCARRY:
10755 return performAddCarrySubCarryCombine(N, DCI);
10756 case ISD::FADD:
10757 return performFAddCombine(N, DCI);
10758 case ISD::FSUB:
10759 return performFSubCombine(N, DCI);
10760 case ISD::SETCC:
10761 return performSetCCCombine(N, DCI);
10762 case ISD::FMAXNUM:
10763 case ISD::FMINNUM:
10764 case ISD::FMAXNUM_IEEE:
10765 case ISD::FMINNUM_IEEE:
10766 case ISD::SMAX:
10767 case ISD::SMIN:
10768 case ISD::UMAX:
10769 case ISD::UMIN:
10770 case AMDGPUISD::FMIN_LEGACY:
10771 case AMDGPUISD::FMAX_LEGACY:
10772 return performMinMaxCombine(N, DCI);
10773 case ISD::FMA:
10774 return performFMACombine(N, DCI);
10775 case ISD::AND:
10776 return performAndCombine(N, DCI);
10777 case ISD::OR:
10778 return performOrCombine(N, DCI);
10779 case ISD::XOR:
10780 return performXorCombine(N, DCI);
10781 case ISD::ZERO_EXTEND:
10782 return performZeroExtendCombine(N, DCI);
10783 case ISD::SIGN_EXTEND_INREG:
10784 return performSignExtendInRegCombine(N , DCI);
10785 case AMDGPUISD::FP_CLASS:
10786 return performClassCombine(N, DCI);
10787 case ISD::FCANONICALIZE:
10788 return performFCanonicalizeCombine(N, DCI);
10789 case AMDGPUISD::RCP:
10790 return performRcpCombine(N, DCI);
10791 case AMDGPUISD::FRACT:
10792 case AMDGPUISD::RSQ:
10793 case AMDGPUISD::RCP_LEGACY:
10794 case AMDGPUISD::RCP_IFLAG:
10795 case AMDGPUISD::RSQ_CLAMP:
10796 case AMDGPUISD::LDEXP: {
10797 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10798 SDValue Src = N->getOperand(0);
10799 if (Src.isUndef())
10800 return Src;
10801 break;
10802 }
10803 case ISD::SINT_TO_FP:
10804 case ISD::UINT_TO_FP:
10805 return performUCharToFloatCombine(N, DCI);
10806 case AMDGPUISD::CVT_F32_UBYTE0:
10807 case AMDGPUISD::CVT_F32_UBYTE1:
10808 case AMDGPUISD::CVT_F32_UBYTE2:
10809 case AMDGPUISD::CVT_F32_UBYTE3:
10810 return performCvtF32UByteNCombine(N, DCI);
10811 case AMDGPUISD::FMED3:
10812 return performFMed3Combine(N, DCI);
10813 case AMDGPUISD::CVT_PKRTZ_F16_F32:
10814 return performCvtPkRTZCombine(N, DCI);
10815 case AMDGPUISD::CLAMP:
10816 return performClampCombine(N, DCI);
10817 case ISD::SCALAR_TO_VECTOR: {
10818 SelectionDAG &DAG = DCI.DAG;
10819 EVT VT = N->getValueType(0);
10820
10821 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10822 if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10823 SDLoc SL(N);
10824 SDValue Src = N->getOperand(0);
10825 EVT EltVT = Src.getValueType();
10826 if (EltVT == MVT::f16)
10827 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10828
10829 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10830 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10831 }
10832
10833 break;
10834 }
10835 case ISD::EXTRACT_VECTOR_ELT:
10836 return performExtractVectorEltCombine(N, DCI);
10837 case ISD::INSERT_VECTOR_ELT:
10838 return performInsertVectorEltCombine(N, DCI);
10839 case ISD::LOAD: {
10840 if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10841 return Widended;
10842 LLVM_FALLTHROUGH;
10843 }
10844 default: {
10845 if (!DCI.isBeforeLegalize()) {
10846 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10847 return performMemSDNodeCombine(MemNode, DCI);
10848 }
10849
10850 break;
10851 }
10852 }
10853
10854 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10855 }
10856
10857 /// Helper function for adjustWritemask
SubIdx2Lane(unsigned Idx)10858 static unsigned SubIdx2Lane(unsigned Idx) {
10859 switch (Idx) {
10860 default: return 0;
10861 case AMDGPU::sub0: return 0;
10862 case AMDGPU::sub1: return 1;
10863 case AMDGPU::sub2: return 2;
10864 case AMDGPU::sub3: return 3;
10865 case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10866 }
10867 }
10868
10869 /// Adjust the writemask of MIMG instructions
adjustWritemask(MachineSDNode * & Node,SelectionDAG & DAG) const10870 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10871 SelectionDAG &DAG) const {
10872 unsigned Opcode = Node->getMachineOpcode();
10873
10874 // Subtract 1 because the vdata output is not a MachineSDNode operand.
10875 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10876 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10877 return Node; // not implemented for D16
10878
10879 SDNode *Users[5] = { nullptr };
10880 unsigned Lane = 0;
10881 unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10882 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10883 unsigned NewDmask = 0;
10884 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10885 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10886 bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10887 Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10888 unsigned TFCLane = 0;
10889 bool HasChain = Node->getNumValues() > 1;
10890
10891 if (OldDmask == 0) {
10892 // These are folded out, but on the chance it happens don't assert.
10893 return Node;
10894 }
10895
10896 unsigned OldBitsSet = countPopulation(OldDmask);
10897 // Work out which is the TFE/LWE lane if that is enabled.
10898 if (UsesTFC) {
10899 TFCLane = OldBitsSet;
10900 }
10901
10902 // Try to figure out the used register components
10903 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10904 I != E; ++I) {
10905
10906 // Don't look at users of the chain.
10907 if (I.getUse().getResNo() != 0)
10908 continue;
10909
10910 // Abort if we can't understand the usage
10911 if (!I->isMachineOpcode() ||
10912 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10913 return Node;
10914
10915 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10916 // Note that subregs are packed, i.e. Lane==0 is the first bit set
10917 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10918 // set, etc.
10919 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10920
10921 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10922 if (UsesTFC && Lane == TFCLane) {
10923 Users[Lane] = *I;
10924 } else {
10925 // Set which texture component corresponds to the lane.
10926 unsigned Comp;
10927 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10928 Comp = countTrailingZeros(Dmask);
10929 Dmask &= ~(1 << Comp);
10930 }
10931
10932 // Abort if we have more than one user per component.
10933 if (Users[Lane])
10934 return Node;
10935
10936 Users[Lane] = *I;
10937 NewDmask |= 1 << Comp;
10938 }
10939 }
10940
10941 // Don't allow 0 dmask, as hardware assumes one channel enabled.
10942 bool NoChannels = !NewDmask;
10943 if (NoChannels) {
10944 if (!UsesTFC) {
10945 // No uses of the result and not using TFC. Then do nothing.
10946 return Node;
10947 }
10948 // If the original dmask has one channel - then nothing to do
10949 if (OldBitsSet == 1)
10950 return Node;
10951 // Use an arbitrary dmask - required for the instruction to work
10952 NewDmask = 1;
10953 }
10954 // Abort if there's no change
10955 if (NewDmask == OldDmask)
10956 return Node;
10957
10958 unsigned BitsSet = countPopulation(NewDmask);
10959
10960 // Check for TFE or LWE - increase the number of channels by one to account
10961 // for the extra return value
10962 // This will need adjustment for D16 if this is also included in
10963 // adjustWriteMask (this function) but at present D16 are excluded.
10964 unsigned NewChannels = BitsSet + UsesTFC;
10965
10966 int NewOpcode =
10967 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10968 assert(NewOpcode != -1 &&
10969 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10970 "failed to find equivalent MIMG op");
10971
10972 // Adjust the writemask in the node
10973 SmallVector<SDValue, 12> Ops;
10974 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10975 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10976 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10977
10978 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10979
10980 MVT ResultVT = NewChannels == 1 ?
10981 SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10982 NewChannels == 5 ? 8 : NewChannels);
10983 SDVTList NewVTList = HasChain ?
10984 DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10985
10986
10987 MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10988 NewVTList, Ops);
10989
10990 if (HasChain) {
10991 // Update chain.
10992 DAG.setNodeMemRefs(NewNode, Node->memoperands());
10993 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10994 }
10995
10996 if (NewChannels == 1) {
10997 assert(Node->hasNUsesOfValue(1, 0));
10998 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10999 SDLoc(Node), Users[Lane]->getValueType(0),
11000 SDValue(NewNode, 0));
11001 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
11002 return nullptr;
11003 }
11004
11005 // Update the users of the node with the new indices
11006 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
11007 SDNode *User = Users[i];
11008 if (!User) {
11009 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
11010 // Users[0] is still nullptr because channel 0 doesn't really have a use.
11011 if (i || !NoChannels)
11012 continue;
11013 } else {
11014 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
11015 DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
11016 }
11017
11018 switch (Idx) {
11019 default: break;
11020 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
11021 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11022 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11023 case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11024 }
11025 }
11026
11027 DAG.RemoveDeadNode(Node);
11028 return nullptr;
11029 }
11030
isFrameIndexOp(SDValue Op)11031 static bool isFrameIndexOp(SDValue Op) {
11032 if (Op.getOpcode() == ISD::AssertZext)
11033 Op = Op.getOperand(0);
11034
11035 return isa<FrameIndexSDNode>(Op);
11036 }
11037
11038 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11039 /// with frame index operands.
11040 /// LLVM assumes that inputs are to these instructions are registers.
legalizeTargetIndependentNode(SDNode * Node,SelectionDAG & DAG) const11041 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11042 SelectionDAG &DAG) const {
11043 if (Node->getOpcode() == ISD::CopyToReg) {
11044 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11045 SDValue SrcVal = Node->getOperand(2);
11046
11047 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11048 // to try understanding copies to physical registers.
11049 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11050 SDLoc SL(Node);
11051 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11052 SDValue VReg = DAG.getRegister(
11053 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11054
11055 SDNode *Glued = Node->getGluedNode();
11056 SDValue ToVReg
11057 = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11058 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11059 SDValue ToResultReg
11060 = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11061 VReg, ToVReg.getValue(1));
11062 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11063 DAG.RemoveDeadNode(Node);
11064 return ToResultReg.getNode();
11065 }
11066 }
11067
11068 SmallVector<SDValue, 8> Ops;
11069 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11070 if (!isFrameIndexOp(Node->getOperand(i))) {
11071 Ops.push_back(Node->getOperand(i));
11072 continue;
11073 }
11074
11075 SDLoc DL(Node);
11076 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11077 Node->getOperand(i).getValueType(),
11078 Node->getOperand(i)), 0));
11079 }
11080
11081 return DAG.UpdateNodeOperands(Node, Ops);
11082 }
11083
11084 /// Fold the instructions after selecting them.
11085 /// Returns null if users were already updated.
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const11086 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11087 SelectionDAG &DAG) const {
11088 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11089 unsigned Opcode = Node->getMachineOpcode();
11090
11091 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11092 !TII->isGather4(Opcode) &&
11093 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11094 return adjustWritemask(Node, DAG);
11095 }
11096
11097 if (Opcode == AMDGPU::INSERT_SUBREG ||
11098 Opcode == AMDGPU::REG_SEQUENCE) {
11099 legalizeTargetIndependentNode(Node, DAG);
11100 return Node;
11101 }
11102
11103 switch (Opcode) {
11104 case AMDGPU::V_DIV_SCALE_F32:
11105 case AMDGPU::V_DIV_SCALE_F64: {
11106 // Satisfy the operand register constraint when one of the inputs is
11107 // undefined. Ordinarily each undef value will have its own implicit_def of
11108 // a vreg, so force these to use a single register.
11109 SDValue Src0 = Node->getOperand(1);
11110 SDValue Src1 = Node->getOperand(3);
11111 SDValue Src2 = Node->getOperand(5);
11112
11113 if ((Src0.isMachineOpcode() &&
11114 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11115 (Src0 == Src1 || Src0 == Src2))
11116 break;
11117
11118 MVT VT = Src0.getValueType().getSimpleVT();
11119 const TargetRegisterClass *RC =
11120 getRegClassFor(VT, Src0.getNode()->isDivergent());
11121
11122 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11123 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11124
11125 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11126 UndefReg, Src0, SDValue());
11127
11128 // src0 must be the same register as src1 or src2, even if the value is
11129 // undefined, so make sure we don't violate this constraint.
11130 if (Src0.isMachineOpcode() &&
11131 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11132 if (Src1.isMachineOpcode() &&
11133 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11134 Src0 = Src1;
11135 else if (Src2.isMachineOpcode() &&
11136 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11137 Src0 = Src2;
11138 else {
11139 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11140 Src0 = UndefReg;
11141 Src1 = UndefReg;
11142 }
11143 } else
11144 break;
11145
11146 SmallVector<SDValue, 9> Ops(Node->op_begin(), Node->op_end());
11147 Ops[1] = Src0;
11148 Ops[3] = Src1;
11149 Ops[5] = Src2;
11150 Ops.push_back(ImpDef.getValue(1));
11151 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11152 }
11153 default:
11154 break;
11155 }
11156
11157 return Node;
11158 }
11159
11160 /// Assign the register class depending on the number of
11161 /// bits set in the writemask
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const11162 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11163 SDNode *Node) const {
11164 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11165
11166 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11167
11168 if (TII->isVOP3(MI.getOpcode())) {
11169 // Make sure constant bus requirements are respected.
11170 TII->legalizeOperandsVOP3(MRI, MI);
11171
11172 // Prefer VGPRs over AGPRs in mAI instructions where possible.
11173 // This saves a chain-copy of registers and better ballance register
11174 // use between vgpr and agpr as agpr tuples tend to be big.
11175 if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11176 unsigned Opc = MI.getOpcode();
11177 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11178 for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11179 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11180 if (I == -1)
11181 break;
11182 MachineOperand &Op = MI.getOperand(I);
11183 if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11184 OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11185 !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11186 continue;
11187 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11188 if (!Src || !Src->isCopy() ||
11189 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11190 continue;
11191 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11192 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11193 // All uses of agpr64 and agpr32 can also accept vgpr except for
11194 // v_accvgpr_read, but we do not produce agpr reads during selection,
11195 // so no use checks are needed.
11196 MRI.setRegClass(Op.getReg(), NewRC);
11197 }
11198 }
11199
11200 return;
11201 }
11202
11203 // Replace unused atomics with the no return version.
11204 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11205 if (NoRetAtomicOp != -1) {
11206 if (!Node->hasAnyUseOfValue(0)) {
11207 int Glc1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
11208 AMDGPU::OpName::glc1);
11209 if (Glc1Idx != -1)
11210 MI.RemoveOperand(Glc1Idx);
11211 MI.RemoveOperand(0);
11212 MI.setDesc(TII->get(NoRetAtomicOp));
11213 return;
11214 }
11215
11216 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11217 // instruction, because the return type of these instructions is a vec2 of
11218 // the memory type, so it can be tied to the input operand.
11219 // This means these instructions always have a use, so we need to add a
11220 // special case to check if the atomic has only one extract_subreg use,
11221 // which itself has no uses.
11222 if ((Node->hasNUsesOfValue(1, 0) &&
11223 Node->use_begin()->isMachineOpcode() &&
11224 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11225 !Node->use_begin()->hasAnyUseOfValue(0))) {
11226 Register Def = MI.getOperand(0).getReg();
11227
11228 // Change this into a noret atomic.
11229 MI.setDesc(TII->get(NoRetAtomicOp));
11230 MI.RemoveOperand(0);
11231
11232 // If we only remove the def operand from the atomic instruction, the
11233 // extract_subreg will be left with a use of a vreg without a def.
11234 // So we need to insert an implicit_def to avoid machine verifier
11235 // errors.
11236 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11237 TII->get(AMDGPU::IMPLICIT_DEF), Def);
11238 }
11239 return;
11240 }
11241 }
11242
buildSMovImm32(SelectionDAG & DAG,const SDLoc & DL,uint64_t Val)11243 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11244 uint64_t Val) {
11245 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11246 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11247 }
11248
wrapAddr64Rsrc(SelectionDAG & DAG,const SDLoc & DL,SDValue Ptr) const11249 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11250 const SDLoc &DL,
11251 SDValue Ptr) const {
11252 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11253
11254 // Build the half of the subregister with the constants before building the
11255 // full 128-bit register. If we are building multiple resource descriptors,
11256 // this will allow CSEing of the 2-component register.
11257 const SDValue Ops0[] = {
11258 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11259 buildSMovImm32(DAG, DL, 0),
11260 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11261 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11262 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11263 };
11264
11265 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11266 MVT::v2i32, Ops0), 0);
11267
11268 // Combine the constants and the pointer.
11269 const SDValue Ops1[] = {
11270 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11271 Ptr,
11272 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11273 SubRegHi,
11274 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11275 };
11276
11277 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11278 }
11279
11280 /// Return a resource descriptor with the 'Add TID' bit enabled
11281 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11282 /// of the resource descriptor) to create an offset, which is added to
11283 /// the resource pointer.
buildRSRC(SelectionDAG & DAG,const SDLoc & DL,SDValue Ptr,uint32_t RsrcDword1,uint64_t RsrcDword2And3) const11284 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11285 SDValue Ptr, uint32_t RsrcDword1,
11286 uint64_t RsrcDword2And3) const {
11287 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11288 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11289 if (RsrcDword1) {
11290 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11291 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11292 0);
11293 }
11294
11295 SDValue DataLo = buildSMovImm32(DAG, DL,
11296 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11297 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11298
11299 const SDValue Ops[] = {
11300 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11301 PtrLo,
11302 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11303 PtrHi,
11304 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11305 DataLo,
11306 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11307 DataHi,
11308 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11309 };
11310
11311 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11312 }
11313
11314 //===----------------------------------------------------------------------===//
11315 // SI Inline Assembly Support
11316 //===----------------------------------------------------------------------===//
11317
11318 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const11319 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11320 StringRef Constraint,
11321 MVT VT) const {
11322 const TargetRegisterClass *RC = nullptr;
11323 if (Constraint.size() == 1) {
11324 const unsigned BitWidth = VT.getSizeInBits();
11325 switch (Constraint[0]) {
11326 default:
11327 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11328 case 's':
11329 case 'r':
11330 switch (BitWidth) {
11331 case 16:
11332 RC = &AMDGPU::SReg_32RegClass;
11333 break;
11334 case 64:
11335 RC = &AMDGPU::SGPR_64RegClass;
11336 break;
11337 default:
11338 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11339 if (!RC)
11340 return std::make_pair(0U, nullptr);
11341 break;
11342 }
11343 break;
11344 case 'v':
11345 switch (BitWidth) {
11346 case 16:
11347 RC = &AMDGPU::VGPR_32RegClass;
11348 break;
11349 default:
11350 RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth);
11351 if (!RC)
11352 return std::make_pair(0U, nullptr);
11353 break;
11354 }
11355 break;
11356 case 'a':
11357 if (!Subtarget->hasMAIInsts())
11358 break;
11359 switch (BitWidth) {
11360 case 16:
11361 RC = &AMDGPU::AGPR_32RegClass;
11362 break;
11363 default:
11364 RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth);
11365 if (!RC)
11366 return std::make_pair(0U, nullptr);
11367 break;
11368 }
11369 break;
11370 }
11371 // We actually support i128, i16 and f16 as inline parameters
11372 // even if they are not reported as legal
11373 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11374 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11375 return std::make_pair(0U, RC);
11376 }
11377
11378 if (Constraint.size() > 1) {
11379 if (Constraint[1] == 'v') {
11380 RC = &AMDGPU::VGPR_32RegClass;
11381 } else if (Constraint[1] == 's') {
11382 RC = &AMDGPU::SGPR_32RegClass;
11383 } else if (Constraint[1] == 'a') {
11384 RC = &AMDGPU::AGPR_32RegClass;
11385 }
11386
11387 if (RC) {
11388 uint32_t Idx;
11389 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11390 if (!Failed && Idx < RC->getNumRegs())
11391 return std::make_pair(RC->getRegister(Idx), RC);
11392 }
11393 }
11394
11395 // FIXME: Returns VS_32 for physical SGPR constraints
11396 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11397 }
11398
isImmConstraint(StringRef Constraint)11399 static bool isImmConstraint(StringRef Constraint) {
11400 if (Constraint.size() == 1) {
11401 switch (Constraint[0]) {
11402 default: break;
11403 case 'I':
11404 case 'J':
11405 case 'A':
11406 case 'B':
11407 case 'C':
11408 return true;
11409 }
11410 } else if (Constraint == "DA" ||
11411 Constraint == "DB") {
11412 return true;
11413 }
11414 return false;
11415 }
11416
11417 SITargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const11418 SITargetLowering::getConstraintType(StringRef Constraint) const {
11419 if (Constraint.size() == 1) {
11420 switch (Constraint[0]) {
11421 default: break;
11422 case 's':
11423 case 'v':
11424 case 'a':
11425 return C_RegisterClass;
11426 }
11427 }
11428 if (isImmConstraint(Constraint)) {
11429 return C_Other;
11430 }
11431 return TargetLowering::getConstraintType(Constraint);
11432 }
11433
clearUnusedBits(uint64_t Val,unsigned Size)11434 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11435 if (!AMDGPU::isInlinableIntLiteral(Val)) {
11436 Val = Val & maskTrailingOnes<uint64_t>(Size);
11437 }
11438 return Val;
11439 }
11440
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const11441 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11442 std::string &Constraint,
11443 std::vector<SDValue> &Ops,
11444 SelectionDAG &DAG) const {
11445 if (isImmConstraint(Constraint)) {
11446 uint64_t Val;
11447 if (getAsmOperandConstVal(Op, Val) &&
11448 checkAsmConstraintVal(Op, Constraint, Val)) {
11449 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11450 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11451 }
11452 } else {
11453 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11454 }
11455 }
11456
getAsmOperandConstVal(SDValue Op,uint64_t & Val) const11457 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11458 unsigned Size = Op.getScalarValueSizeInBits();
11459 if (Size > 64)
11460 return false;
11461
11462 if (Size == 16 && !Subtarget->has16BitInsts())
11463 return false;
11464
11465 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11466 Val = C->getSExtValue();
11467 return true;
11468 }
11469 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11470 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11471 return true;
11472 }
11473 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11474 if (Size != 16 || Op.getNumOperands() != 2)
11475 return false;
11476 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11477 return false;
11478 if (ConstantSDNode *C = V->getConstantSplatNode()) {
11479 Val = C->getSExtValue();
11480 return true;
11481 }
11482 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11483 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11484 return true;
11485 }
11486 }
11487
11488 return false;
11489 }
11490
checkAsmConstraintVal(SDValue Op,const std::string & Constraint,uint64_t Val) const11491 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11492 const std::string &Constraint,
11493 uint64_t Val) const {
11494 if (Constraint.size() == 1) {
11495 switch (Constraint[0]) {
11496 case 'I':
11497 return AMDGPU::isInlinableIntLiteral(Val);
11498 case 'J':
11499 return isInt<16>(Val);
11500 case 'A':
11501 return checkAsmConstraintValA(Op, Val);
11502 case 'B':
11503 return isInt<32>(Val);
11504 case 'C':
11505 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11506 AMDGPU::isInlinableIntLiteral(Val);
11507 default:
11508 break;
11509 }
11510 } else if (Constraint.size() == 2) {
11511 if (Constraint == "DA") {
11512 int64_t HiBits = static_cast<int32_t>(Val >> 32);
11513 int64_t LoBits = static_cast<int32_t>(Val);
11514 return checkAsmConstraintValA(Op, HiBits, 32) &&
11515 checkAsmConstraintValA(Op, LoBits, 32);
11516 }
11517 if (Constraint == "DB") {
11518 return true;
11519 }
11520 }
11521 llvm_unreachable("Invalid asm constraint");
11522 }
11523
checkAsmConstraintValA(SDValue Op,uint64_t Val,unsigned MaxSize) const11524 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11525 uint64_t Val,
11526 unsigned MaxSize) const {
11527 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11528 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11529 if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11530 (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11531 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11532 return true;
11533 }
11534 return false;
11535 }
11536
11537 // Figure out which registers should be reserved for stack access. Only after
11538 // the function is legalized do we know all of the non-spill stack objects or if
11539 // calls are present.
finalizeLowering(MachineFunction & MF) const11540 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11541 MachineRegisterInfo &MRI = MF.getRegInfo();
11542 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11543 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11544 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11545
11546 if (Info->isEntryFunction()) {
11547 // Callable functions have fixed registers used for stack access.
11548 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11549 }
11550
11551 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11552 Info->getStackPtrOffsetReg()));
11553 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11554 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11555
11556 // We need to worry about replacing the default register with itself in case
11557 // of MIR testcases missing the MFI.
11558 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11559 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11560
11561 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11562 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11563
11564 Info->limitOccupancy(MF);
11565
11566 if (ST.isWave32() && !MF.empty()) {
11567 const SIInstrInfo *TII = ST.getInstrInfo();
11568 for (auto &MBB : MF) {
11569 for (auto &MI : MBB) {
11570 TII->fixImplicitOperands(MI);
11571 }
11572 }
11573 }
11574
11575 TargetLoweringBase::finalizeLowering(MF);
11576
11577 // Allocate a VGPR for future SGPR Spill if
11578 // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11579 // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11580 if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill &&
11581 !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects())
11582 Info->reserveVGPRforSGPRSpills(MF);
11583 }
11584
computeKnownBitsForFrameIndex(const int FI,KnownBits & Known,const MachineFunction & MF) const11585 void SITargetLowering::computeKnownBitsForFrameIndex(
11586 const int FI, KnownBits &Known, const MachineFunction &MF) const {
11587 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11588
11589 // Set the high bits to zero based on the maximum allowed scratch size per
11590 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11591 // calculation won't overflow, so assume the sign bit is never set.
11592 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11593 }
11594
knownBitsForWorkitemID(const GCNSubtarget & ST,GISelKnownBits & KB,KnownBits & Known,unsigned Dim)11595 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11596 KnownBits &Known, unsigned Dim) {
11597 unsigned MaxValue =
11598 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11599 Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11600 }
11601
computeKnownBitsForTargetInstr(GISelKnownBits & KB,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const11602 void SITargetLowering::computeKnownBitsForTargetInstr(
11603 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11604 const MachineRegisterInfo &MRI, unsigned Depth) const {
11605 const MachineInstr *MI = MRI.getVRegDef(R);
11606 switch (MI->getOpcode()) {
11607 case AMDGPU::G_INTRINSIC: {
11608 switch (MI->getIntrinsicID()) {
11609 case Intrinsic::amdgcn_workitem_id_x:
11610 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11611 break;
11612 case Intrinsic::amdgcn_workitem_id_y:
11613 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11614 break;
11615 case Intrinsic::amdgcn_workitem_id_z:
11616 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11617 break;
11618 case Intrinsic::amdgcn_mbcnt_lo:
11619 case Intrinsic::amdgcn_mbcnt_hi: {
11620 // These return at most the wavefront size - 1.
11621 unsigned Size = MRI.getType(R).getSizeInBits();
11622 Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11623 break;
11624 }
11625 case Intrinsic::amdgcn_groupstaticsize: {
11626 // We can report everything over the maximum size as 0. We can't report
11627 // based on the actual size because we don't know if it's accurate or not
11628 // at any given point.
11629 Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11630 break;
11631 }
11632 }
11633 break;
11634 }
11635 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11636 Known.Zero.setHighBits(24);
11637 break;
11638 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11639 Known.Zero.setHighBits(16);
11640 break;
11641 }
11642 }
11643
computeKnownAlignForTargetInstr(GISelKnownBits & KB,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const11644 Align SITargetLowering::computeKnownAlignForTargetInstr(
11645 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11646 unsigned Depth) const {
11647 const MachineInstr *MI = MRI.getVRegDef(R);
11648 switch (MI->getOpcode()) {
11649 case AMDGPU::G_INTRINSIC:
11650 case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11651 // FIXME: Can this move to generic code? What about the case where the call
11652 // site specifies a lower alignment?
11653 Intrinsic::ID IID = MI->getIntrinsicID();
11654 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11655 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11656 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11657 return *RetAlign;
11658 return Align(1);
11659 }
11660 default:
11661 return Align(1);
11662 }
11663 }
11664
getPrefLoopAlignment(MachineLoop * ML) const11665 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11666 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11667 const Align CacheLineAlign = Align(64);
11668
11669 // Pre-GFX10 target did not benefit from loop alignment
11670 if (!ML || DisableLoopAlignment ||
11671 (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11672 getSubtarget()->hasInstFwdPrefetchBug())
11673 return PrefAlign;
11674
11675 // On GFX10 I$ is 4 x 64 bytes cache lines.
11676 // By default prefetcher keeps one cache line behind and reads two ahead.
11677 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11678 // behind and one ahead.
11679 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11680 // If loop fits 64 bytes it always spans no more than two cache lines and
11681 // does not need an alignment.
11682 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11683 // Else if loop is less or equal 192 bytes we need two lines behind.
11684
11685 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11686 const MachineBasicBlock *Header = ML->getHeader();
11687 if (Header->getAlignment() != PrefAlign)
11688 return Header->getAlignment(); // Already processed.
11689
11690 unsigned LoopSize = 0;
11691 for (const MachineBasicBlock *MBB : ML->blocks()) {
11692 // If inner loop block is aligned assume in average half of the alignment
11693 // size to be added as nops.
11694 if (MBB != Header)
11695 LoopSize += MBB->getAlignment().value() / 2;
11696
11697 for (const MachineInstr &MI : *MBB) {
11698 LoopSize += TII->getInstSizeInBytes(MI);
11699 if (LoopSize > 192)
11700 return PrefAlign;
11701 }
11702 }
11703
11704 if (LoopSize <= 64)
11705 return PrefAlign;
11706
11707 if (LoopSize <= 128)
11708 return CacheLineAlign;
11709
11710 // If any of parent loops is surrounded by prefetch instructions do not
11711 // insert new for inner loop, which would reset parent's settings.
11712 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11713 if (MachineBasicBlock *Exit = P->getExitBlock()) {
11714 auto I = Exit->getFirstNonDebugInstr();
11715 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11716 return CacheLineAlign;
11717 }
11718 }
11719
11720 MachineBasicBlock *Pre = ML->getLoopPreheader();
11721 MachineBasicBlock *Exit = ML->getExitBlock();
11722
11723 if (Pre && Exit) {
11724 BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11725 TII->get(AMDGPU::S_INST_PREFETCH))
11726 .addImm(1); // prefetch 2 lines behind PC
11727
11728 BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11729 TII->get(AMDGPU::S_INST_PREFETCH))
11730 .addImm(2); // prefetch 1 line behind PC
11731 }
11732
11733 return CacheLineAlign;
11734 }
11735
11736 LLVM_ATTRIBUTE_UNUSED
isCopyFromRegOfInlineAsm(const SDNode * N)11737 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11738 assert(N->getOpcode() == ISD::CopyFromReg);
11739 do {
11740 // Follow the chain until we find an INLINEASM node.
11741 N = N->getOperand(0).getNode();
11742 if (N->getOpcode() == ISD::INLINEASM ||
11743 N->getOpcode() == ISD::INLINEASM_BR)
11744 return true;
11745 } while (N->getOpcode() == ISD::CopyFromReg);
11746 return false;
11747 }
11748
isSDNodeSourceOfDivergence(const SDNode * N,FunctionLoweringInfo * FLI,LegacyDivergenceAnalysis * KDA) const11749 bool SITargetLowering::isSDNodeSourceOfDivergence(
11750 const SDNode *N, FunctionLoweringInfo *FLI,
11751 LegacyDivergenceAnalysis *KDA) const {
11752 switch (N->getOpcode()) {
11753 case ISD::CopyFromReg: {
11754 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11755 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11756 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11757 Register Reg = R->getReg();
11758
11759 // FIXME: Why does this need to consider isLiveIn?
11760 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11761 return !TRI->isSGPRReg(MRI, Reg);
11762
11763 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11764 return KDA->isDivergent(V);
11765
11766 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
11767 return !TRI->isSGPRReg(MRI, Reg);
11768 }
11769 case ISD::LOAD: {
11770 const LoadSDNode *L = cast<LoadSDNode>(N);
11771 unsigned AS = L->getAddressSpace();
11772 // A flat load may access private memory.
11773 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11774 }
11775 case ISD::CALLSEQ_END:
11776 return true;
11777 case ISD::INTRINSIC_WO_CHAIN:
11778 return AMDGPU::isIntrinsicSourceOfDivergence(
11779 cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11780 case ISD::INTRINSIC_W_CHAIN:
11781 return AMDGPU::isIntrinsicSourceOfDivergence(
11782 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
11783 }
11784 return false;
11785 }
11786
denormalsEnabledForType(const SelectionDAG & DAG,EVT VT) const11787 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
11788 EVT VT) const {
11789 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
11790 case MVT::f32:
11791 return hasFP32Denormals(DAG.getMachineFunction());
11792 case MVT::f64:
11793 case MVT::f16:
11794 return hasFP64FP16Denormals(DAG.getMachineFunction());
11795 default:
11796 return false;
11797 }
11798 }
11799
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const11800 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
11801 const SelectionDAG &DAG,
11802 bool SNaN,
11803 unsigned Depth) const {
11804 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
11805 const MachineFunction &MF = DAG.getMachineFunction();
11806 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11807
11808 if (Info->getMode().DX10Clamp)
11809 return true; // Clamped to 0.
11810 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
11811 }
11812
11813 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
11814 SNaN, Depth);
11815 }
11816
11817 // Global FP atomic instructions have a hardcoded FP mode and do not support
11818 // FP32 denormals, and only support v2f16 denormals.
fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst * RMW)11819 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
11820 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
11821 auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
11822 if (&Flt == &APFloat::IEEEsingle())
11823 return DenormMode == DenormalMode::getPreserveSign();
11824 return DenormMode == DenormalMode::getIEEE();
11825 }
11826
11827 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * RMW) const11828 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
11829 switch (RMW->getOperation()) {
11830 case AtomicRMWInst::FAdd: {
11831 Type *Ty = RMW->getType();
11832
11833 // We don't have a way to support 16-bit atomics now, so just leave them
11834 // as-is.
11835 if (Ty->isHalfTy())
11836 return AtomicExpansionKind::None;
11837
11838 if (!Ty->isFloatTy())
11839 return AtomicExpansionKind::CmpXChg;
11840
11841 // TODO: Do have these for flat. Older targets also had them for buffers.
11842 unsigned AS = RMW->getPointerAddressSpace();
11843
11844 if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
11845 if (!fpModeMatchesGlobalFPAtomicMode(RMW))
11846 return AtomicExpansionKind::CmpXChg;
11847
11848 return RMW->use_empty() ? AtomicExpansionKind::None :
11849 AtomicExpansionKind::CmpXChg;
11850 }
11851
11852 // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
11853 // to round-to-nearest-even.
11854 return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
11855 AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
11856 }
11857 default:
11858 break;
11859 }
11860
11861 return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
11862 }
11863
11864 const TargetRegisterClass *
getRegClassFor(MVT VT,bool isDivergent) const11865 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
11866 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
11867 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11868 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
11869 return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
11870 : &AMDGPU::SReg_32RegClass;
11871 if (!TRI->isSGPRClass(RC) && !isDivergent)
11872 return TRI->getEquivalentSGPRClass(RC);
11873 else if (TRI->isSGPRClass(RC) && isDivergent)
11874 return TRI->getEquivalentVGPRClass(RC);
11875
11876 return RC;
11877 }
11878
11879 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
11880 // uniform values (as produced by the mask results of control flow intrinsics)
11881 // used outside of divergent blocks. The phi users need to also be treated as
11882 // always uniform.
hasCFUser(const Value * V,SmallPtrSet<const Value *,16> & Visited,unsigned WaveSize)11883 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
11884 unsigned WaveSize) {
11885 // FIXME: We asssume we never cast the mask results of a control flow
11886 // intrinsic.
11887 // Early exit if the type won't be consistent as a compile time hack.
11888 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
11889 if (!IT || IT->getBitWidth() != WaveSize)
11890 return false;
11891
11892 if (!isa<Instruction>(V))
11893 return false;
11894 if (!Visited.insert(V).second)
11895 return false;
11896 bool Result = false;
11897 for (auto U : V->users()) {
11898 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11899 if (V == U->getOperand(1)) {
11900 switch (Intrinsic->getIntrinsicID()) {
11901 default:
11902 Result = false;
11903 break;
11904 case Intrinsic::amdgcn_if_break:
11905 case Intrinsic::amdgcn_if:
11906 case Intrinsic::amdgcn_else:
11907 Result = true;
11908 break;
11909 }
11910 }
11911 if (V == U->getOperand(0)) {
11912 switch (Intrinsic->getIntrinsicID()) {
11913 default:
11914 Result = false;
11915 break;
11916 case Intrinsic::amdgcn_end_cf:
11917 case Intrinsic::amdgcn_loop:
11918 Result = true;
11919 break;
11920 }
11921 }
11922 } else {
11923 Result = hasCFUser(U, Visited, WaveSize);
11924 }
11925 if (Result)
11926 break;
11927 }
11928 return Result;
11929 }
11930
requiresUniformRegister(MachineFunction & MF,const Value * V) const11931 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11932 const Value *V) const {
11933 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11934 if (CI->isInlineAsm()) {
11935 // FIXME: This cannot give a correct answer. This should only trigger in
11936 // the case where inline asm returns mixed SGPR and VGPR results, used
11937 // outside the defining block. We don't have a specific result to
11938 // consider, so this assumes if any value is SGPR, the overall register
11939 // also needs to be SGPR.
11940 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11941 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11942 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
11943 for (auto &TC : TargetConstraints) {
11944 if (TC.Type == InlineAsm::isOutput) {
11945 ComputeConstraintToUse(TC, SDValue());
11946 unsigned AssignedReg;
11947 const TargetRegisterClass *RC;
11948 std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11949 SIRI, TC.ConstraintCode, TC.ConstraintVT);
11950 if (RC) {
11951 MachineRegisterInfo &MRI = MF.getRegInfo();
11952 if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11953 return true;
11954 else if (SIRI->isSGPRClass(RC))
11955 return true;
11956 }
11957 }
11958 }
11959 }
11960 }
11961 SmallPtrSet<const Value *, 16> Visited;
11962 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
11963 }
11964
11965 std::pair<int, MVT>
getTypeLegalizationCost(const DataLayout & DL,Type * Ty) const11966 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
11967 Type *Ty) const {
11968 auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
11969 auto Size = DL.getTypeSizeInBits(Ty);
11970 // Maximum load or store can handle 8 dwords for scalar and 4 for
11971 // vector ALU. Let's assume anything above 8 dwords is expensive
11972 // even if legal.
11973 if (Size <= 256)
11974 return Cost;
11975
11976 Cost.first = (Size + 255) / 256;
11977 return Cost;
11978 }
11979