• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/IntrinsicsARM.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCInstrDesc.h"
88 #include "llvm/MC/MCInstrItineraries.h"
89 #include "llvm/MC/MCRegisterInfo.h"
90 #include "llvm/MC/MCSchedule.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/BranchProbability.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CodeGen.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <limits>
111 #include <string>
112 #include <tuple>
113 #include <utility>
114 #include <vector>
115 
116 using namespace llvm;
117 using namespace llvm::PatternMatch;
118 
119 #define DEBUG_TYPE "arm-isel"
120 
121 STATISTIC(NumTailCalls, "Number of tail calls");
122 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
123 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
124 STATISTIC(NumConstpoolPromoted,
125   "Number of constants with their storage promoted into constant pools");
126 
127 static cl::opt<bool>
128 ARMInterworking("arm-interworking", cl::Hidden,
129   cl::desc("Enable / disable ARM interworking (for debugging only)"),
130   cl::init(true));
131 
132 static cl::opt<bool> EnableConstpoolPromotion(
133     "arm-promote-constant", cl::Hidden,
134     cl::desc("Enable / disable promotion of unnamed_addr constants into "
135              "constant pools"),
136     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
137 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
138     "arm-promote-constant-max-size", cl::Hidden,
139     cl::desc("Maximum size of constant to promote into a constant pool"),
140     cl::init(64));
141 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
142     "arm-promote-constant-max-total", cl::Hidden,
143     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
144     cl::init(128));
145 
146 cl::opt<unsigned>
147 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
148   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
149   cl::init(2));
150 
151 // The APCS parameter registers.
152 static const MCPhysReg GPRArgRegs[] = {
153   ARM::R0, ARM::R1, ARM::R2, ARM::R3
154 };
155 
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)156 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
157                                        MVT PromotedBitwiseVT) {
158   if (VT != PromotedLdStVT) {
159     setOperationAction(ISD::LOAD, VT, Promote);
160     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
161 
162     setOperationAction(ISD::STORE, VT, Promote);
163     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
164   }
165 
166   MVT ElemTy = VT.getVectorElementType();
167   if (ElemTy != MVT::f64)
168     setOperationAction(ISD::SETCC, VT, Custom);
169   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
170   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
171   if (ElemTy == MVT::i32) {
172     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
173     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
174     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
175     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
176   } else {
177     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
178     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
179     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
180     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
181   }
182   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
183   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
184   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
185   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
186   setOperationAction(ISD::SELECT,            VT, Expand);
187   setOperationAction(ISD::SELECT_CC,         VT, Expand);
188   setOperationAction(ISD::VSELECT,           VT, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190   if (VT.isInteger()) {
191     setOperationAction(ISD::SHL, VT, Custom);
192     setOperationAction(ISD::SRA, VT, Custom);
193     setOperationAction(ISD::SRL, VT, Custom);
194   }
195 
196   // Promote all bit-wise operations.
197   if (VT.isInteger() && VT != PromotedBitwiseVT) {
198     setOperationAction(ISD::AND, VT, Promote);
199     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
200     setOperationAction(ISD::OR,  VT, Promote);
201     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
202     setOperationAction(ISD::XOR, VT, Promote);
203     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
204   }
205 
206   // Neon does not support vector divide/remainder operations.
207   setOperationAction(ISD::SDIV, VT, Expand);
208   setOperationAction(ISD::UDIV, VT, Expand);
209   setOperationAction(ISD::FDIV, VT, Expand);
210   setOperationAction(ISD::SREM, VT, Expand);
211   setOperationAction(ISD::UREM, VT, Expand);
212   setOperationAction(ISD::FREM, VT, Expand);
213   setOperationAction(ISD::SDIVREM, VT, Expand);
214   setOperationAction(ISD::UDIVREM, VT, Expand);
215 
216   if (!VT.isFloatingPoint() &&
217       VT != MVT::v2i64 && VT != MVT::v1i64)
218     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
219       setOperationAction(Opcode, VT, Legal);
220   if (!VT.isFloatingPoint())
221     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
222       setOperationAction(Opcode, VT, Legal);
223 }
224 
addDRTypeForNEON(MVT VT)225 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
226   addRegisterClass(VT, &ARM::DPRRegClass);
227   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
228 }
229 
addQRTypeForNEON(MVT VT)230 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
231   addRegisterClass(VT, &ARM::DPairRegClass);
232   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
233 }
234 
setAllExpand(MVT VT)235 void ARMTargetLowering::setAllExpand(MVT VT) {
236   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
237     setOperationAction(Opc, VT, Expand);
238 
239   // We support these really simple operations even on types where all
240   // the actual arithmetic has to be broken down into simpler
241   // operations or turned into library calls.
242   setOperationAction(ISD::BITCAST, VT, Legal);
243   setOperationAction(ISD::LOAD, VT, Legal);
244   setOperationAction(ISD::STORE, VT, Legal);
245   setOperationAction(ISD::UNDEF, VT, Legal);
246 }
247 
addAllExtLoads(const MVT From,const MVT To,LegalizeAction Action)248 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
249                                        LegalizeAction Action) {
250   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
251   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
252   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
253 }
254 
addMVEVectorTypes(bool HasMVEFP)255 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
256   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
257 
258   for (auto VT : IntTypes) {
259     addRegisterClass(VT, &ARM::MQPRRegClass);
260     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
261     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
262     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
263     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
264     setOperationAction(ISD::SHL, VT, Custom);
265     setOperationAction(ISD::SRA, VT, Custom);
266     setOperationAction(ISD::SRL, VT, Custom);
267     setOperationAction(ISD::SMIN, VT, Legal);
268     setOperationAction(ISD::SMAX, VT, Legal);
269     setOperationAction(ISD::UMIN, VT, Legal);
270     setOperationAction(ISD::UMAX, VT, Legal);
271     setOperationAction(ISD::ABS, VT, Legal);
272     setOperationAction(ISD::SETCC, VT, Custom);
273     setOperationAction(ISD::MLOAD, VT, Custom);
274     setOperationAction(ISD::MSTORE, VT, Legal);
275     setOperationAction(ISD::CTLZ, VT, Legal);
276     setOperationAction(ISD::CTTZ, VT, Custom);
277     setOperationAction(ISD::BITREVERSE, VT, Legal);
278     setOperationAction(ISD::BSWAP, VT, Legal);
279     setOperationAction(ISD::SADDSAT, VT, Legal);
280     setOperationAction(ISD::UADDSAT, VT, Legal);
281     setOperationAction(ISD::SSUBSAT, VT, Legal);
282     setOperationAction(ISD::USUBSAT, VT, Legal);
283 
284     // No native support for these.
285     setOperationAction(ISD::UDIV, VT, Expand);
286     setOperationAction(ISD::SDIV, VT, Expand);
287     setOperationAction(ISD::UREM, VT, Expand);
288     setOperationAction(ISD::SREM, VT, Expand);
289     setOperationAction(ISD::UDIVREM, VT, Expand);
290     setOperationAction(ISD::SDIVREM, VT, Expand);
291     setOperationAction(ISD::CTPOP, VT, Expand);
292     setOperationAction(ISD::SELECT, VT, Expand);
293     setOperationAction(ISD::SELECT_CC, VT, Expand);
294 
295     // Vector reductions
296     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
297     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
298     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
299     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
300     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
301     setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
302     setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
303     setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
304     setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
305 
306     if (!HasMVEFP) {
307       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
308       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
309       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
310       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
311     }
312 
313     // Pre and Post inc are supported on loads and stores
314     for (unsigned im = (unsigned)ISD::PRE_INC;
315          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
316       setIndexedLoadAction(im, VT, Legal);
317       setIndexedStoreAction(im, VT, Legal);
318       setIndexedMaskedLoadAction(im, VT, Legal);
319       setIndexedMaskedStoreAction(im, VT, Legal);
320     }
321   }
322 
323   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
324   for (auto VT : FloatTypes) {
325     addRegisterClass(VT, &ARM::MQPRRegClass);
326     if (!HasMVEFP)
327       setAllExpand(VT);
328 
329     // These are legal or custom whether we have MVE.fp or not
330     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
331     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
332     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
333     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
334     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
335     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
336     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
337     setOperationAction(ISD::SETCC, VT, Custom);
338     setOperationAction(ISD::MLOAD, VT, Custom);
339     setOperationAction(ISD::MSTORE, VT, Legal);
340     setOperationAction(ISD::SELECT, VT, Expand);
341     setOperationAction(ISD::SELECT_CC, VT, Expand);
342 
343     // Pre and Post inc are supported on loads and stores
344     for (unsigned im = (unsigned)ISD::PRE_INC;
345          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
346       setIndexedLoadAction(im, VT, Legal);
347       setIndexedStoreAction(im, VT, Legal);
348       setIndexedMaskedLoadAction(im, VT, Legal);
349       setIndexedMaskedStoreAction(im, VT, Legal);
350     }
351 
352     if (HasMVEFP) {
353       setOperationAction(ISD::FMINNUM, VT, Legal);
354       setOperationAction(ISD::FMAXNUM, VT, Legal);
355       setOperationAction(ISD::FROUND, VT, Legal);
356       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
357       setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
358       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
359       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
360 
361       // No native support for these.
362       setOperationAction(ISD::FDIV, VT, Expand);
363       setOperationAction(ISD::FREM, VT, Expand);
364       setOperationAction(ISD::FSQRT, VT, Expand);
365       setOperationAction(ISD::FSIN, VT, Expand);
366       setOperationAction(ISD::FCOS, VT, Expand);
367       setOperationAction(ISD::FPOW, VT, Expand);
368       setOperationAction(ISD::FLOG, VT, Expand);
369       setOperationAction(ISD::FLOG2, VT, Expand);
370       setOperationAction(ISD::FLOG10, VT, Expand);
371       setOperationAction(ISD::FEXP, VT, Expand);
372       setOperationAction(ISD::FEXP2, VT, Expand);
373       setOperationAction(ISD::FNEARBYINT, VT, Expand);
374     }
375   }
376 
377   // Custom Expand smaller than legal vector reductions to prevent false zero
378   // items being added.
379   setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
380   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
381   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
382   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
383   setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
384   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
385   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
386   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
387 
388   // We 'support' these types up to bitcast/load/store level, regardless of
389   // MVE integer-only / float support. Only doing FP data processing on the FP
390   // vector types is inhibited at integer-only level.
391   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
392   for (auto VT : LongTypes) {
393     addRegisterClass(VT, &ARM::MQPRRegClass);
394     setAllExpand(VT);
395     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
396     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
397     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
398   }
399   // We can do bitwise operations on v2i64 vectors
400   setOperationAction(ISD::AND, MVT::v2i64, Legal);
401   setOperationAction(ISD::OR, MVT::v2i64, Legal);
402   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
403 
404   // It is legal to extload from v4i8 to v4i16 or v4i32.
405   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
406   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
407   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
408 
409   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
410   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
412   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
413   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
414   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
415 
416   // Some truncating stores are legal too.
417   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
418   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
419   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
420 
421   // Pre and Post inc on these are legal, given the correct extends
422   for (unsigned im = (unsigned)ISD::PRE_INC;
423        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
424     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
425       setIndexedLoadAction(im, VT, Legal);
426       setIndexedStoreAction(im, VT, Legal);
427       setIndexedMaskedLoadAction(im, VT, Legal);
428       setIndexedMaskedStoreAction(im, VT, Legal);
429     }
430   }
431 
432   // Predicate types
433   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
434   for (auto VT : pTypes) {
435     addRegisterClass(VT, &ARM::VCCRRegClass);
436     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
437     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
438     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
439     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
440     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
441     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
442     setOperationAction(ISD::SETCC, VT, Custom);
443     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
444     setOperationAction(ISD::LOAD, VT, Custom);
445     setOperationAction(ISD::STORE, VT, Custom);
446   }
447 }
448 
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)449 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
450                                      const ARMSubtarget &STI)
451     : TargetLowering(TM), Subtarget(&STI) {
452   RegInfo = Subtarget->getRegisterInfo();
453   Itins = Subtarget->getInstrItineraryData();
454 
455   setBooleanContents(ZeroOrOneBooleanContent);
456   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
457 
458   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
459       !Subtarget->isTargetWatchOS()) {
460     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
461     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
462       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
463                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
464                                        : CallingConv::ARM_AAPCS);
465   }
466 
467   if (Subtarget->isTargetMachO()) {
468     // Uses VFP for Thumb libfuncs if available.
469     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
470         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
471       static const struct {
472         const RTLIB::Libcall Op;
473         const char * const Name;
474         const ISD::CondCode Cond;
475       } LibraryCalls[] = {
476         // Single-precision floating-point arithmetic.
477         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
478         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
479         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
480         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
481 
482         // Double-precision floating-point arithmetic.
483         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
484         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
485         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
486         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
487 
488         // Single-precision comparisons.
489         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
490         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
491         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
492         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
493         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
494         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
495         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
496 
497         // Double-precision comparisons.
498         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
499         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
500         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
501         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
502         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
503         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
504         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
505 
506         // Floating-point to integer conversions.
507         // i64 conversions are done via library routines even when generating VFP
508         // instructions, so use the same ones.
509         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
510         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
511         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
512         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
513 
514         // Conversions between floating types.
515         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
516         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
517 
518         // Integer to floating-point conversions.
519         // i64 conversions are done via library routines even when generating VFP
520         // instructions, so use the same ones.
521         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
522         // e.g., __floatunsidf vs. __floatunssidfvfp.
523         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
524         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
525         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
526         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
527       };
528 
529       for (const auto &LC : LibraryCalls) {
530         setLibcallName(LC.Op, LC.Name);
531         if (LC.Cond != ISD::SETCC_INVALID)
532           setCmpLibcallCC(LC.Op, LC.Cond);
533       }
534     }
535   }
536 
537   // These libcalls are not available in 32-bit.
538   setLibcallName(RTLIB::SHL_I128, nullptr);
539   setLibcallName(RTLIB::SRL_I128, nullptr);
540   setLibcallName(RTLIB::SRA_I128, nullptr);
541 
542   // RTLIB
543   if (Subtarget->isAAPCS_ABI() &&
544       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
545        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
546     static const struct {
547       const RTLIB::Libcall Op;
548       const char * const Name;
549       const CallingConv::ID CC;
550       const ISD::CondCode Cond;
551     } LibraryCalls[] = {
552       // Double-precision floating-point arithmetic helper functions
553       // RTABI chapter 4.1.2, Table 2
554       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
555       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
556       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
557       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
558 
559       // Double-precision floating-point comparison helper functions
560       // RTABI chapter 4.1.2, Table 3
561       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
562       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
563       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
564       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
565       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
566       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
567       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
568 
569       // Single-precision floating-point arithmetic helper functions
570       // RTABI chapter 4.1.2, Table 4
571       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
572       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
573       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
574       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
575 
576       // Single-precision floating-point comparison helper functions
577       // RTABI chapter 4.1.2, Table 5
578       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
579       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
580       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
581       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
582       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
583       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
584       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
585 
586       // Floating-point to integer conversions.
587       // RTABI chapter 4.1.2, Table 6
588       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
589       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
590       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
591       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
594       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
596 
597       // Conversions between floating types.
598       // RTABI chapter 4.1.2, Table 7
599       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
600       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
601       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
602 
603       // Integer to floating-point conversions.
604       // RTABI chapter 4.1.2, Table 8
605       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
606       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
607       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
608       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
609       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
610       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
611       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
613 
614       // Long long helper functions
615       // RTABI chapter 4.2, Table 9
616       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
617       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
618       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
619       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
620 
621       // Integer division functions
622       // RTABI chapter 4.3.1
623       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
624       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
625       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
626       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
628       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
629       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631     };
632 
633     for (const auto &LC : LibraryCalls) {
634       setLibcallName(LC.Op, LC.Name);
635       setLibcallCallingConv(LC.Op, LC.CC);
636       if (LC.Cond != ISD::SETCC_INVALID)
637         setCmpLibcallCC(LC.Op, LC.Cond);
638     }
639 
640     // EABI dependent RTLIB
641     if (TM.Options.EABIVersion == EABI::EABI4 ||
642         TM.Options.EABIVersion == EABI::EABI5) {
643       static const struct {
644         const RTLIB::Libcall Op;
645         const char *const Name;
646         const CallingConv::ID CC;
647         const ISD::CondCode Cond;
648       } MemOpsLibraryCalls[] = {
649         // Memory operations
650         // RTABI chapter 4.3.4
651         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
652         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
653         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
654       };
655 
656       for (const auto &LC : MemOpsLibraryCalls) {
657         setLibcallName(LC.Op, LC.Name);
658         setLibcallCallingConv(LC.Op, LC.CC);
659         if (LC.Cond != ISD::SETCC_INVALID)
660           setCmpLibcallCC(LC.Op, LC.Cond);
661       }
662     }
663   }
664 
665   if (Subtarget->isTargetWindows()) {
666     static const struct {
667       const RTLIB::Libcall Op;
668       const char * const Name;
669       const CallingConv::ID CC;
670     } LibraryCalls[] = {
671       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
672       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
673       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
674       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
675       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
676       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
677       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
678       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
679     };
680 
681     for (const auto &LC : LibraryCalls) {
682       setLibcallName(LC.Op, LC.Name);
683       setLibcallCallingConv(LC.Op, LC.CC);
684     }
685   }
686 
687   // Use divmod compiler-rt calls for iOS 5.0 and later.
688   if (Subtarget->isTargetMachO() &&
689       !(Subtarget->isTargetIOS() &&
690         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
691     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
692     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
693   }
694 
695   // The half <-> float conversion functions are always soft-float on
696   // non-watchos platforms, but are needed for some targets which use a
697   // hard-float calling convention by default.
698   if (!Subtarget->isTargetWatchABI()) {
699     if (Subtarget->isAAPCS_ABI()) {
700       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
701       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
702       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
703     } else {
704       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
705       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
706       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
707     }
708   }
709 
710   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
711   // a __gnu_ prefix (which is the default).
712   if (Subtarget->isTargetAEABI()) {
713     static const struct {
714       const RTLIB::Libcall Op;
715       const char * const Name;
716       const CallingConv::ID CC;
717     } LibraryCalls[] = {
718       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
719       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
720       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
721     };
722 
723     for (const auto &LC : LibraryCalls) {
724       setLibcallName(LC.Op, LC.Name);
725       setLibcallCallingConv(LC.Op, LC.CC);
726     }
727   }
728 
729   if (Subtarget->isThumb1Only())
730     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
731   else
732     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
733 
734   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
735       Subtarget->hasFPRegs()) {
736     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
737     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
738     if (!Subtarget->hasVFP2Base())
739       setAllExpand(MVT::f32);
740     if (!Subtarget->hasFP64())
741       setAllExpand(MVT::f64);
742   }
743 
744   if (Subtarget->hasFullFP16()) {
745     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
746     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
747     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
748 
749     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
750     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
751   }
752 
753   if (Subtarget->hasBF16()) {
754     addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
755     setAllExpand(MVT::bf16);
756     if (!Subtarget->hasFullFP16())
757       setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
758   }
759 
760   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
761     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
762       setTruncStoreAction(VT, InnerVT, Expand);
763       addAllExtLoads(VT, InnerVT, Expand);
764     }
765 
766     setOperationAction(ISD::MULHS, VT, Expand);
767     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
768     setOperationAction(ISD::MULHU, VT, Expand);
769     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
770 
771     setOperationAction(ISD::BSWAP, VT, Expand);
772   }
773 
774   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
775   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
776 
777   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
778   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
779 
780   if (Subtarget->hasMVEIntegerOps())
781     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
782 
783   // Combine low-overhead loop intrinsics so that we can lower i1 types.
784   if (Subtarget->hasLOB()) {
785     setTargetDAGCombine(ISD::BRCOND);
786     setTargetDAGCombine(ISD::BR_CC);
787   }
788 
789   if (Subtarget->hasNEON()) {
790     addDRTypeForNEON(MVT::v2f32);
791     addDRTypeForNEON(MVT::v8i8);
792     addDRTypeForNEON(MVT::v4i16);
793     addDRTypeForNEON(MVT::v2i32);
794     addDRTypeForNEON(MVT::v1i64);
795 
796     addQRTypeForNEON(MVT::v4f32);
797     addQRTypeForNEON(MVT::v2f64);
798     addQRTypeForNEON(MVT::v16i8);
799     addQRTypeForNEON(MVT::v8i16);
800     addQRTypeForNEON(MVT::v4i32);
801     addQRTypeForNEON(MVT::v2i64);
802 
803     if (Subtarget->hasFullFP16()) {
804       addQRTypeForNEON(MVT::v8f16);
805       addDRTypeForNEON(MVT::v4f16);
806     }
807 
808     if (Subtarget->hasBF16()) {
809       addQRTypeForNEON(MVT::v8bf16);
810       addDRTypeForNEON(MVT::v4bf16);
811     }
812   }
813 
814   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
815     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
816     // none of Neon, MVE or VFP supports any arithmetic operations on it.
817     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
818     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
819     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
820     // FIXME: Code duplication: FDIV and FREM are expanded always, see
821     // ARMTargetLowering::addTypeForNEON method for details.
822     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
823     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
824     // FIXME: Create unittest.
825     // In another words, find a way when "copysign" appears in DAG with vector
826     // operands.
827     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
828     // FIXME: Code duplication: SETCC has custom operation action, see
829     // ARMTargetLowering::addTypeForNEON method for details.
830     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
831     // FIXME: Create unittest for FNEG and for FABS.
832     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
833     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
834     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
835     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
836     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
837     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
838     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
839     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
840     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
841     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
842     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
843     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
844     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
845     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
846     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
847     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
848     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
849     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
850   }
851 
852   if (Subtarget->hasNEON()) {
853     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
854     // supported for v4f32.
855     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
856     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
857     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
858     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
859     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
860     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
861     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
862     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
863     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
864     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
865     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
866     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
867     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
868     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
869 
870     // Mark v2f32 intrinsics.
871     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
872     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
873     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
874     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
875     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
876     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
877     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
878     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
879     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
880     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
881     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
882     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
883     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
884     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
885 
886     // Neon does not support some operations on v1i64 and v2i64 types.
887     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
888     // Custom handling for some quad-vector types to detect VMULL.
889     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
890     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
891     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
892     // Custom handling for some vector types to avoid expensive expansions
893     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
894     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
895     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
896     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
897     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
898     // a destination type that is wider than the source, and nor does
899     // it have a FP_TO_[SU]INT instruction with a narrower destination than
900     // source.
901     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
902     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
903     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
904     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
905     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
906     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
907     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
908     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
909 
910     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
911     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
912 
913     // NEON does not have single instruction CTPOP for vectors with element
914     // types wider than 8-bits.  However, custom lowering can leverage the
915     // v8i8/v16i8 vcnt instruction.
916     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
917     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
918     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
919     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
920     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
921     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
922 
923     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
924     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
925 
926     // NEON does not have single instruction CTTZ for vectors.
927     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
928     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
929     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
930     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
931 
932     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
933     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
934     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
935     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
936 
937     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
938     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
939     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
940     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
941 
942     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
943     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
944     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
945     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
946 
947     // NEON only has FMA instructions as of VFP4.
948     if (!Subtarget->hasVFP4Base()) {
949       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
950       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
951     }
952 
953     setTargetDAGCombine(ISD::SHL);
954     setTargetDAGCombine(ISD::SRL);
955     setTargetDAGCombine(ISD::SRA);
956     setTargetDAGCombine(ISD::FP_TO_SINT);
957     setTargetDAGCombine(ISD::FP_TO_UINT);
958     setTargetDAGCombine(ISD::FDIV);
959     setTargetDAGCombine(ISD::LOAD);
960 
961     // It is legal to extload from v4i8 to v4i16 or v4i32.
962     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
963                    MVT::v2i32}) {
964       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
965         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
966         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
967         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
968       }
969     }
970   }
971 
972   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
973     setTargetDAGCombine(ISD::BUILD_VECTOR);
974     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
975     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
976     setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
977     setTargetDAGCombine(ISD::STORE);
978     setTargetDAGCombine(ISD::SIGN_EXTEND);
979     setTargetDAGCombine(ISD::ZERO_EXTEND);
980     setTargetDAGCombine(ISD::ANY_EXTEND);
981     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
982     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
983     setTargetDAGCombine(ISD::INTRINSIC_VOID);
984     setTargetDAGCombine(ISD::VECREDUCE_ADD);
985     setTargetDAGCombine(ISD::ADD);
986     setTargetDAGCombine(ISD::BITCAST);
987   }
988   if (Subtarget->hasMVEIntegerOps()) {
989     setTargetDAGCombine(ISD::SMIN);
990     setTargetDAGCombine(ISD::UMIN);
991     setTargetDAGCombine(ISD::SMAX);
992     setTargetDAGCombine(ISD::UMAX);
993     setTargetDAGCombine(ISD::FP_EXTEND);
994     setTargetDAGCombine(ISD::SELECT);
995     setTargetDAGCombine(ISD::SELECT_CC);
996   }
997 
998   if (!Subtarget->hasFP64()) {
999     // When targeting a floating-point unit with only single-precision
1000     // operations, f64 is legal for the few double-precision instructions which
1001     // are present However, no double-precision operations other than moves,
1002     // loads and stores are provided by the hardware.
1003     setOperationAction(ISD::FADD,       MVT::f64, Expand);
1004     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
1005     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
1006     setOperationAction(ISD::FMA,        MVT::f64, Expand);
1007     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
1008     setOperationAction(ISD::FREM,       MVT::f64, Expand);
1009     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
1010     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
1011     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
1012     setOperationAction(ISD::FABS,       MVT::f64, Expand);
1013     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
1014     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
1015     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
1016     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
1017     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
1018     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
1019     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
1020     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
1021     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
1022     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
1023     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
1024     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
1025     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1026     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
1027     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1028     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1029     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1030     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1031     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1032     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1033     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
1034     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1035     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1036     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1037     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1038     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
1039   }
1040 
1041   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1042     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
1043     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1044     if (Subtarget->hasFullFP16()) {
1045       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
1046       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1047     }
1048   }
1049 
1050   if (!Subtarget->hasFP16()) {
1051     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1052     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1053   }
1054 
1055   computeRegisterProperties(Subtarget->getRegisterInfo());
1056 
1057   // ARM does not have floating-point extending loads.
1058   for (MVT VT : MVT::fp_valuetypes()) {
1059     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1060     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1061   }
1062 
1063   // ... or truncating stores
1064   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1065   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1066   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1067 
1068   // ARM does not have i1 sign extending load.
1069   for (MVT VT : MVT::integer_valuetypes())
1070     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1071 
1072   // ARM supports all 4 flavors of integer indexed load / store.
1073   if (!Subtarget->isThumb1Only()) {
1074     for (unsigned im = (unsigned)ISD::PRE_INC;
1075          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1076       setIndexedLoadAction(im,  MVT::i1,  Legal);
1077       setIndexedLoadAction(im,  MVT::i8,  Legal);
1078       setIndexedLoadAction(im,  MVT::i16, Legal);
1079       setIndexedLoadAction(im,  MVT::i32, Legal);
1080       setIndexedStoreAction(im, MVT::i1,  Legal);
1081       setIndexedStoreAction(im, MVT::i8,  Legal);
1082       setIndexedStoreAction(im, MVT::i16, Legal);
1083       setIndexedStoreAction(im, MVT::i32, Legal);
1084     }
1085   } else {
1086     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1087     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1088     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1089   }
1090 
1091   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1092   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1093   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1094   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1095 
1096   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1097   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1098   if (Subtarget->hasDSP()) {
1099     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1100     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1101     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1102     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1103   }
1104   if (Subtarget->hasBaseDSP()) {
1105     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1106     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1107   }
1108 
1109   // i64 operation support.
1110   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1111   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1112   if (Subtarget->isThumb1Only()) {
1113     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1114     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1115   }
1116   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1117       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1118     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1119 
1120   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1121   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1122   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1123   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1124   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1125   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1126   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1127   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1128   setOperationAction(ISD::STORE, MVT::i64, Custom);
1129 
1130   // MVE lowers 64 bit shifts to lsll and lsrl
1131   // assuming that ISD::SRL and SRA of i64 are already marked custom
1132   if (Subtarget->hasMVEIntegerOps())
1133     setOperationAction(ISD::SHL, MVT::i64, Custom);
1134 
1135   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1136   if (Subtarget->isThumb1Only()) {
1137     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1138     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1139     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1140   }
1141 
1142   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1143     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1144 
1145   // ARM does not have ROTL.
1146   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1147   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1148     setOperationAction(ISD::ROTL, VT, Expand);
1149     setOperationAction(ISD::ROTR, VT, Expand);
1150   }
1151   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1152   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1153   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1154     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1155     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1156   }
1157 
1158   // @llvm.readcyclecounter requires the Performance Monitors extension.
1159   // Default to the 0 expansion on unsupported platforms.
1160   // FIXME: Technically there are older ARM CPUs that have
1161   // implementation-specific ways of obtaining this information.
1162   if (Subtarget->hasPerfMon())
1163     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1164 
1165   // Only ARMv6 has BSWAP.
1166   if (!Subtarget->hasV6Ops())
1167     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1168 
1169   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1170                                         : Subtarget->hasDivideInARMMode();
1171   if (!hasDivide) {
1172     // These are expanded into libcalls if the cpu doesn't have HW divider.
1173     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1174     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1175   }
1176 
1177   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1178     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1179     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1180 
1181     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1182     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1183   }
1184 
1185   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1186   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1187 
1188   // Register based DivRem for AEABI (RTABI 4.2)
1189   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1190       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1191       Subtarget->isTargetWindows()) {
1192     setOperationAction(ISD::SREM, MVT::i64, Custom);
1193     setOperationAction(ISD::UREM, MVT::i64, Custom);
1194     HasStandaloneRem = false;
1195 
1196     if (Subtarget->isTargetWindows()) {
1197       const struct {
1198         const RTLIB::Libcall Op;
1199         const char * const Name;
1200         const CallingConv::ID CC;
1201       } LibraryCalls[] = {
1202         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1203         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1204         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1205         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1206 
1207         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1208         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1209         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1210         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1211       };
1212 
1213       for (const auto &LC : LibraryCalls) {
1214         setLibcallName(LC.Op, LC.Name);
1215         setLibcallCallingConv(LC.Op, LC.CC);
1216       }
1217     } else {
1218       const struct {
1219         const RTLIB::Libcall Op;
1220         const char * const Name;
1221         const CallingConv::ID CC;
1222       } LibraryCalls[] = {
1223         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1224         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1225         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1226         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1227 
1228         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1229         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1230         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1231         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1232       };
1233 
1234       for (const auto &LC : LibraryCalls) {
1235         setLibcallName(LC.Op, LC.Name);
1236         setLibcallCallingConv(LC.Op, LC.CC);
1237       }
1238     }
1239 
1240     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1241     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1242     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1243     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1244   } else {
1245     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1246     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1247   }
1248 
1249   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1250     // MSVCRT doesn't have powi; fall back to pow
1251     setLibcallName(RTLIB::POWI_F32, nullptr);
1252     setLibcallName(RTLIB::POWI_F64, nullptr);
1253   }
1254 
1255   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1256   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1257   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1258   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1259 
1260   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1261   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1262 
1263   // Use the default implementation.
1264   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1265   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1266   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1267   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1268   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1269   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1270 
1271   if (Subtarget->isTargetWindows())
1272     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1273   else
1274     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1275 
1276   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1277   // the default expansion.
1278   InsertFencesForAtomic = false;
1279   if (Subtarget->hasAnyDataBarrier() &&
1280       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1281     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1282     // to ldrex/strex loops already.
1283     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1284     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1285       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1286 
1287     // On v8, we have particularly efficient implementations of atomic fences
1288     // if they can be combined with nearby atomic loads and stores.
1289     if (!Subtarget->hasAcquireRelease() ||
1290         getTargetMachine().getOptLevel() == 0) {
1291       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1292       InsertFencesForAtomic = true;
1293     }
1294   } else {
1295     // If there's anything we can use as a barrier, go through custom lowering
1296     // for ATOMIC_FENCE.
1297     // If target has DMB in thumb, Fences can be inserted.
1298     if (Subtarget->hasDataBarrier())
1299       InsertFencesForAtomic = true;
1300 
1301     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1302                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1303 
1304     // Set them all for expansion, which will force libcalls.
1305     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1306     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1307     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1308     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1309     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1310     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1311     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1312     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1313     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1314     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1315     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1316     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1317     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1318     // Unordered/Monotonic case.
1319     if (!InsertFencesForAtomic) {
1320       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1321       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1322     }
1323   }
1324 
1325   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1326 
1327   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1328   if (!Subtarget->hasV6Ops()) {
1329     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1330     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1331   }
1332   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1333 
1334   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1335       !Subtarget->isThumb1Only()) {
1336     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1337     // iff target supports vfp2.
1338     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1339     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1340   }
1341 
1342   // We want to custom lower some of our intrinsics.
1343   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1344   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1345   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1346   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1347   if (Subtarget->useSjLjEH())
1348     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1349 
1350   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1351   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1352   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1353   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1354   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1355   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1356   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1357   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1358   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1359   if (Subtarget->hasFullFP16()) {
1360     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1361     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1362     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1363   }
1364 
1365   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1366 
1367   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1368   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1369   if (Subtarget->hasFullFP16())
1370       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1371   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1372   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1373   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1374 
1375   // We don't support sin/cos/fmod/copysign/pow
1376   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1377   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1378   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1379   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1380   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1381   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1382   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1383   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1384   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1385       !Subtarget->isThumb1Only()) {
1386     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1387     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1388   }
1389   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1390   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1391 
1392   if (!Subtarget->hasVFP4Base()) {
1393     setOperationAction(ISD::FMA, MVT::f64, Expand);
1394     setOperationAction(ISD::FMA, MVT::f32, Expand);
1395   }
1396 
1397   // Various VFP goodness
1398   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1399     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1400     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1401       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1402       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1403     }
1404 
1405     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1406     if (!Subtarget->hasFP16()) {
1407       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1408       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1409     }
1410 
1411     // Strict floating-point comparisons need custom lowering.
1412     setOperationAction(ISD::STRICT_FSETCC,  MVT::f16, Custom);
1413     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1414     setOperationAction(ISD::STRICT_FSETCC,  MVT::f32, Custom);
1415     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1416     setOperationAction(ISD::STRICT_FSETCC,  MVT::f64, Custom);
1417     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1418   }
1419 
1420   // Use __sincos_stret if available.
1421   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1422       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1423     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1424     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1425   }
1426 
1427   // FP-ARMv8 implements a lot of rounding-like FP operations.
1428   if (Subtarget->hasFPARMv8Base()) {
1429     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1430     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1431     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1432     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1433     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1434     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1435     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1436     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1437     if (Subtarget->hasNEON()) {
1438       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1439       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1440       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1441       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1442     }
1443 
1444     if (Subtarget->hasFP64()) {
1445       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1446       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1447       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1448       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1449       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1450       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1451       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1452       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1453     }
1454   }
1455 
1456   // FP16 often need to be promoted to call lib functions
1457   if (Subtarget->hasFullFP16()) {
1458     setOperationAction(ISD::FREM, MVT::f16, Promote);
1459     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1460     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1461     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1462     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1463     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1464     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1465     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1466     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1467     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1468     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1469     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1470 
1471     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1472   }
1473 
1474   if (Subtarget->hasNEON()) {
1475     // vmin and vmax aren't available in a scalar form, so we can use
1476     // a NEON instruction with an undef lane instead.  This has a performance
1477     // penalty on some cores, so we don't do this unless we have been
1478     // asked to by the core tuning model.
1479     if (Subtarget->useNEONForSinglePrecisionFP()) {
1480       setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1481       setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1482       setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1483       setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1484     }
1485     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1486     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1487     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1488     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1489 
1490     if (Subtarget->hasFullFP16()) {
1491       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1492       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1493       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1494       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1495 
1496       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1497       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1498       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1499       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1500     }
1501   }
1502 
1503   // We have target-specific dag combine patterns for the following nodes:
1504   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1505   setTargetDAGCombine(ISD::ADD);
1506   setTargetDAGCombine(ISD::SUB);
1507   setTargetDAGCombine(ISD::MUL);
1508   setTargetDAGCombine(ISD::AND);
1509   setTargetDAGCombine(ISD::OR);
1510   setTargetDAGCombine(ISD::XOR);
1511 
1512   if (Subtarget->hasMVEIntegerOps())
1513     setTargetDAGCombine(ISD::VSELECT);
1514 
1515   if (Subtarget->hasV6Ops())
1516     setTargetDAGCombine(ISD::SRL);
1517   if (Subtarget->isThumb1Only())
1518     setTargetDAGCombine(ISD::SHL);
1519 
1520   setStackPointerRegisterToSaveRestore(ARM::SP);
1521 
1522   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1523       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1524     setSchedulingPreference(Sched::RegPressure);
1525   else
1526     setSchedulingPreference(Sched::Hybrid);
1527 
1528   //// temporary - rewrite interface to use type
1529   MaxStoresPerMemset = 8;
1530   MaxStoresPerMemsetOptSize = 4;
1531   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1532   MaxStoresPerMemcpyOptSize = 2;
1533   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1534   MaxStoresPerMemmoveOptSize = 2;
1535 
1536   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1537   // are at least 4 bytes aligned.
1538   setMinStackArgumentAlignment(Align(4));
1539 
1540   // Prefer likely predicted branches to selects on out-of-order cores.
1541   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1542 
1543   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1544 
1545   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1546 
1547   if (Subtarget->isThumb() || Subtarget->isThumb2())
1548     setTargetDAGCombine(ISD::ABS);
1549 }
1550 
useSoftFloat() const1551 bool ARMTargetLowering::useSoftFloat() const {
1552   return Subtarget->useSoftFloat();
1553 }
1554 
1555 // FIXME: It might make sense to define the representative register class as the
1556 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1557 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1558 // SPR's representative would be DPR_VFP2. This should work well if register
1559 // pressure tracking were modified such that a register use would increment the
1560 // pressure of the register class's representative and all of it's super
1561 // classes' representatives transitively. We have not implemented this because
1562 // of the difficulty prior to coalescing of modeling operand register classes
1563 // due to the common occurrence of cross class copies and subregister insertions
1564 // and extractions.
1565 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1566 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1567                                            MVT VT) const {
1568   const TargetRegisterClass *RRC = nullptr;
1569   uint8_t Cost = 1;
1570   switch (VT.SimpleTy) {
1571   default:
1572     return TargetLowering::findRepresentativeClass(TRI, VT);
1573   // Use DPR as representative register class for all floating point
1574   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1575   // the cost is 1 for both f32 and f64.
1576   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1577   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1578     RRC = &ARM::DPRRegClass;
1579     // When NEON is used for SP, only half of the register file is available
1580     // because operations that define both SP and DP results will be constrained
1581     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1582     // coalescing by double-counting the SP regs. See the FIXME above.
1583     if (Subtarget->useNEONForSinglePrecisionFP())
1584       Cost = 2;
1585     break;
1586   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1587   case MVT::v4f32: case MVT::v2f64:
1588     RRC = &ARM::DPRRegClass;
1589     Cost = 2;
1590     break;
1591   case MVT::v4i64:
1592     RRC = &ARM::DPRRegClass;
1593     Cost = 4;
1594     break;
1595   case MVT::v8i64:
1596     RRC = &ARM::DPRRegClass;
1597     Cost = 8;
1598     break;
1599   }
1600   return std::make_pair(RRC, Cost);
1601 }
1602 
getTargetNodeName(unsigned Opcode) const1603 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1604   switch ((ARMISD::NodeType)Opcode) {
1605   case ARMISD::FIRST_NUMBER:  break;
1606   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1607   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1608   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1609   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1610   case ARMISD::CALL:          return "ARMISD::CALL";
1611   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1612   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1613   case ARMISD::tSECALL:       return "ARMISD::tSECALL";
1614   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1615   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1616   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1617   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1618   case ARMISD::SERET_FLAG:    return "ARMISD::SERET_FLAG";
1619   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1620   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1621   case ARMISD::CMP:           return "ARMISD::CMP";
1622   case ARMISD::CMN:           return "ARMISD::CMN";
1623   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1624   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1625   case ARMISD::CMPFPE:        return "ARMISD::CMPFPE";
1626   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1627   case ARMISD::CMPFPEw0:      return "ARMISD::CMPFPEw0";
1628   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1629   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1630 
1631   case ARMISD::CMOV:          return "ARMISD::CMOV";
1632   case ARMISD::SUBS:          return "ARMISD::SUBS";
1633 
1634   case ARMISD::SSAT:          return "ARMISD::SSAT";
1635   case ARMISD::USAT:          return "ARMISD::USAT";
1636 
1637   case ARMISD::ASRL:          return "ARMISD::ASRL";
1638   case ARMISD::LSRL:          return "ARMISD::LSRL";
1639   case ARMISD::LSLL:          return "ARMISD::LSLL";
1640 
1641   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1642   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1643   case ARMISD::RRX:           return "ARMISD::RRX";
1644 
1645   case ARMISD::ADDC:          return "ARMISD::ADDC";
1646   case ARMISD::ADDE:          return "ARMISD::ADDE";
1647   case ARMISD::SUBC:          return "ARMISD::SUBC";
1648   case ARMISD::SUBE:          return "ARMISD::SUBE";
1649   case ARMISD::LSLS:          return "ARMISD::LSLS";
1650 
1651   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1652   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1653   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1654   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1655   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1656 
1657   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1658   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1659   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1660 
1661   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1662 
1663   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1664 
1665   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1666 
1667   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1668 
1669   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1670 
1671   case ARMISD::LDRD:          return "ARMISD::LDRD";
1672   case ARMISD::STRD:          return "ARMISD::STRD";
1673 
1674   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1675   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1676 
1677   case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
1678   case ARMISD::VECTOR_REG_CAST: return "ARMISD::VECTOR_REG_CAST";
1679   case ARMISD::VCMP:          return "ARMISD::VCMP";
1680   case ARMISD::VCMPZ:         return "ARMISD::VCMPZ";
1681   case ARMISD::VTST:          return "ARMISD::VTST";
1682 
1683   case ARMISD::VSHLs:         return "ARMISD::VSHLs";
1684   case ARMISD::VSHLu:         return "ARMISD::VSHLu";
1685   case ARMISD::VSHLIMM:       return "ARMISD::VSHLIMM";
1686   case ARMISD::VSHRsIMM:      return "ARMISD::VSHRsIMM";
1687   case ARMISD::VSHRuIMM:      return "ARMISD::VSHRuIMM";
1688   case ARMISD::VRSHRsIMM:     return "ARMISD::VRSHRsIMM";
1689   case ARMISD::VRSHRuIMM:     return "ARMISD::VRSHRuIMM";
1690   case ARMISD::VRSHRNIMM:     return "ARMISD::VRSHRNIMM";
1691   case ARMISD::VQSHLsIMM:     return "ARMISD::VQSHLsIMM";
1692   case ARMISD::VQSHLuIMM:     return "ARMISD::VQSHLuIMM";
1693   case ARMISD::VQSHLsuIMM:    return "ARMISD::VQSHLsuIMM";
1694   case ARMISD::VQSHRNsIMM:    return "ARMISD::VQSHRNsIMM";
1695   case ARMISD::VQSHRNuIMM:    return "ARMISD::VQSHRNuIMM";
1696   case ARMISD::VQSHRNsuIMM:   return "ARMISD::VQSHRNsuIMM";
1697   case ARMISD::VQRSHRNsIMM:   return "ARMISD::VQRSHRNsIMM";
1698   case ARMISD::VQRSHRNuIMM:   return "ARMISD::VQRSHRNuIMM";
1699   case ARMISD::VQRSHRNsuIMM:  return "ARMISD::VQRSHRNsuIMM";
1700   case ARMISD::VSLIIMM:       return "ARMISD::VSLIIMM";
1701   case ARMISD::VSRIIMM:       return "ARMISD::VSRIIMM";
1702   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1703   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1704   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1705   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1706   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1707   case ARMISD::VDUP:          return "ARMISD::VDUP";
1708   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1709   case ARMISD::VEXT:          return "ARMISD::VEXT";
1710   case ARMISD::VREV64:        return "ARMISD::VREV64";
1711   case ARMISD::VREV32:        return "ARMISD::VREV32";
1712   case ARMISD::VREV16:        return "ARMISD::VREV16";
1713   case ARMISD::VZIP:          return "ARMISD::VZIP";
1714   case ARMISD::VUZP:          return "ARMISD::VUZP";
1715   case ARMISD::VTRN:          return "ARMISD::VTRN";
1716   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1717   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1718   case ARMISD::VMOVN:         return "ARMISD::VMOVN";
1719   case ARMISD::VQMOVNs:       return "ARMISD::VQMOVNs";
1720   case ARMISD::VQMOVNu:       return "ARMISD::VQMOVNu";
1721   case ARMISD::VCVTN:         return "ARMISD::VCVTN";
1722   case ARMISD::VCVTL:         return "ARMISD::VCVTL";
1723   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1724   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1725   case ARMISD::VQDMULH:       return "ARMISD::VQDMULH";
1726   case ARMISD::VADDVs:        return "ARMISD::VADDVs";
1727   case ARMISD::VADDVu:        return "ARMISD::VADDVu";
1728   case ARMISD::VADDVps:       return "ARMISD::VADDVps";
1729   case ARMISD::VADDVpu:       return "ARMISD::VADDVpu";
1730   case ARMISD::VADDLVs:       return "ARMISD::VADDLVs";
1731   case ARMISD::VADDLVu:       return "ARMISD::VADDLVu";
1732   case ARMISD::VADDLVAs:      return "ARMISD::VADDLVAs";
1733   case ARMISD::VADDLVAu:      return "ARMISD::VADDLVAu";
1734   case ARMISD::VADDLVps:      return "ARMISD::VADDLVps";
1735   case ARMISD::VADDLVpu:      return "ARMISD::VADDLVpu";
1736   case ARMISD::VADDLVAps:     return "ARMISD::VADDLVAps";
1737   case ARMISD::VADDLVApu:     return "ARMISD::VADDLVApu";
1738   case ARMISD::VMLAVs:        return "ARMISD::VMLAVs";
1739   case ARMISD::VMLAVu:        return "ARMISD::VMLAVu";
1740   case ARMISD::VMLAVps:       return "ARMISD::VMLAVps";
1741   case ARMISD::VMLAVpu:       return "ARMISD::VMLAVpu";
1742   case ARMISD::VMLALVs:       return "ARMISD::VMLALVs";
1743   case ARMISD::VMLALVu:       return "ARMISD::VMLALVu";
1744   case ARMISD::VMLALVps:      return "ARMISD::VMLALVps";
1745   case ARMISD::VMLALVpu:      return "ARMISD::VMLALVpu";
1746   case ARMISD::VMLALVAs:      return "ARMISD::VMLALVAs";
1747   case ARMISD::VMLALVAu:      return "ARMISD::VMLALVAu";
1748   case ARMISD::VMLALVAps:     return "ARMISD::VMLALVAps";
1749   case ARMISD::VMLALVApu:     return "ARMISD::VMLALVApu";
1750   case ARMISD::VMINVu:        return "ARMISD::VMINVu";
1751   case ARMISD::VMINVs:        return "ARMISD::VMINVs";
1752   case ARMISD::VMAXVu:        return "ARMISD::VMAXVu";
1753   case ARMISD::VMAXVs:        return "ARMISD::VMAXVs";
1754   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1755   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1756   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1757   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1758   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1759   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1760   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1761   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1762   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1763   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1764   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1765   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1766   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1767   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1768   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1769   case ARMISD::QADD16b:       return "ARMISD::QADD16b";
1770   case ARMISD::QSUB16b:       return "ARMISD::QSUB16b";
1771   case ARMISD::QADD8b:        return "ARMISD::QADD8b";
1772   case ARMISD::QSUB8b:        return "ARMISD::QSUB8b";
1773   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1774   case ARMISD::BFI:           return "ARMISD::BFI";
1775   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1776   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1777   case ARMISD::VBSP:          return "ARMISD::VBSP";
1778   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1779   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1780   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1781   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1782   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1783   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1784   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1785   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1786   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1787   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1788   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1789   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1790   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1791   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1792   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1793   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1794   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1795   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1796   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1797   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1798   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1799   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1800   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1801   case ARMISD::WLS:           return "ARMISD::WLS";
1802   case ARMISD::LE:            return "ARMISD::LE";
1803   case ARMISD::LOOP_DEC:      return "ARMISD::LOOP_DEC";
1804   case ARMISD::CSINV:         return "ARMISD::CSINV";
1805   case ARMISD::CSNEG:         return "ARMISD::CSNEG";
1806   case ARMISD::CSINC:         return "ARMISD::CSINC";
1807   }
1808   return nullptr;
1809 }
1810 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1811 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1812                                           EVT VT) const {
1813   if (!VT.isVector())
1814     return getPointerTy(DL);
1815 
1816   // MVE has a predicate register.
1817   if (Subtarget->hasMVEIntegerOps() &&
1818       (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1819     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1820   return VT.changeVectorElementTypeToInteger();
1821 }
1822 
1823 /// getRegClassFor - Return the register class that should be used for the
1824 /// specified value type.
1825 const TargetRegisterClass *
getRegClassFor(MVT VT,bool isDivergent) const1826 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1827   (void)isDivergent;
1828   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1829   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1830   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1831   // MVE Q registers.
1832   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1833     if (VT == MVT::v4i64)
1834       return &ARM::QQPRRegClass;
1835     if (VT == MVT::v8i64)
1836       return &ARM::QQQQPRRegClass;
1837   }
1838   return TargetLowering::getRegClassFor(VT);
1839 }
1840 
1841 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1842 // source/dest is aligned and the copy size is large enough. We therefore want
1843 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1844 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1845                                                unsigned &PrefAlign) const {
1846   if (!isa<MemIntrinsic>(CI))
1847     return false;
1848   MinSize = 8;
1849   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1850   // cycle faster than 4-byte aligned LDM.
1851   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1852   return true;
1853 }
1854 
1855 // Create a fast isel object.
1856 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1857 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1858                                   const TargetLibraryInfo *libInfo) const {
1859   return ARM::createFastISel(funcInfo, libInfo);
1860 }
1861 
getSchedulingPreference(SDNode * N) const1862 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1863   unsigned NumVals = N->getNumValues();
1864   if (!NumVals)
1865     return Sched::RegPressure;
1866 
1867   for (unsigned i = 0; i != NumVals; ++i) {
1868     EVT VT = N->getValueType(i);
1869     if (VT == MVT::Glue || VT == MVT::Other)
1870       continue;
1871     if (VT.isFloatingPoint() || VT.isVector())
1872       return Sched::ILP;
1873   }
1874 
1875   if (!N->isMachineOpcode())
1876     return Sched::RegPressure;
1877 
1878   // Load are scheduled for latency even if there instruction itinerary
1879   // is not available.
1880   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1881   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1882 
1883   if (MCID.getNumDefs() == 0)
1884     return Sched::RegPressure;
1885   if (!Itins->isEmpty() &&
1886       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1887     return Sched::ILP;
1888 
1889   return Sched::RegPressure;
1890 }
1891 
1892 //===----------------------------------------------------------------------===//
1893 // Lowering Code
1894 //===----------------------------------------------------------------------===//
1895 
isSRL16(const SDValue & Op)1896 static bool isSRL16(const SDValue &Op) {
1897   if (Op.getOpcode() != ISD::SRL)
1898     return false;
1899   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1900     return Const->getZExtValue() == 16;
1901   return false;
1902 }
1903 
isSRA16(const SDValue & Op)1904 static bool isSRA16(const SDValue &Op) {
1905   if (Op.getOpcode() != ISD::SRA)
1906     return false;
1907   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1908     return Const->getZExtValue() == 16;
1909   return false;
1910 }
1911 
isSHL16(const SDValue & Op)1912 static bool isSHL16(const SDValue &Op) {
1913   if (Op.getOpcode() != ISD::SHL)
1914     return false;
1915   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1916     return Const->getZExtValue() == 16;
1917   return false;
1918 }
1919 
1920 // Check for a signed 16-bit value. We special case SRA because it makes it
1921 // more simple when also looking for SRAs that aren't sign extending a
1922 // smaller value. Without the check, we'd need to take extra care with
1923 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1924 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1925   if (isSRA16(Op))
1926     return isSHL16(Op.getOperand(0));
1927   return DAG.ComputeNumSignBits(Op) == 17;
1928 }
1929 
1930 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1931 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1932   switch (CC) {
1933   default: llvm_unreachable("Unknown condition code!");
1934   case ISD::SETNE:  return ARMCC::NE;
1935   case ISD::SETEQ:  return ARMCC::EQ;
1936   case ISD::SETGT:  return ARMCC::GT;
1937   case ISD::SETGE:  return ARMCC::GE;
1938   case ISD::SETLT:  return ARMCC::LT;
1939   case ISD::SETLE:  return ARMCC::LE;
1940   case ISD::SETUGT: return ARMCC::HI;
1941   case ISD::SETUGE: return ARMCC::HS;
1942   case ISD::SETULT: return ARMCC::LO;
1943   case ISD::SETULE: return ARMCC::LS;
1944   }
1945 }
1946 
1947 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1948 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1949                         ARMCC::CondCodes &CondCode2) {
1950   CondCode2 = ARMCC::AL;
1951   switch (CC) {
1952   default: llvm_unreachable("Unknown FP condition!");
1953   case ISD::SETEQ:
1954   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1955   case ISD::SETGT:
1956   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1957   case ISD::SETGE:
1958   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1959   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1960   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1961   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1962   case ISD::SETO:   CondCode = ARMCC::VC; break;
1963   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1964   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1965   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1966   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1967   case ISD::SETLT:
1968   case ISD::SETULT: CondCode = ARMCC::LT; break;
1969   case ISD::SETLE:
1970   case ISD::SETULE: CondCode = ARMCC::LE; break;
1971   case ISD::SETNE:
1972   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1973   }
1974 }
1975 
1976 //===----------------------------------------------------------------------===//
1977 //                      Calling Convention Implementation
1978 //===----------------------------------------------------------------------===//
1979 
1980 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1981 /// account presence of floating point hardware and calling convention
1982 /// limitations, such as support for variadic functions.
1983 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1984 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1985                                            bool isVarArg) const {
1986   switch (CC) {
1987   default:
1988     report_fatal_error("Unsupported calling convention");
1989   case CallingConv::ARM_AAPCS:
1990   case CallingConv::ARM_APCS:
1991   case CallingConv::GHC:
1992   case CallingConv::CFGuard_Check:
1993     return CC;
1994   case CallingConv::PreserveMost:
1995     return CallingConv::PreserveMost;
1996   case CallingConv::ARM_AAPCS_VFP:
1997   case CallingConv::Swift:
1998     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1999   case CallingConv::C:
2000     if (!Subtarget->isAAPCS_ABI())
2001       return CallingConv::ARM_APCS;
2002     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
2003              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2004              !isVarArg)
2005       return CallingConv::ARM_AAPCS_VFP;
2006     else
2007       return CallingConv::ARM_AAPCS;
2008   case CallingConv::Fast:
2009   case CallingConv::CXX_FAST_TLS:
2010     if (!Subtarget->isAAPCS_ABI()) {
2011       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2012         return CallingConv::Fast;
2013       return CallingConv::ARM_APCS;
2014     } else if (Subtarget->hasVFP2Base() &&
2015                !Subtarget->isThumb1Only() && !isVarArg)
2016       return CallingConv::ARM_AAPCS_VFP;
2017     else
2018       return CallingConv::ARM_AAPCS;
2019   }
2020 }
2021 
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const2022 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2023                                                  bool isVarArg) const {
2024   return CCAssignFnForNode(CC, false, isVarArg);
2025 }
2026 
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const2027 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2028                                                    bool isVarArg) const {
2029   return CCAssignFnForNode(CC, true, isVarArg);
2030 }
2031 
2032 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2033 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const2034 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2035                                                  bool Return,
2036                                                  bool isVarArg) const {
2037   switch (getEffectiveCallingConv(CC, isVarArg)) {
2038   default:
2039     report_fatal_error("Unsupported calling convention");
2040   case CallingConv::ARM_APCS:
2041     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2042   case CallingConv::ARM_AAPCS:
2043     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2044   case CallingConv::ARM_AAPCS_VFP:
2045     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2046   case CallingConv::Fast:
2047     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2048   case CallingConv::GHC:
2049     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2050   case CallingConv::PreserveMost:
2051     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2052   case CallingConv::CFGuard_Check:
2053     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2054   }
2055 }
2056 
MoveToHPR(const SDLoc & dl,SelectionDAG & DAG,MVT LocVT,MVT ValVT,SDValue Val) const2057 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2058                                      MVT LocVT, MVT ValVT, SDValue Val) const {
2059   Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2060                     Val);
2061   if (Subtarget->hasFullFP16()) {
2062     Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2063   } else {
2064     Val = DAG.getNode(ISD::TRUNCATE, dl,
2065                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2066     Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2067   }
2068   return Val;
2069 }
2070 
MoveFromHPR(const SDLoc & dl,SelectionDAG & DAG,MVT LocVT,MVT ValVT,SDValue Val) const2071 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2072                                        MVT LocVT, MVT ValVT,
2073                                        SDValue Val) const {
2074   if (Subtarget->hasFullFP16()) {
2075     Val = DAG.getNode(ARMISD::VMOVrh, dl,
2076                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2077   } else {
2078     Val = DAG.getNode(ISD::BITCAST, dl,
2079                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2080     Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2081                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2082   }
2083   return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2084 }
2085 
2086 /// LowerCallResult - Lower the result values of a call into the
2087 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const2088 SDValue ARMTargetLowering::LowerCallResult(
2089     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2090     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2091     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2092     SDValue ThisVal) const {
2093   // Assign locations to each value returned by this call.
2094   SmallVector<CCValAssign, 16> RVLocs;
2095   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2096                  *DAG.getContext());
2097   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2098 
2099   // Copy all of the result registers out of their specified physreg.
2100   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2101     CCValAssign VA = RVLocs[i];
2102 
2103     // Pass 'this' value directly from the argument to return value, to avoid
2104     // reg unit interference
2105     if (i == 0 && isThisReturn) {
2106       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2107              "unexpected return calling convention register assignment");
2108       InVals.push_back(ThisVal);
2109       continue;
2110     }
2111 
2112     SDValue Val;
2113     if (VA.needsCustom() &&
2114         (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2115       // Handle f64 or half of a v2f64.
2116       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2117                                       InFlag);
2118       Chain = Lo.getValue(1);
2119       InFlag = Lo.getValue(2);
2120       VA = RVLocs[++i]; // skip ahead to next loc
2121       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2122                                       InFlag);
2123       Chain = Hi.getValue(1);
2124       InFlag = Hi.getValue(2);
2125       if (!Subtarget->isLittle())
2126         std::swap (Lo, Hi);
2127       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2128 
2129       if (VA.getLocVT() == MVT::v2f64) {
2130         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2131         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2132                           DAG.getConstant(0, dl, MVT::i32));
2133 
2134         VA = RVLocs[++i]; // skip ahead to next loc
2135         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2136         Chain = Lo.getValue(1);
2137         InFlag = Lo.getValue(2);
2138         VA = RVLocs[++i]; // skip ahead to next loc
2139         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2140         Chain = Hi.getValue(1);
2141         InFlag = Hi.getValue(2);
2142         if (!Subtarget->isLittle())
2143           std::swap (Lo, Hi);
2144         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2145         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2146                           DAG.getConstant(1, dl, MVT::i32));
2147       }
2148     } else {
2149       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2150                                InFlag);
2151       Chain = Val.getValue(1);
2152       InFlag = Val.getValue(2);
2153     }
2154 
2155     switch (VA.getLocInfo()) {
2156     default: llvm_unreachable("Unknown loc info!");
2157     case CCValAssign::Full: break;
2158     case CCValAssign::BCvt:
2159       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2160       break;
2161     }
2162 
2163     // f16 arguments have their size extended to 4 bytes and passed as if they
2164     // had been copied to the LSBs of a 32-bit register.
2165     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2166     if (VA.needsCustom() &&
2167         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2168       Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2169 
2170     InVals.push_back(Val);
2171   }
2172 
2173   return Chain;
2174 }
2175 
2176 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const2177 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
2178                                             SDValue Arg, const SDLoc &dl,
2179                                             SelectionDAG &DAG,
2180                                             const CCValAssign &VA,
2181                                             ISD::ArgFlagsTy Flags) const {
2182   unsigned LocMemOffset = VA.getLocMemOffset();
2183   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2184   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2185                        StackPtr, PtrOff);
2186   return DAG.getStore(
2187       Chain, dl, Arg, PtrOff,
2188       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
2189 }
2190 
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const2191 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2192                                          SDValue Chain, SDValue &Arg,
2193                                          RegsToPassVector &RegsToPass,
2194                                          CCValAssign &VA, CCValAssign &NextVA,
2195                                          SDValue &StackPtr,
2196                                          SmallVectorImpl<SDValue> &MemOpChains,
2197                                          ISD::ArgFlagsTy Flags) const {
2198   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2199                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2200   unsigned id = Subtarget->isLittle() ? 0 : 1;
2201   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2202 
2203   if (NextVA.isRegLoc())
2204     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2205   else {
2206     assert(NextVA.isMemLoc());
2207     if (!StackPtr.getNode())
2208       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2209                                     getPointerTy(DAG.getDataLayout()));
2210 
2211     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
2212                                            dl, DAG, NextVA,
2213                                            Flags));
2214   }
2215 }
2216 
2217 /// LowerCall - Lowering a call into a callseq_start <-
2218 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2219 /// nodes.
2220 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2221 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2222                              SmallVectorImpl<SDValue> &InVals) const {
2223   SelectionDAG &DAG                     = CLI.DAG;
2224   SDLoc &dl                             = CLI.DL;
2225   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2226   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2227   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2228   SDValue Chain                         = CLI.Chain;
2229   SDValue Callee                        = CLI.Callee;
2230   bool &isTailCall                      = CLI.IsTailCall;
2231   CallingConv::ID CallConv              = CLI.CallConv;
2232   bool doesNotRet                       = CLI.DoesNotReturn;
2233   bool isVarArg                         = CLI.IsVarArg;
2234 
2235   MachineFunction &MF = DAG.getMachineFunction();
2236   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2237   MachineFunction::CallSiteInfo CSInfo;
2238   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2239   bool isThisReturn = false;
2240   bool isCmseNSCall   = false;
2241   bool PreferIndirect = false;
2242 
2243   // Determine whether this is a non-secure function call.
2244   if (CLI.CB && CLI.CB->getAttributes().hasFnAttribute("cmse_nonsecure_call"))
2245     isCmseNSCall = true;
2246 
2247   // Disable tail calls if they're not supported.
2248   if (!Subtarget->supportsTailCall())
2249     isTailCall = false;
2250 
2251   // For both the non-secure calls and the returns from a CMSE entry function,
2252   // the function needs to do some extra work afte r the call, or before the
2253   // return, respectively, thus it cannot end with atail call
2254   if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2255     isTailCall = false;
2256 
2257   if (isa<GlobalAddressSDNode>(Callee)) {
2258     // If we're optimizing for minimum size and the function is called three or
2259     // more times in this block, we can improve codesize by calling indirectly
2260     // as BLXr has a 16-bit encoding.
2261     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2262     if (CLI.CB) {
2263       auto *BB = CLI.CB->getParent();
2264       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2265                        count_if(GV->users(), [&BB](const User *U) {
2266                          return isa<Instruction>(U) &&
2267                                 cast<Instruction>(U)->getParent() == BB;
2268                        }) > 2;
2269     }
2270   }
2271   if (isTailCall) {
2272     // Check if it's really possible to do a tail call.
2273     isTailCall = IsEligibleForTailCallOptimization(
2274         Callee, CallConv, isVarArg, isStructRet,
2275         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2276         PreferIndirect);
2277     if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2278       report_fatal_error("failed to perform tail call elimination on a call "
2279                          "site marked musttail");
2280     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2281     // detected sibcalls.
2282     if (isTailCall)
2283       ++NumTailCalls;
2284   }
2285 
2286   // Analyze operands of the call, assigning locations to each operand.
2287   SmallVector<CCValAssign, 16> ArgLocs;
2288   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2289                  *DAG.getContext());
2290   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2291 
2292   // Get a count of how many bytes are to be pushed on the stack.
2293   unsigned NumBytes = CCInfo.getNextStackOffset();
2294 
2295   if (isTailCall) {
2296     // For tail calls, memory operands are available in our caller's stack.
2297     NumBytes = 0;
2298   } else {
2299     // Adjust the stack pointer for the new arguments...
2300     // These operations are automatically eliminated by the prolog/epilog pass
2301     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2302   }
2303 
2304   SDValue StackPtr =
2305       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2306 
2307   RegsToPassVector RegsToPass;
2308   SmallVector<SDValue, 8> MemOpChains;
2309 
2310   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2311   // of tail call optimization, arguments are handled later.
2312   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2313        i != e;
2314        ++i, ++realArgIdx) {
2315     CCValAssign &VA = ArgLocs[i];
2316     SDValue Arg = OutVals[realArgIdx];
2317     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2318     bool isByVal = Flags.isByVal();
2319 
2320     // Promote the value if needed.
2321     switch (VA.getLocInfo()) {
2322     default: llvm_unreachable("Unknown loc info!");
2323     case CCValAssign::Full: break;
2324     case CCValAssign::SExt:
2325       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2326       break;
2327     case CCValAssign::ZExt:
2328       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2329       break;
2330     case CCValAssign::AExt:
2331       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2332       break;
2333     case CCValAssign::BCvt:
2334       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2335       break;
2336     }
2337 
2338     // f16 arguments have their size extended to 4 bytes and passed as if they
2339     // had been copied to the LSBs of a 32-bit register.
2340     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2341     if (VA.needsCustom() &&
2342         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2343       Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2344     } else {
2345       // f16 arguments could have been extended prior to argument lowering.
2346       // Mask them arguments if this is a CMSE nonsecure call.
2347       auto ArgVT = Outs[realArgIdx].ArgVT;
2348       if (isCmseNSCall && (ArgVT == MVT::f16)) {
2349         auto LocBits = VA.getLocVT().getSizeInBits();
2350         auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2351         SDValue Mask =
2352             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2353         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2354         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2355         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2356       }
2357     }
2358 
2359     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2360     if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2361       SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2362                                 DAG.getConstant(0, dl, MVT::i32));
2363       SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2364                                 DAG.getConstant(1, dl, MVT::i32));
2365 
2366       PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2367                        StackPtr, MemOpChains, Flags);
2368 
2369       VA = ArgLocs[++i]; // skip ahead to next loc
2370       if (VA.isRegLoc()) {
2371         PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2372                          StackPtr, MemOpChains, Flags);
2373       } else {
2374         assert(VA.isMemLoc());
2375 
2376         MemOpChains.push_back(
2377             LowerMemOpCallTo(Chain, StackPtr, Op1, dl, DAG, VA, Flags));
2378       }
2379     } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2380       PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2381                        StackPtr, MemOpChains, Flags);
2382     } else if (VA.isRegLoc()) {
2383       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2384           Outs[0].VT == MVT::i32) {
2385         assert(VA.getLocVT() == MVT::i32 &&
2386                "unexpected calling convention register assignment");
2387         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2388                "unexpected use of 'returned'");
2389         isThisReturn = true;
2390       }
2391       const TargetOptions &Options = DAG.getTarget().Options;
2392       if (Options.EmitCallSiteInfo)
2393         CSInfo.emplace_back(VA.getLocReg(), i);
2394       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2395     } else if (isByVal) {
2396       assert(VA.isMemLoc());
2397       unsigned offset = 0;
2398 
2399       // True if this byval aggregate will be split between registers
2400       // and memory.
2401       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2402       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2403 
2404       if (CurByValIdx < ByValArgsCount) {
2405 
2406         unsigned RegBegin, RegEnd;
2407         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2408 
2409         EVT PtrVT =
2410             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2411         unsigned int i, j;
2412         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2413           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2414           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2415           SDValue Load =
2416               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2417                           DAG.InferPtrAlign(AddArg));
2418           MemOpChains.push_back(Load.getValue(1));
2419           RegsToPass.push_back(std::make_pair(j, Load));
2420         }
2421 
2422         // If parameter size outsides register area, "offset" value
2423         // helps us to calculate stack slot for remained part properly.
2424         offset = RegEnd - RegBegin;
2425 
2426         CCInfo.nextInRegsParam();
2427       }
2428 
2429       if (Flags.getByValSize() > 4*offset) {
2430         auto PtrVT = getPointerTy(DAG.getDataLayout());
2431         unsigned LocMemOffset = VA.getLocMemOffset();
2432         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2433         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2434         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2435         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2436         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2437                                            MVT::i32);
2438         SDValue AlignNode =
2439             DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2440 
2441         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2442         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2443         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2444                                           Ops));
2445       }
2446     } else if (!isTailCall) {
2447       assert(VA.isMemLoc());
2448 
2449       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2450                                              dl, DAG, VA, Flags));
2451     }
2452   }
2453 
2454   if (!MemOpChains.empty())
2455     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2456 
2457   // Build a sequence of copy-to-reg nodes chained together with token chain
2458   // and flag operands which copy the outgoing args into the appropriate regs.
2459   SDValue InFlag;
2460   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2461     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2462                              RegsToPass[i].second, InFlag);
2463     InFlag = Chain.getValue(1);
2464   }
2465 
2466   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2467   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2468   // node so that legalize doesn't hack it.
2469   bool isDirect = false;
2470 
2471   const TargetMachine &TM = getTargetMachine();
2472   const Module *Mod = MF.getFunction().getParent();
2473   const GlobalValue *GV = nullptr;
2474   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2475     GV = G->getGlobal();
2476   bool isStub =
2477       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2478 
2479   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2480   bool isLocalARMFunc = false;
2481   auto PtrVt = getPointerTy(DAG.getDataLayout());
2482 
2483   if (Subtarget->genLongCalls()) {
2484     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2485            "long-calls codegen is not position independent!");
2486     // Handle a global address or an external symbol. If it's not one of
2487     // those, the target's already in a register, so we don't need to do
2488     // anything extra.
2489     if (isa<GlobalAddressSDNode>(Callee)) {
2490       // Create a constant pool entry for the callee address
2491       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2492       ARMConstantPoolValue *CPV =
2493         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2494 
2495       // Get the address of the callee into a register
2496       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2497       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2498       Callee = DAG.getLoad(
2499           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2500           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2501     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2502       const char *Sym = S->getSymbol();
2503 
2504       // Create a constant pool entry for the callee address
2505       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2506       ARMConstantPoolValue *CPV =
2507         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2508                                       ARMPCLabelIndex, 0);
2509       // Get the address of the callee into a register
2510       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2511       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2512       Callee = DAG.getLoad(
2513           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2514           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2515     }
2516   } else if (isa<GlobalAddressSDNode>(Callee)) {
2517     if (!PreferIndirect) {
2518       isDirect = true;
2519       bool isDef = GV->isStrongDefinitionForLinker();
2520 
2521       // ARM call to a local ARM function is predicable.
2522       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2523       // tBX takes a register source operand.
2524       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2525         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2526         Callee = DAG.getNode(
2527             ARMISD::WrapperPIC, dl, PtrVt,
2528             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2529         Callee = DAG.getLoad(
2530             PtrVt, dl, DAG.getEntryNode(), Callee,
2531             MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2532             MachineMemOperand::MODereferenceable |
2533                 MachineMemOperand::MOInvariant);
2534       } else if (Subtarget->isTargetCOFF()) {
2535         assert(Subtarget->isTargetWindows() &&
2536                "Windows is the only supported COFF target");
2537         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2538         if (GV->hasDLLImportStorageClass())
2539           TargetFlags = ARMII::MO_DLLIMPORT;
2540         else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
2541           TargetFlags = ARMII::MO_COFFSTUB;
2542         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2543                                             TargetFlags);
2544         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2545           Callee =
2546               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2547                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2548                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2549       } else {
2550         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2551       }
2552     }
2553   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2554     isDirect = true;
2555     // tBX takes a register source operand.
2556     const char *Sym = S->getSymbol();
2557     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2558       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2559       ARMConstantPoolValue *CPV =
2560         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2561                                       ARMPCLabelIndex, 4);
2562       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2563       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2564       Callee = DAG.getLoad(
2565           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2566           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2567       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2568       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2569     } else {
2570       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2571     }
2572   }
2573 
2574   if (isCmseNSCall) {
2575     assert(!isARMFunc && !isDirect &&
2576            "Cannot handle call to ARM function or direct call");
2577     if (NumBytes > 0) {
2578       DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2579                                      "call to non-secure function would "
2580                                      "require passing arguments on stack",
2581                                      dl.getDebugLoc());
2582       DAG.getContext()->diagnose(Diag);
2583     }
2584     if (isStructRet) {
2585       DiagnosticInfoUnsupported Diag(
2586           DAG.getMachineFunction().getFunction(),
2587           "call to non-secure function would return value through pointer",
2588           dl.getDebugLoc());
2589       DAG.getContext()->diagnose(Diag);
2590     }
2591   }
2592 
2593   // FIXME: handle tail calls differently.
2594   unsigned CallOpc;
2595   if (Subtarget->isThumb()) {
2596     if (isCmseNSCall)
2597       CallOpc = ARMISD::tSECALL;
2598     else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2599       CallOpc = ARMISD::CALL_NOLINK;
2600     else
2601       CallOpc = ARMISD::CALL;
2602   } else {
2603     if (!isDirect && !Subtarget->hasV5TOps())
2604       CallOpc = ARMISD::CALL_NOLINK;
2605     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2606              // Emit regular call when code size is the priority
2607              !Subtarget->hasMinSize())
2608       // "mov lr, pc; b _foo" to avoid confusing the RSP
2609       CallOpc = ARMISD::CALL_NOLINK;
2610     else
2611       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2612   }
2613 
2614   std::vector<SDValue> Ops;
2615   Ops.push_back(Chain);
2616   Ops.push_back(Callee);
2617 
2618   // Add argument registers to the end of the list so that they are known live
2619   // into the call.
2620   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2621     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2622                                   RegsToPass[i].second.getValueType()));
2623 
2624   // Add a register mask operand representing the call-preserved registers.
2625   if (!isTailCall) {
2626     const uint32_t *Mask;
2627     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2628     if (isThisReturn) {
2629       // For 'this' returns, use the R0-preserving mask if applicable
2630       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2631       if (!Mask) {
2632         // Set isThisReturn to false if the calling convention is not one that
2633         // allows 'returned' to be modeled in this way, so LowerCallResult does
2634         // not try to pass 'this' straight through
2635         isThisReturn = false;
2636         Mask = ARI->getCallPreservedMask(MF, CallConv);
2637       }
2638     } else
2639       Mask = ARI->getCallPreservedMask(MF, CallConv);
2640 
2641     assert(Mask && "Missing call preserved mask for calling convention");
2642     Ops.push_back(DAG.getRegisterMask(Mask));
2643   }
2644 
2645   if (InFlag.getNode())
2646     Ops.push_back(InFlag);
2647 
2648   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2649   if (isTailCall) {
2650     MF.getFrameInfo().setHasTailCall();
2651     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2652     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2653     return Ret;
2654   }
2655 
2656   // Returns a chain and a flag for retval copy to use.
2657   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2658   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2659   InFlag = Chain.getValue(1);
2660   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2661 
2662   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2663                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2664   if (!Ins.empty())
2665     InFlag = Chain.getValue(1);
2666 
2667   // Handle result values, copying them out of physregs into vregs that we
2668   // return.
2669   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2670                          InVals, isThisReturn,
2671                          isThisReturn ? OutVals[0] : SDValue());
2672 }
2673 
2674 /// HandleByVal - Every parameter *after* a byval parameter is passed
2675 /// on the stack.  Remember the next parameter register to allocate,
2676 /// and then confiscate the rest of the parameter registers to insure
2677 /// this.
HandleByVal(CCState * State,unsigned & Size,Align Alignment) const2678 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2679                                     Align Alignment) const {
2680   // Byval (as with any stack) slots are always at least 4 byte aligned.
2681   Alignment = std::max(Alignment, Align(4));
2682 
2683   unsigned Reg = State->AllocateReg(GPRArgRegs);
2684   if (!Reg)
2685     return;
2686 
2687   unsigned AlignInRegs = Alignment.value() / 4;
2688   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2689   for (unsigned i = 0; i < Waste; ++i)
2690     Reg = State->AllocateReg(GPRArgRegs);
2691 
2692   if (!Reg)
2693     return;
2694 
2695   unsigned Excess = 4 * (ARM::R4 - Reg);
2696 
2697   // Special case when NSAA != SP and parameter size greater than size of
2698   // all remained GPR regs. In that case we can't split parameter, we must
2699   // send it to stack. We also must set NCRN to R4, so waste all
2700   // remained registers.
2701   const unsigned NSAAOffset = State->getNextStackOffset();
2702   if (NSAAOffset != 0 && Size > Excess) {
2703     while (State->AllocateReg(GPRArgRegs))
2704       ;
2705     return;
2706   }
2707 
2708   // First register for byval parameter is the first register that wasn't
2709   // allocated before this method call, so it would be "reg".
2710   // If parameter is small enough to be saved in range [reg, r4), then
2711   // the end (first after last) register would be reg + param-size-in-regs,
2712   // else parameter would be splitted between registers and stack,
2713   // end register would be r4 in this case.
2714   unsigned ByValRegBegin = Reg;
2715   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2716   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2717   // Note, first register is allocated in the beginning of function already,
2718   // allocate remained amount of registers we need.
2719   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2720     State->AllocateReg(GPRArgRegs);
2721   // A byval parameter that is split between registers and memory needs its
2722   // size truncated here.
2723   // In the case where the entire structure fits in registers, we set the
2724   // size in memory to zero.
2725   Size = std::max<int>(Size - Excess, 0);
2726 }
2727 
2728 /// MatchingStackOffset - Return true if the given stack call argument is
2729 /// already available in the same position (relatively) of the caller's
2730 /// incoming argument stack.
2731 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2732 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2733                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2734                          const TargetInstrInfo *TII) {
2735   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2736   int FI = std::numeric_limits<int>::max();
2737   if (Arg.getOpcode() == ISD::CopyFromReg) {
2738     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2739     if (!Register::isVirtualRegister(VR))
2740       return false;
2741     MachineInstr *Def = MRI->getVRegDef(VR);
2742     if (!Def)
2743       return false;
2744     if (!Flags.isByVal()) {
2745       if (!TII->isLoadFromStackSlot(*Def, FI))
2746         return false;
2747     } else {
2748       return false;
2749     }
2750   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2751     if (Flags.isByVal())
2752       // ByVal argument is passed in as a pointer but it's now being
2753       // dereferenced. e.g.
2754       // define @foo(%struct.X* %A) {
2755       //   tail call @bar(%struct.X* byval %A)
2756       // }
2757       return false;
2758     SDValue Ptr = Ld->getBasePtr();
2759     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2760     if (!FINode)
2761       return false;
2762     FI = FINode->getIndex();
2763   } else
2764     return false;
2765 
2766   assert(FI != std::numeric_limits<int>::max());
2767   if (!MFI.isFixedObjectIndex(FI))
2768     return false;
2769   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2770 }
2771 
2772 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2773 /// for tail call optimization. Targets which want to do tail call
2774 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG,const bool isIndirect) const2775 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2776     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2777     bool isCalleeStructRet, bool isCallerStructRet,
2778     const SmallVectorImpl<ISD::OutputArg> &Outs,
2779     const SmallVectorImpl<SDValue> &OutVals,
2780     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2781     const bool isIndirect) const {
2782   MachineFunction &MF = DAG.getMachineFunction();
2783   const Function &CallerF = MF.getFunction();
2784   CallingConv::ID CallerCC = CallerF.getCallingConv();
2785 
2786   assert(Subtarget->supportsTailCall());
2787 
2788   // Indirect tail calls cannot be optimized for Thumb1 if the args
2789   // to the call take up r0-r3. The reason is that there are no legal registers
2790   // left to hold the pointer to the function to be called.
2791   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2792       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2793     return false;
2794 
2795   // Look for obvious safe cases to perform tail call optimization that do not
2796   // require ABI changes. This is what gcc calls sibcall.
2797 
2798   // Exception-handling functions need a special set of instructions to indicate
2799   // a return to the hardware. Tail-calling another function would probably
2800   // break this.
2801   if (CallerF.hasFnAttribute("interrupt"))
2802     return false;
2803 
2804   // Also avoid sibcall optimization if either caller or callee uses struct
2805   // return semantics.
2806   if (isCalleeStructRet || isCallerStructRet)
2807     return false;
2808 
2809   // Externally-defined functions with weak linkage should not be
2810   // tail-called on ARM when the OS does not support dynamic
2811   // pre-emption of symbols, as the AAELF spec requires normal calls
2812   // to undefined weak functions to be replaced with a NOP or jump to the
2813   // next instruction. The behaviour of branch instructions in this
2814   // situation (as used for tail calls) is implementation-defined, so we
2815   // cannot rely on the linker replacing the tail call with a return.
2816   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2817     const GlobalValue *GV = G->getGlobal();
2818     const Triple &TT = getTargetMachine().getTargetTriple();
2819     if (GV->hasExternalWeakLinkage() &&
2820         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2821       return false;
2822   }
2823 
2824   // Check that the call results are passed in the same way.
2825   LLVMContext &C = *DAG.getContext();
2826   if (!CCState::resultsCompatible(
2827           getEffectiveCallingConv(CalleeCC, isVarArg),
2828           getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
2829           CCAssignFnForReturn(CalleeCC, isVarArg),
2830           CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
2831     return false;
2832   // The callee has to preserve all registers the caller needs to preserve.
2833   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2834   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2835   if (CalleeCC != CallerCC) {
2836     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2837     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2838       return false;
2839   }
2840 
2841   // If Caller's vararg or byval argument has been split between registers and
2842   // stack, do not perform tail call, since part of the argument is in caller's
2843   // local frame.
2844   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2845   if (AFI_Caller->getArgRegsSaveSize())
2846     return false;
2847 
2848   // If the callee takes no arguments then go on to check the results of the
2849   // call.
2850   if (!Outs.empty()) {
2851     // Check if stack adjustment is needed. For now, do not do this if any
2852     // argument is passed on the stack.
2853     SmallVector<CCValAssign, 16> ArgLocs;
2854     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2855     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2856     if (CCInfo.getNextStackOffset()) {
2857       // Check if the arguments are already laid out in the right way as
2858       // the caller's fixed stack objects.
2859       MachineFrameInfo &MFI = MF.getFrameInfo();
2860       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2861       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2862       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2863            i != e;
2864            ++i, ++realArgIdx) {
2865         CCValAssign &VA = ArgLocs[i];
2866         EVT RegVT = VA.getLocVT();
2867         SDValue Arg = OutVals[realArgIdx];
2868         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2869         if (VA.getLocInfo() == CCValAssign::Indirect)
2870           return false;
2871         if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
2872           // f64 and vector types are split into multiple registers or
2873           // register/stack-slot combinations.  The types will not match
2874           // the registers; give up on memory f64 refs until we figure
2875           // out what to do about this.
2876           if (!VA.isRegLoc())
2877             return false;
2878           if (!ArgLocs[++i].isRegLoc())
2879             return false;
2880           if (RegVT == MVT::v2f64) {
2881             if (!ArgLocs[++i].isRegLoc())
2882               return false;
2883             if (!ArgLocs[++i].isRegLoc())
2884               return false;
2885           }
2886         } else if (!VA.isRegLoc()) {
2887           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2888                                    MFI, MRI, TII))
2889             return false;
2890         }
2891       }
2892     }
2893 
2894     const MachineRegisterInfo &MRI = MF.getRegInfo();
2895     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2896       return false;
2897   }
2898 
2899   return true;
2900 }
2901 
2902 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2903 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2904                                   MachineFunction &MF, bool isVarArg,
2905                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2906                                   LLVMContext &Context) const {
2907   SmallVector<CCValAssign, 16> RVLocs;
2908   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2909   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2910 }
2911 
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2912 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2913                                     const SDLoc &DL, SelectionDAG &DAG) {
2914   const MachineFunction &MF = DAG.getMachineFunction();
2915   const Function &F = MF.getFunction();
2916 
2917   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2918 
2919   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2920   // version of the "preferred return address". These offsets affect the return
2921   // instruction if this is a return from PL1 without hypervisor extensions.
2922   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2923   //    SWI:     0      "subs pc, lr, #0"
2924   //    ABORT:   +4     "subs pc, lr, #4"
2925   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2926   // UNDEF varies depending on where the exception came from ARM or Thumb
2927   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2928 
2929   int64_t LROffset;
2930   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2931       IntKind == "ABORT")
2932     LROffset = 4;
2933   else if (IntKind == "SWI" || IntKind == "UNDEF")
2934     LROffset = 0;
2935   else
2936     report_fatal_error("Unsupported interrupt attribute. If present, value "
2937                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2938 
2939   RetOps.insert(RetOps.begin() + 1,
2940                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2941 
2942   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2943 }
2944 
2945 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2946 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2947                                bool isVarArg,
2948                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2949                                const SmallVectorImpl<SDValue> &OutVals,
2950                                const SDLoc &dl, SelectionDAG &DAG) const {
2951   // CCValAssign - represent the assignment of the return value to a location.
2952   SmallVector<CCValAssign, 16> RVLocs;
2953 
2954   // CCState - Info about the registers and stack slots.
2955   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2956                  *DAG.getContext());
2957 
2958   // Analyze outgoing return values.
2959   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2960 
2961   SDValue Flag;
2962   SmallVector<SDValue, 4> RetOps;
2963   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2964   bool isLittleEndian = Subtarget->isLittle();
2965 
2966   MachineFunction &MF = DAG.getMachineFunction();
2967   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2968   AFI->setReturnRegsCount(RVLocs.size());
2969 
2970  // Report error if cmse entry function returns structure through first ptr arg.
2971   if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
2972     // Note: using an empty SDLoc(), as the first line of the function is a
2973     // better place to report than the last line.
2974     DiagnosticInfoUnsupported Diag(
2975         DAG.getMachineFunction().getFunction(),
2976         "secure entry function would return value through pointer",
2977         SDLoc().getDebugLoc());
2978     DAG.getContext()->diagnose(Diag);
2979   }
2980 
2981   // Copy the result values into the output registers.
2982   for (unsigned i = 0, realRVLocIdx = 0;
2983        i != RVLocs.size();
2984        ++i, ++realRVLocIdx) {
2985     CCValAssign &VA = RVLocs[i];
2986     assert(VA.isRegLoc() && "Can only return in registers!");
2987 
2988     SDValue Arg = OutVals[realRVLocIdx];
2989     bool ReturnF16 = false;
2990 
2991     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2992       // Half-precision return values can be returned like this:
2993       //
2994       // t11 f16 = fadd ...
2995       // t12: i16 = bitcast t11
2996       //   t13: i32 = zero_extend t12
2997       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2998       //
2999       // to avoid code generation for bitcasts, we simply set Arg to the node
3000       // that produces the f16 value, t11 in this case.
3001       //
3002       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3003         SDValue ZE = Arg.getOperand(0);
3004         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3005           SDValue BC = ZE.getOperand(0);
3006           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3007             Arg = BC.getOperand(0);
3008             ReturnF16 = true;
3009           }
3010         }
3011       }
3012     }
3013 
3014     switch (VA.getLocInfo()) {
3015     default: llvm_unreachable("Unknown loc info!");
3016     case CCValAssign::Full: break;
3017     case CCValAssign::BCvt:
3018       if (!ReturnF16)
3019         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3020       break;
3021     }
3022 
3023     // Mask f16 arguments if this is a CMSE nonsecure entry.
3024     auto RetVT = Outs[realRVLocIdx].ArgVT;
3025     if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3026       if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3027         Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3028       } else {
3029         auto LocBits = VA.getLocVT().getSizeInBits();
3030         auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3031         SDValue Mask =
3032             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3033         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3034         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3035         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3036       }
3037     }
3038 
3039     if (VA.needsCustom() &&
3040         (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3041       if (VA.getLocVT() == MVT::v2f64) {
3042         // Extract the first half and return it in two registers.
3043         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3044                                    DAG.getConstant(0, dl, MVT::i32));
3045         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3046                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
3047 
3048         Chain =
3049             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3050                              HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
3051         Flag = Chain.getValue(1);
3052         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3053         VA = RVLocs[++i]; // skip ahead to next loc
3054         Chain =
3055             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3056                              HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
3057         Flag = Chain.getValue(1);
3058         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3059         VA = RVLocs[++i]; // skip ahead to next loc
3060 
3061         // Extract the 2nd half and fall through to handle it as an f64 value.
3062         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3063                           DAG.getConstant(1, dl, MVT::i32));
3064       }
3065       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
3066       // available.
3067       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3068                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
3069       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3070                                fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
3071       Flag = Chain.getValue(1);
3072       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3073       VA = RVLocs[++i]; // skip ahead to next loc
3074       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3075                                fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
3076     } else
3077       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
3078 
3079     // Guarantee that all emitted copies are
3080     // stuck together, avoiding something bad.
3081     Flag = Chain.getValue(1);
3082     RetOps.push_back(DAG.getRegister(
3083         VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3084   }
3085   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3086   const MCPhysReg *I =
3087       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3088   if (I) {
3089     for (; *I; ++I) {
3090       if (ARM::GPRRegClass.contains(*I))
3091         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3092       else if (ARM::DPRRegClass.contains(*I))
3093         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3094       else
3095         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3096     }
3097   }
3098 
3099   // Update chain and glue.
3100   RetOps[0] = Chain;
3101   if (Flag.getNode())
3102     RetOps.push_back(Flag);
3103 
3104   // CPUs which aren't M-class use a special sequence to return from
3105   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3106   // though we use "subs pc, lr, #N").
3107   //
3108   // M-class CPUs actually use a normal return sequence with a special
3109   // (hardware-provided) value in LR, so the normal code path works.
3110   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3111       !Subtarget->isMClass()) {
3112     if (Subtarget->isThumb1Only())
3113       report_fatal_error("interrupt attribute is not supported in Thumb1");
3114     return LowerInterruptReturn(RetOps, dl, DAG);
3115   }
3116 
3117   ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
3118                                                             ARMISD::RET_FLAG;
3119   return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3120 }
3121 
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const3122 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3123   if (N->getNumValues() != 1)
3124     return false;
3125   if (!N->hasNUsesOfValue(1, 0))
3126     return false;
3127 
3128   SDValue TCChain = Chain;
3129   SDNode *Copy = *N->use_begin();
3130   if (Copy->getOpcode() == ISD::CopyToReg) {
3131     // If the copy has a glue operand, we conservatively assume it isn't safe to
3132     // perform a tail call.
3133     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3134       return false;
3135     TCChain = Copy->getOperand(0);
3136   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3137     SDNode *VMov = Copy;
3138     // f64 returned in a pair of GPRs.
3139     SmallPtrSet<SDNode*, 2> Copies;
3140     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
3141          UI != UE; ++UI) {
3142       if (UI->getOpcode() != ISD::CopyToReg)
3143         return false;
3144       Copies.insert(*UI);
3145     }
3146     if (Copies.size() > 2)
3147       return false;
3148 
3149     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
3150          UI != UE; ++UI) {
3151       SDValue UseChain = UI->getOperand(0);
3152       if (Copies.count(UseChain.getNode()))
3153         // Second CopyToReg
3154         Copy = *UI;
3155       else {
3156         // We are at the top of this chain.
3157         // If the copy has a glue operand, we conservatively assume it
3158         // isn't safe to perform a tail call.
3159         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
3160           return false;
3161         // First CopyToReg
3162         TCChain = UseChain;
3163       }
3164     }
3165   } else if (Copy->getOpcode() == ISD::BITCAST) {
3166     // f32 returned in a single GPR.
3167     if (!Copy->hasOneUse())
3168       return false;
3169     Copy = *Copy->use_begin();
3170     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3171       return false;
3172     // If the copy has a glue operand, we conservatively assume it isn't safe to
3173     // perform a tail call.
3174     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3175       return false;
3176     TCChain = Copy->getOperand(0);
3177   } else {
3178     return false;
3179   }
3180 
3181   bool HasRet = false;
3182   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
3183        UI != UE; ++UI) {
3184     if (UI->getOpcode() != ARMISD::RET_FLAG &&
3185         UI->getOpcode() != ARMISD::INTRET_FLAG)
3186       return false;
3187     HasRet = true;
3188   }
3189 
3190   if (!HasRet)
3191     return false;
3192 
3193   Chain = TCChain;
3194   return true;
3195 }
3196 
mayBeEmittedAsTailCall(const CallInst * CI) const3197 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3198   if (!Subtarget->supportsTailCall())
3199     return false;
3200 
3201   if (!CI->isTailCall())
3202     return false;
3203 
3204   return true;
3205 }
3206 
3207 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3208 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)3209 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3210   SDLoc DL(Op);
3211   SDValue WriteValue = Op->getOperand(2);
3212 
3213   // This function is only supposed to be called for i64 type argument.
3214   assert(WriteValue.getValueType() == MVT::i64
3215           && "LowerWRITE_REGISTER called for non-i64 type argument.");
3216 
3217   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3218                            DAG.getConstant(0, DL, MVT::i32));
3219   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3220                            DAG.getConstant(1, DL, MVT::i32));
3221   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3222   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3223 }
3224 
3225 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3226 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3227 // one of the above mentioned nodes. It has to be wrapped because otherwise
3228 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3229 // be used to form addressing mode. These wrapped nodes will be selected
3230 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const3231 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3232                                              SelectionDAG &DAG) const {
3233   EVT PtrVT = Op.getValueType();
3234   // FIXME there is no actual debug info here
3235   SDLoc dl(Op);
3236   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3237   SDValue Res;
3238 
3239   // When generating execute-only code Constant Pools must be promoted to the
3240   // global data section. It's a bit ugly that we can't share them across basic
3241   // blocks, but this way we guarantee that execute-only behaves correct with
3242   // position-independent addressing modes.
3243   if (Subtarget->genExecuteOnly()) {
3244     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3245     auto T = const_cast<Type*>(CP->getType());
3246     auto C = const_cast<Constant*>(CP->getConstVal());
3247     auto M = const_cast<Module*>(DAG.getMachineFunction().
3248                                  getFunction().getParent());
3249     auto GV = new GlobalVariable(
3250                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3251                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3252                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3253                     Twine(AFI->createPICLabelUId())
3254                   );
3255     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3256                                             dl, PtrVT);
3257     return LowerGlobalAddress(GA, DAG);
3258   }
3259 
3260   if (CP->isMachineConstantPoolEntry())
3261     Res =
3262         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3263   else
3264     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign());
3265   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3266 }
3267 
getJumpTableEncoding() const3268 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3269   return MachineJumpTableInfo::EK_Inline;
3270 }
3271 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3272 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3273                                              SelectionDAG &DAG) const {
3274   MachineFunction &MF = DAG.getMachineFunction();
3275   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3276   unsigned ARMPCLabelIndex = 0;
3277   SDLoc DL(Op);
3278   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3279   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3280   SDValue CPAddr;
3281   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3282   if (!IsPositionIndependent) {
3283     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3284   } else {
3285     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3286     ARMPCLabelIndex = AFI->createPICLabelUId();
3287     ARMConstantPoolValue *CPV =
3288       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3289                                       ARMCP::CPBlockAddress, PCAdj);
3290     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3291   }
3292   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3293   SDValue Result = DAG.getLoad(
3294       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3295       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3296   if (!IsPositionIndependent)
3297     return Result;
3298   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3299   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3300 }
3301 
3302 /// Convert a TLS address reference into the correct sequence of loads
3303 /// and calls to compute the variable's address for Darwin, and return an
3304 /// SDValue containing the final node.
3305 
3306 /// Darwin only has one TLS scheme which must be capable of dealing with the
3307 /// fully general situation, in the worst case. This means:
3308 ///     + "extern __thread" declaration.
3309 ///     + Defined in a possibly unknown dynamic library.
3310 ///
3311 /// The general system is that each __thread variable has a [3 x i32] descriptor
3312 /// which contains information used by the runtime to calculate the address. The
3313 /// only part of this the compiler needs to know about is the first word, which
3314 /// contains a function pointer that must be called with the address of the
3315 /// entire descriptor in "r0".
3316 ///
3317 /// Since this descriptor may be in a different unit, in general access must
3318 /// proceed along the usual ARM rules. A common sequence to produce is:
3319 ///
3320 ///     movw rT1, :lower16:_var$non_lazy_ptr
3321 ///     movt rT1, :upper16:_var$non_lazy_ptr
3322 ///     ldr r0, [rT1]
3323 ///     ldr rT2, [r0]
3324 ///     blx rT2
3325 ///     [...address now in r0...]
3326 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const3327 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3328                                                SelectionDAG &DAG) const {
3329   assert(Subtarget->isTargetDarwin() &&
3330          "This function expects a Darwin target");
3331   SDLoc DL(Op);
3332 
3333   // First step is to get the address of the actua global symbol. This is where
3334   // the TLS descriptor lives.
3335   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3336 
3337   // The first entry in the descriptor is a function pointer that we must call
3338   // to obtain the address of the variable.
3339   SDValue Chain = DAG.getEntryNode();
3340   SDValue FuncTLVGet = DAG.getLoad(
3341       MVT::i32, DL, Chain, DescAddr,
3342       MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3343       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3344           MachineMemOperand::MOInvariant);
3345   Chain = FuncTLVGet.getValue(1);
3346 
3347   MachineFunction &F = DAG.getMachineFunction();
3348   MachineFrameInfo &MFI = F.getFrameInfo();
3349   MFI.setAdjustsStack(true);
3350 
3351   // TLS calls preserve all registers except those that absolutely must be
3352   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3353   // silly).
3354   auto TRI =
3355       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3356   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3357   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3358 
3359   // Finally, we can make the call. This is just a degenerate version of a
3360   // normal AArch64 call node: r0 takes the address of the descriptor, and
3361   // returns the address of the variable in this thread.
3362   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3363   Chain =
3364       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3365                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3366                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3367   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3368 }
3369 
3370 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const3371 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3372                                                 SelectionDAG &DAG) const {
3373   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3374 
3375   SDValue Chain = DAG.getEntryNode();
3376   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3377   SDLoc DL(Op);
3378 
3379   // Load the current TEB (thread environment block)
3380   SDValue Ops[] = {Chain,
3381                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3382                    DAG.getTargetConstant(15, DL, MVT::i32),
3383                    DAG.getTargetConstant(0, DL, MVT::i32),
3384                    DAG.getTargetConstant(13, DL, MVT::i32),
3385                    DAG.getTargetConstant(0, DL, MVT::i32),
3386                    DAG.getTargetConstant(2, DL, MVT::i32)};
3387   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3388                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3389 
3390   SDValue TEB = CurrentTEB.getValue(0);
3391   Chain = CurrentTEB.getValue(1);
3392 
3393   // Load the ThreadLocalStoragePointer from the TEB
3394   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3395   SDValue TLSArray =
3396       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3397   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3398 
3399   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3400   // offset into the TLSArray.
3401 
3402   // Load the TLS index from the C runtime
3403   SDValue TLSIndex =
3404       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3405   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3406   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3407 
3408   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3409                               DAG.getConstant(2, DL, MVT::i32));
3410   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3411                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3412                             MachinePointerInfo());
3413 
3414   // Get the offset of the start of the .tls section (section base)
3415   const auto *GA = cast<GlobalAddressSDNode>(Op);
3416   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3417   SDValue Offset = DAG.getLoad(
3418       PtrVT, DL, Chain,
3419       DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3420                   DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3421       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3422 
3423   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3424 }
3425 
3426 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3427 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const3428 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3429                                                  SelectionDAG &DAG) const {
3430   SDLoc dl(GA);
3431   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3432   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3433   MachineFunction &MF = DAG.getMachineFunction();
3434   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3435   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3436   ARMConstantPoolValue *CPV =
3437     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3438                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3439   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3440   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3441   Argument = DAG.getLoad(
3442       PtrVT, dl, DAG.getEntryNode(), Argument,
3443       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3444   SDValue Chain = Argument.getValue(1);
3445 
3446   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3447   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3448 
3449   // call __tls_get_addr.
3450   ArgListTy Args;
3451   ArgListEntry Entry;
3452   Entry.Node = Argument;
3453   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3454   Args.push_back(Entry);
3455 
3456   // FIXME: is there useful debug info available here?
3457   TargetLowering::CallLoweringInfo CLI(DAG);
3458   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3459       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3460       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3461 
3462   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3463   return CallResult.first;
3464 }
3465 
3466 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3467 // "local exec" model.
3468 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const3469 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3470                                         SelectionDAG &DAG,
3471                                         TLSModel::Model model) const {
3472   const GlobalValue *GV = GA->getGlobal();
3473   SDLoc dl(GA);
3474   SDValue Offset;
3475   SDValue Chain = DAG.getEntryNode();
3476   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3477   // Get the Thread Pointer
3478   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3479 
3480   if (model == TLSModel::InitialExec) {
3481     MachineFunction &MF = DAG.getMachineFunction();
3482     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3483     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3484     // Initial exec model.
3485     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3486     ARMConstantPoolValue *CPV =
3487       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3488                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3489                                       true);
3490     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3491     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3492     Offset = DAG.getLoad(
3493         PtrVT, dl, Chain, Offset,
3494         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3495     Chain = Offset.getValue(1);
3496 
3497     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3498     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3499 
3500     Offset = DAG.getLoad(
3501         PtrVT, dl, Chain, Offset,
3502         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3503   } else {
3504     // local exec model
3505     assert(model == TLSModel::LocalExec);
3506     ARMConstantPoolValue *CPV =
3507       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3508     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3509     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3510     Offset = DAG.getLoad(
3511         PtrVT, dl, Chain, Offset,
3512         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3513   }
3514 
3515   // The address of the thread local variable is the add of the thread
3516   // pointer with the offset of the variable.
3517   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3518 }
3519 
3520 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3521 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3522   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3523   if (DAG.getTarget().useEmulatedTLS())
3524     return LowerToTLSEmulatedModel(GA, DAG);
3525 
3526   if (Subtarget->isTargetDarwin())
3527     return LowerGlobalTLSAddressDarwin(Op, DAG);
3528 
3529   if (Subtarget->isTargetWindows())
3530     return LowerGlobalTLSAddressWindows(Op, DAG);
3531 
3532   // TODO: implement the "local dynamic" model
3533   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3534   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3535 
3536   switch (model) {
3537     case TLSModel::GeneralDynamic:
3538     case TLSModel::LocalDynamic:
3539       return LowerToTLSGeneralDynamicModel(GA, DAG);
3540     case TLSModel::InitialExec:
3541     case TLSModel::LocalExec:
3542       return LowerToTLSExecModels(GA, DAG, model);
3543   }
3544   llvm_unreachable("bogus TLS model");
3545 }
3546 
3547 /// Return true if all users of V are within function F, looking through
3548 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3549 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3550   SmallVector<const User*,4> Worklist;
3551   for (auto *U : V->users())
3552     Worklist.push_back(U);
3553   while (!Worklist.empty()) {
3554     auto *U = Worklist.pop_back_val();
3555     if (isa<ConstantExpr>(U)) {
3556       for (auto *UU : U->users())
3557         Worklist.push_back(UU);
3558       continue;
3559     }
3560 
3561     auto *I = dyn_cast<Instruction>(U);
3562     if (!I || I->getParent()->getParent() != F)
3563       return false;
3564   }
3565   return true;
3566 }
3567 
promoteToConstantPool(const ARMTargetLowering * TLI,const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3568 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3569                                      const GlobalValue *GV, SelectionDAG &DAG,
3570                                      EVT PtrVT, const SDLoc &dl) {
3571   // If we're creating a pool entry for a constant global with unnamed address,
3572   // and the global is small enough, we can emit it inline into the constant pool
3573   // to save ourselves an indirection.
3574   //
3575   // This is a win if the constant is only used in one function (so it doesn't
3576   // need to be duplicated) or duplicating the constant wouldn't increase code
3577   // size (implying the constant is no larger than 4 bytes).
3578   const Function &F = DAG.getMachineFunction().getFunction();
3579 
3580   // We rely on this decision to inline being idemopotent and unrelated to the
3581   // use-site. We know that if we inline a variable at one use site, we'll
3582   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3583   // doesn't know about this optimization, so bail out if it's enabled else
3584   // we could decide to inline here (and thus never emit the GV) but require
3585   // the GV from fast-isel generated code.
3586   if (!EnableConstpoolPromotion ||
3587       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3588       return SDValue();
3589 
3590   auto *GVar = dyn_cast<GlobalVariable>(GV);
3591   if (!GVar || !GVar->hasInitializer() ||
3592       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3593       !GVar->hasLocalLinkage())
3594     return SDValue();
3595 
3596   // If we inline a value that contains relocations, we move the relocations
3597   // from .data to .text. This is not allowed in position-independent code.
3598   auto *Init = GVar->getInitializer();
3599   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3600       Init->needsRelocation())
3601     return SDValue();
3602 
3603   // The constant islands pass can only really deal with alignment requests
3604   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3605   // any type wanting greater alignment requirements than 4 bytes. We also
3606   // can only promote constants that are multiples of 4 bytes in size or
3607   // are paddable to a multiple of 4. Currently we only try and pad constants
3608   // that are strings for simplicity.
3609   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3610   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3611   Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3612   unsigned RequiredPadding = 4 - (Size % 4);
3613   bool PaddingPossible =
3614     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3615   if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3616       Size == 0)
3617     return SDValue();
3618 
3619   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3620   MachineFunction &MF = DAG.getMachineFunction();
3621   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3622 
3623   // We can't bloat the constant pool too much, else the ConstantIslands pass
3624   // may fail to converge. If we haven't promoted this global yet (it may have
3625   // multiple uses), and promoting it would increase the constant pool size (Sz
3626   // > 4), ensure we have space to do so up to MaxTotal.
3627   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3628     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3629         ConstpoolPromotionMaxTotal)
3630       return SDValue();
3631 
3632   // This is only valid if all users are in a single function; we can't clone
3633   // the constant in general. The LLVM IR unnamed_addr allows merging
3634   // constants, but not cloning them.
3635   //
3636   // We could potentially allow cloning if we could prove all uses of the
3637   // constant in the current function don't care about the address, like
3638   // printf format strings. But that isn't implemented for now.
3639   if (!allUsersAreInFunction(GVar, &F))
3640     return SDValue();
3641 
3642   // We're going to inline this global. Pad it out if needed.
3643   if (RequiredPadding != 4) {
3644     StringRef S = CDAInit->getAsString();
3645 
3646     SmallVector<uint8_t,16> V(S.size());
3647     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3648     while (RequiredPadding--)
3649       V.push_back(0);
3650     Init = ConstantDataArray::get(*DAG.getContext(), V);
3651   }
3652 
3653   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3654   SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3655   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3656     AFI->markGlobalAsPromotedToConstantPool(GVar);
3657     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3658                                       PaddedSize - 4);
3659   }
3660   ++NumConstpoolPromoted;
3661   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3662 }
3663 
isReadOnly(const GlobalValue * GV) const3664 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3665   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3666     if (!(GV = GA->getBaseObject()))
3667       return false;
3668   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3669     return V->isConstant();
3670   return isa<Function>(GV);
3671 }
3672 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3673 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3674                                               SelectionDAG &DAG) const {
3675   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3676   default: llvm_unreachable("unknown object format");
3677   case Triple::COFF:
3678     return LowerGlobalAddressWindows(Op, DAG);
3679   case Triple::ELF:
3680     return LowerGlobalAddressELF(Op, DAG);
3681   case Triple::MachO:
3682     return LowerGlobalAddressDarwin(Op, DAG);
3683   }
3684 }
3685 
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3686 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3687                                                  SelectionDAG &DAG) const {
3688   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3689   SDLoc dl(Op);
3690   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3691   const TargetMachine &TM = getTargetMachine();
3692   bool IsRO = isReadOnly(GV);
3693 
3694   // promoteToConstantPool only if not generating XO text section
3695   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3696     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3697       return V;
3698 
3699   if (isPositionIndependent()) {
3700     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3701     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3702                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3703     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3704     if (UseGOT_PREL)
3705       Result =
3706           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3707                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3708     return Result;
3709   } else if (Subtarget->isROPI() && IsRO) {
3710     // PC-relative.
3711     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3712     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3713     return Result;
3714   } else if (Subtarget->isRWPI() && !IsRO) {
3715     // SB-relative.
3716     SDValue RelAddr;
3717     if (Subtarget->useMovt()) {
3718       ++NumMovwMovt;
3719       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3720       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3721     } else { // use literal pool for address constant
3722       ARMConstantPoolValue *CPV =
3723         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3724       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3725       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3726       RelAddr = DAG.getLoad(
3727           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3728           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3729     }
3730     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3731     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3732     return Result;
3733   }
3734 
3735   // If we have T2 ops, we can materialize the address directly via movt/movw
3736   // pair. This is always cheaper.
3737   if (Subtarget->useMovt()) {
3738     ++NumMovwMovt;
3739     // FIXME: Once remat is capable of dealing with instructions with register
3740     // operands, expand this into two nodes.
3741     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3742                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3743   } else {
3744     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3745     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3746     return DAG.getLoad(
3747         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3748         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3749   }
3750 }
3751 
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3752 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3753                                                     SelectionDAG &DAG) const {
3754   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3755          "ROPI/RWPI not currently supported for Darwin");
3756   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3757   SDLoc dl(Op);
3758   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3759 
3760   if (Subtarget->useMovt())
3761     ++NumMovwMovt;
3762 
3763   // FIXME: Once remat is capable of dealing with instructions with register
3764   // operands, expand this into multiple nodes
3765   unsigned Wrapper =
3766       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3767 
3768   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3769   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3770 
3771   if (Subtarget->isGVIndirectSymbol(GV))
3772     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3773                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3774   return Result;
3775 }
3776 
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3777 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3778                                                      SelectionDAG &DAG) const {
3779   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3780   assert(Subtarget->useMovt() &&
3781          "Windows on ARM expects to use movw/movt");
3782   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3783          "ROPI/RWPI not currently supported for Windows");
3784 
3785   const TargetMachine &TM = getTargetMachine();
3786   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3787   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3788   if (GV->hasDLLImportStorageClass())
3789     TargetFlags = ARMII::MO_DLLIMPORT;
3790   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3791     TargetFlags = ARMII::MO_COFFSTUB;
3792   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3793   SDValue Result;
3794   SDLoc DL(Op);
3795 
3796   ++NumMovwMovt;
3797 
3798   // FIXME: Once remat is capable of dealing with instructions with register
3799   // operands, expand this into two nodes.
3800   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3801                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3802                                                   TargetFlags));
3803   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3804     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3805                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3806   return Result;
3807 }
3808 
3809 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3810 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3811   SDLoc dl(Op);
3812   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3813   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3814                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3815                      Op.getOperand(1), Val);
3816 }
3817 
3818 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3819 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3820   SDLoc dl(Op);
3821   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3822                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3823 }
3824 
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3825 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3826                                                       SelectionDAG &DAG) const {
3827   SDLoc dl(Op);
3828   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3829                      Op.getOperand(0));
3830 }
3831 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3832 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
3833     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
3834   unsigned IntNo =
3835       cast<ConstantSDNode>(
3836           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
3837           ->getZExtValue();
3838   switch (IntNo) {
3839     default:
3840       return SDValue();  // Don't custom lower most intrinsics.
3841     case Intrinsic::arm_gnu_eabi_mcount: {
3842       MachineFunction &MF = DAG.getMachineFunction();
3843       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3844       SDLoc dl(Op);
3845       SDValue Chain = Op.getOperand(0);
3846       // call "\01__gnu_mcount_nc"
3847       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
3848       const uint32_t *Mask =
3849           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3850       assert(Mask && "Missing call preserved mask for calling convention");
3851       // Mark LR an implicit live-in.
3852       unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3853       SDValue ReturnAddress =
3854           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
3855       constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
3856       SDValue Callee =
3857           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
3858       SDValue RegisterMask = DAG.getRegisterMask(Mask);
3859       if (Subtarget->isThumb())
3860         return SDValue(
3861             DAG.getMachineNode(
3862                 ARM::tBL_PUSHLR, dl, ResultTys,
3863                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
3864                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
3865             0);
3866       return SDValue(
3867           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
3868                              {ReturnAddress, Callee, RegisterMask, Chain}),
3869           0);
3870     }
3871   }
3872 }
3873 
3874 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3875 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3876                                           const ARMSubtarget *Subtarget) const {
3877   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3878   SDLoc dl(Op);
3879   switch (IntNo) {
3880   default: return SDValue();    // Don't custom lower most intrinsics.
3881   case Intrinsic::thread_pointer: {
3882     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3883     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3884   }
3885   case Intrinsic::arm_cls: {
3886     const SDValue &Operand = Op.getOperand(1);
3887     const EVT VTy = Op.getValueType();
3888     SDValue SRA =
3889         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
3890     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
3891     SDValue SHL =
3892         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
3893     SDValue OR =
3894         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
3895     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
3896     return Result;
3897   }
3898   case Intrinsic::arm_cls64: {
3899     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
3900     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
3901     const SDValue &Operand = Op.getOperand(1);
3902     const EVT VTy = Op.getValueType();
3903 
3904     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3905                              DAG.getConstant(1, dl, VTy));
3906     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3907                              DAG.getConstant(0, dl, VTy));
3908     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
3909     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
3910     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
3911     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
3912     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
3913     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
3914     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
3915     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
3916     SDValue CheckLo =
3917         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
3918     SDValue HiIsZero =
3919         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
3920     SDValue AdjustedLo =
3921         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
3922     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
3923     SDValue Result =
3924         DAG.getSelect(dl, VTy, CheckLo,
3925                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
3926     return Result;
3927   }
3928   case Intrinsic::eh_sjlj_lsda: {
3929     MachineFunction &MF = DAG.getMachineFunction();
3930     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3931     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3932     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3933     SDValue CPAddr;
3934     bool IsPositionIndependent = isPositionIndependent();
3935     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3936     ARMConstantPoolValue *CPV =
3937       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3938                                       ARMCP::CPLSDA, PCAdj);
3939     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3940     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3941     SDValue Result = DAG.getLoad(
3942         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3943         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3944 
3945     if (IsPositionIndependent) {
3946       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3947       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3948     }
3949     return Result;
3950   }
3951   case Intrinsic::arm_neon_vabs:
3952     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3953                         Op.getOperand(1));
3954   case Intrinsic::arm_neon_vmulls:
3955   case Intrinsic::arm_neon_vmullu: {
3956     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3957       ? ARMISD::VMULLs : ARMISD::VMULLu;
3958     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3959                        Op.getOperand(1), Op.getOperand(2));
3960   }
3961   case Intrinsic::arm_neon_vminnm:
3962   case Intrinsic::arm_neon_vmaxnm: {
3963     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3964       ? ISD::FMINNUM : ISD::FMAXNUM;
3965     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3966                        Op.getOperand(1), Op.getOperand(2));
3967   }
3968   case Intrinsic::arm_neon_vminu:
3969   case Intrinsic::arm_neon_vmaxu: {
3970     if (Op.getValueType().isFloatingPoint())
3971       return SDValue();
3972     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3973       ? ISD::UMIN : ISD::UMAX;
3974     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3975                          Op.getOperand(1), Op.getOperand(2));
3976   }
3977   case Intrinsic::arm_neon_vmins:
3978   case Intrinsic::arm_neon_vmaxs: {
3979     // v{min,max}s is overloaded between signed integers and floats.
3980     if (!Op.getValueType().isFloatingPoint()) {
3981       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3982         ? ISD::SMIN : ISD::SMAX;
3983       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3984                          Op.getOperand(1), Op.getOperand(2));
3985     }
3986     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3987       ? ISD::FMINIMUM : ISD::FMAXIMUM;
3988     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3989                        Op.getOperand(1), Op.getOperand(2));
3990   }
3991   case Intrinsic::arm_neon_vtbl1:
3992     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3993                        Op.getOperand(1), Op.getOperand(2));
3994   case Intrinsic::arm_neon_vtbl2:
3995     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3996                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3997   case Intrinsic::arm_mve_pred_i2v:
3998   case Intrinsic::arm_mve_pred_v2i:
3999     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4000                        Op.getOperand(1));
4001   case Intrinsic::arm_mve_vreinterpretq:
4002     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4003                        Op.getOperand(1));
4004   case Intrinsic::arm_mve_lsll:
4005     return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4006                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4007   case Intrinsic::arm_mve_asrl:
4008     return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4009                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4010   }
4011 }
4012 
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4013 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4014                                  const ARMSubtarget *Subtarget) {
4015   SDLoc dl(Op);
4016   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
4017   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
4018   if (SSID == SyncScope::SingleThread)
4019     return Op;
4020 
4021   if (!Subtarget->hasDataBarrier()) {
4022     // Some ARMv6 cpus can support data barriers with an mcr instruction.
4023     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4024     // here.
4025     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4026            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4027     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4028                        DAG.getConstant(0, dl, MVT::i32));
4029   }
4030 
4031   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
4032   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
4033   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4034   if (Subtarget->isMClass()) {
4035     // Only a full system barrier exists in the M-class architectures.
4036     Domain = ARM_MB::SY;
4037   } else if (Subtarget->preferISHSTBarriers() &&
4038              Ord == AtomicOrdering::Release) {
4039     // Swift happens to implement ISHST barriers in a way that's compatible with
4040     // Release semantics but weaker than ISH so we'd be fools not to use
4041     // it. Beware: other processors probably don't!
4042     Domain = ARM_MB::ISHST;
4043   }
4044 
4045   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4046                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4047                      DAG.getConstant(Domain, dl, MVT::i32));
4048 }
4049 
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4050 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4051                              const ARMSubtarget *Subtarget) {
4052   // ARM pre v5TE and Thumb1 does not have preload instructions.
4053   if (!(Subtarget->isThumb2() ||
4054         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4055     // Just preserve the chain.
4056     return Op.getOperand(0);
4057 
4058   SDLoc dl(Op);
4059   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
4060   if (!isRead &&
4061       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4062     // ARMv7 with MP extension has PLDW.
4063     return Op.getOperand(0);
4064 
4065   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4066   if (Subtarget->isThumb()) {
4067     // Invert the bits.
4068     isRead = ~isRead & 1;
4069     isData = ~isData & 1;
4070   }
4071 
4072   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4073                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4074                      DAG.getConstant(isData, dl, MVT::i32));
4075 }
4076 
LowerVASTART(SDValue Op,SelectionDAG & DAG)4077 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4078   MachineFunction &MF = DAG.getMachineFunction();
4079   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4080 
4081   // vastart just stores the address of the VarArgsFrameIndex slot into the
4082   // memory location argument.
4083   SDLoc dl(Op);
4084   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4085   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4086   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4087   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4088                       MachinePointerInfo(SV));
4089 }
4090 
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const4091 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4092                                                 CCValAssign &NextVA,
4093                                                 SDValue &Root,
4094                                                 SelectionDAG &DAG,
4095                                                 const SDLoc &dl) const {
4096   MachineFunction &MF = DAG.getMachineFunction();
4097   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4098 
4099   const TargetRegisterClass *RC;
4100   if (AFI->isThumb1OnlyFunction())
4101     RC = &ARM::tGPRRegClass;
4102   else
4103     RC = &ARM::GPRRegClass;
4104 
4105   // Transform the arguments stored in physical registers into virtual ones.
4106   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4107   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4108 
4109   SDValue ArgValue2;
4110   if (NextVA.isMemLoc()) {
4111     MachineFrameInfo &MFI = MF.getFrameInfo();
4112     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4113 
4114     // Create load node to retrieve arguments from the stack.
4115     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4116     ArgValue2 = DAG.getLoad(
4117         MVT::i32, dl, Root, FIN,
4118         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4119   } else {
4120     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4121     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4122   }
4123   if (!Subtarget->isLittle())
4124     std::swap (ArgValue, ArgValue2);
4125   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4126 }
4127 
4128 // The remaining GPRs hold either the beginning of variable-argument
4129 // data, or the beginning of an aggregate passed by value (usually
4130 // byval).  Either way, we allocate stack slots adjacent to the data
4131 // provided by our caller, and store the unallocated registers there.
4132 // If this is a variadic function, the va_list pointer will begin with
4133 // these values; otherwise, this reassembles a (byval) structure that
4134 // was split between registers and memory.
4135 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const4136 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4137                                       const SDLoc &dl, SDValue &Chain,
4138                                       const Value *OrigArg,
4139                                       unsigned InRegsParamRecordIdx,
4140                                       int ArgOffset, unsigned ArgSize) const {
4141   // Currently, two use-cases possible:
4142   // Case #1. Non-var-args function, and we meet first byval parameter.
4143   //          Setup first unallocated register as first byval register;
4144   //          eat all remained registers
4145   //          (these two actions are performed by HandleByVal method).
4146   //          Then, here, we initialize stack frame with
4147   //          "store-reg" instructions.
4148   // Case #2. Var-args function, that doesn't contain byval parameters.
4149   //          The same: eat all remained unallocated registers,
4150   //          initialize stack frame.
4151 
4152   MachineFunction &MF = DAG.getMachineFunction();
4153   MachineFrameInfo &MFI = MF.getFrameInfo();
4154   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4155   unsigned RBegin, REnd;
4156   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4157     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4158   } else {
4159     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4160     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4161     REnd = ARM::R4;
4162   }
4163 
4164   if (REnd != RBegin)
4165     ArgOffset = -4 * (ARM::R4 - RBegin);
4166 
4167   auto PtrVT = getPointerTy(DAG.getDataLayout());
4168   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4169   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4170 
4171   SmallVector<SDValue, 4> MemOps;
4172   const TargetRegisterClass *RC =
4173       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4174 
4175   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4176     unsigned VReg = MF.addLiveIn(Reg, RC);
4177     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4178     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4179                                  MachinePointerInfo(OrigArg, 4 * i));
4180     MemOps.push_back(Store);
4181     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4182   }
4183 
4184   if (!MemOps.empty())
4185     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4186   return FrameIndex;
4187 }
4188 
4189 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const4190 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4191                                              const SDLoc &dl, SDValue &Chain,
4192                                              unsigned ArgOffset,
4193                                              unsigned TotalArgRegsSaveSize,
4194                                              bool ForceMutable) const {
4195   MachineFunction &MF = DAG.getMachineFunction();
4196   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4197 
4198   // Try to store any remaining integer argument regs
4199   // to their spots on the stack so that they may be loaded by dereferencing
4200   // the result of va_next.
4201   // If there is no regs to be stored, just point address after last
4202   // argument passed via stack.
4203   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
4204                                   CCInfo.getInRegsParamsCount(),
4205                                   CCInfo.getNextStackOffset(),
4206                                   std::max(4U, TotalArgRegsSaveSize));
4207   AFI->setVarArgsFrameIndex(FrameIndex);
4208 }
4209 
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const4210 bool ARMTargetLowering::splitValueIntoRegisterParts(
4211     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4212     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
4213   bool IsABIRegCopy = CC.hasValue();
4214   EVT ValueVT = Val.getValueType();
4215   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4216       PartVT == MVT::f32) {
4217     unsigned ValueBits = ValueVT.getSizeInBits();
4218     unsigned PartBits = PartVT.getSizeInBits();
4219     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4220     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4221     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4222     Parts[0] = Val;
4223     return true;
4224   }
4225   return false;
4226 }
4227 
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const4228 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4229     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4230     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
4231   bool IsABIRegCopy = CC.hasValue();
4232   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4233       PartVT == MVT::f32) {
4234     unsigned ValueBits = ValueVT.getSizeInBits();
4235     unsigned PartBits = PartVT.getSizeInBits();
4236     SDValue Val = Parts[0];
4237 
4238     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4239     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4240     Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4241     return Val;
4242   }
4243   return SDValue();
4244 }
4245 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4246 SDValue ARMTargetLowering::LowerFormalArguments(
4247     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4248     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4249     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4250   MachineFunction &MF = DAG.getMachineFunction();
4251   MachineFrameInfo &MFI = MF.getFrameInfo();
4252 
4253   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4254 
4255   // Assign locations to all of the incoming arguments.
4256   SmallVector<CCValAssign, 16> ArgLocs;
4257   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4258                  *DAG.getContext());
4259   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4260 
4261   SmallVector<SDValue, 16> ArgValues;
4262   SDValue ArgValue;
4263   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4264   unsigned CurArgIdx = 0;
4265 
4266   // Initially ArgRegsSaveSize is zero.
4267   // Then we increase this value each time we meet byval parameter.
4268   // We also increase this value in case of varargs function.
4269   AFI->setArgRegsSaveSize(0);
4270 
4271   // Calculate the amount of stack space that we need to allocate to store
4272   // byval and variadic arguments that are passed in registers.
4273   // We need to know this before we allocate the first byval or variadic
4274   // argument, as they will be allocated a stack slot below the CFA (Canonical
4275   // Frame Address, the stack pointer at entry to the function).
4276   unsigned ArgRegBegin = ARM::R4;
4277   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4278     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4279       break;
4280 
4281     CCValAssign &VA = ArgLocs[i];
4282     unsigned Index = VA.getValNo();
4283     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4284     if (!Flags.isByVal())
4285       continue;
4286 
4287     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4288     unsigned RBegin, REnd;
4289     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4290     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4291 
4292     CCInfo.nextInRegsParam();
4293   }
4294   CCInfo.rewindByValRegsInfo();
4295 
4296   int lastInsIndex = -1;
4297   if (isVarArg && MFI.hasVAStart()) {
4298     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4299     if (RegIdx != array_lengthof(GPRArgRegs))
4300       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4301   }
4302 
4303   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4304   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4305   auto PtrVT = getPointerTy(DAG.getDataLayout());
4306 
4307   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4308     CCValAssign &VA = ArgLocs[i];
4309     if (Ins[VA.getValNo()].isOrigArg()) {
4310       std::advance(CurOrigArg,
4311                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4312       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4313     }
4314     // Arguments stored in registers.
4315     if (VA.isRegLoc()) {
4316       EVT RegVT = VA.getLocVT();
4317 
4318       if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4319         // f64 and vector types are split up into multiple registers or
4320         // combinations of registers and stack slots.
4321         SDValue ArgValue1 =
4322             GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4323         VA = ArgLocs[++i]; // skip ahead to next loc
4324         SDValue ArgValue2;
4325         if (VA.isMemLoc()) {
4326           int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4327           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4328           ArgValue2 = DAG.getLoad(
4329               MVT::f64, dl, Chain, FIN,
4330               MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4331         } else {
4332           ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4333         }
4334         ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4335         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4336                                ArgValue1, DAG.getIntPtrConstant(0, dl));
4337         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4338                                ArgValue2, DAG.getIntPtrConstant(1, dl));
4339       } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4340         ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4341       } else {
4342         const TargetRegisterClass *RC;
4343 
4344         if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4345           RC = &ARM::HPRRegClass;
4346         else if (RegVT == MVT::f32)
4347           RC = &ARM::SPRRegClass;
4348         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4349                  RegVT == MVT::v4bf16)
4350           RC = &ARM::DPRRegClass;
4351         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4352                  RegVT == MVT::v8bf16)
4353           RC = &ARM::QPRRegClass;
4354         else if (RegVT == MVT::i32)
4355           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4356                                            : &ARM::GPRRegClass;
4357         else
4358           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4359 
4360         // Transform the arguments in physical registers into virtual ones.
4361         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4362         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4363 
4364         // If this value is passed in r0 and has the returned attribute (e.g.
4365         // C++ 'structors), record this fact for later use.
4366         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4367           AFI->setPreservesR0();
4368         }
4369       }
4370 
4371       // If this is an 8 or 16-bit value, it is really passed promoted
4372       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4373       // truncate to the right size.
4374       switch (VA.getLocInfo()) {
4375       default: llvm_unreachable("Unknown loc info!");
4376       case CCValAssign::Full: break;
4377       case CCValAssign::BCvt:
4378         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4379         break;
4380       case CCValAssign::SExt:
4381         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4382                                DAG.getValueType(VA.getValVT()));
4383         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4384         break;
4385       case CCValAssign::ZExt:
4386         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4387                                DAG.getValueType(VA.getValVT()));
4388         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4389         break;
4390       }
4391 
4392       // f16 arguments have their size extended to 4 bytes and passed as if they
4393       // had been copied to the LSBs of a 32-bit register.
4394       // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4395       if (VA.needsCustom() &&
4396           (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4397         ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4398 
4399       InVals.push_back(ArgValue);
4400     } else { // VA.isRegLoc()
4401       // sanity check
4402       assert(VA.isMemLoc());
4403       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4404 
4405       int index = VA.getValNo();
4406 
4407       // Some Ins[] entries become multiple ArgLoc[] entries.
4408       // Process them only once.
4409       if (index != lastInsIndex)
4410         {
4411           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4412           // FIXME: For now, all byval parameter objects are marked mutable.
4413           // This can be changed with more analysis.
4414           // In case of tail call optimization mark all arguments mutable.
4415           // Since they could be overwritten by lowering of arguments in case of
4416           // a tail call.
4417           if (Flags.isByVal()) {
4418             assert(Ins[index].isOrigArg() &&
4419                    "Byval arguments cannot be implicit");
4420             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4421 
4422             int FrameIndex = StoreByValRegs(
4423                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4424                 VA.getLocMemOffset(), Flags.getByValSize());
4425             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4426             CCInfo.nextInRegsParam();
4427           } else {
4428             unsigned FIOffset = VA.getLocMemOffset();
4429             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4430                                            FIOffset, true);
4431 
4432             // Create load nodes to retrieve arguments from the stack.
4433             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4434             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4435                                          MachinePointerInfo::getFixedStack(
4436                                              DAG.getMachineFunction(), FI)));
4437           }
4438           lastInsIndex = index;
4439         }
4440     }
4441   }
4442 
4443   // varargs
4444   if (isVarArg && MFI.hasVAStart()) {
4445     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
4446                          TotalArgRegsSaveSize);
4447     if (AFI->isCmseNSEntryFunction()) {
4448       DiagnosticInfoUnsupported Diag(
4449           DAG.getMachineFunction().getFunction(),
4450           "secure entry function must not be variadic", dl.getDebugLoc());
4451       DAG.getContext()->diagnose(Diag);
4452     }
4453   }
4454 
4455   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4456 
4457   if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
4458     DiagnosticInfoUnsupported Diag(
4459         DAG.getMachineFunction().getFunction(),
4460         "secure entry function requires arguments on stack", dl.getDebugLoc());
4461     DAG.getContext()->diagnose(Diag);
4462   }
4463 
4464   return Chain;
4465 }
4466 
4467 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)4468 static bool isFloatingPointZero(SDValue Op) {
4469   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4470     return CFP->getValueAPF().isPosZero();
4471   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4472     // Maybe this has already been legalized into the constant pool?
4473     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4474       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4475       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4476         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4477           return CFP->getValueAPF().isPosZero();
4478     }
4479   } else if (Op->getOpcode() == ISD::BITCAST &&
4480              Op->getValueType(0) == MVT::f64) {
4481     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4482     // created by LowerConstantFP().
4483     SDValue BitcastOp = Op->getOperand(0);
4484     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4485         isNullConstant(BitcastOp->getOperand(0)))
4486       return true;
4487   }
4488   return false;
4489 }
4490 
4491 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4492 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const4493 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4494                                      SDValue &ARMcc, SelectionDAG &DAG,
4495                                      const SDLoc &dl) const {
4496   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4497     unsigned C = RHSC->getZExtValue();
4498     if (!isLegalICmpImmediate((int32_t)C)) {
4499       // Constant does not fit, try adjusting it by one.
4500       switch (CC) {
4501       default: break;
4502       case ISD::SETLT:
4503       case ISD::SETGE:
4504         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4505           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4506           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4507         }
4508         break;
4509       case ISD::SETULT:
4510       case ISD::SETUGE:
4511         if (C != 0 && isLegalICmpImmediate(C-1)) {
4512           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4513           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4514         }
4515         break;
4516       case ISD::SETLE:
4517       case ISD::SETGT:
4518         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4519           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4520           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4521         }
4522         break;
4523       case ISD::SETULE:
4524       case ISD::SETUGT:
4525         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4526           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4527           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4528         }
4529         break;
4530       }
4531     }
4532   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4533              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4534     // In ARM and Thumb-2, the compare instructions can shift their second
4535     // operand.
4536     CC = ISD::getSetCCSwappedOperands(CC);
4537     std::swap(LHS, RHS);
4538   }
4539 
4540   // Thumb1 has very limited immediate modes, so turning an "and" into a
4541   // shift can save multiple instructions.
4542   //
4543   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4544   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4545   // own. If it's the operand to an unsigned comparison with an immediate,
4546   // we can eliminate one of the shifts: we transform
4547   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4548   //
4549   // We avoid transforming cases which aren't profitable due to encoding
4550   // details:
4551   //
4552   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4553   // would not; in that case, we're essentially trading one immediate load for
4554   // another.
4555   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4556   // 3. C2 is zero; we have other code for this special case.
4557   //
4558   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4559   // instruction, since the AND is always one instruction anyway, but we could
4560   // use narrow instructions in some cases.
4561   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4562       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4563       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4564       !isSignedIntSetCC(CC)) {
4565     unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4566     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4567     uint64_t RHSV = RHSC->getZExtValue();
4568     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4569       unsigned ShiftBits = countLeadingZeros(Mask);
4570       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4571         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4572         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4573         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4574       }
4575     }
4576   }
4577 
4578   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4579   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4580   // way a cmp would.
4581   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4582   // some tweaks to the heuristics for the previous and->shift transform.
4583   // FIXME: Optimize cases where the LHS isn't a shift.
4584   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4585       isa<ConstantSDNode>(RHS) &&
4586       cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4587       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4588       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4589     unsigned ShiftAmt =
4590       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4591     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4592                                 DAG.getVTList(MVT::i32, MVT::i32),
4593                                 LHS.getOperand(0),
4594                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4595     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4596                                      Shift.getValue(1), SDValue());
4597     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4598     return Chain.getValue(1);
4599   }
4600 
4601   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4602 
4603   // If the RHS is a constant zero then the V (overflow) flag will never be
4604   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4605   // simpler for other passes (like the peephole optimiser) to deal with.
4606   if (isNullConstant(RHS)) {
4607     switch (CondCode) {
4608       default: break;
4609       case ARMCC::GE:
4610         CondCode = ARMCC::PL;
4611         break;
4612       case ARMCC::LT:
4613         CondCode = ARMCC::MI;
4614         break;
4615     }
4616   }
4617 
4618   ARMISD::NodeType CompareType;
4619   switch (CondCode) {
4620   default:
4621     CompareType = ARMISD::CMP;
4622     break;
4623   case ARMCC::EQ:
4624   case ARMCC::NE:
4625     // Uses only Z Flag
4626     CompareType = ARMISD::CMPZ;
4627     break;
4628   }
4629   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4630   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4631 }
4632 
4633 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool Signaling) const4634 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4635                                      SelectionDAG &DAG, const SDLoc &dl,
4636                                      bool Signaling) const {
4637   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4638   SDValue Cmp;
4639   if (!isFloatingPointZero(RHS))
4640     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4641                       dl, MVT::Glue, LHS, RHS);
4642   else
4643     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4644                       dl, MVT::Glue, LHS);
4645   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4646 }
4647 
4648 /// duplicateCmp - Glue values can have only one use, so this function
4649 /// duplicates a comparison node.
4650 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const4651 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4652   unsigned Opc = Cmp.getOpcode();
4653   SDLoc DL(Cmp);
4654   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4655     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4656 
4657   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4658   Cmp = Cmp.getOperand(0);
4659   Opc = Cmp.getOpcode();
4660   if (Opc == ARMISD::CMPFP)
4661     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4662   else {
4663     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4664     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4665   }
4666   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4667 }
4668 
4669 // This function returns three things: the arithmetic computation itself
4670 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4671 // comparison and the condition code define the case in which the arithmetic
4672 // computation *does not* overflow.
4673 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const4674 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4675                                  SDValue &ARMcc) const {
4676   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4677 
4678   SDValue Value, OverflowCmp;
4679   SDValue LHS = Op.getOperand(0);
4680   SDValue RHS = Op.getOperand(1);
4681   SDLoc dl(Op);
4682 
4683   // FIXME: We are currently always generating CMPs because we don't support
4684   // generating CMN through the backend. This is not as good as the natural
4685   // CMP case because it causes a register dependency and cannot be folded
4686   // later.
4687 
4688   switch (Op.getOpcode()) {
4689   default:
4690     llvm_unreachable("Unknown overflow instruction!");
4691   case ISD::SADDO:
4692     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4693     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4694     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4695     break;
4696   case ISD::UADDO:
4697     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4698     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4699     // We do not use it in the USUBO case as Value may not be used.
4700     Value = DAG.getNode(ARMISD::ADDC, dl,
4701                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4702                 .getValue(0);
4703     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4704     break;
4705   case ISD::SSUBO:
4706     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4707     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4708     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4709     break;
4710   case ISD::USUBO:
4711     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4712     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4713     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4714     break;
4715   case ISD::UMULO:
4716     // We generate a UMUL_LOHI and then check if the high word is 0.
4717     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4718     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4719                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4720                         LHS, RHS);
4721     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4722                               DAG.getConstant(0, dl, MVT::i32));
4723     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4724     break;
4725   case ISD::SMULO:
4726     // We generate a SMUL_LOHI and then check if all the bits of the high word
4727     // are the same as the sign bit of the low word.
4728     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4729     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4730                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4731                         LHS, RHS);
4732     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4733                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4734                                           Value.getValue(0),
4735                                           DAG.getConstant(31, dl, MVT::i32)));
4736     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4737     break;
4738   } // switch (...)
4739 
4740   return std::make_pair(Value, OverflowCmp);
4741 }
4742 
4743 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const4744 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4745   // Let legalize expand this if it isn't a legal type yet.
4746   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4747     return SDValue();
4748 
4749   SDValue Value, OverflowCmp;
4750   SDValue ARMcc;
4751   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4752   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4753   SDLoc dl(Op);
4754   // We use 0 and 1 as false and true values.
4755   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4756   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4757   EVT VT = Op.getValueType();
4758 
4759   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4760                                  ARMcc, CCR, OverflowCmp);
4761 
4762   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4763   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4764 }
4765 
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4766 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4767                                               SelectionDAG &DAG) {
4768   SDLoc DL(BoolCarry);
4769   EVT CarryVT = BoolCarry.getValueType();
4770 
4771   // This converts the boolean value carry into the carry flag by doing
4772   // ARMISD::SUBC Carry, 1
4773   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4774                               DAG.getVTList(CarryVT, MVT::i32),
4775                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4776   return Carry.getValue(1);
4777 }
4778 
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4779 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4780                                               SelectionDAG &DAG) {
4781   SDLoc DL(Flags);
4782 
4783   // Now convert the carry flag into a boolean carry. We do this
4784   // using ARMISD:ADDE 0, 0, Carry
4785   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4786                      DAG.getConstant(0, DL, MVT::i32),
4787                      DAG.getConstant(0, DL, MVT::i32), Flags);
4788 }
4789 
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4790 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4791                                              SelectionDAG &DAG) const {
4792   // Let legalize expand this if it isn't a legal type yet.
4793   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4794     return SDValue();
4795 
4796   SDValue LHS = Op.getOperand(0);
4797   SDValue RHS = Op.getOperand(1);
4798   SDLoc dl(Op);
4799 
4800   EVT VT = Op.getValueType();
4801   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4802   SDValue Value;
4803   SDValue Overflow;
4804   switch (Op.getOpcode()) {
4805   default:
4806     llvm_unreachable("Unknown overflow instruction!");
4807   case ISD::UADDO:
4808     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4809     // Convert the carry flag into a boolean value.
4810     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4811     break;
4812   case ISD::USUBO: {
4813     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4814     // Convert the carry flag into a boolean value.
4815     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4816     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4817     // value. So compute 1 - C.
4818     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4819                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4820     break;
4821   }
4822   }
4823 
4824   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4825 }
4826 
LowerSADDSUBSAT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4827 static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
4828                                const ARMSubtarget *Subtarget) {
4829   EVT VT = Op.getValueType();
4830   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
4831     return SDValue();
4832   if (!VT.isSimple())
4833     return SDValue();
4834 
4835   unsigned NewOpcode;
4836   bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
4837   switch (VT.getSimpleVT().SimpleTy) {
4838   default:
4839     return SDValue();
4840   case MVT::i8:
4841     NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
4842     break;
4843   case MVT::i16:
4844     NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
4845     break;
4846   }
4847 
4848   SDLoc dl(Op);
4849   SDValue Add =
4850       DAG.getNode(NewOpcode, dl, MVT::i32,
4851                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
4852                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
4853   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
4854 }
4855 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4856 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4857   SDValue Cond = Op.getOperand(0);
4858   SDValue SelectTrue = Op.getOperand(1);
4859   SDValue SelectFalse = Op.getOperand(2);
4860   SDLoc dl(Op);
4861   unsigned Opc = Cond.getOpcode();
4862 
4863   if (Cond.getResNo() == 1 &&
4864       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4865        Opc == ISD::USUBO)) {
4866     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4867       return SDValue();
4868 
4869     SDValue Value, OverflowCmp;
4870     SDValue ARMcc;
4871     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4872     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4873     EVT VT = Op.getValueType();
4874 
4875     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4876                    OverflowCmp, DAG);
4877   }
4878 
4879   // Convert:
4880   //
4881   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4882   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4883   //
4884   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4885     const ConstantSDNode *CMOVTrue =
4886       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4887     const ConstantSDNode *CMOVFalse =
4888       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4889 
4890     if (CMOVTrue && CMOVFalse) {
4891       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4892       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4893 
4894       SDValue True;
4895       SDValue False;
4896       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4897         True = SelectTrue;
4898         False = SelectFalse;
4899       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4900         True = SelectFalse;
4901         False = SelectTrue;
4902       }
4903 
4904       if (True.getNode() && False.getNode()) {
4905         EVT VT = Op.getValueType();
4906         SDValue ARMcc = Cond.getOperand(2);
4907         SDValue CCR = Cond.getOperand(3);
4908         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4909         assert(True.getValueType() == VT);
4910         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4911       }
4912     }
4913   }
4914 
4915   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4916   // undefined bits before doing a full-word comparison with zero.
4917   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4918                      DAG.getConstant(1, dl, Cond.getValueType()));
4919 
4920   return DAG.getSelectCC(dl, Cond,
4921                          DAG.getConstant(0, dl, Cond.getValueType()),
4922                          SelectTrue, SelectFalse, ISD::SETNE);
4923 }
4924 
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4925 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4926                                  bool &swpCmpOps, bool &swpVselOps) {
4927   // Start by selecting the GE condition code for opcodes that return true for
4928   // 'equality'
4929   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4930       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
4931     CondCode = ARMCC::GE;
4932 
4933   // and GT for opcodes that return false for 'equality'.
4934   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4935            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
4936     CondCode = ARMCC::GT;
4937 
4938   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4939   // to swap the compare operands.
4940   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4941       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
4942     swpCmpOps = true;
4943 
4944   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4945   // If we have an unordered opcode, we need to swap the operands to the VSEL
4946   // instruction (effectively negating the condition).
4947   //
4948   // This also has the effect of swapping which one of 'less' or 'greater'
4949   // returns true, so we also swap the compare operands. It also switches
4950   // whether we return true for 'equality', so we compensate by picking the
4951   // opposite condition code to our original choice.
4952   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4953       CC == ISD::SETUGT) {
4954     swpCmpOps = !swpCmpOps;
4955     swpVselOps = !swpVselOps;
4956     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4957   }
4958 
4959   // 'ordered' is 'anything but unordered', so use the VS condition code and
4960   // swap the VSEL operands.
4961   if (CC == ISD::SETO) {
4962     CondCode = ARMCC::VS;
4963     swpVselOps = true;
4964   }
4965 
4966   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4967   // code and swap the VSEL operands. Also do this if we don't care about the
4968   // unordered case.
4969   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4970     CondCode = ARMCC::EQ;
4971     swpVselOps = true;
4972   }
4973 }
4974 
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4975 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4976                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4977                                    SDValue Cmp, SelectionDAG &DAG) const {
4978   if (!Subtarget->hasFP64() && VT == MVT::f64) {
4979     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4980                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4981     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4982                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4983 
4984     SDValue TrueLow = TrueVal.getValue(0);
4985     SDValue TrueHigh = TrueVal.getValue(1);
4986     SDValue FalseLow = FalseVal.getValue(0);
4987     SDValue FalseHigh = FalseVal.getValue(1);
4988 
4989     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4990                               ARMcc, CCR, Cmp);
4991     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4992                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4993 
4994     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4995   } else {
4996     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4997                        Cmp);
4998   }
4999 }
5000 
isGTorGE(ISD::CondCode CC)5001 static bool isGTorGE(ISD::CondCode CC) {
5002   return CC == ISD::SETGT || CC == ISD::SETGE;
5003 }
5004 
isLTorLE(ISD::CondCode CC)5005 static bool isLTorLE(ISD::CondCode CC) {
5006   return CC == ISD::SETLT || CC == ISD::SETLE;
5007 }
5008 
5009 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5010 // All of these conditions (and their <= and >= counterparts) will do:
5011 //          x < k ? k : x
5012 //          x > k ? x : k
5013 //          k < x ? x : k
5014 //          k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)5015 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5016                             const SDValue TrueVal, const SDValue FalseVal,
5017                             const ISD::CondCode CC, const SDValue K) {
5018   return (isGTorGE(CC) &&
5019           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5020          (isLTorLE(CC) &&
5021           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5022 }
5023 
5024 // Check if two chained conditionals could be converted into SSAT or USAT.
5025 //
5026 // SSAT can replace a set of two conditional selectors that bound a number to an
5027 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5028 //
5029 //     x < -k ? -k : (x > k ? k : x)
5030 //     x < -k ? -k : (x < k ? x : k)
5031 //     x > -k ? (x > k ? k : x) : -k
5032 //     x < k ? (x < -k ? -k : x) : k
5033 //     etc.
5034 //
5035 // LLVM canonicalizes these to either a min(max()) or a max(min())
5036 // pattern. This function tries to match one of these and will return true
5037 // if successful.
5038 //
5039 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
5040 // a power of 2.
5041 //
5042 // It returns true if the conversion can be done, false otherwise.
5043 // Additionally, the variable is returned in parameter V, the constant in K and
5044 // usat is set to true if the conditional represents an unsigned saturation
isSaturatingConditional(const SDValue & Op,SDValue & V,uint64_t & K,bool & Usat)5045 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
5046                                     uint64_t &K, bool &Usat) {
5047   SDValue V1 = Op.getOperand(0);
5048   SDValue K1 = Op.getOperand(1);
5049   SDValue TrueVal1 = Op.getOperand(2);
5050   SDValue FalseVal1 = Op.getOperand(3);
5051   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5052 
5053   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5054   if (Op2.getOpcode() != ISD::SELECT_CC)
5055     return false;
5056 
5057   SDValue V2 = Op2.getOperand(0);
5058   SDValue K2 = Op2.getOperand(1);
5059   SDValue TrueVal2 = Op2.getOperand(2);
5060   SDValue FalseVal2 = Op2.getOperand(3);
5061   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5062 
5063   SDValue V1Tmp = V1;
5064   SDValue V2Tmp = V2;
5065 
5066   if (V1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
5067       V2.getOpcode() == ISD::SIGN_EXTEND_INREG) {
5068     V1Tmp = V1.getOperand(0);
5069     V2Tmp = V2.getOperand(0);
5070   }
5071 
5072   // Check that the registers and the constants match a max(min()) or min(max())
5073   // pattern
5074   if (V1Tmp == TrueVal1 && V2Tmp == TrueVal2 && K1 == FalseVal1 &&
5075       K2 == FalseVal2 &&
5076       ((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2)))) {
5077 
5078     // Check that the constant in the lower-bound check is
5079     // the opposite of the constant in the upper-bound check
5080     // in 1's complement.
5081     if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5082       return false;
5083 
5084     int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5085     int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5086     int64_t PosVal = std::max(Val1, Val2);
5087     int64_t NegVal = std::min(Val1, Val2);
5088 
5089     if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5090         !isPowerOf2_64(PosVal + 1))
5091       return false;
5092 
5093     // Handle the difference between USAT (unsigned) and SSAT (signed)
5094     // saturation
5095     if (Val1 == ~Val2)
5096       Usat = false;
5097     else if (NegVal == 0)
5098       Usat = true;
5099     else
5100       return false;
5101 
5102     V = V2Tmp;
5103     // At this point, PosVal is guaranteed to be positive
5104     K = (uint64_t) PosVal;
5105 
5106     return true;
5107   }
5108   return false;
5109 }
5110 
5111 // Check if a condition of the type x < k ? k : x can be converted into a
5112 // bit operation instead of conditional moves.
5113 // Currently this is allowed given:
5114 // - The conditions and values match up
5115 // - k is 0 or -1 (all ones)
5116 // This function will not check the last condition, thats up to the caller
5117 // It returns true if the transformation can be made, and in such case
5118 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)5119 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5120                                          SDValue &SatK)
5121 {
5122   SDValue LHS = Op.getOperand(0);
5123   SDValue RHS = Op.getOperand(1);
5124   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5125   SDValue TrueVal = Op.getOperand(2);
5126   SDValue FalseVal = Op.getOperand(3);
5127 
5128   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5129                                                ? &RHS
5130                                                : nullptr;
5131 
5132   // No constant operation in comparison, early out
5133   if (!K)
5134     return false;
5135 
5136   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5137   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5138   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5139 
5140   // If the constant on left and right side, or variable on left and right,
5141   // does not match, early out
5142   if (*K != KTmp || V != VTmp)
5143     return false;
5144 
5145   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5146     SatK = *K;
5147     return true;
5148   }
5149 
5150   return false;
5151 }
5152 
isUnsupportedFloatingType(EVT VT) const5153 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5154   if (VT == MVT::f32)
5155     return !Subtarget->hasVFP2Base();
5156   if (VT == MVT::f64)
5157     return !Subtarget->hasFP64();
5158   if (VT == MVT::f16)
5159     return !Subtarget->hasFullFP16();
5160   return false;
5161 }
5162 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const5163 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5164   EVT VT = Op.getValueType();
5165   SDLoc dl(Op);
5166 
5167   // Try to convert two saturating conditional selects into a single SSAT
5168   SDValue SatValue;
5169   uint64_t SatConstant;
5170   bool SatUSat;
5171   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
5172       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
5173     if (SatUSat)
5174       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
5175                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
5176     else
5177       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
5178                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
5179   }
5180 
5181   // Try to convert expressions of the form x < k ? k : x (and similar forms)
5182   // into more efficient bit operations, which is possible when k is 0 or -1
5183   // On ARM and Thumb-2 which have flexible operand 2 this will result in
5184   // single instructions. On Thumb the shift and the bit operation will be two
5185   // instructions.
5186   // Only allow this transformation on full-width (32-bit) operations
5187   SDValue LowerSatConstant;
5188   if (VT == MVT::i32 &&
5189       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5190     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5191                                  DAG.getConstant(31, dl, VT));
5192     if (isNullConstant(LowerSatConstant)) {
5193       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5194                                       DAG.getAllOnesConstant(dl, VT));
5195       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5196     } else if (isAllOnesConstant(LowerSatConstant))
5197       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5198   }
5199 
5200   SDValue LHS = Op.getOperand(0);
5201   SDValue RHS = Op.getOperand(1);
5202   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5203   SDValue TrueVal = Op.getOperand(2);
5204   SDValue FalseVal = Op.getOperand(3);
5205   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5206   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5207 
5208   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5209       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5210     unsigned TVal = CTVal->getZExtValue();
5211     unsigned FVal = CFVal->getZExtValue();
5212     unsigned Opcode = 0;
5213 
5214     if (TVal == ~FVal) {
5215       Opcode = ARMISD::CSINV;
5216     } else if (TVal == ~FVal + 1) {
5217       Opcode = ARMISD::CSNEG;
5218     } else if (TVal + 1 == FVal) {
5219       Opcode = ARMISD::CSINC;
5220     } else if (TVal == FVal + 1) {
5221       Opcode = ARMISD::CSINC;
5222       std::swap(TrueVal, FalseVal);
5223       std::swap(TVal, FVal);
5224       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5225     }
5226 
5227     if (Opcode) {
5228       // If one of the constants is cheaper than another, materialise the
5229       // cheaper one and let the csel generate the other.
5230       if (Opcode != ARMISD::CSINC &&
5231           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5232         std::swap(TrueVal, FalseVal);
5233         std::swap(TVal, FVal);
5234         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5235       }
5236 
5237       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5238       // to get there. CSINC not is invertable like the other two (~(~a) == a,
5239       // -(-a) == a, but (a+1)+1 != a).
5240       if (FVal == 0 && Opcode != ARMISD::CSINC) {
5241         std::swap(TrueVal, FalseVal);
5242         std::swap(TVal, FVal);
5243         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5244       }
5245       if (TVal == 0)
5246         TrueVal = DAG.getRegister(ARM::ZR, MVT::i32);
5247 
5248       // Drops F's value because we can get it by inverting/negating TVal.
5249       FalseVal = TrueVal;
5250 
5251       SDValue ARMcc;
5252       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5253       EVT VT = TrueVal.getValueType();
5254       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5255     }
5256   }
5257 
5258   if (isUnsupportedFloatingType(LHS.getValueType())) {
5259     DAG.getTargetLoweringInfo().softenSetCCOperands(
5260         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5261 
5262     // If softenSetCCOperands only returned one value, we should compare it to
5263     // zero.
5264     if (!RHS.getNode()) {
5265       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5266       CC = ISD::SETNE;
5267     }
5268   }
5269 
5270   if (LHS.getValueType() == MVT::i32) {
5271     // Try to generate VSEL on ARMv8.
5272     // The VSEL instruction can't use all the usual ARM condition
5273     // codes: it only has two bits to select the condition code, so it's
5274     // constrained to use only GE, GT, VS and EQ.
5275     //
5276     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5277     // swap the operands of the previous compare instruction (effectively
5278     // inverting the compare condition, swapping 'less' and 'greater') and
5279     // sometimes need to swap the operands to the VSEL (which inverts the
5280     // condition in the sense of firing whenever the previous condition didn't)
5281     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5282                                         TrueVal.getValueType() == MVT::f32 ||
5283                                         TrueVal.getValueType() == MVT::f64)) {
5284       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5285       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5286           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5287         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5288         std::swap(TrueVal, FalseVal);
5289       }
5290     }
5291 
5292     SDValue ARMcc;
5293     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5294     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5295     // Choose GE over PL, which vsel does now support
5296     if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5297       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5298     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5299   }
5300 
5301   ARMCC::CondCodes CondCode, CondCode2;
5302   FPCCToARMCC(CC, CondCode, CondCode2);
5303 
5304   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5305   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5306   // must use VSEL (limited condition codes), due to not having conditional f16
5307   // moves.
5308   if (Subtarget->hasFPARMv8Base() &&
5309       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5310       (TrueVal.getValueType() == MVT::f16 ||
5311        TrueVal.getValueType() == MVT::f32 ||
5312        TrueVal.getValueType() == MVT::f64)) {
5313     bool swpCmpOps = false;
5314     bool swpVselOps = false;
5315     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5316 
5317     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5318         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5319       if (swpCmpOps)
5320         std::swap(LHS, RHS);
5321       if (swpVselOps)
5322         std::swap(TrueVal, FalseVal);
5323     }
5324   }
5325 
5326   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5327   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5328   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5329   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5330   if (CondCode2 != ARMCC::AL) {
5331     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5332     // FIXME: Needs another CMP because flag can have but one use.
5333     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5334     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5335   }
5336   return Result;
5337 }
5338 
5339 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5340 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)5341 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5342                            const ARMSubtarget *Subtarget) {
5343   SDNode *N = Op.getNode();
5344   if (!N->hasOneUse())
5345     // Otherwise it requires moving the value from fp to integer registers.
5346     return false;
5347   if (!N->getNumValues())
5348     return false;
5349   EVT VT = Op.getValueType();
5350   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5351     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5352     // vmrs are very slow, e.g. cortex-a8.
5353     return false;
5354 
5355   if (isFloatingPointZero(Op)) {
5356     SeenZero = true;
5357     return true;
5358   }
5359   return ISD::isNormalLoad(N);
5360 }
5361 
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)5362 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5363   if (isFloatingPointZero(Op))
5364     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5365 
5366   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5367     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5368                        Ld->getPointerInfo(), Ld->getAlignment(),
5369                        Ld->getMemOperand()->getFlags());
5370 
5371   llvm_unreachable("Unknown VFP cmp argument!");
5372 }
5373 
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)5374 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5375                            SDValue &RetVal1, SDValue &RetVal2) {
5376   SDLoc dl(Op);
5377 
5378   if (isFloatingPointZero(Op)) {
5379     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5380     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5381     return;
5382   }
5383 
5384   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5385     SDValue Ptr = Ld->getBasePtr();
5386     RetVal1 =
5387         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5388                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
5389 
5390     EVT PtrType = Ptr.getValueType();
5391     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
5392     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5393                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5394     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5395                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
5396                           Ld->getMemOperand()->getFlags());
5397     return;
5398   }
5399 
5400   llvm_unreachable("Unknown VFP cmp argument!");
5401 }
5402 
5403 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5404 /// f32 and even f64 comparisons to integer ones.
5405 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const5406 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5407   SDValue Chain = Op.getOperand(0);
5408   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5409   SDValue LHS = Op.getOperand(2);
5410   SDValue RHS = Op.getOperand(3);
5411   SDValue Dest = Op.getOperand(4);
5412   SDLoc dl(Op);
5413 
5414   bool LHSSeenZero = false;
5415   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5416   bool RHSSeenZero = false;
5417   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5418   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5419     // If unsafe fp math optimization is enabled and there are no other uses of
5420     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5421     // to an integer comparison.
5422     if (CC == ISD::SETOEQ)
5423       CC = ISD::SETEQ;
5424     else if (CC == ISD::SETUNE)
5425       CC = ISD::SETNE;
5426 
5427     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5428     SDValue ARMcc;
5429     if (LHS.getValueType() == MVT::f32) {
5430       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5431                         bitcastf32Toi32(LHS, DAG), Mask);
5432       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5433                         bitcastf32Toi32(RHS, DAG), Mask);
5434       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5435       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5436       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5437                          Chain, Dest, ARMcc, CCR, Cmp);
5438     }
5439 
5440     SDValue LHS1, LHS2;
5441     SDValue RHS1, RHS2;
5442     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5443     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5444     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5445     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5446     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5447     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5448     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5449     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5450     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5451   }
5452 
5453   return SDValue();
5454 }
5455 
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const5456 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5457   SDValue Chain = Op.getOperand(0);
5458   SDValue Cond = Op.getOperand(1);
5459   SDValue Dest = Op.getOperand(2);
5460   SDLoc dl(Op);
5461 
5462   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5463   // instruction.
5464   unsigned Opc = Cond.getOpcode();
5465   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5466                       !Subtarget->isThumb1Only();
5467   if (Cond.getResNo() == 1 &&
5468       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5469        Opc == ISD::USUBO || OptimizeMul)) {
5470     // Only lower legal XALUO ops.
5471     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5472       return SDValue();
5473 
5474     // The actual operation with overflow check.
5475     SDValue Value, OverflowCmp;
5476     SDValue ARMcc;
5477     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5478 
5479     // Reverse the condition code.
5480     ARMCC::CondCodes CondCode =
5481         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5482     CondCode = ARMCC::getOppositeCondition(CondCode);
5483     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5484     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5485 
5486     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5487                        OverflowCmp);
5488   }
5489 
5490   return SDValue();
5491 }
5492 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const5493 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5494   SDValue Chain = Op.getOperand(0);
5495   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5496   SDValue LHS = Op.getOperand(2);
5497   SDValue RHS = Op.getOperand(3);
5498   SDValue Dest = Op.getOperand(4);
5499   SDLoc dl(Op);
5500 
5501   if (isUnsupportedFloatingType(LHS.getValueType())) {
5502     DAG.getTargetLoweringInfo().softenSetCCOperands(
5503         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5504 
5505     // If softenSetCCOperands only returned one value, we should compare it to
5506     // zero.
5507     if (!RHS.getNode()) {
5508       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5509       CC = ISD::SETNE;
5510     }
5511   }
5512 
5513   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5514   // instruction.
5515   unsigned Opc = LHS.getOpcode();
5516   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5517                       !Subtarget->isThumb1Only();
5518   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5519       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5520        Opc == ISD::USUBO || OptimizeMul) &&
5521       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5522     // Only lower legal XALUO ops.
5523     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5524       return SDValue();
5525 
5526     // The actual operation with overflow check.
5527     SDValue Value, OverflowCmp;
5528     SDValue ARMcc;
5529     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5530 
5531     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5532       // Reverse the condition code.
5533       ARMCC::CondCodes CondCode =
5534           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5535       CondCode = ARMCC::getOppositeCondition(CondCode);
5536       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5537     }
5538     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5539 
5540     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5541                        OverflowCmp);
5542   }
5543 
5544   if (LHS.getValueType() == MVT::i32) {
5545     SDValue ARMcc;
5546     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5547     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5548     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5549                        Chain, Dest, ARMcc, CCR, Cmp);
5550   }
5551 
5552   if (getTargetMachine().Options.UnsafeFPMath &&
5553       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5554        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5555     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5556       return Result;
5557   }
5558 
5559   ARMCC::CondCodes CondCode, CondCode2;
5560   FPCCToARMCC(CC, CondCode, CondCode2);
5561 
5562   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5563   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5564   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5565   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5566   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5567   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5568   if (CondCode2 != ARMCC::AL) {
5569     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5570     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5571     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5572   }
5573   return Res;
5574 }
5575 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const5576 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5577   SDValue Chain = Op.getOperand(0);
5578   SDValue Table = Op.getOperand(1);
5579   SDValue Index = Op.getOperand(2);
5580   SDLoc dl(Op);
5581 
5582   EVT PTy = getPointerTy(DAG.getDataLayout());
5583   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5584   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5585   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5586   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5587   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5588   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5589     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5590     // which does another jump to the destination. This also makes it easier
5591     // to translate it to TBB / TBH later (Thumb2 only).
5592     // FIXME: This might not work if the function is extremely large.
5593     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5594                        Addr, Op.getOperand(2), JTI);
5595   }
5596   if (isPositionIndependent() || Subtarget->isROPI()) {
5597     Addr =
5598         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5599                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5600     Chain = Addr.getValue(1);
5601     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5602     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5603   } else {
5604     Addr =
5605         DAG.getLoad(PTy, dl, Chain, Addr,
5606                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5607     Chain = Addr.getValue(1);
5608     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5609   }
5610 }
5611 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)5612 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5613   EVT VT = Op.getValueType();
5614   SDLoc dl(Op);
5615 
5616   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5617     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5618       return Op;
5619     return DAG.UnrollVectorOp(Op.getNode());
5620   }
5621 
5622   const bool HasFullFP16 =
5623     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5624 
5625   EVT NewTy;
5626   const EVT OpTy = Op.getOperand(0).getValueType();
5627   if (OpTy == MVT::v4f32)
5628     NewTy = MVT::v4i32;
5629   else if (OpTy == MVT::v4f16 && HasFullFP16)
5630     NewTy = MVT::v4i16;
5631   else if (OpTy == MVT::v8f16 && HasFullFP16)
5632     NewTy = MVT::v8i16;
5633   else
5634     llvm_unreachable("Invalid type for custom lowering!");
5635 
5636   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5637     return DAG.UnrollVectorOp(Op.getNode());
5638 
5639   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5640   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5641 }
5642 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const5643 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5644   EVT VT = Op.getValueType();
5645   if (VT.isVector())
5646     return LowerVectorFP_TO_INT(Op, DAG);
5647 
5648   bool IsStrict = Op->isStrictFPOpcode();
5649   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5650 
5651   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5652     RTLIB::Libcall LC;
5653     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5654         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5655       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5656                               Op.getValueType());
5657     else
5658       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5659                               Op.getValueType());
5660     SDLoc Loc(Op);
5661     MakeLibCallOptions CallOptions;
5662     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5663     SDValue Result;
5664     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5665                                           CallOptions, Loc, Chain);
5666     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5667   }
5668 
5669   // FIXME: Remove this when we have strict fp instruction selection patterns
5670   if (IsStrict) {
5671     SDLoc Loc(Op);
5672     SDValue Result =
5673         DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5674                                                              : ISD::FP_TO_UINT,
5675                     Loc, Op.getValueType(), SrcVal);
5676     return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5677   }
5678 
5679   return Op;
5680 }
5681 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)5682 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5683   EVT VT = Op.getValueType();
5684   SDLoc dl(Op);
5685 
5686   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5687     if (VT.getVectorElementType() == MVT::f32)
5688       return Op;
5689     return DAG.UnrollVectorOp(Op.getNode());
5690   }
5691 
5692   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5693           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5694          "Invalid type for custom lowering!");
5695 
5696   const bool HasFullFP16 =
5697     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5698 
5699   EVT DestVecType;
5700   if (VT == MVT::v4f32)
5701     DestVecType = MVT::v4i32;
5702   else if (VT == MVT::v4f16 && HasFullFP16)
5703     DestVecType = MVT::v4i16;
5704   else if (VT == MVT::v8f16 && HasFullFP16)
5705     DestVecType = MVT::v8i16;
5706   else
5707     return DAG.UnrollVectorOp(Op.getNode());
5708 
5709   unsigned CastOpc;
5710   unsigned Opc;
5711   switch (Op.getOpcode()) {
5712   default: llvm_unreachable("Invalid opcode!");
5713   case ISD::SINT_TO_FP:
5714     CastOpc = ISD::SIGN_EXTEND;
5715     Opc = ISD::SINT_TO_FP;
5716     break;
5717   case ISD::UINT_TO_FP:
5718     CastOpc = ISD::ZERO_EXTEND;
5719     Opc = ISD::UINT_TO_FP;
5720     break;
5721   }
5722 
5723   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5724   return DAG.getNode(Opc, dl, VT, Op);
5725 }
5726 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const5727 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5728   EVT VT = Op.getValueType();
5729   if (VT.isVector())
5730     return LowerVectorINT_TO_FP(Op, DAG);
5731   if (isUnsupportedFloatingType(VT)) {
5732     RTLIB::Libcall LC;
5733     if (Op.getOpcode() == ISD::SINT_TO_FP)
5734       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5735                               Op.getValueType());
5736     else
5737       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5738                               Op.getValueType());
5739     MakeLibCallOptions CallOptions;
5740     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5741                        CallOptions, SDLoc(Op)).first;
5742   }
5743 
5744   return Op;
5745 }
5746 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const5747 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5748   // Implement fcopysign with a fabs and a conditional fneg.
5749   SDValue Tmp0 = Op.getOperand(0);
5750   SDValue Tmp1 = Op.getOperand(1);
5751   SDLoc dl(Op);
5752   EVT VT = Op.getValueType();
5753   EVT SrcVT = Tmp1.getValueType();
5754   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5755     Tmp0.getOpcode() == ARMISD::VMOVDRR;
5756   bool UseNEON = !InGPR && Subtarget->hasNEON();
5757 
5758   if (UseNEON) {
5759     // Use VBSL to copy the sign bit.
5760     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5761     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5762                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5763     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5764     if (VT == MVT::f64)
5765       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5766                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5767                          DAG.getConstant(32, dl, MVT::i32));
5768     else /*if (VT == MVT::f32)*/
5769       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5770     if (SrcVT == MVT::f32) {
5771       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5772       if (VT == MVT::f64)
5773         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5774                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5775                            DAG.getConstant(32, dl, MVT::i32));
5776     } else if (VT == MVT::f32)
5777       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5778                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5779                          DAG.getConstant(32, dl, MVT::i32));
5780     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5781     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5782 
5783     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5784                                             dl, MVT::i32);
5785     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5786     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5787                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5788 
5789     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5790                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5791                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5792     if (VT == MVT::f32) {
5793       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5794       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5795                         DAG.getConstant(0, dl, MVT::i32));
5796     } else {
5797       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5798     }
5799 
5800     return Res;
5801   }
5802 
5803   // Bitcast operand 1 to i32.
5804   if (SrcVT == MVT::f64)
5805     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5806                        Tmp1).getValue(1);
5807   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5808 
5809   // Or in the signbit with integer operations.
5810   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5811   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5812   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5813   if (VT == MVT::f32) {
5814     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5815                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5816     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5817                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5818   }
5819 
5820   // f64: Or the high part with signbit and then combine two parts.
5821   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5822                      Tmp0);
5823   SDValue Lo = Tmp0.getValue(0);
5824   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5825   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5826   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5827 }
5828 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5829 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5830   MachineFunction &MF = DAG.getMachineFunction();
5831   MachineFrameInfo &MFI = MF.getFrameInfo();
5832   MFI.setReturnAddressIsTaken(true);
5833 
5834   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5835     return SDValue();
5836 
5837   EVT VT = Op.getValueType();
5838   SDLoc dl(Op);
5839   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5840   if (Depth) {
5841     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5842     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5843     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5844                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5845                        MachinePointerInfo());
5846   }
5847 
5848   // Return LR, which contains the return address. Mark it an implicit live-in.
5849   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5850   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5851 }
5852 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5853 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5854   const ARMBaseRegisterInfo &ARI =
5855     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5856   MachineFunction &MF = DAG.getMachineFunction();
5857   MachineFrameInfo &MFI = MF.getFrameInfo();
5858   MFI.setFrameAddressIsTaken(true);
5859 
5860   EVT VT = Op.getValueType();
5861   SDLoc dl(Op);  // FIXME probably not meaningful
5862   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5863   Register FrameReg = ARI.getFrameRegister(MF);
5864   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5865   while (Depth--)
5866     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5867                             MachinePointerInfo());
5868   return FrameAddr;
5869 }
5870 
5871 // FIXME? Maybe this could be a TableGen attribute on some registers and
5872 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const5873 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
5874                                               const MachineFunction &MF) const {
5875   Register Reg = StringSwitch<unsigned>(RegName)
5876                        .Case("sp", ARM::SP)
5877                        .Default(0);
5878   if (Reg)
5879     return Reg;
5880   report_fatal_error(Twine("Invalid register name \""
5881                               + StringRef(RegName)  + "\"."));
5882 }
5883 
5884 // Result is 64 bit value so split into two 32 bit values and return as a
5885 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5886 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5887                                 SelectionDAG &DAG) {
5888   SDLoc DL(N);
5889 
5890   // This function is only supposed to be called for i64 type destination.
5891   assert(N->getValueType(0) == MVT::i64
5892           && "ExpandREAD_REGISTER called for non-i64 type result.");
5893 
5894   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5895                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5896                              N->getOperand(0),
5897                              N->getOperand(1));
5898 
5899   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5900                     Read.getValue(1)));
5901   Results.push_back(Read.getOperand(0));
5902 }
5903 
5904 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5905 /// When \p DstVT, the destination type of \p BC, is on the vector
5906 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5907 /// it might be possible to combine them, such that everything stays on the
5908 /// vector register bank.
5909 /// \p return The node that would replace \p BT, if the combine
5910 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5911 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5912                                                 SelectionDAG &DAG) {
5913   SDValue Op = BC->getOperand(0);
5914   EVT DstVT = BC->getValueType(0);
5915 
5916   // The only vector instruction that can produce a scalar (remember,
5917   // since the bitcast was about to be turned into VMOVDRR, the source
5918   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5919   // Moreover, we can do this combine only if there is one use.
5920   // Finally, if the destination type is not a vector, there is not
5921   // much point on forcing everything on the vector bank.
5922   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5923       !Op.hasOneUse())
5924     return SDValue();
5925 
5926   // If the index is not constant, we will introduce an additional
5927   // multiply that will stick.
5928   // Give up in that case.
5929   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5930   if (!Index)
5931     return SDValue();
5932   unsigned DstNumElt = DstVT.getVectorNumElements();
5933 
5934   // Compute the new index.
5935   const APInt &APIntIndex = Index->getAPIntValue();
5936   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5937   NewIndex *= APIntIndex;
5938   // Check if the new constant index fits into i32.
5939   if (NewIndex.getBitWidth() > 32)
5940     return SDValue();
5941 
5942   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5943   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5944   SDLoc dl(Op);
5945   SDValue ExtractSrc = Op.getOperand(0);
5946   EVT VecVT = EVT::getVectorVT(
5947       *DAG.getContext(), DstVT.getScalarType(),
5948       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5949   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5950   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5951                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5952 }
5953 
5954 /// ExpandBITCAST - If the target supports VFP, this function is called to
5955 /// expand a bit convert where either the source or destination type is i64 to
5956 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5957 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5958 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const5959 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5960                                          const ARMSubtarget *Subtarget) const {
5961   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5962   SDLoc dl(N);
5963   SDValue Op = N->getOperand(0);
5964 
5965   // This function is only supposed to be called for i16 and i64 types, either
5966   // as the source or destination of the bit convert.
5967   EVT SrcVT = Op.getValueType();
5968   EVT DstVT = N->getValueType(0);
5969 
5970   if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
5971       (DstVT == MVT::f16 || DstVT == MVT::bf16))
5972     return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
5973                      DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
5974 
5975   if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
5976       (SrcVT == MVT::f16 || SrcVT == MVT::bf16))
5977     return DAG.getNode(
5978         ISD::TRUNCATE, SDLoc(N), DstVT,
5979         MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
5980 
5981   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5982     return SDValue();
5983 
5984   // Turn i64->f64 into VMOVDRR.
5985   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5986     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5987     // if we can combine the bitcast with its source.
5988     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5989       return Val;
5990 
5991     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5992                              DAG.getConstant(0, dl, MVT::i32));
5993     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5994                              DAG.getConstant(1, dl, MVT::i32));
5995     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5996                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5997   }
5998 
5999   // Turn f64->i64 into VMOVRRD.
6000   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
6001     SDValue Cvt;
6002     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
6003         SrcVT.getVectorNumElements() > 1)
6004       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6005                         DAG.getVTList(MVT::i32, MVT::i32),
6006                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
6007     else
6008       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6009                         DAG.getVTList(MVT::i32, MVT::i32), Op);
6010     // Merge the pieces into a single i64 value.
6011     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
6012   }
6013 
6014   return SDValue();
6015 }
6016 
6017 /// getZeroVector - Returns a vector of specified type with all zero elements.
6018 /// Zero vectors are used to represent vector negation and in those cases
6019 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
6020 /// not support i64 elements, so sometimes the zero vectors will need to be
6021 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
6022 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)6023 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6024   assert(VT.isVector() && "Expected a vector type");
6025   // The canonical modified immediate encoding of a zero vector is....0!
6026   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6027   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6028   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6029   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6030 }
6031 
6032 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6033 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const6034 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6035                                                 SelectionDAG &DAG) const {
6036   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6037   EVT VT = Op.getValueType();
6038   unsigned VTBits = VT.getSizeInBits();
6039   SDLoc dl(Op);
6040   SDValue ShOpLo = Op.getOperand(0);
6041   SDValue ShOpHi = Op.getOperand(1);
6042   SDValue ShAmt  = Op.getOperand(2);
6043   SDValue ARMcc;
6044   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6045   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6046 
6047   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6048 
6049   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6050                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6051   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6052   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6053                                    DAG.getConstant(VTBits, dl, MVT::i32));
6054   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6055   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6056   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6057   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6058                             ISD::SETGE, ARMcc, DAG, dl);
6059   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6060                            ARMcc, CCR, CmpLo);
6061 
6062   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6063   SDValue HiBigShift = Opc == ISD::SRA
6064                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
6065                                          DAG.getConstant(VTBits - 1, dl, VT))
6066                            : DAG.getConstant(0, dl, VT);
6067   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6068                             ISD::SETGE, ARMcc, DAG, dl);
6069   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6070                            ARMcc, CCR, CmpHi);
6071 
6072   SDValue Ops[2] = { Lo, Hi };
6073   return DAG.getMergeValues(Ops, dl);
6074 }
6075 
6076 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6077 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const6078 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6079                                                SelectionDAG &DAG) const {
6080   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6081   EVT VT = Op.getValueType();
6082   unsigned VTBits = VT.getSizeInBits();
6083   SDLoc dl(Op);
6084   SDValue ShOpLo = Op.getOperand(0);
6085   SDValue ShOpHi = Op.getOperand(1);
6086   SDValue ShAmt  = Op.getOperand(2);
6087   SDValue ARMcc;
6088   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6089 
6090   assert(Op.getOpcode() == ISD::SHL_PARTS);
6091   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6092                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6093   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6094   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6095   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6096 
6097   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6098                                    DAG.getConstant(VTBits, dl, MVT::i32));
6099   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6100   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6101                             ISD::SETGE, ARMcc, DAG, dl);
6102   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6103                            ARMcc, CCR, CmpHi);
6104 
6105   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6106                           ISD::SETGE, ARMcc, DAG, dl);
6107   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6108   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6109                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6110 
6111   SDValue Ops[2] = { Lo, Hi };
6112   return DAG.getMergeValues(Ops, dl);
6113 }
6114 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const6115 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6116                                             SelectionDAG &DAG) const {
6117   // The rounding mode is in bits 23:22 of the FPSCR.
6118   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6119   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6120   // so that the shift + and get folded into a bitfield extract.
6121   SDLoc dl(Op);
6122   SDValue Chain = Op.getOperand(0);
6123   SDValue Ops[] = {Chain,
6124                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6125 
6126   SDValue FPSCR =
6127       DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6128   Chain = FPSCR.getValue(1);
6129   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6130                                   DAG.getConstant(1U << 22, dl, MVT::i32));
6131   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6132                               DAG.getConstant(22, dl, MVT::i32));
6133   SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6134                             DAG.getConstant(3, dl, MVT::i32));
6135   return DAG.getMergeValues({And, Chain}, dl);
6136 }
6137 
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6138 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6139                          const ARMSubtarget *ST) {
6140   SDLoc dl(N);
6141   EVT VT = N->getValueType(0);
6142   if (VT.isVector() && ST->hasNEON()) {
6143 
6144     // Compute the least significant set bit: LSB = X & -X
6145     SDValue X = N->getOperand(0);
6146     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6147     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6148 
6149     EVT ElemTy = VT.getVectorElementType();
6150 
6151     if (ElemTy == MVT::i8) {
6152       // Compute with: cttz(x) = ctpop(lsb - 1)
6153       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6154                                 DAG.getTargetConstant(1, dl, ElemTy));
6155       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6156       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6157     }
6158 
6159     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6160         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6161       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6162       unsigned NumBits = ElemTy.getSizeInBits();
6163       SDValue WidthMinus1 =
6164           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6165                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6166       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6167       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6168     }
6169 
6170     // Compute with: cttz(x) = ctpop(lsb - 1)
6171 
6172     // Compute LSB - 1.
6173     SDValue Bits;
6174     if (ElemTy == MVT::i64) {
6175       // Load constant 0xffff'ffff'ffff'ffff to register.
6176       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6177                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6178       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6179     } else {
6180       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6181                                 DAG.getTargetConstant(1, dl, ElemTy));
6182       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6183     }
6184     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6185   }
6186 
6187   if (!ST->hasV6T2Ops())
6188     return SDValue();
6189 
6190   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6191   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6192 }
6193 
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6194 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6195                           const ARMSubtarget *ST) {
6196   EVT VT = N->getValueType(0);
6197   SDLoc DL(N);
6198 
6199   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6200   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6201           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6202          "Unexpected type for custom ctpop lowering");
6203 
6204   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6205   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6206   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6207   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6208 
6209   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6210   unsigned EltSize = 8;
6211   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6212   while (EltSize != VT.getScalarSizeInBits()) {
6213     SmallVector<SDValue, 8> Ops;
6214     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6215                                   TLI.getPointerTy(DAG.getDataLayout())));
6216     Ops.push_back(Res);
6217 
6218     EltSize *= 2;
6219     NumElts /= 2;
6220     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6221     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6222   }
6223 
6224   return Res;
6225 }
6226 
6227 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6228 /// operand of a vector shift operation, where all the elements of the
6229 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6230 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6231   // Ignore bit_converts.
6232   while (Op.getOpcode() == ISD::BITCAST)
6233     Op = Op.getOperand(0);
6234   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6235   APInt SplatBits, SplatUndef;
6236   unsigned SplatBitSize;
6237   bool HasAnyUndefs;
6238   if (!BVN ||
6239       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6240                             ElementBits) ||
6241       SplatBitSize > ElementBits)
6242     return false;
6243   Cnt = SplatBits.getSExtValue();
6244   return true;
6245 }
6246 
6247 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6248 /// operand of a vector shift left operation.  That value must be in the range:
6249 ///   0 <= Value < ElementBits for a left shift; or
6250 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6251 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6252   assert(VT.isVector() && "vector shift count is not a vector type");
6253   int64_t ElementBits = VT.getScalarSizeInBits();
6254   if (!getVShiftImm(Op, ElementBits, Cnt))
6255     return false;
6256   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6257 }
6258 
6259 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6260 /// operand of a vector shift right operation.  For a shift opcode, the value
6261 /// is positive, but for an intrinsic the value count must be negative. The
6262 /// absolute value must be in the range:
6263 ///   1 <= |Value| <= ElementBits for a right shift; or
6264 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)6265 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6266                          int64_t &Cnt) {
6267   assert(VT.isVector() && "vector shift count is not a vector type");
6268   int64_t ElementBits = VT.getScalarSizeInBits();
6269   if (!getVShiftImm(Op, ElementBits, Cnt))
6270     return false;
6271   if (!isIntrinsic)
6272     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6273   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6274     Cnt = -Cnt;
6275     return true;
6276   }
6277   return false;
6278 }
6279 
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6280 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6281                           const ARMSubtarget *ST) {
6282   EVT VT = N->getValueType(0);
6283   SDLoc dl(N);
6284   int64_t Cnt;
6285 
6286   if (!VT.isVector())
6287     return SDValue();
6288 
6289   // We essentially have two forms here. Shift by an immediate and shift by a
6290   // vector register (there are also shift by a gpr, but that is just handled
6291   // with a tablegen pattern). We cannot easily match shift by an immediate in
6292   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6293   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6294   // signed or unsigned, and a negative shift indicates a shift right).
6295   if (N->getOpcode() == ISD::SHL) {
6296     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6297       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6298                          DAG.getConstant(Cnt, dl, MVT::i32));
6299     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6300                        N->getOperand(1));
6301   }
6302 
6303   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6304          "unexpected vector shift opcode");
6305 
6306   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6307     unsigned VShiftOpc =
6308         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6309     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6310                        DAG.getConstant(Cnt, dl, MVT::i32));
6311   }
6312 
6313   // Other right shifts we don't have operations for (we use a shift left by a
6314   // negative number).
6315   EVT ShiftVT = N->getOperand(1).getValueType();
6316   SDValue NegatedCount = DAG.getNode(
6317       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6318   unsigned VShiftOpc =
6319       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6320   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6321 }
6322 
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6323 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6324                                 const ARMSubtarget *ST) {
6325   EVT VT = N->getValueType(0);
6326   SDLoc dl(N);
6327 
6328   // We can get here for a node like i32 = ISD::SHL i32, i64
6329   if (VT != MVT::i64)
6330     return SDValue();
6331 
6332   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6333           N->getOpcode() == ISD::SHL) &&
6334          "Unknown shift to lower!");
6335 
6336   unsigned ShOpc = N->getOpcode();
6337   if (ST->hasMVEIntegerOps()) {
6338     SDValue ShAmt = N->getOperand(1);
6339     unsigned ShPartsOpc = ARMISD::LSLL;
6340     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6341 
6342     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6343     // then do the default optimisation
6344     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6345         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6346       return SDValue();
6347 
6348     // Extract the lower 32 bits of the shift amount if it's not an i32
6349     if (ShAmt->getValueType(0) != MVT::i32)
6350       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6351 
6352     if (ShOpc == ISD::SRL) {
6353       if (!Con)
6354         // There is no t2LSRLr instruction so negate and perform an lsll if the
6355         // shift amount is in a register, emulating a right shift.
6356         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6357                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6358       else
6359         // Else generate an lsrl on the immediate shift amount
6360         ShPartsOpc = ARMISD::LSRL;
6361     } else if (ShOpc == ISD::SRA)
6362       ShPartsOpc = ARMISD::ASRL;
6363 
6364     // Lower 32 bits of the destination/source
6365     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6366                              DAG.getConstant(0, dl, MVT::i32));
6367     // Upper 32 bits of the destination/source
6368     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6369                              DAG.getConstant(1, dl, MVT::i32));
6370 
6371     // Generate the shift operation as computed above
6372     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6373                      ShAmt);
6374     // The upper 32 bits come from the second return value of lsll
6375     Hi = SDValue(Lo.getNode(), 1);
6376     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6377   }
6378 
6379   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6380   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6381     return SDValue();
6382 
6383   // If we are in thumb mode, we don't have RRX.
6384   if (ST->isThumb1Only())
6385     return SDValue();
6386 
6387   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6388   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6389                            DAG.getConstant(0, dl, MVT::i32));
6390   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6391                            DAG.getConstant(1, dl, MVT::i32));
6392 
6393   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6394   // captures the result into a carry flag.
6395   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6396   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6397 
6398   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6399   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6400 
6401   // Merge the pieces into a single i64 value.
6402  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6403 }
6404 
LowerVSETCC(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)6405 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6406                            const ARMSubtarget *ST) {
6407   bool Invert = false;
6408   bool Swap = false;
6409   unsigned Opc = ARMCC::AL;
6410 
6411   SDValue Op0 = Op.getOperand(0);
6412   SDValue Op1 = Op.getOperand(1);
6413   SDValue CC = Op.getOperand(2);
6414   EVT VT = Op.getValueType();
6415   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6416   SDLoc dl(Op);
6417 
6418   EVT CmpVT;
6419   if (ST->hasNEON())
6420     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6421   else {
6422     assert(ST->hasMVEIntegerOps() &&
6423            "No hardware support for integer vector comparison!");
6424 
6425     if (Op.getValueType().getVectorElementType() != MVT::i1)
6426       return SDValue();
6427 
6428     // Make sure we expand floating point setcc to scalar if we do not have
6429     // mve.fp, so that we can handle them from there.
6430     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6431       return SDValue();
6432 
6433     CmpVT = VT;
6434   }
6435 
6436   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6437       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6438     // Special-case integer 64-bit equality comparisons. They aren't legal,
6439     // but they can be lowered with a few vector instructions.
6440     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6441     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6442     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6443     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6444     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6445                               DAG.getCondCode(ISD::SETEQ));
6446     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6447     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6448     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6449     if (SetCCOpcode == ISD::SETNE)
6450       Merged = DAG.getNOT(dl, Merged, CmpVT);
6451     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6452     return Merged;
6453   }
6454 
6455   if (CmpVT.getVectorElementType() == MVT::i64)
6456     // 64-bit comparisons are not legal in general.
6457     return SDValue();
6458 
6459   if (Op1.getValueType().isFloatingPoint()) {
6460     switch (SetCCOpcode) {
6461     default: llvm_unreachable("Illegal FP comparison");
6462     case ISD::SETUNE:
6463     case ISD::SETNE:
6464       if (ST->hasMVEFloatOps()) {
6465         Opc = ARMCC::NE; break;
6466       } else {
6467         Invert = true; LLVM_FALLTHROUGH;
6468       }
6469     case ISD::SETOEQ:
6470     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6471     case ISD::SETOLT:
6472     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6473     case ISD::SETOGT:
6474     case ISD::SETGT:  Opc = ARMCC::GT; break;
6475     case ISD::SETOLE:
6476     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6477     case ISD::SETOGE:
6478     case ISD::SETGE: Opc = ARMCC::GE; break;
6479     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6480     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6481     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6482     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6483     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6484     case ISD::SETONE: {
6485       // Expand this to (OLT | OGT).
6486       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6487                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6488       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6489                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6490       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6491       if (Invert)
6492         Result = DAG.getNOT(dl, Result, VT);
6493       return Result;
6494     }
6495     case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6496     case ISD::SETO: {
6497       // Expand this to (OLT | OGE).
6498       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6499                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6500       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6501                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6502       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6503       if (Invert)
6504         Result = DAG.getNOT(dl, Result, VT);
6505       return Result;
6506     }
6507     }
6508   } else {
6509     // Integer comparisons.
6510     switch (SetCCOpcode) {
6511     default: llvm_unreachable("Illegal integer comparison");
6512     case ISD::SETNE:
6513       if (ST->hasMVEIntegerOps()) {
6514         Opc = ARMCC::NE; break;
6515       } else {
6516         Invert = true; LLVM_FALLTHROUGH;
6517       }
6518     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6519     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
6520     case ISD::SETGT:  Opc = ARMCC::GT; break;
6521     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6522     case ISD::SETGE:  Opc = ARMCC::GE; break;
6523     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6524     case ISD::SETUGT: Opc = ARMCC::HI; break;
6525     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6526     case ISD::SETUGE: Opc = ARMCC::HS; break;
6527     }
6528 
6529     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6530     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6531       SDValue AndOp;
6532       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6533         AndOp = Op0;
6534       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6535         AndOp = Op1;
6536 
6537       // Ignore bitconvert.
6538       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6539         AndOp = AndOp.getOperand(0);
6540 
6541       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6542         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6543         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6544         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6545         if (!Invert)
6546           Result = DAG.getNOT(dl, Result, VT);
6547         return Result;
6548       }
6549     }
6550   }
6551 
6552   if (Swap)
6553     std::swap(Op0, Op1);
6554 
6555   // If one of the operands is a constant vector zero, attempt to fold the
6556   // comparison to a specialized compare-against-zero form.
6557   SDValue SingleOp;
6558   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6559     SingleOp = Op0;
6560   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6561     if (Opc == ARMCC::GE)
6562       Opc = ARMCC::LE;
6563     else if (Opc == ARMCC::GT)
6564       Opc = ARMCC::LT;
6565     SingleOp = Op1;
6566   }
6567 
6568   SDValue Result;
6569   if (SingleOp.getNode()) {
6570     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6571                          DAG.getConstant(Opc, dl, MVT::i32));
6572   } else {
6573     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6574                          DAG.getConstant(Opc, dl, MVT::i32));
6575   }
6576 
6577   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6578 
6579   if (Invert)
6580     Result = DAG.getNOT(dl, Result, VT);
6581 
6582   return Result;
6583 }
6584 
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)6585 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6586   SDValue LHS = Op.getOperand(0);
6587   SDValue RHS = Op.getOperand(1);
6588   SDValue Carry = Op.getOperand(2);
6589   SDValue Cond = Op.getOperand(3);
6590   SDLoc DL(Op);
6591 
6592   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6593 
6594   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6595   // have to invert the carry first.
6596   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6597                       DAG.getConstant(1, DL, MVT::i32), Carry);
6598   // This converts the boolean value carry into the carry flag.
6599   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6600 
6601   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6602   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6603 
6604   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6605   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6606   SDValue ARMcc = DAG.getConstant(
6607       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6608   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6609   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6610                                    Cmp.getValue(1), SDValue());
6611   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6612                      CCR, Chain.getValue(1));
6613 }
6614 
6615 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6616 /// valid vector constant for a NEON or MVE instruction with a "modified
6617 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
isVMOVModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,EVT VectorVT,VMOVModImmType type)6618 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6619                                  unsigned SplatBitSize, SelectionDAG &DAG,
6620                                  const SDLoc &dl, EVT &VT, EVT VectorVT,
6621                                  VMOVModImmType type) {
6622   unsigned OpCmode, Imm;
6623   bool is128Bits = VectorVT.is128BitVector();
6624 
6625   // SplatBitSize is set to the smallest size that splats the vector, so a
6626   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6627   // immediate instructions others than VMOV do not support the 8-bit encoding
6628   // of a zero vector, and the default encoding of zero is supposed to be the
6629   // 32-bit version.
6630   if (SplatBits == 0)
6631     SplatBitSize = 32;
6632 
6633   switch (SplatBitSize) {
6634   case 8:
6635     if (type != VMOVModImm)
6636       return SDValue();
6637     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6638     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6639     OpCmode = 0xe;
6640     Imm = SplatBits;
6641     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6642     break;
6643 
6644   case 16:
6645     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6646     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6647     if ((SplatBits & ~0xff) == 0) {
6648       // Value = 0x00nn: Op=x, Cmode=100x.
6649       OpCmode = 0x8;
6650       Imm = SplatBits;
6651       break;
6652     }
6653     if ((SplatBits & ~0xff00) == 0) {
6654       // Value = 0xnn00: Op=x, Cmode=101x.
6655       OpCmode = 0xa;
6656       Imm = SplatBits >> 8;
6657       break;
6658     }
6659     return SDValue();
6660 
6661   case 32:
6662     // NEON's 32-bit VMOV supports splat values where:
6663     // * only one byte is nonzero, or
6664     // * the least significant byte is 0xff and the second byte is nonzero, or
6665     // * the least significant 2 bytes are 0xff and the third is nonzero.
6666     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6667     if ((SplatBits & ~0xff) == 0) {
6668       // Value = 0x000000nn: Op=x, Cmode=000x.
6669       OpCmode = 0;
6670       Imm = SplatBits;
6671       break;
6672     }
6673     if ((SplatBits & ~0xff00) == 0) {
6674       // Value = 0x0000nn00: Op=x, Cmode=001x.
6675       OpCmode = 0x2;
6676       Imm = SplatBits >> 8;
6677       break;
6678     }
6679     if ((SplatBits & ~0xff0000) == 0) {
6680       // Value = 0x00nn0000: Op=x, Cmode=010x.
6681       OpCmode = 0x4;
6682       Imm = SplatBits >> 16;
6683       break;
6684     }
6685     if ((SplatBits & ~0xff000000) == 0) {
6686       // Value = 0xnn000000: Op=x, Cmode=011x.
6687       OpCmode = 0x6;
6688       Imm = SplatBits >> 24;
6689       break;
6690     }
6691 
6692     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6693     if (type == OtherModImm) return SDValue();
6694 
6695     if ((SplatBits & ~0xffff) == 0 &&
6696         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6697       // Value = 0x0000nnff: Op=x, Cmode=1100.
6698       OpCmode = 0xc;
6699       Imm = SplatBits >> 8;
6700       break;
6701     }
6702 
6703     // cmode == 0b1101 is not supported for MVE VMVN
6704     if (type == MVEVMVNModImm)
6705       return SDValue();
6706 
6707     if ((SplatBits & ~0xffffff) == 0 &&
6708         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6709       // Value = 0x00nnffff: Op=x, Cmode=1101.
6710       OpCmode = 0xd;
6711       Imm = SplatBits >> 16;
6712       break;
6713     }
6714 
6715     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6716     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6717     // VMOV.I32.  A (very) minor optimization would be to replicate the value
6718     // and fall through here to test for a valid 64-bit splat.  But, then the
6719     // caller would also need to check and handle the change in size.
6720     return SDValue();
6721 
6722   case 64: {
6723     if (type != VMOVModImm)
6724       return SDValue();
6725     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6726     uint64_t BitMask = 0xff;
6727     uint64_t Val = 0;
6728     unsigned ImmMask = 1;
6729     Imm = 0;
6730     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6731       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6732         Val |= BitMask;
6733         Imm |= ImmMask;
6734       } else if ((SplatBits & BitMask) != 0) {
6735         return SDValue();
6736       }
6737       BitMask <<= 8;
6738       ImmMask <<= 1;
6739     }
6740 
6741     if (DAG.getDataLayout().isBigEndian()) {
6742       // Reverse the order of elements within the vector.
6743       unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
6744       unsigned Mask = (1 << BytesPerElem) - 1;
6745       unsigned NumElems = 8 / BytesPerElem;
6746       unsigned NewImm = 0;
6747       for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
6748         unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
6749         NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
6750       }
6751       Imm = NewImm;
6752     }
6753 
6754     // Op=1, Cmode=1110.
6755     OpCmode = 0x1e;
6756     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6757     break;
6758   }
6759 
6760   default:
6761     llvm_unreachable("unexpected size for isVMOVModifiedImm");
6762   }
6763 
6764   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6765   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6766 }
6767 
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6768 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6769                                            const ARMSubtarget *ST) const {
6770   EVT VT = Op.getValueType();
6771   bool IsDouble = (VT == MVT::f64);
6772   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6773   const APFloat &FPVal = CFP->getValueAPF();
6774 
6775   // Prevent floating-point constants from using literal loads
6776   // when execute-only is enabled.
6777   if (ST->genExecuteOnly()) {
6778     // If we can represent the constant as an immediate, don't lower it
6779     if (isFPImmLegal(FPVal, VT))
6780       return Op;
6781     // Otherwise, construct as integer, and move to float register
6782     APInt INTVal = FPVal.bitcastToAPInt();
6783     SDLoc DL(CFP);
6784     switch (VT.getSimpleVT().SimpleTy) {
6785       default:
6786         llvm_unreachable("Unknown floating point type!");
6787         break;
6788       case MVT::f64: {
6789         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6790         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6791         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6792       }
6793       case MVT::f32:
6794           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6795               DAG.getConstant(INTVal, DL, MVT::i32));
6796     }
6797   }
6798 
6799   if (!ST->hasVFP3Base())
6800     return SDValue();
6801 
6802   // Use the default (constant pool) lowering for double constants when we have
6803   // an SP-only FPU
6804   if (IsDouble && !Subtarget->hasFP64())
6805     return SDValue();
6806 
6807   // Try splatting with a VMOV.f32...
6808   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6809 
6810   if (ImmVal != -1) {
6811     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6812       // We have code in place to select a valid ConstantFP already, no need to
6813       // do any mangling.
6814       return Op;
6815     }
6816 
6817     // It's a float and we are trying to use NEON operations where
6818     // possible. Lower it to a splat followed by an extract.
6819     SDLoc DL(Op);
6820     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6821     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6822                                       NewVal);
6823     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6824                        DAG.getConstant(0, DL, MVT::i32));
6825   }
6826 
6827   // The rest of our options are NEON only, make sure that's allowed before
6828   // proceeding..
6829   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6830     return SDValue();
6831 
6832   EVT VMovVT;
6833   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6834 
6835   // It wouldn't really be worth bothering for doubles except for one very
6836   // important value, which does happen to match: 0.0. So make sure we don't do
6837   // anything stupid.
6838   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6839     return SDValue();
6840 
6841   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6842   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6843                                      VMovVT, VT, VMOVModImm);
6844   if (NewVal != SDValue()) {
6845     SDLoc DL(Op);
6846     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6847                                       NewVal);
6848     if (IsDouble)
6849       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6850 
6851     // It's a float: cast and extract a vector element.
6852     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6853                                        VecConstant);
6854     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6855                        DAG.getConstant(0, DL, MVT::i32));
6856   }
6857 
6858   // Finally, try a VMVN.i32
6859   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6860                              VT, VMVNModImm);
6861   if (NewVal != SDValue()) {
6862     SDLoc DL(Op);
6863     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6864 
6865     if (IsDouble)
6866       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6867 
6868     // It's a float: cast and extract a vector element.
6869     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6870                                        VecConstant);
6871     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6872                        DAG.getConstant(0, DL, MVT::i32));
6873   }
6874 
6875   return SDValue();
6876 }
6877 
6878 // check if an VEXT instruction can handle the shuffle mask when the
6879 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6880 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6881   unsigned NumElts = VT.getVectorNumElements();
6882 
6883   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6884   if (M[0] < 0)
6885     return false;
6886 
6887   Imm = M[0];
6888 
6889   // If this is a VEXT shuffle, the immediate value is the index of the first
6890   // element.  The other shuffle indices must be the successive elements after
6891   // the first one.
6892   unsigned ExpectedElt = Imm;
6893   for (unsigned i = 1; i < NumElts; ++i) {
6894     // Increment the expected index.  If it wraps around, just follow it
6895     // back to index zero and keep going.
6896     ++ExpectedElt;
6897     if (ExpectedElt == NumElts)
6898       ExpectedElt = 0;
6899 
6900     if (M[i] < 0) continue; // ignore UNDEF indices
6901     if (ExpectedElt != static_cast<unsigned>(M[i]))
6902       return false;
6903   }
6904 
6905   return true;
6906 }
6907 
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)6908 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6909                        bool &ReverseVEXT, unsigned &Imm) {
6910   unsigned NumElts = VT.getVectorNumElements();
6911   ReverseVEXT = false;
6912 
6913   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6914   if (M[0] < 0)
6915     return false;
6916 
6917   Imm = M[0];
6918 
6919   // If this is a VEXT shuffle, the immediate value is the index of the first
6920   // element.  The other shuffle indices must be the successive elements after
6921   // the first one.
6922   unsigned ExpectedElt = Imm;
6923   for (unsigned i = 1; i < NumElts; ++i) {
6924     // Increment the expected index.  If it wraps around, it may still be
6925     // a VEXT but the source vectors must be swapped.
6926     ExpectedElt += 1;
6927     if (ExpectedElt == NumElts * 2) {
6928       ExpectedElt = 0;
6929       ReverseVEXT = true;
6930     }
6931 
6932     if (M[i] < 0) continue; // ignore UNDEF indices
6933     if (ExpectedElt != static_cast<unsigned>(M[i]))
6934       return false;
6935   }
6936 
6937   // Adjust the index value if the source operands will be swapped.
6938   if (ReverseVEXT)
6939     Imm -= NumElts;
6940 
6941   return true;
6942 }
6943 
6944 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6945 /// instruction with the specified blocksize.  (The order of the elements
6946 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6947 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6948   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6949          "Only possible block sizes for VREV are: 16, 32, 64");
6950 
6951   unsigned EltSz = VT.getScalarSizeInBits();
6952   if (EltSz == 64)
6953     return false;
6954 
6955   unsigned NumElts = VT.getVectorNumElements();
6956   unsigned BlockElts = M[0] + 1;
6957   // If the first shuffle index is UNDEF, be optimistic.
6958   if (M[0] < 0)
6959     BlockElts = BlockSize / EltSz;
6960 
6961   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6962     return false;
6963 
6964   for (unsigned i = 0; i < NumElts; ++i) {
6965     if (M[i] < 0) continue; // ignore UNDEF indices
6966     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6967       return false;
6968   }
6969 
6970   return true;
6971 }
6972 
isVTBLMask(ArrayRef<int> M,EVT VT)6973 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6974   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6975   // range, then 0 is placed into the resulting vector. So pretty much any mask
6976   // of 8 elements can work here.
6977   return VT == MVT::v8i8 && M.size() == 8;
6978 }
6979 
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6980 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6981                                unsigned Index) {
6982   if (Mask.size() == Elements * 2)
6983     return Index / Elements;
6984   return Mask[Index] == 0 ? 0 : 1;
6985 }
6986 
6987 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6988 // checking that pairs of elements in the shuffle mask represent the same index
6989 // in each vector, incrementing the expected index by 2 at each step.
6990 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6991 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6992 //  v2={e,f,g,h}
6993 // WhichResult gives the offset for each element in the mask based on which
6994 // of the two results it belongs to.
6995 //
6996 // The transpose can be represented either as:
6997 // result1 = shufflevector v1, v2, result1_shuffle_mask
6998 // result2 = shufflevector v1, v2, result2_shuffle_mask
6999 // where v1/v2 and the shuffle masks have the same number of elements
7000 // (here WhichResult (see below) indicates which result is being checked)
7001 //
7002 // or as:
7003 // results = shufflevector v1, v2, shuffle_mask
7004 // where both results are returned in one vector and the shuffle mask has twice
7005 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7006 // want to check the low half and high half of the shuffle mask as if it were
7007 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7008 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7009   unsigned EltSz = VT.getScalarSizeInBits();
7010   if (EltSz == 64)
7011     return false;
7012 
7013   unsigned NumElts = VT.getVectorNumElements();
7014   if (M.size() != NumElts && M.size() != NumElts*2)
7015     return false;
7016 
7017   // If the mask is twice as long as the input vector then we need to check the
7018   // upper and lower parts of the mask with a matching value for WhichResult
7019   // FIXME: A mask with only even values will be rejected in case the first
7020   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7021   // M[0] is used to determine WhichResult
7022   for (unsigned i = 0; i < M.size(); i += NumElts) {
7023     WhichResult = SelectPairHalf(NumElts, M, i);
7024     for (unsigned j = 0; j < NumElts; j += 2) {
7025       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7026           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7027         return false;
7028     }
7029   }
7030 
7031   if (M.size() == NumElts*2)
7032     WhichResult = 0;
7033 
7034   return true;
7035 }
7036 
7037 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7038 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7039 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7040 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7041   unsigned EltSz = VT.getScalarSizeInBits();
7042   if (EltSz == 64)
7043     return false;
7044 
7045   unsigned NumElts = VT.getVectorNumElements();
7046   if (M.size() != NumElts && M.size() != NumElts*2)
7047     return false;
7048 
7049   for (unsigned i = 0; i < M.size(); i += NumElts) {
7050     WhichResult = SelectPairHalf(NumElts, M, i);
7051     for (unsigned j = 0; j < NumElts; j += 2) {
7052       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7053           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7054         return false;
7055     }
7056   }
7057 
7058   if (M.size() == NumElts*2)
7059     WhichResult = 0;
7060 
7061   return true;
7062 }
7063 
7064 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7065 // that the mask elements are either all even and in steps of size 2 or all odd
7066 // and in steps of size 2.
7067 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7068 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7069 //  v2={e,f,g,h}
7070 // Requires similar checks to that of isVTRNMask with
7071 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7072 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7073   unsigned EltSz = VT.getScalarSizeInBits();
7074   if (EltSz == 64)
7075     return false;
7076 
7077   unsigned NumElts = VT.getVectorNumElements();
7078   if (M.size() != NumElts && M.size() != NumElts*2)
7079     return false;
7080 
7081   for (unsigned i = 0; i < M.size(); i += NumElts) {
7082     WhichResult = SelectPairHalf(NumElts, M, i);
7083     for (unsigned j = 0; j < NumElts; ++j) {
7084       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7085         return false;
7086     }
7087   }
7088 
7089   if (M.size() == NumElts*2)
7090     WhichResult = 0;
7091 
7092   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7093   if (VT.is64BitVector() && EltSz == 32)
7094     return false;
7095 
7096   return true;
7097 }
7098 
7099 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7100 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7101 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7102 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7103   unsigned EltSz = VT.getScalarSizeInBits();
7104   if (EltSz == 64)
7105     return false;
7106 
7107   unsigned NumElts = VT.getVectorNumElements();
7108   if (M.size() != NumElts && M.size() != NumElts*2)
7109     return false;
7110 
7111   unsigned Half = NumElts / 2;
7112   for (unsigned i = 0; i < M.size(); i += NumElts) {
7113     WhichResult = SelectPairHalf(NumElts, M, i);
7114     for (unsigned j = 0; j < NumElts; j += Half) {
7115       unsigned Idx = WhichResult;
7116       for (unsigned k = 0; k < Half; ++k) {
7117         int MIdx = M[i + j + k];
7118         if (MIdx >= 0 && (unsigned) MIdx != Idx)
7119           return false;
7120         Idx += 2;
7121       }
7122     }
7123   }
7124 
7125   if (M.size() == NumElts*2)
7126     WhichResult = 0;
7127 
7128   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7129   if (VT.is64BitVector() && EltSz == 32)
7130     return false;
7131 
7132   return true;
7133 }
7134 
7135 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7136 // that pairs of elements of the shufflemask represent the same index in each
7137 // vector incrementing sequentially through the vectors.
7138 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7139 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7140 //  v2={e,f,g,h}
7141 // Requires similar checks to that of isVTRNMask with respect the how results
7142 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7143 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7144   unsigned EltSz = VT.getScalarSizeInBits();
7145   if (EltSz == 64)
7146     return false;
7147 
7148   unsigned NumElts = VT.getVectorNumElements();
7149   if (M.size() != NumElts && M.size() != NumElts*2)
7150     return false;
7151 
7152   for (unsigned i = 0; i < M.size(); i += NumElts) {
7153     WhichResult = SelectPairHalf(NumElts, M, i);
7154     unsigned Idx = WhichResult * NumElts / 2;
7155     for (unsigned j = 0; j < NumElts; j += 2) {
7156       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7157           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7158         return false;
7159       Idx += 1;
7160     }
7161   }
7162 
7163   if (M.size() == NumElts*2)
7164     WhichResult = 0;
7165 
7166   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7167   if (VT.is64BitVector() && EltSz == 32)
7168     return false;
7169 
7170   return true;
7171 }
7172 
7173 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7174 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7175 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)7176 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7177   unsigned EltSz = VT.getScalarSizeInBits();
7178   if (EltSz == 64)
7179     return false;
7180 
7181   unsigned NumElts = VT.getVectorNumElements();
7182   if (M.size() != NumElts && M.size() != NumElts*2)
7183     return false;
7184 
7185   for (unsigned i = 0; i < M.size(); i += NumElts) {
7186     WhichResult = SelectPairHalf(NumElts, M, i);
7187     unsigned Idx = WhichResult * NumElts / 2;
7188     for (unsigned j = 0; j < NumElts; j += 2) {
7189       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7190           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7191         return false;
7192       Idx += 1;
7193     }
7194   }
7195 
7196   if (M.size() == NumElts*2)
7197     WhichResult = 0;
7198 
7199   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7200   if (VT.is64BitVector() && EltSz == 32)
7201     return false;
7202 
7203   return true;
7204 }
7205 
7206 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7207 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)7208 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7209                                            unsigned &WhichResult,
7210                                            bool &isV_UNDEF) {
7211   isV_UNDEF = false;
7212   if (isVTRNMask(ShuffleMask, VT, WhichResult))
7213     return ARMISD::VTRN;
7214   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7215     return ARMISD::VUZP;
7216   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7217     return ARMISD::VZIP;
7218 
7219   isV_UNDEF = true;
7220   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7221     return ARMISD::VTRN;
7222   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7223     return ARMISD::VUZP;
7224   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7225     return ARMISD::VZIP;
7226 
7227   return 0;
7228 }
7229 
7230 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)7231 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7232   unsigned NumElts = VT.getVectorNumElements();
7233   // Make sure the mask has the right size.
7234   if (NumElts != M.size())
7235       return false;
7236 
7237   // Look for <15, ..., 3, -1, 1, 0>.
7238   for (unsigned i = 0; i != NumElts; ++i)
7239     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7240       return false;
7241 
7242   return true;
7243 }
7244 
isVMOVNMask(ArrayRef<int> M,EVT VT,bool Top)7245 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top) {
7246   unsigned NumElts = VT.getVectorNumElements();
7247   // Make sure the mask has the right size.
7248   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7249       return false;
7250 
7251   // If Top
7252   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7253   //   This inserts Input2 into Input1
7254   // else if not Top
7255   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7256   //   This inserts Input1 into Input2
7257   unsigned Offset = Top ? 0 : 1;
7258   for (unsigned i = 0; i < NumElts; i+=2) {
7259     if (M[i] >= 0 && M[i] != (int)i)
7260       return false;
7261     if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset))
7262       return false;
7263   }
7264 
7265   return true;
7266 }
7267 
7268 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7269 // from a pair of inputs. For example:
7270 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7271 //             FP_ROUND(EXTRACT_ELT(Y, 0),
7272 //             FP_ROUND(EXTRACT_ELT(X, 1),
7273 //             FP_ROUND(EXTRACT_ELT(Y, 1), ...)
LowerBuildVectorOfFPTrunc(SDValue BV,SelectionDAG & DAG,const ARMSubtarget * ST)7274 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7275                                          const ARMSubtarget *ST) {
7276   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7277   if (!ST->hasMVEFloatOps())
7278     return SDValue();
7279 
7280   SDLoc dl(BV);
7281   EVT VT = BV.getValueType();
7282   if (VT != MVT::v8f16)
7283     return SDValue();
7284 
7285   // We are looking for a buildvector of fptrunc elements, where all the
7286   // elements are interleavingly extracted from two sources. Check the first two
7287   // items are valid enough and extract some info from them (they are checked
7288   // properly in the loop below).
7289   if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7290       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7291       BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7292     return SDValue();
7293   if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7294       BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7295       BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7296     return SDValue();
7297   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7298   SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7299   if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7300     return SDValue();
7301 
7302   // Check all the values in the BuildVector line up with our expectations.
7303   for (unsigned i = 1; i < 4; i++) {
7304     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7305       return Trunc.getOpcode() == ISD::FP_ROUND &&
7306              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7307              Trunc.getOperand(0).getOperand(0) == Op &&
7308              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7309     };
7310     if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7311       return SDValue();
7312     if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7313       return SDValue();
7314   }
7315 
7316   SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7317                            DAG.getConstant(0, dl, MVT::i32));
7318   return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7319                      DAG.getConstant(1, dl, MVT::i32));
7320 }
7321 
7322 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7323 // from a single input on alternating lanes. For example:
7324 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7325 //             FP_ROUND(EXTRACT_ELT(X, 2),
7326 //             FP_ROUND(EXTRACT_ELT(X, 4), ...)
LowerBuildVectorOfFPExt(SDValue BV,SelectionDAG & DAG,const ARMSubtarget * ST)7327 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7328                                        const ARMSubtarget *ST) {
7329   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7330   if (!ST->hasMVEFloatOps())
7331     return SDValue();
7332 
7333   SDLoc dl(BV);
7334   EVT VT = BV.getValueType();
7335   if (VT != MVT::v4f32)
7336     return SDValue();
7337 
7338   // We are looking for a buildvector of fptext elements, where all the
7339   // elements are alternating lanes from a single source. For example <0,2,4,6>
7340   // or <1,3,5,7>. Check the first two items are valid enough and extract some
7341   // info from them (they are checked properly in the loop below).
7342   if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7343       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7344     return SDValue();
7345   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7346   int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7347   if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7348     return SDValue();
7349 
7350   // Check all the values in the BuildVector line up with our expectations.
7351   for (unsigned i = 1; i < 4; i++) {
7352     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7353       return Trunc.getOpcode() == ISD::FP_EXTEND &&
7354              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7355              Trunc.getOperand(0).getOperand(0) == Op &&
7356              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7357     };
7358     if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7359       return SDValue();
7360   }
7361 
7362   return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7363                      DAG.getConstant(Offset, dl, MVT::i32));
7364 }
7365 
7366 // If N is an integer constant that can be moved into a register in one
7367 // instruction, return an SDValue of such a constant (will become a MOV
7368 // instruction).  Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)7369 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7370                                      const ARMSubtarget *ST, const SDLoc &dl) {
7371   uint64_t Val;
7372   if (!isa<ConstantSDNode>(N))
7373     return SDValue();
7374   Val = cast<ConstantSDNode>(N)->getZExtValue();
7375 
7376   if (ST->isThumb1Only()) {
7377     if (Val <= 255 || ~Val <= 255)
7378       return DAG.getConstant(Val, dl, MVT::i32);
7379   } else {
7380     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7381       return DAG.getConstant(Val, dl, MVT::i32);
7382   }
7383   return SDValue();
7384 }
7385 
LowerBUILD_VECTOR_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7386 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7387                                     const ARMSubtarget *ST) {
7388   SDLoc dl(Op);
7389   EVT VT = Op.getValueType();
7390 
7391   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7392 
7393   unsigned NumElts = VT.getVectorNumElements();
7394   unsigned BoolMask;
7395   unsigned BitsPerBool;
7396   if (NumElts == 4) {
7397     BitsPerBool = 4;
7398     BoolMask = 0xf;
7399   } else if (NumElts == 8) {
7400     BitsPerBool = 2;
7401     BoolMask = 0x3;
7402   } else if (NumElts == 16) {
7403     BitsPerBool = 1;
7404     BoolMask = 0x1;
7405   } else
7406     return SDValue();
7407 
7408   // If this is a single value copied into all lanes (a splat), we can just sign
7409   // extend that single value
7410   SDValue FirstOp = Op.getOperand(0);
7411   if (!isa<ConstantSDNode>(FirstOp) &&
7412       std::all_of(std::next(Op->op_begin()), Op->op_end(),
7413                   [&FirstOp](SDUse &U) {
7414                     return U.get().isUndef() || U.get() == FirstOp;
7415                   })) {
7416     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7417                               DAG.getValueType(MVT::i1));
7418     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7419   }
7420 
7421   // First create base with bits set where known
7422   unsigned Bits32 = 0;
7423   for (unsigned i = 0; i < NumElts; ++i) {
7424     SDValue V = Op.getOperand(i);
7425     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7426       continue;
7427     bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7428     if (BitSet)
7429       Bits32 |= BoolMask << (i * BitsPerBool);
7430   }
7431 
7432   // Add in unknown nodes
7433   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7434                              DAG.getConstant(Bits32, dl, MVT::i32));
7435   for (unsigned i = 0; i < NumElts; ++i) {
7436     SDValue V = Op.getOperand(i);
7437     if (isa<ConstantSDNode>(V) || V.isUndef())
7438       continue;
7439     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7440                        DAG.getConstant(i, dl, MVT::i32));
7441   }
7442 
7443   return Base;
7444 }
7445 
7446 // If this is a case we can't handle, return null and let the default
7447 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const7448 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7449                                              const ARMSubtarget *ST) const {
7450   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7451   SDLoc dl(Op);
7452   EVT VT = Op.getValueType();
7453 
7454   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7455     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7456 
7457   APInt SplatBits, SplatUndef;
7458   unsigned SplatBitSize;
7459   bool HasAnyUndefs;
7460   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7461     if (SplatUndef.isAllOnesValue())
7462       return DAG.getUNDEF(VT);
7463 
7464     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7465         (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7466       // Check if an immediate VMOV works.
7467       EVT VmovVT;
7468       SDValue Val =
7469           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7470                             SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7471 
7472       if (Val.getNode()) {
7473         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7474         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7475       }
7476 
7477       // Try an immediate VMVN.
7478       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7479       Val = isVMOVModifiedImm(
7480           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7481           VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7482       if (Val.getNode()) {
7483         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7484         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7485       }
7486 
7487       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7488       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7489         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7490         if (ImmVal != -1) {
7491           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7492           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7493         }
7494       }
7495     }
7496   }
7497 
7498   // Scan through the operands to see if only one value is used.
7499   //
7500   // As an optimisation, even if more than one value is used it may be more
7501   // profitable to splat with one value then change some lanes.
7502   //
7503   // Heuristically we decide to do this if the vector has a "dominant" value,
7504   // defined as splatted to more than half of the lanes.
7505   unsigned NumElts = VT.getVectorNumElements();
7506   bool isOnlyLowElement = true;
7507   bool usesOnlyOneValue = true;
7508   bool hasDominantValue = false;
7509   bool isConstant = true;
7510 
7511   // Map of the number of times a particular SDValue appears in the
7512   // element list.
7513   DenseMap<SDValue, unsigned> ValueCounts;
7514   SDValue Value;
7515   for (unsigned i = 0; i < NumElts; ++i) {
7516     SDValue V = Op.getOperand(i);
7517     if (V.isUndef())
7518       continue;
7519     if (i > 0)
7520       isOnlyLowElement = false;
7521     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7522       isConstant = false;
7523 
7524     ValueCounts.insert(std::make_pair(V, 0));
7525     unsigned &Count = ValueCounts[V];
7526 
7527     // Is this value dominant? (takes up more than half of the lanes)
7528     if (++Count > (NumElts / 2)) {
7529       hasDominantValue = true;
7530       Value = V;
7531     }
7532   }
7533   if (ValueCounts.size() != 1)
7534     usesOnlyOneValue = false;
7535   if (!Value.getNode() && !ValueCounts.empty())
7536     Value = ValueCounts.begin()->first;
7537 
7538   if (ValueCounts.empty())
7539     return DAG.getUNDEF(VT);
7540 
7541   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7542   // Keep going if we are hitting this case.
7543   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7544     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7545 
7546   unsigned EltSize = VT.getScalarSizeInBits();
7547 
7548   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
7549   // i32 and try again.
7550   if (hasDominantValue && EltSize <= 32) {
7551     if (!isConstant) {
7552       SDValue N;
7553 
7554       // If we are VDUPing a value that comes directly from a vector, that will
7555       // cause an unnecessary move to and from a GPR, where instead we could
7556       // just use VDUPLANE. We can only do this if the lane being extracted
7557       // is at a constant index, as the VDUP from lane instructions only have
7558       // constant-index forms.
7559       ConstantSDNode *constIndex;
7560       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7561           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7562         // We need to create a new undef vector to use for the VDUPLANE if the
7563         // size of the vector from which we get the value is different than the
7564         // size of the vector that we need to create. We will insert the element
7565         // such that the register coalescer will remove unnecessary copies.
7566         if (VT != Value->getOperand(0).getValueType()) {
7567           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7568                              VT.getVectorNumElements();
7569           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7570                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7571                         Value, DAG.getConstant(index, dl, MVT::i32)),
7572                            DAG.getConstant(index, dl, MVT::i32));
7573         } else
7574           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7575                         Value->getOperand(0), Value->getOperand(1));
7576       } else
7577         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7578 
7579       if (!usesOnlyOneValue) {
7580         // The dominant value was splatted as 'N', but we now have to insert
7581         // all differing elements.
7582         for (unsigned I = 0; I < NumElts; ++I) {
7583           if (Op.getOperand(I) == Value)
7584             continue;
7585           SmallVector<SDValue, 3> Ops;
7586           Ops.push_back(N);
7587           Ops.push_back(Op.getOperand(I));
7588           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7589           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7590         }
7591       }
7592       return N;
7593     }
7594     if (VT.getVectorElementType().isFloatingPoint()) {
7595       SmallVector<SDValue, 8> Ops;
7596       MVT FVT = VT.getVectorElementType().getSimpleVT();
7597       assert(FVT == MVT::f32 || FVT == MVT::f16);
7598       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7599       for (unsigned i = 0; i < NumElts; ++i)
7600         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7601                                   Op.getOperand(i)));
7602       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7603       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7604       Val = LowerBUILD_VECTOR(Val, DAG, ST);
7605       if (Val.getNode())
7606         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7607     }
7608     if (usesOnlyOneValue) {
7609       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7610       if (isConstant && Val.getNode())
7611         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7612     }
7613   }
7614 
7615   // If all elements are constants and the case above didn't get hit, fall back
7616   // to the default expansion, which will generate a load from the constant
7617   // pool.
7618   if (isConstant)
7619     return SDValue();
7620 
7621   // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
7622   // vmovn). Empirical tests suggest this is rarely worth it for vectors of
7623   // length <= 2.
7624   if (NumElts >= 4)
7625     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7626       return shuffle;
7627 
7628   // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
7629   // VCVT's
7630   if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
7631     return VCVT;
7632   if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
7633     return VCVT;
7634 
7635   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7636     // If we haven't found an efficient lowering, try splitting a 128-bit vector
7637     // into two 64-bit vectors; we might discover a better way to lower it.
7638     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7639     EVT ExtVT = VT.getVectorElementType();
7640     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7641     SDValue Lower =
7642         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7643     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7644       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7645     SDValue Upper = DAG.getBuildVector(
7646         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7647     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7648       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7649     if (Lower && Upper)
7650       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7651   }
7652 
7653   // Vectors with 32- or 64-bit elements can be built by directly assigning
7654   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
7655   // will be legalized.
7656   if (EltSize >= 32) {
7657     // Do the expansion with floating-point types, since that is what the VFP
7658     // registers are defined to use, and since i64 is not legal.
7659     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7660     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7661     SmallVector<SDValue, 8> Ops;
7662     for (unsigned i = 0; i < NumElts; ++i)
7663       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7664     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7665     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7666   }
7667 
7668   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7669   // know the default expansion would otherwise fall back on something even
7670   // worse. For a vector with one or two non-undef values, that's
7671   // scalar_to_vector for the elements followed by a shuffle (provided the
7672   // shuffle is valid for the target) and materialization element by element
7673   // on the stack followed by a load for everything else.
7674   if (!isConstant && !usesOnlyOneValue) {
7675     SDValue Vec = DAG.getUNDEF(VT);
7676     for (unsigned i = 0 ; i < NumElts; ++i) {
7677       SDValue V = Op.getOperand(i);
7678       if (V.isUndef())
7679         continue;
7680       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7681       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7682     }
7683     return Vec;
7684   }
7685 
7686   return SDValue();
7687 }
7688 
7689 // Gather data to see if the operation can be modelled as a
7690 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const7691 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7692                                               SelectionDAG &DAG) const {
7693   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7694   SDLoc dl(Op);
7695   EVT VT = Op.getValueType();
7696   unsigned NumElts = VT.getVectorNumElements();
7697 
7698   struct ShuffleSourceInfo {
7699     SDValue Vec;
7700     unsigned MinElt = std::numeric_limits<unsigned>::max();
7701     unsigned MaxElt = 0;
7702 
7703     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7704     // be compatible with the shuffle we intend to construct. As a result
7705     // ShuffleVec will be some sliding window into the original Vec.
7706     SDValue ShuffleVec;
7707 
7708     // Code should guarantee that element i in Vec starts at element "WindowBase
7709     // + i * WindowScale in ShuffleVec".
7710     int WindowBase = 0;
7711     int WindowScale = 1;
7712 
7713     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7714 
7715     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7716   };
7717 
7718   // First gather all vectors used as an immediate source for this BUILD_VECTOR
7719   // node.
7720   SmallVector<ShuffleSourceInfo, 2> Sources;
7721   for (unsigned i = 0; i < NumElts; ++i) {
7722     SDValue V = Op.getOperand(i);
7723     if (V.isUndef())
7724       continue;
7725     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7726       // A shuffle can only come from building a vector from various
7727       // elements of other vectors.
7728       return SDValue();
7729     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7730       // Furthermore, shuffles require a constant mask, whereas extractelts
7731       // accept variable indices.
7732       return SDValue();
7733     }
7734 
7735     // Add this element source to the list if it's not already there.
7736     SDValue SourceVec = V.getOperand(0);
7737     auto Source = llvm::find(Sources, SourceVec);
7738     if (Source == Sources.end())
7739       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7740 
7741     // Update the minimum and maximum lane number seen.
7742     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7743     Source->MinElt = std::min(Source->MinElt, EltNo);
7744     Source->MaxElt = std::max(Source->MaxElt, EltNo);
7745   }
7746 
7747   // Currently only do something sane when at most two source vectors
7748   // are involved.
7749   if (Sources.size() > 2)
7750     return SDValue();
7751 
7752   // Find out the smallest element size among result and two sources, and use
7753   // it as element size to build the shuffle_vector.
7754   EVT SmallestEltTy = VT.getVectorElementType();
7755   for (auto &Source : Sources) {
7756     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7757     if (SrcEltTy.bitsLT(SmallestEltTy))
7758       SmallestEltTy = SrcEltTy;
7759   }
7760   unsigned ResMultiplier =
7761       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7762   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7763   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7764 
7765   // If the source vector is too wide or too narrow, we may nevertheless be able
7766   // to construct a compatible shuffle either by concatenating it with UNDEF or
7767   // extracting a suitable range of elements.
7768   for (auto &Src : Sources) {
7769     EVT SrcVT = Src.ShuffleVec.getValueType();
7770 
7771     uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
7772     uint64_t VTSize = VT.getFixedSizeInBits();
7773     if (SrcVTSize == VTSize)
7774       continue;
7775 
7776     // This stage of the search produces a source with the same element type as
7777     // the original, but with a total width matching the BUILD_VECTOR output.
7778     EVT EltVT = SrcVT.getVectorElementType();
7779     unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
7780     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7781 
7782     if (SrcVTSize < VTSize) {
7783       if (2 * SrcVTSize != VTSize)
7784         return SDValue();
7785       // We can pad out the smaller vector for free, so if it's part of a
7786       // shuffle...
7787       Src.ShuffleVec =
7788           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7789                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7790       continue;
7791     }
7792 
7793     if (SrcVTSize != 2 * VTSize)
7794       return SDValue();
7795 
7796     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7797       // Span too large for a VEXT to cope
7798       return SDValue();
7799     }
7800 
7801     if (Src.MinElt >= NumSrcElts) {
7802       // The extraction can just take the second half
7803       Src.ShuffleVec =
7804           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7805                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7806       Src.WindowBase = -NumSrcElts;
7807     } else if (Src.MaxElt < NumSrcElts) {
7808       // The extraction can just take the first half
7809       Src.ShuffleVec =
7810           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7811                       DAG.getConstant(0, dl, MVT::i32));
7812     } else {
7813       // An actual VEXT is needed
7814       SDValue VEXTSrc1 =
7815           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7816                       DAG.getConstant(0, dl, MVT::i32));
7817       SDValue VEXTSrc2 =
7818           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7819                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7820 
7821       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7822                                    VEXTSrc2,
7823                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
7824       Src.WindowBase = -Src.MinElt;
7825     }
7826   }
7827 
7828   // Another possible incompatibility occurs from the vector element types. We
7829   // can fix this by bitcasting the source vectors to the same type we intend
7830   // for the shuffle.
7831   for (auto &Src : Sources) {
7832     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7833     if (SrcEltTy == SmallestEltTy)
7834       continue;
7835     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7836     Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
7837     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7838     Src.WindowBase *= Src.WindowScale;
7839   }
7840 
7841   // Final sanity check before we try to actually produce a shuffle.
7842   LLVM_DEBUG(for (auto Src
7843                   : Sources)
7844                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7845 
7846   // The stars all align, our next step is to produce the mask for the shuffle.
7847   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7848   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7849   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7850     SDValue Entry = Op.getOperand(i);
7851     if (Entry.isUndef())
7852       continue;
7853 
7854     auto Src = llvm::find(Sources, Entry.getOperand(0));
7855     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7856 
7857     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7858     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7859     // segment.
7860     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7861     int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
7862                                VT.getScalarSizeInBits());
7863     int LanesDefined = BitsDefined / BitsPerShuffleLane;
7864 
7865     // This source is expected to fill ResMultiplier lanes of the final shuffle,
7866     // starting at the appropriate offset.
7867     int *LaneMask = &Mask[i * ResMultiplier];
7868 
7869     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7870     ExtractBase += NumElts * (Src - Sources.begin());
7871     for (int j = 0; j < LanesDefined; ++j)
7872       LaneMask[j] = ExtractBase + j;
7873   }
7874 
7875 
7876   // We can't handle more than two sources. This should have already
7877   // been checked before this point.
7878   assert(Sources.size() <= 2 && "Too many sources!");
7879 
7880   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7881   for (unsigned i = 0; i < Sources.size(); ++i)
7882     ShuffleOps[i] = Sources[i].ShuffleVec;
7883 
7884   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7885                                             ShuffleOps[1], Mask, DAG);
7886   if (!Shuffle)
7887     return SDValue();
7888   return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
7889 }
7890 
7891 enum ShuffleOpCodes {
7892   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7893   OP_VREV,
7894   OP_VDUP0,
7895   OP_VDUP1,
7896   OP_VDUP2,
7897   OP_VDUP3,
7898   OP_VEXT1,
7899   OP_VEXT2,
7900   OP_VEXT3,
7901   OP_VUZPL, // VUZP, left result
7902   OP_VUZPR, // VUZP, right result
7903   OP_VZIPL, // VZIP, left result
7904   OP_VZIPR, // VZIP, right result
7905   OP_VTRNL, // VTRN, left result
7906   OP_VTRNR  // VTRN, right result
7907 };
7908 
isLegalMVEShuffleOp(unsigned PFEntry)7909 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7910   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7911   switch (OpNum) {
7912   case OP_COPY:
7913   case OP_VREV:
7914   case OP_VDUP0:
7915   case OP_VDUP1:
7916   case OP_VDUP2:
7917   case OP_VDUP3:
7918     return true;
7919   }
7920   return false;
7921 }
7922 
7923 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7924 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7925 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7926 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7927 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7928   if (VT.getVectorNumElements() == 4 &&
7929       (VT.is128BitVector() || VT.is64BitVector())) {
7930     unsigned PFIndexes[4];
7931     for (unsigned i = 0; i != 4; ++i) {
7932       if (M[i] < 0)
7933         PFIndexes[i] = 8;
7934       else
7935         PFIndexes[i] = M[i];
7936     }
7937 
7938     // Compute the index in the perfect shuffle table.
7939     unsigned PFTableIndex =
7940       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7941     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7942     unsigned Cost = (PFEntry >> 30);
7943 
7944     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7945       return true;
7946   }
7947 
7948   bool ReverseVEXT, isV_UNDEF;
7949   unsigned Imm, WhichResult;
7950 
7951   unsigned EltSize = VT.getScalarSizeInBits();
7952   if (EltSize >= 32 ||
7953       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7954       ShuffleVectorInst::isIdentityMask(M) ||
7955       isVREVMask(M, VT, 64) ||
7956       isVREVMask(M, VT, 32) ||
7957       isVREVMask(M, VT, 16))
7958     return true;
7959   else if (Subtarget->hasNEON() &&
7960            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7961             isVTBLMask(M, VT) ||
7962             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7963     return true;
7964   else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7965            isReverseMask(M, VT))
7966     return true;
7967   else if (Subtarget->hasMVEIntegerOps() &&
7968            (isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1)))
7969     return true;
7970   else
7971     return false;
7972 }
7973 
7974 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7975 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)7976 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7977                                       SDValue RHS, SelectionDAG &DAG,
7978                                       const SDLoc &dl) {
7979   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7980   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7981   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7982 
7983   if (OpNum == OP_COPY) {
7984     if (LHSID == (1*9+2)*9+3) return LHS;
7985     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7986     return RHS;
7987   }
7988 
7989   SDValue OpLHS, OpRHS;
7990   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7991   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7992   EVT VT = OpLHS.getValueType();
7993 
7994   switch (OpNum) {
7995   default: llvm_unreachable("Unknown shuffle opcode!");
7996   case OP_VREV:
7997     // VREV divides the vector in half and swaps within the half.
7998     if (VT.getVectorElementType() == MVT::i32 ||
7999         VT.getVectorElementType() == MVT::f32)
8000       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8001     // vrev <4 x i16> -> VREV32
8002     if (VT.getVectorElementType() == MVT::i16)
8003       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8004     // vrev <4 x i8> -> VREV16
8005     assert(VT.getVectorElementType() == MVT::i8);
8006     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8007   case OP_VDUP0:
8008   case OP_VDUP1:
8009   case OP_VDUP2:
8010   case OP_VDUP3:
8011     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8012                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8013   case OP_VEXT1:
8014   case OP_VEXT2:
8015   case OP_VEXT3:
8016     return DAG.getNode(ARMISD::VEXT, dl, VT,
8017                        OpLHS, OpRHS,
8018                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8019   case OP_VUZPL:
8020   case OP_VUZPR:
8021     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8022                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8023   case OP_VZIPL:
8024   case OP_VZIPR:
8025     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8026                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8027   case OP_VTRNL:
8028   case OP_VTRNR:
8029     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8030                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8031   }
8032 }
8033 
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8034 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8035                                        ArrayRef<int> ShuffleMask,
8036                                        SelectionDAG &DAG) {
8037   // Check to see if we can use the VTBL instruction.
8038   SDValue V1 = Op.getOperand(0);
8039   SDValue V2 = Op.getOperand(1);
8040   SDLoc DL(Op);
8041 
8042   SmallVector<SDValue, 8> VTBLMask;
8043   for (ArrayRef<int>::iterator
8044          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
8045     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
8046 
8047   if (V2.getNode()->isUndef())
8048     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8049                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8050 
8051   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8052                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8053 }
8054 
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)8055 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
8056                                                       SelectionDAG &DAG) {
8057   SDLoc DL(Op);
8058   SDValue OpLHS = Op.getOperand(0);
8059   EVT VT = OpLHS.getValueType();
8060 
8061   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
8062          "Expect an v8i16/v16i8 type");
8063   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
8064   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
8065   // extract the first 8 bytes into the top double word and the last 8 bytes
8066   // into the bottom double word. The v8i16 case is similar.
8067   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
8068   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
8069                      DAG.getConstant(ExtractNum, DL, MVT::i32));
8070 }
8071 
getVectorTyFromPredicateVector(EVT VT)8072 static EVT getVectorTyFromPredicateVector(EVT VT) {
8073   switch (VT.getSimpleVT().SimpleTy) {
8074   case MVT::v4i1:
8075     return MVT::v4i32;
8076   case MVT::v8i1:
8077     return MVT::v8i16;
8078   case MVT::v16i1:
8079     return MVT::v16i8;
8080   default:
8081     llvm_unreachable("Unexpected vector predicate type");
8082   }
8083 }
8084 
PromoteMVEPredVector(SDLoc dl,SDValue Pred,EVT VT,SelectionDAG & DAG)8085 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8086                                     SelectionDAG &DAG) {
8087   // Converting from boolean predicates to integers involves creating a vector
8088   // of all ones or all zeroes and selecting the lanes based upon the real
8089   // predicate.
8090   SDValue AllOnes =
8091       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8092   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8093 
8094   SDValue AllZeroes =
8095       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8096   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8097 
8098   // Get full vector type from predicate type
8099   EVT NewVT = getVectorTyFromPredicateVector(VT);
8100 
8101   SDValue RecastV1;
8102   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8103   // this to a v16i1. This cannot be done with an ordinary bitcast because the
8104   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8105   // since we know in hardware the sizes are really the same.
8106   if (VT != MVT::v16i1)
8107     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8108   else
8109     RecastV1 = Pred;
8110 
8111   // Select either all ones or zeroes depending upon the real predicate bits.
8112   SDValue PredAsVector =
8113       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8114 
8115   // Recast our new predicate-as-integer v16i8 vector into something
8116   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8117   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8118 }
8119 
LowerVECTOR_SHUFFLE_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8120 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8121                                       const ARMSubtarget *ST) {
8122   EVT VT = Op.getValueType();
8123   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8124   ArrayRef<int> ShuffleMask = SVN->getMask();
8125 
8126   assert(ST->hasMVEIntegerOps() &&
8127          "No support for vector shuffle of boolean predicates");
8128 
8129   SDValue V1 = Op.getOperand(0);
8130   SDLoc dl(Op);
8131   if (isReverseMask(ShuffleMask, VT)) {
8132     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8133     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8134     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8135                               DAG.getConstant(16, dl, MVT::i32));
8136     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8137   }
8138 
8139   // Until we can come up with optimised cases for every single vector
8140   // shuffle in existence we have chosen the least painful strategy. This is
8141   // to essentially promote the boolean predicate to a 8-bit integer, where
8142   // each predicate represents a byte. Then we fall back on a normal integer
8143   // vector shuffle and convert the result back into a predicate vector. In
8144   // many cases the generated code might be even better than scalar code
8145   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8146   // fields in a register into 8 other arbitrary 2-bit fields!
8147   SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
8148   EVT NewVT = PredAsVector.getValueType();
8149 
8150   // Do the shuffle!
8151   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
8152                                           DAG.getUNDEF(NewVT), ShuffleMask);
8153 
8154   // Now return the result of comparing the shuffled vector with zero,
8155   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8156   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8157                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8158 }
8159 
LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)8160 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8161                                             ArrayRef<int> ShuffleMask,
8162                                             SelectionDAG &DAG) {
8163   // Attempt to lower the vector shuffle using as many whole register movs as
8164   // possible. This is useful for types smaller than 32bits, which would
8165   // often otherwise become a series for grp movs.
8166   SDLoc dl(Op);
8167   EVT VT = Op.getValueType();
8168   if (VT.getScalarSizeInBits() >= 32)
8169     return SDValue();
8170 
8171   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8172          "Unexpected vector type");
8173   int NumElts = VT.getVectorNumElements();
8174   int QuarterSize = NumElts / 4;
8175   // The four final parts of the vector, as i32's
8176   SDValue Parts[4];
8177 
8178   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8179   // <u,u,u,u>), returning the vmov lane index
8180   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8181     // Detect which mov lane this would be from the first non-undef element.
8182     int MovIdx = -1;
8183     for (int i = 0; i < Length; i++) {
8184       if (ShuffleMask[Start + i] >= 0) {
8185         if (ShuffleMask[Start + i] % Length != i)
8186           return -1;
8187         MovIdx = ShuffleMask[Start + i] / Length;
8188         break;
8189       }
8190     }
8191     // If all items are undef, leave this for other combines
8192     if (MovIdx == -1)
8193       return -1;
8194     // Check the remaining values are the correct part of the same mov
8195     for (int i = 1; i < Length; i++) {
8196       if (ShuffleMask[Start + i] >= 0 &&
8197           (ShuffleMask[Start + i] / Length != MovIdx ||
8198            ShuffleMask[Start + i] % Length != i))
8199         return -1;
8200     }
8201     return MovIdx;
8202   };
8203 
8204   for (int Part = 0; Part < 4; ++Part) {
8205     // Does this part look like a mov
8206     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8207     if (Elt != -1) {
8208       SDValue Input = Op->getOperand(0);
8209       if (Elt >= 4) {
8210         Input = Op->getOperand(1);
8211         Elt -= 4;
8212       }
8213       SDValue BitCast = DAG.getBitcast(MVT::v4i32, Input);
8214       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast,
8215                                 DAG.getConstant(Elt, dl, MVT::i32));
8216     }
8217   }
8218 
8219   // Nothing interesting found, just return
8220   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8221     return SDValue();
8222 
8223   // The other parts need to be built with the old shuffle vector, cast to a
8224   // v4i32 and extract_vector_elts
8225   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8226     SmallVector<int, 16> NewShuffleMask;
8227     for (int Part = 0; Part < 4; ++Part)
8228       for (int i = 0; i < QuarterSize; i++)
8229         NewShuffleMask.push_back(
8230             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8231     SDValue NewShuffle = DAG.getVectorShuffle(
8232         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8233     SDValue BitCast = DAG.getBitcast(MVT::v4i32, NewShuffle);
8234 
8235     for (int Part = 0; Part < 4; ++Part)
8236       if (!Parts[Part])
8237         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
8238                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
8239   }
8240   // Build a vector out of the various parts and bitcast it back to the original
8241   // type.
8242   SDValue NewVec = DAG.getBuildVector(MVT::v4i32, dl, Parts);
8243   return DAG.getBitcast(VT, NewVec);
8244 }
8245 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8246 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8247                                    const ARMSubtarget *ST) {
8248   SDValue V1 = Op.getOperand(0);
8249   SDValue V2 = Op.getOperand(1);
8250   SDLoc dl(Op);
8251   EVT VT = Op.getValueType();
8252   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8253   unsigned EltSize = VT.getScalarSizeInBits();
8254 
8255   if (ST->hasMVEIntegerOps() && EltSize == 1)
8256     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8257 
8258   // Convert shuffles that are directly supported on NEON to target-specific
8259   // DAG nodes, instead of keeping them as shuffles and matching them again
8260   // during code selection.  This is more efficient and avoids the possibility
8261   // of inconsistencies between legalization and selection.
8262   // FIXME: floating-point vectors should be canonicalized to integer vectors
8263   // of the same time so that they get CSEd properly.
8264   ArrayRef<int> ShuffleMask = SVN->getMask();
8265 
8266   if (EltSize <= 32) {
8267     if (SVN->isSplat()) {
8268       int Lane = SVN->getSplatIndex();
8269       // If this is undef splat, generate it via "just" vdup, if possible.
8270       if (Lane == -1) Lane = 0;
8271 
8272       // Test if V1 is a SCALAR_TO_VECTOR.
8273       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8274         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8275       }
8276       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8277       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8278       // reaches it).
8279       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8280           !isa<ConstantSDNode>(V1.getOperand(0))) {
8281         bool IsScalarToVector = true;
8282         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8283           if (!V1.getOperand(i).isUndef()) {
8284             IsScalarToVector = false;
8285             break;
8286           }
8287         if (IsScalarToVector)
8288           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8289       }
8290       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8291                          DAG.getConstant(Lane, dl, MVT::i32));
8292     }
8293 
8294     bool ReverseVEXT = false;
8295     unsigned Imm = 0;
8296     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8297       if (ReverseVEXT)
8298         std::swap(V1, V2);
8299       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8300                          DAG.getConstant(Imm, dl, MVT::i32));
8301     }
8302 
8303     if (isVREVMask(ShuffleMask, VT, 64))
8304       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8305     if (isVREVMask(ShuffleMask, VT, 32))
8306       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8307     if (isVREVMask(ShuffleMask, VT, 16))
8308       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8309 
8310     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8311       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8312                          DAG.getConstant(Imm, dl, MVT::i32));
8313     }
8314 
8315     // Check for Neon shuffles that modify both input vectors in place.
8316     // If both results are used, i.e., if there are two shuffles with the same
8317     // source operands and with masks corresponding to both results of one of
8318     // these operations, DAG memoization will ensure that a single node is
8319     // used for both shuffles.
8320     unsigned WhichResult = 0;
8321     bool isV_UNDEF = false;
8322     if (ST->hasNEON()) {
8323       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8324               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8325         if (isV_UNDEF)
8326           V2 = V1;
8327         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8328             .getValue(WhichResult);
8329       }
8330     }
8331     if (ST->hasMVEIntegerOps()) {
8332       if (isVMOVNMask(ShuffleMask, VT, 0))
8333         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8334                            DAG.getConstant(0, dl, MVT::i32));
8335       if (isVMOVNMask(ShuffleMask, VT, 1))
8336         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8337                            DAG.getConstant(1, dl, MVT::i32));
8338     }
8339 
8340     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8341     // shuffles that produce a result larger than their operands with:
8342     //   shuffle(concat(v1, undef), concat(v2, undef))
8343     // ->
8344     //   shuffle(concat(v1, v2), undef)
8345     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8346     //
8347     // This is useful in the general case, but there are special cases where
8348     // native shuffles produce larger results: the two-result ops.
8349     //
8350     // Look through the concat when lowering them:
8351     //   shuffle(concat(v1, v2), undef)
8352     // ->
8353     //   concat(VZIP(v1, v2):0, :1)
8354     //
8355     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8356       SDValue SubV1 = V1->getOperand(0);
8357       SDValue SubV2 = V1->getOperand(1);
8358       EVT SubVT = SubV1.getValueType();
8359 
8360       // We expect these to have been canonicalized to -1.
8361       assert(llvm::all_of(ShuffleMask, [&](int i) {
8362         return i < (int)VT.getVectorNumElements();
8363       }) && "Unexpected shuffle index into UNDEF operand!");
8364 
8365       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8366               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8367         if (isV_UNDEF)
8368           SubV2 = SubV1;
8369         assert((WhichResult == 0) &&
8370                "In-place shuffle of concat can only have one result!");
8371         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8372                                   SubV1, SubV2);
8373         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8374                            Res.getValue(1));
8375       }
8376     }
8377   }
8378 
8379   // If the shuffle is not directly supported and it has 4 elements, use
8380   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8381   unsigned NumElts = VT.getVectorNumElements();
8382   if (NumElts == 4) {
8383     unsigned PFIndexes[4];
8384     for (unsigned i = 0; i != 4; ++i) {
8385       if (ShuffleMask[i] < 0)
8386         PFIndexes[i] = 8;
8387       else
8388         PFIndexes[i] = ShuffleMask[i];
8389     }
8390 
8391     // Compute the index in the perfect shuffle table.
8392     unsigned PFTableIndex =
8393       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8394     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8395     unsigned Cost = (PFEntry >> 30);
8396 
8397     if (Cost <= 4) {
8398       if (ST->hasNEON())
8399         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8400       else if (isLegalMVEShuffleOp(PFEntry)) {
8401         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8402         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8403         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8404         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8405         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8406           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8407       }
8408     }
8409   }
8410 
8411   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8412   if (EltSize >= 32) {
8413     // Do the expansion with floating-point types, since that is what the VFP
8414     // registers are defined to use, and since i64 is not legal.
8415     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8416     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8417     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8418     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8419     SmallVector<SDValue, 8> Ops;
8420     for (unsigned i = 0; i < NumElts; ++i) {
8421       if (ShuffleMask[i] < 0)
8422         Ops.push_back(DAG.getUNDEF(EltVT));
8423       else
8424         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8425                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
8426                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8427                                                   dl, MVT::i32)));
8428     }
8429     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8430     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8431   }
8432 
8433   if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
8434     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
8435 
8436   if (ST->hasNEON() && VT == MVT::v8i8)
8437     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8438       return NewOp;
8439 
8440   if (ST->hasMVEIntegerOps())
8441     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8442       return NewOp;
8443 
8444   return SDValue();
8445 }
8446 
LowerINSERT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8447 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8448                                          const ARMSubtarget *ST) {
8449   EVT VecVT = Op.getOperand(0).getValueType();
8450   SDLoc dl(Op);
8451 
8452   assert(ST->hasMVEIntegerOps() &&
8453          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8454 
8455   SDValue Conv =
8456       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8457   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8458   unsigned LaneWidth =
8459       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8460   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8461   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8462                             Op.getOperand(1), DAG.getValueType(MVT::i1));
8463   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8464                             DAG.getConstant(~Mask, dl, MVT::i32));
8465   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8466 }
8467 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const8468 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8469                                                   SelectionDAG &DAG) const {
8470   // INSERT_VECTOR_ELT is legal only for immediate indexes.
8471   SDValue Lane = Op.getOperand(2);
8472   if (!isa<ConstantSDNode>(Lane))
8473     return SDValue();
8474 
8475   SDValue Elt = Op.getOperand(1);
8476   EVT EltVT = Elt.getValueType();
8477 
8478   if (Subtarget->hasMVEIntegerOps() &&
8479       Op.getValueType().getScalarSizeInBits() == 1)
8480     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8481 
8482   if (getTypeAction(*DAG.getContext(), EltVT) ==
8483       TargetLowering::TypePromoteFloat) {
8484     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
8485     // but the type system will try to do that if we don't intervene.
8486     // Reinterpret any such vector-element insertion as one with the
8487     // corresponding integer types.
8488 
8489     SDLoc dl(Op);
8490 
8491     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
8492     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
8493            TargetLowering::TypePromoteFloat);
8494 
8495     SDValue VecIn = Op.getOperand(0);
8496     EVT VecVT = VecIn.getValueType();
8497     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
8498                                   VecVT.getVectorNumElements());
8499 
8500     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
8501     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
8502     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
8503                                   IVecIn, IElt, Lane);
8504     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
8505   }
8506 
8507   return Op;
8508 }
8509 
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8510 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8511                                           const ARMSubtarget *ST) {
8512   EVT VecVT = Op.getOperand(0).getValueType();
8513   SDLoc dl(Op);
8514 
8515   assert(ST->hasMVEIntegerOps() &&
8516          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8517 
8518   SDValue Conv =
8519       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8520   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8521   unsigned LaneWidth =
8522       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8523   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
8524                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
8525   return Shift;
8526 }
8527 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8528 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
8529                                        const ARMSubtarget *ST) {
8530   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8531   SDValue Lane = Op.getOperand(1);
8532   if (!isa<ConstantSDNode>(Lane))
8533     return SDValue();
8534 
8535   SDValue Vec = Op.getOperand(0);
8536   EVT VT = Vec.getValueType();
8537 
8538   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8539     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
8540 
8541   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
8542     SDLoc dl(Op);
8543     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
8544   }
8545 
8546   return Op;
8547 }
8548 
LowerCONCAT_VECTORS_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8549 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
8550                                       const ARMSubtarget *ST) {
8551   SDValue V1 = Op.getOperand(0);
8552   SDValue V2 = Op.getOperand(1);
8553   SDLoc dl(Op);
8554   EVT VT = Op.getValueType();
8555   EVT Op1VT = V1.getValueType();
8556   EVT Op2VT = V2.getValueType();
8557   unsigned NumElts = VT.getVectorNumElements();
8558 
8559   assert(Op1VT == Op2VT && "Operand types don't match!");
8560   assert(VT.getScalarSizeInBits() == 1 &&
8561          "Unexpected custom CONCAT_VECTORS lowering");
8562   assert(ST->hasMVEIntegerOps() &&
8563          "CONCAT_VECTORS lowering only supported for MVE");
8564 
8565   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8566   SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
8567 
8568   // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8569   // promoted to v8i16, etc.
8570 
8571   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8572 
8573   // Extract the vector elements from Op1 and Op2 one by one and truncate them
8574   // to be the right size for the destination. For example, if Op1 is v4i1 then
8575   // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8576   // which when promoted is v8i16. That means each i32 element from Op1 needs
8577   // truncating to i16 and inserting in the result.
8578   EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
8579   SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
8580   auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
8581     EVT NewVT = NewV.getValueType();
8582     EVT ConcatVT = ConVec.getValueType();
8583     for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
8584       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
8585                                 DAG.getIntPtrConstant(i, dl));
8586       ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
8587                            DAG.getConstant(j, dl, MVT::i32));
8588     }
8589     return ConVec;
8590   };
8591   unsigned j = 0;
8592   ConVec = ExractInto(NewV1, ConVec, j);
8593   ConVec = ExractInto(NewV2, ConVec, j);
8594 
8595   // Now return the result of comparing the subvector with zero,
8596   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8597   return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
8598                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8599 }
8600 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8601 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
8602                                    const ARMSubtarget *ST) {
8603   EVT VT = Op->getValueType(0);
8604   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8605     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
8606 
8607   // The only time a CONCAT_VECTORS operation can have legal types is when
8608   // two 64-bit vectors are concatenated to a 128-bit vector.
8609   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
8610          "unexpected CONCAT_VECTORS");
8611   SDLoc dl(Op);
8612   SDValue Val = DAG.getUNDEF(MVT::v2f64);
8613   SDValue Op0 = Op.getOperand(0);
8614   SDValue Op1 = Op.getOperand(1);
8615   if (!Op0.isUndef())
8616     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8617                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
8618                       DAG.getIntPtrConstant(0, dl));
8619   if (!Op1.isUndef())
8620     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8621                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
8622                       DAG.getIntPtrConstant(1, dl));
8623   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
8624 }
8625 
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8626 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
8627                                       const ARMSubtarget *ST) {
8628   SDValue V1 = Op.getOperand(0);
8629   SDValue V2 = Op.getOperand(1);
8630   SDLoc dl(Op);
8631   EVT VT = Op.getValueType();
8632   EVT Op1VT = V1.getValueType();
8633   unsigned NumElts = VT.getVectorNumElements();
8634   unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
8635 
8636   assert(VT.getScalarSizeInBits() == 1 &&
8637          "Unexpected custom EXTRACT_SUBVECTOR lowering");
8638   assert(ST->hasMVEIntegerOps() &&
8639          "EXTRACT_SUBVECTOR lowering only supported for MVE");
8640 
8641   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8642 
8643   // We now have Op1 promoted to a vector of integers, where v8i1 gets
8644   // promoted to v8i16, etc.
8645 
8646   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8647 
8648   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
8649   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
8650   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
8651     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
8652                               DAG.getIntPtrConstant(i, dl));
8653     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
8654                          DAG.getConstant(j, dl, MVT::i32));
8655   }
8656 
8657   // Now return the result of comparing the subvector with zero,
8658   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8659   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
8660                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8661 }
8662 
8663 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8664 /// element has been zero/sign-extended, depending on the isSigned parameter,
8665 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)8666 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
8667                                    bool isSigned) {
8668   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8669   EVT VT = N->getValueType(0);
8670   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
8671     SDNode *BVN = N->getOperand(0).getNode();
8672     if (BVN->getValueType(0) != MVT::v4i32 ||
8673         BVN->getOpcode() != ISD::BUILD_VECTOR)
8674       return false;
8675     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8676     unsigned HiElt = 1 - LoElt;
8677     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
8678     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
8679     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
8680     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
8681     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
8682       return false;
8683     if (isSigned) {
8684       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
8685           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
8686         return true;
8687     } else {
8688       if (Hi0->isNullValue() && Hi1->isNullValue())
8689         return true;
8690     }
8691     return false;
8692   }
8693 
8694   if (N->getOpcode() != ISD::BUILD_VECTOR)
8695     return false;
8696 
8697   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8698     SDNode *Elt = N->getOperand(i).getNode();
8699     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
8700       unsigned EltSize = VT.getScalarSizeInBits();
8701       unsigned HalfSize = EltSize / 2;
8702       if (isSigned) {
8703         if (!isIntN(HalfSize, C->getSExtValue()))
8704           return false;
8705       } else {
8706         if (!isUIntN(HalfSize, C->getZExtValue()))
8707           return false;
8708       }
8709       continue;
8710     }
8711     return false;
8712   }
8713 
8714   return true;
8715 }
8716 
8717 /// isSignExtended - Check if a node is a vector value that is sign-extended
8718 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)8719 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
8720   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
8721     return true;
8722   if (isExtendedBUILD_VECTOR(N, DAG, true))
8723     return true;
8724   return false;
8725 }
8726 
8727 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8728 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)8729 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8730   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
8731     return true;
8732   if (isExtendedBUILD_VECTOR(N, DAG, false))
8733     return true;
8734   return false;
8735 }
8736 
getExtensionTo64Bits(const EVT & OrigVT)8737 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8738   if (OrigVT.getSizeInBits() >= 64)
8739     return OrigVT;
8740 
8741   assert(OrigVT.isSimple() && "Expecting a simple value type");
8742 
8743   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8744   switch (OrigSimpleTy) {
8745   default: llvm_unreachable("Unexpected Vector Type");
8746   case MVT::v2i8:
8747   case MVT::v2i16:
8748      return MVT::v2i32;
8749   case MVT::v4i8:
8750     return  MVT::v4i16;
8751   }
8752 }
8753 
8754 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8755 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8756 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)8757 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8758                                             const EVT &OrigTy,
8759                                             const EVT &ExtTy,
8760                                             unsigned ExtOpcode) {
8761   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8762   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8763   // 64-bits we need to insert a new extension so that it will be 64-bits.
8764   assert(ExtTy.is128BitVector() && "Unexpected extension size");
8765   if (OrigTy.getSizeInBits() >= 64)
8766     return N;
8767 
8768   // Must extend size to at least 64 bits to be used as an operand for VMULL.
8769   EVT NewVT = getExtensionTo64Bits(OrigTy);
8770 
8771   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8772 }
8773 
8774 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8775 /// does not do any sign/zero extension. If the original vector is less
8776 /// than 64 bits, an appropriate extension will be added after the load to
8777 /// reach a total size of 64 bits. We have to add the extension separately
8778 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)8779 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8780   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8781 
8782   // The load already has the right type.
8783   if (ExtendedTy == LD->getMemoryVT())
8784     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8785                        LD->getBasePtr(), LD->getPointerInfo(),
8786                        LD->getAlignment(), LD->getMemOperand()->getFlags());
8787 
8788   // We need to create a zextload/sextload. We cannot just create a load
8789   // followed by a zext/zext node because LowerMUL is also run during normal
8790   // operation legalization where we can't create illegal types.
8791   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8792                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8793                         LD->getMemoryVT(), LD->getAlignment(),
8794                         LD->getMemOperand()->getFlags());
8795 }
8796 
8797 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8798 /// extending load, or BUILD_VECTOR with extended elements, return the
8799 /// unextended value. The unextended vector should be 64 bits so that it can
8800 /// be used as an operand to a VMULL instruction. If the original vector size
8801 /// before extension is less than 64 bits we add a an extension to resize
8802 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)8803 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8804   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
8805     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8806                                         N->getOperand(0)->getValueType(0),
8807                                         N->getValueType(0),
8808                                         N->getOpcode());
8809 
8810   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8811     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8812            "Expected extending load");
8813 
8814     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8815     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8816     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8817     SDValue extLoad =
8818         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8819     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8820 
8821     return newLoad;
8822   }
8823 
8824   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
8825   // have been legalized as a BITCAST from v4i32.
8826   if (N->getOpcode() == ISD::BITCAST) {
8827     SDNode *BVN = N->getOperand(0).getNode();
8828     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8829            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8830     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8831     return DAG.getBuildVector(
8832         MVT::v2i32, SDLoc(N),
8833         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8834   }
8835   // Construct a new BUILD_VECTOR with elements truncated to half the size.
8836   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8837   EVT VT = N->getValueType(0);
8838   unsigned EltSize = VT.getScalarSizeInBits() / 2;
8839   unsigned NumElts = VT.getVectorNumElements();
8840   MVT TruncVT = MVT::getIntegerVT(EltSize);
8841   SmallVector<SDValue, 8> Ops;
8842   SDLoc dl(N);
8843   for (unsigned i = 0; i != NumElts; ++i) {
8844     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8845     const APInt &CInt = C->getAPIntValue();
8846     // Element types smaller than 32 bits are not legal, so use i32 elements.
8847     // The values are implicitly truncated so sext vs. zext doesn't matter.
8848     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8849   }
8850   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8851 }
8852 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)8853 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8854   unsigned Opcode = N->getOpcode();
8855   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8856     SDNode *N0 = N->getOperand(0).getNode();
8857     SDNode *N1 = N->getOperand(1).getNode();
8858     return N0->hasOneUse() && N1->hasOneUse() &&
8859       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8860   }
8861   return false;
8862 }
8863 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)8864 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8865   unsigned Opcode = N->getOpcode();
8866   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8867     SDNode *N0 = N->getOperand(0).getNode();
8868     SDNode *N1 = N->getOperand(1).getNode();
8869     return N0->hasOneUse() && N1->hasOneUse() &&
8870       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8871   }
8872   return false;
8873 }
8874 
LowerMUL(SDValue Op,SelectionDAG & DAG)8875 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8876   // Multiplications are only custom-lowered for 128-bit vectors so that
8877   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
8878   EVT VT = Op.getValueType();
8879   assert(VT.is128BitVector() && VT.isInteger() &&
8880          "unexpected type for custom-lowering ISD::MUL");
8881   SDNode *N0 = Op.getOperand(0).getNode();
8882   SDNode *N1 = Op.getOperand(1).getNode();
8883   unsigned NewOpc = 0;
8884   bool isMLA = false;
8885   bool isN0SExt = isSignExtended(N0, DAG);
8886   bool isN1SExt = isSignExtended(N1, DAG);
8887   if (isN0SExt && isN1SExt)
8888     NewOpc = ARMISD::VMULLs;
8889   else {
8890     bool isN0ZExt = isZeroExtended(N0, DAG);
8891     bool isN1ZExt = isZeroExtended(N1, DAG);
8892     if (isN0ZExt && isN1ZExt)
8893       NewOpc = ARMISD::VMULLu;
8894     else if (isN1SExt || isN1ZExt) {
8895       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8896       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8897       if (isN1SExt && isAddSubSExt(N0, DAG)) {
8898         NewOpc = ARMISD::VMULLs;
8899         isMLA = true;
8900       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
8901         NewOpc = ARMISD::VMULLu;
8902         isMLA = true;
8903       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
8904         std::swap(N0, N1);
8905         NewOpc = ARMISD::VMULLu;
8906         isMLA = true;
8907       }
8908     }
8909 
8910     if (!NewOpc) {
8911       if (VT == MVT::v2i64)
8912         // Fall through to expand this.  It is not legal.
8913         return SDValue();
8914       else
8915         // Other vector multiplications are legal.
8916         return Op;
8917     }
8918   }
8919 
8920   // Legalize to a VMULL instruction.
8921   SDLoc DL(Op);
8922   SDValue Op0;
8923   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
8924   if (!isMLA) {
8925     Op0 = SkipExtensionForVMULL(N0, DAG);
8926     assert(Op0.getValueType().is64BitVector() &&
8927            Op1.getValueType().is64BitVector() &&
8928            "unexpected types for extended operands to VMULL");
8929     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
8930   }
8931 
8932   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8933   // isel lowering to take advantage of no-stall back to back vmul + vmla.
8934   //   vmull q0, d4, d6
8935   //   vmlal q0, d5, d6
8936   // is faster than
8937   //   vaddl q0, d4, d5
8938   //   vmovl q1, d6
8939   //   vmul  q0, q0, q1
8940   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
8941   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
8942   EVT Op1VT = Op1.getValueType();
8943   return DAG.getNode(N0->getOpcode(), DL, VT,
8944                      DAG.getNode(NewOpc, DL, VT,
8945                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
8946                      DAG.getNode(NewOpc, DL, VT,
8947                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
8948 }
8949 
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)8950 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
8951                               SelectionDAG &DAG) {
8952   // TODO: Should this propagate fast-math-flags?
8953 
8954   // Convert to float
8955   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8956   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8957   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
8958   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
8959   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
8960   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
8961   // Get reciprocal estimate.
8962   // float4 recip = vrecpeq_f32(yf);
8963   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8964                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8965                    Y);
8966   // Because char has a smaller range than uchar, we can actually get away
8967   // without any newton steps.  This requires that we use a weird bias
8968   // of 0xb000, however (again, this has been exhaustively tested).
8969   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8970   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
8971   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
8972   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
8973   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
8974   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
8975   // Convert back to short.
8976   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
8977   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
8978   return X;
8979 }
8980 
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)8981 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
8982                                SelectionDAG &DAG) {
8983   // TODO: Should this propagate fast-math-flags?
8984 
8985   SDValue N2;
8986   // Convert to float.
8987   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8988   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8989   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
8990   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
8991   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8992   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8993 
8994   // Use reciprocal estimate and one refinement step.
8995   // float4 recip = vrecpeq_f32(yf);
8996   // recip *= vrecpsq_f32(yf, recip);
8997   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8998                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8999                    N1);
9000   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9001                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9002                    N1, N2);
9003   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9004   // Because short has a smaller range than ushort, we can actually get away
9005   // with only a single newton step.  This requires that we use a weird bias
9006   // of 89, however (again, this has been exhaustively tested).
9007   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9008   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9009   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9010   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9011   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9012   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9013   // Convert back to integer and return.
9014   // return vmovn_s32(vcvt_s32_f32(result));
9015   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9016   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9017   return N0;
9018 }
9019 
LowerSDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9020 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9021                          const ARMSubtarget *ST) {
9022   EVT VT = Op.getValueType();
9023   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9024          "unexpected type for custom-lowering ISD::SDIV");
9025 
9026   SDLoc dl(Op);
9027   SDValue N0 = Op.getOperand(0);
9028   SDValue N1 = Op.getOperand(1);
9029   SDValue N2, N3;
9030 
9031   if (VT == MVT::v8i8) {
9032     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9033     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9034 
9035     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9036                      DAG.getIntPtrConstant(4, dl));
9037     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9038                      DAG.getIntPtrConstant(4, dl));
9039     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9040                      DAG.getIntPtrConstant(0, dl));
9041     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9042                      DAG.getIntPtrConstant(0, dl));
9043 
9044     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9045     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9046 
9047     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9048     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9049 
9050     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9051     return N0;
9052   }
9053   return LowerSDIV_v4i16(N0, N1, dl, DAG);
9054 }
9055 
LowerUDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9056 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9057                          const ARMSubtarget *ST) {
9058   // TODO: Should this propagate fast-math-flags?
9059   EVT VT = Op.getValueType();
9060   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9061          "unexpected type for custom-lowering ISD::UDIV");
9062 
9063   SDLoc dl(Op);
9064   SDValue N0 = Op.getOperand(0);
9065   SDValue N1 = Op.getOperand(1);
9066   SDValue N2, N3;
9067 
9068   if (VT == MVT::v8i8) {
9069     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9070     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9071 
9072     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9073                      DAG.getIntPtrConstant(4, dl));
9074     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9075                      DAG.getIntPtrConstant(4, dl));
9076     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9077                      DAG.getIntPtrConstant(0, dl));
9078     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9079                      DAG.getIntPtrConstant(0, dl));
9080 
9081     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9082     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9083 
9084     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9085     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9086 
9087     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9088                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9089                                      MVT::i32),
9090                      N0);
9091     return N0;
9092   }
9093 
9094   // v4i16 sdiv ... Convert to float.
9095   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9096   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9097   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9098   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9099   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9100   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9101 
9102   // Use reciprocal estimate and two refinement steps.
9103   // float4 recip = vrecpeq_f32(yf);
9104   // recip *= vrecpsq_f32(yf, recip);
9105   // recip *= vrecpsq_f32(yf, recip);
9106   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9107                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9108                    BN1);
9109   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9110                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9111                    BN1, N2);
9112   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9113   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9114                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9115                    BN1, N2);
9116   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9117   // Simply multiplying by the reciprocal estimate can leave us a few ulps
9118   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9119   // and that it will never cause us to return an answer too large).
9120   // float4 result = as_float4(as_int4(xf*recip) + 2);
9121   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9122   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9123   N1 = DAG.getConstant(2, dl, MVT::v4i32);
9124   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9125   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9126   // Convert back to integer and return.
9127   // return vmovn_u32(vcvt_s32_f32(result));
9128   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9129   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9130   return N0;
9131 }
9132 
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)9133 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
9134   SDNode *N = Op.getNode();
9135   EVT VT = N->getValueType(0);
9136   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9137 
9138   SDValue Carry = Op.getOperand(2);
9139 
9140   SDLoc DL(Op);
9141 
9142   SDValue Result;
9143   if (Op.getOpcode() == ISD::ADDCARRY) {
9144     // This converts the boolean value carry into the carry flag.
9145     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9146 
9147     // Do the addition proper using the carry flag we wanted.
9148     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9149                          Op.getOperand(1), Carry);
9150 
9151     // Now convert the carry flag into a boolean value.
9152     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9153   } else {
9154     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
9155     // have to invert the carry first.
9156     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9157                         DAG.getConstant(1, DL, MVT::i32), Carry);
9158     // This converts the boolean value carry into the carry flag.
9159     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9160 
9161     // Do the subtraction proper using the carry flag we wanted.
9162     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9163                          Op.getOperand(1), Carry);
9164 
9165     // Now convert the carry flag into a boolean value.
9166     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9167     // But the carry returned by ARMISD::SUBE is not a borrow as expected
9168     // by ISD::SUBCARRY, so compute 1 - C.
9169     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9170                         DAG.getConstant(1, DL, MVT::i32), Carry);
9171   }
9172 
9173   // Return both values.
9174   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9175 }
9176 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const9177 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9178   assert(Subtarget->isTargetDarwin());
9179 
9180   // For iOS, we want to call an alternative entry point: __sincos_stret,
9181   // return values are passed via sret.
9182   SDLoc dl(Op);
9183   SDValue Arg = Op.getOperand(0);
9184   EVT ArgVT = Arg.getValueType();
9185   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9186   auto PtrVT = getPointerTy(DAG.getDataLayout());
9187 
9188   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9189   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9190 
9191   // Pair of floats / doubles used to pass the result.
9192   Type *RetTy = StructType::get(ArgTy, ArgTy);
9193   auto &DL = DAG.getDataLayout();
9194 
9195   ArgListTy Args;
9196   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9197   SDValue SRet;
9198   if (ShouldUseSRet) {
9199     // Create stack object for sret.
9200     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9201     const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9202     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9203     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9204 
9205     ArgListEntry Entry;
9206     Entry.Node = SRet;
9207     Entry.Ty = RetTy->getPointerTo();
9208     Entry.IsSExt = false;
9209     Entry.IsZExt = false;
9210     Entry.IsSRet = true;
9211     Args.push_back(Entry);
9212     RetTy = Type::getVoidTy(*DAG.getContext());
9213   }
9214 
9215   ArgListEntry Entry;
9216   Entry.Node = Arg;
9217   Entry.Ty = ArgTy;
9218   Entry.IsSExt = false;
9219   Entry.IsZExt = false;
9220   Args.push_back(Entry);
9221 
9222   RTLIB::Libcall LC =
9223       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9224   const char *LibcallName = getLibcallName(LC);
9225   CallingConv::ID CC = getLibcallCallingConv(LC);
9226   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9227 
9228   TargetLowering::CallLoweringInfo CLI(DAG);
9229   CLI.setDebugLoc(dl)
9230       .setChain(DAG.getEntryNode())
9231       .setCallee(CC, RetTy, Callee, std::move(Args))
9232       .setDiscardResult(ShouldUseSRet);
9233   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9234 
9235   if (!ShouldUseSRet)
9236     return CallResult.first;
9237 
9238   SDValue LoadSin =
9239       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9240 
9241   // Address of cos field.
9242   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9243                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9244   SDValue LoadCos =
9245       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9246 
9247   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9248   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
9249                      LoadSin.getValue(0), LoadCos.getValue(0));
9250 }
9251 
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const9252 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
9253                                                   bool Signed,
9254                                                   SDValue &Chain) const {
9255   EVT VT = Op.getValueType();
9256   assert((VT == MVT::i32 || VT == MVT::i64) &&
9257          "unexpected type for custom lowering DIV");
9258   SDLoc dl(Op);
9259 
9260   const auto &DL = DAG.getDataLayout();
9261   const auto &TLI = DAG.getTargetLoweringInfo();
9262 
9263   const char *Name = nullptr;
9264   if (Signed)
9265     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
9266   else
9267     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
9268 
9269   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
9270 
9271   ARMTargetLowering::ArgListTy Args;
9272 
9273   for (auto AI : {1, 0}) {
9274     ArgListEntry Arg;
9275     Arg.Node = Op.getOperand(AI);
9276     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
9277     Args.push_back(Arg);
9278   }
9279 
9280   CallLoweringInfo CLI(DAG);
9281   CLI.setDebugLoc(dl)
9282     .setChain(Chain)
9283     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
9284                ES, std::move(Args));
9285 
9286   return LowerCallTo(CLI).first;
9287 }
9288 
9289 // This is a code size optimisation: return the original SDIV node to
9290 // DAGCombiner when we don't want to expand SDIV into a sequence of
9291 // instructions, and an empty node otherwise which will cause the
9292 // SDIV to be expanded in DAGCombine.
9293 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const9294 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9295                                  SelectionDAG &DAG,
9296                                  SmallVectorImpl<SDNode *> &Created) const {
9297   // TODO: Support SREM
9298   if (N->getOpcode() != ISD::SDIV)
9299     return SDValue();
9300 
9301   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
9302   const bool MinSize = ST.hasMinSize();
9303   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
9304                                       : ST.hasDivideInARMMode();
9305 
9306   // Don't touch vector types; rewriting this may lead to scalarizing
9307   // the int divs.
9308   if (N->getOperand(0).getValueType().isVector())
9309     return SDValue();
9310 
9311   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
9312   // hwdiv support for this to be really profitable.
9313   if (!(MinSize && HasDivide))
9314     return SDValue();
9315 
9316   // ARM mode is a bit simpler than Thumb: we can handle large power
9317   // of 2 immediates with 1 mov instruction; no further checks required,
9318   // just return the sdiv node.
9319   if (!ST.isThumb())
9320     return SDValue(N, 0);
9321 
9322   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9323   // and thus lose the code size benefits of a MOVS that requires only 2.
9324   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9325   // but as it's doing exactly this, it's not worth the trouble to get TTI.
9326   if (Divisor.sgt(128))
9327     return SDValue();
9328 
9329   return SDValue(N, 0);
9330 }
9331 
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const9332 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9333                                             bool Signed) const {
9334   assert(Op.getValueType() == MVT::i32 &&
9335          "unexpected type for custom lowering DIV");
9336   SDLoc dl(Op);
9337 
9338   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
9339                                DAG.getEntryNode(), Op.getOperand(1));
9340 
9341   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9342 }
9343 
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)9344 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
9345   SDLoc DL(N);
9346   SDValue Op = N->getOperand(1);
9347   if (N->getValueType(0) == MVT::i32)
9348     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
9349   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9350                            DAG.getConstant(0, DL, MVT::i32));
9351   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9352                            DAG.getConstant(1, DL, MVT::i32));
9353   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
9354                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
9355 }
9356 
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const9357 void ARMTargetLowering::ExpandDIV_Windows(
9358     SDValue Op, SelectionDAG &DAG, bool Signed,
9359     SmallVectorImpl<SDValue> &Results) const {
9360   const auto &DL = DAG.getDataLayout();
9361   const auto &TLI = DAG.getTargetLoweringInfo();
9362 
9363   assert(Op.getValueType() == MVT::i64 &&
9364          "unexpected type for custom lowering DIV");
9365   SDLoc dl(Op);
9366 
9367   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
9368 
9369   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9370 
9371   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
9372   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
9373                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
9374   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
9375 
9376   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
9377 }
9378 
LowerPredicateLoad(SDValue Op,SelectionDAG & DAG)9379 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
9380   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
9381   EVT MemVT = LD->getMemoryVT();
9382   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9383          "Expected a predicate type!");
9384   assert(MemVT == Op.getValueType());
9385   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
9386          "Expected a non-extending load");
9387   assert(LD->isUnindexed() && "Expected a unindexed load");
9388 
9389   // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
9390   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
9391   // need to make sure that 8/4 bits are actually loaded into the correct
9392   // place, which means loading the value and then shuffling the values into
9393   // the bottom bits of the predicate.
9394   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
9395   // for BE).
9396 
9397   SDLoc dl(Op);
9398   SDValue Load = DAG.getExtLoad(
9399       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
9400       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9401       LD->getMemOperand());
9402   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load);
9403   if (MemVT != MVT::v16i1)
9404     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
9405                        DAG.getConstant(0, dl, MVT::i32));
9406   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
9407 }
9408 
LowerLOAD(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9409 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
9410                                   SelectionDAG &DAG) const {
9411   LoadSDNode *LD = cast<LoadSDNode>(N);
9412   EVT MemVT = LD->getMemoryVT();
9413   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
9414 
9415   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9416       !Subtarget->isThumb1Only() && LD->isVolatile()) {
9417     SDLoc dl(N);
9418     SDValue Result = DAG.getMemIntrinsicNode(
9419         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
9420         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
9421     SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
9422     SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
9423     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
9424     Results.append({Pair, Result.getValue(2)});
9425   }
9426 }
9427 
LowerPredicateStore(SDValue Op,SelectionDAG & DAG)9428 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
9429   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9430   EVT MemVT = ST->getMemoryVT();
9431   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9432          "Expected a predicate type!");
9433   assert(MemVT == ST->getValue().getValueType());
9434   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
9435   assert(ST->isUnindexed() && "Expected a unindexed store");
9436 
9437   // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
9438   // unset and a scalar store.
9439   SDLoc dl(Op);
9440   SDValue Build = ST->getValue();
9441   if (MemVT != MVT::v16i1) {
9442     SmallVector<SDValue, 16> Ops;
9443     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++)
9444       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
9445                                 DAG.getConstant(I, dl, MVT::i32)));
9446     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
9447       Ops.push_back(DAG.getUNDEF(MVT::i32));
9448     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
9449   }
9450   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
9451   return DAG.getTruncStore(
9452       ST->getChain(), dl, GRP, ST->getBasePtr(),
9453       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9454       ST->getMemOperand());
9455 }
9456 
LowerSTORE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9457 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
9458                           const ARMSubtarget *Subtarget) {
9459   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9460   EVT MemVT = ST->getMemoryVT();
9461   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
9462 
9463   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9464       !Subtarget->isThumb1Only() && ST->isVolatile()) {
9465     SDNode *N = Op.getNode();
9466     SDLoc dl(N);
9467 
9468     SDValue Lo = DAG.getNode(
9469         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9470         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
9471                               MVT::i32));
9472     SDValue Hi = DAG.getNode(
9473         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9474         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
9475                               MVT::i32));
9476 
9477     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
9478                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
9479                                    MemVT, ST->getMemOperand());
9480   } else if (Subtarget->hasMVEIntegerOps() &&
9481              ((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
9482                MemVT == MVT::v16i1))) {
9483     return LowerPredicateStore(Op, DAG);
9484   }
9485 
9486   return SDValue();
9487 }
9488 
isZeroVector(SDValue N)9489 static bool isZeroVector(SDValue N) {
9490   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
9491           (N->getOpcode() == ARMISD::VMOVIMM &&
9492            isNullConstant(N->getOperand(0))));
9493 }
9494 
LowerMLOAD(SDValue Op,SelectionDAG & DAG)9495 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
9496   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
9497   MVT VT = Op.getSimpleValueType();
9498   SDValue Mask = N->getMask();
9499   SDValue PassThru = N->getPassThru();
9500   SDLoc dl(Op);
9501 
9502   if (isZeroVector(PassThru))
9503     return Op;
9504 
9505   // MVE Masked loads use zero as the passthru value. Here we convert undef to
9506   // zero too, and other values are lowered to a select.
9507   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
9508                                 DAG.getTargetConstant(0, dl, MVT::i32));
9509   SDValue NewLoad = DAG.getMaskedLoad(
9510       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
9511       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
9512       N->getExtensionType(), N->isExpandingLoad());
9513   SDValue Combo = NewLoad;
9514   bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
9515                              PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
9516                             isZeroVector(PassThru->getOperand(0));
9517   if (!PassThru.isUndef() && !PassThruIsCastZero)
9518     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
9519   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
9520 }
9521 
LowerVecReduce(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9522 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
9523                               const ARMSubtarget *ST) {
9524   if (!ST->hasMVEIntegerOps())
9525     return SDValue();
9526 
9527   SDLoc dl(Op);
9528   unsigned BaseOpcode = 0;
9529   switch (Op->getOpcode()) {
9530   default: llvm_unreachable("Expected VECREDUCE opcode");
9531   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
9532   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
9533   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
9534   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
9535   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
9536   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
9537   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
9538   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
9539   }
9540 
9541   SDValue Op0 = Op->getOperand(0);
9542   EVT VT = Op0.getValueType();
9543   EVT EltVT = VT.getVectorElementType();
9544   unsigned NumElts = VT.getVectorNumElements();
9545   unsigned NumActiveLanes = NumElts;
9546 
9547   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
9548           NumActiveLanes == 2) &&
9549          "Only expected a power 2 vector size");
9550 
9551   // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
9552   // allows us to easily extract vector elements from the lanes.
9553   while (NumActiveLanes > 4) {
9554     unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
9555     SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
9556     Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
9557     NumActiveLanes /= 2;
9558   }
9559 
9560   SDValue Res;
9561   if (NumActiveLanes == 4) {
9562     // The remaining 4 elements are summed sequentially
9563     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9564                               DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
9565     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9566                               DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
9567     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9568                               DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
9569     SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9570                               DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
9571     SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
9572     SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
9573     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
9574   } else {
9575     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9576                               DAG.getConstant(0, dl, MVT::i32));
9577     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
9578                               DAG.getConstant(1, dl, MVT::i32));
9579     Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
9580   }
9581 
9582   // Result type may be wider than element type.
9583   if (EltVT != Op->getValueType(0))
9584     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
9585   return Res;
9586 }
9587 
LowerVecReduceF(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)9588 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
9589                                const ARMSubtarget *ST) {
9590   if (!ST->hasMVEFloatOps())
9591     return SDValue();
9592   return LowerVecReduce(Op, DAG, ST);
9593 }
9594 
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)9595 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
9596   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
9597     // Acquire/Release load/store is not legal for targets without a dmb or
9598     // equivalent available.
9599     return SDValue();
9600 
9601   // Monotonic load/store is legal for all targets.
9602   return Op;
9603 }
9604 
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9605 static void ReplaceREADCYCLECOUNTER(SDNode *N,
9606                                     SmallVectorImpl<SDValue> &Results,
9607                                     SelectionDAG &DAG,
9608                                     const ARMSubtarget *Subtarget) {
9609   SDLoc DL(N);
9610   // Under Power Management extensions, the cycle-count is:
9611   //    mrc p15, #0, <Rt>, c9, c13, #0
9612   SDValue Ops[] = { N->getOperand(0), // Chain
9613                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
9614                     DAG.getTargetConstant(15, DL, MVT::i32),
9615                     DAG.getTargetConstant(0, DL, MVT::i32),
9616                     DAG.getTargetConstant(9, DL, MVT::i32),
9617                     DAG.getTargetConstant(13, DL, MVT::i32),
9618                     DAG.getTargetConstant(0, DL, MVT::i32)
9619   };
9620 
9621   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
9622                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
9623   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
9624                                 DAG.getConstant(0, DL, MVT::i32)));
9625   Results.push_back(Cycles32.getValue(1));
9626 }
9627 
createGPRPairNode(SelectionDAG & DAG,SDValue V)9628 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
9629   SDLoc dl(V.getNode());
9630   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
9631   SDValue VHi = DAG.getAnyExtOrTrunc(
9632       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
9633       dl, MVT::i32);
9634   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9635   if (isBigEndian)
9636     std::swap (VLo, VHi);
9637   SDValue RegClass =
9638       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
9639   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
9640   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
9641   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
9642   return SDValue(
9643       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
9644 }
9645 
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9646 static void ReplaceCMP_SWAP_64Results(SDNode *N,
9647                                        SmallVectorImpl<SDValue> & Results,
9648                                        SelectionDAG &DAG) {
9649   assert(N->getValueType(0) == MVT::i64 &&
9650          "AtomicCmpSwap on types less than 64 should be legal");
9651   SDValue Ops[] = {N->getOperand(1),
9652                    createGPRPairNode(DAG, N->getOperand(2)),
9653                    createGPRPairNode(DAG, N->getOperand(3)),
9654                    N->getOperand(0)};
9655   SDNode *CmpSwap = DAG.getMachineNode(
9656       ARM::CMP_SWAP_64, SDLoc(N),
9657       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
9658 
9659   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
9660   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
9661 
9662   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9663 
9664   SDValue Lo =
9665       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
9666                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
9667   SDValue Hi =
9668       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
9669                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
9670   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
9671   Results.push_back(SDValue(CmpSwap, 2));
9672 }
9673 
LowerFSETCC(SDValue Op,SelectionDAG & DAG) const9674 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
9675   SDLoc dl(Op);
9676   EVT VT = Op.getValueType();
9677   SDValue Chain = Op.getOperand(0);
9678   SDValue LHS = Op.getOperand(1);
9679   SDValue RHS = Op.getOperand(2);
9680   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
9681   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
9682 
9683   // If we don't have instructions of this float type then soften to a libcall
9684   // and use SETCC instead.
9685   if (isUnsupportedFloatingType(LHS.getValueType())) {
9686     DAG.getTargetLoweringInfo().softenSetCCOperands(
9687       DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
9688     if (!RHS.getNode()) {
9689       RHS = DAG.getConstant(0, dl, LHS.getValueType());
9690       CC = ISD::SETNE;
9691     }
9692     SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
9693                                  DAG.getCondCode(CC));
9694     return DAG.getMergeValues({Result, Chain}, dl);
9695   }
9696 
9697   ARMCC::CondCodes CondCode, CondCode2;
9698   FPCCToARMCC(CC, CondCode, CondCode2);
9699 
9700   // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
9701   // in CMPFP and CMPFPE, but instead it should be made explicit by these
9702   // instructions using a chain instead of glue. This would also fix the problem
9703   // here (and also in LowerSELECT_CC) where we generate two comparisons when
9704   // CondCode2 != AL.
9705   SDValue True = DAG.getConstant(1, dl, VT);
9706   SDValue False =  DAG.getConstant(0, dl, VT);
9707   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
9708   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
9709   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9710   SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
9711   if (CondCode2 != ARMCC::AL) {
9712     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
9713     Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9714     Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
9715   }
9716   return DAG.getMergeValues({Result, Chain}, dl);
9717 }
9718 
LowerOperation(SDValue Op,SelectionDAG & DAG) const9719 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9720   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
9721   switch (Op.getOpcode()) {
9722   default: llvm_unreachable("Don't know how to custom lower this!");
9723   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
9724   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9725   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
9726   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9727   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9728   case ISD::SELECT:        return LowerSELECT(Op, DAG);
9729   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
9730   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
9731   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
9732   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
9733   case ISD::VASTART:       return LowerVASTART(Op, DAG);
9734   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
9735   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
9736   case ISD::SINT_TO_FP:
9737   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
9738   case ISD::STRICT_FP_TO_SINT:
9739   case ISD::STRICT_FP_TO_UINT:
9740   case ISD::FP_TO_SINT:
9741   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
9742   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
9743   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
9744   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
9745   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
9746   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
9747   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
9748   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
9749   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
9750                                                                Subtarget);
9751   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
9752   case ISD::SHL:
9753   case ISD::SRL:
9754   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
9755   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
9756   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
9757   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
9758   case ISD::SRL_PARTS:
9759   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
9760   case ISD::CTTZ:
9761   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
9762   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
9763   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
9764   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
9765   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
9766   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
9767   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
9768   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
9769   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9770   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
9771   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
9772   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
9773   case ISD::MUL:           return LowerMUL(Op, DAG);
9774   case ISD::SDIV:
9775     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9776       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
9777     return LowerSDIV(Op, DAG, Subtarget);
9778   case ISD::UDIV:
9779     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9780       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
9781     return LowerUDIV(Op, DAG, Subtarget);
9782   case ISD::ADDCARRY:
9783   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
9784   case ISD::SADDO:
9785   case ISD::SSUBO:
9786     return LowerSignedALUO(Op, DAG);
9787   case ISD::UADDO:
9788   case ISD::USUBO:
9789     return LowerUnsignedALUO(Op, DAG);
9790   case ISD::SADDSAT:
9791   case ISD::SSUBSAT:
9792     return LowerSADDSUBSAT(Op, DAG, Subtarget);
9793   case ISD::LOAD:
9794     return LowerPredicateLoad(Op, DAG);
9795   case ISD::STORE:
9796     return LowerSTORE(Op, DAG, Subtarget);
9797   case ISD::MLOAD:
9798     return LowerMLOAD(Op, DAG);
9799   case ISD::VECREDUCE_MUL:
9800   case ISD::VECREDUCE_AND:
9801   case ISD::VECREDUCE_OR:
9802   case ISD::VECREDUCE_XOR:
9803     return LowerVecReduce(Op, DAG, Subtarget);
9804   case ISD::VECREDUCE_FADD:
9805   case ISD::VECREDUCE_FMUL:
9806   case ISD::VECREDUCE_FMIN:
9807   case ISD::VECREDUCE_FMAX:
9808     return LowerVecReduceF(Op, DAG, Subtarget);
9809   case ISD::ATOMIC_LOAD:
9810   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
9811   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
9812   case ISD::SDIVREM:
9813   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
9814   case ISD::DYNAMIC_STACKALLOC:
9815     if (Subtarget->isTargetWindows())
9816       return LowerDYNAMIC_STACKALLOC(Op, DAG);
9817     llvm_unreachable("Don't know how to custom lower this!");
9818   case ISD::STRICT_FP_ROUND:
9819   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
9820   case ISD::STRICT_FP_EXTEND:
9821   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
9822   case ISD::STRICT_FSETCC:
9823   case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
9824   case ARMISD::WIN__DBZCHK: return SDValue();
9825   }
9826 }
9827 
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9828 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
9829                                  SelectionDAG &DAG) {
9830   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9831   unsigned Opc = 0;
9832   if (IntNo == Intrinsic::arm_smlald)
9833     Opc = ARMISD::SMLALD;
9834   else if (IntNo == Intrinsic::arm_smlaldx)
9835     Opc = ARMISD::SMLALDX;
9836   else if (IntNo == Intrinsic::arm_smlsld)
9837     Opc = ARMISD::SMLSLD;
9838   else if (IntNo == Intrinsic::arm_smlsldx)
9839     Opc = ARMISD::SMLSLDX;
9840   else
9841     return;
9842 
9843   SDLoc dl(N);
9844   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9845                            N->getOperand(3),
9846                            DAG.getConstant(0, dl, MVT::i32));
9847   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9848                            N->getOperand(3),
9849                            DAG.getConstant(1, dl, MVT::i32));
9850 
9851   SDValue LongMul = DAG.getNode(Opc, dl,
9852                                 DAG.getVTList(MVT::i32, MVT::i32),
9853                                 N->getOperand(1), N->getOperand(2),
9854                                 Lo, Hi);
9855   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
9856                                 LongMul.getValue(0), LongMul.getValue(1)));
9857 }
9858 
9859 /// ReplaceNodeResults - Replace the results of node with an illegal result
9860 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9861 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
9862                                            SmallVectorImpl<SDValue> &Results,
9863                                            SelectionDAG &DAG) const {
9864   SDValue Res;
9865   switch (N->getOpcode()) {
9866   default:
9867     llvm_unreachable("Don't know how to custom expand this!");
9868   case ISD::READ_REGISTER:
9869     ExpandREAD_REGISTER(N, Results, DAG);
9870     break;
9871   case ISD::BITCAST:
9872     Res = ExpandBITCAST(N, DAG, Subtarget);
9873     break;
9874   case ISD::SRL:
9875   case ISD::SRA:
9876   case ISD::SHL:
9877     Res = Expand64BitShift(N, DAG, Subtarget);
9878     break;
9879   case ISD::SREM:
9880   case ISD::UREM:
9881     Res = LowerREM(N, DAG);
9882     break;
9883   case ISD::SDIVREM:
9884   case ISD::UDIVREM:
9885     Res = LowerDivRem(SDValue(N, 0), DAG);
9886     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
9887     Results.push_back(Res.getValue(0));
9888     Results.push_back(Res.getValue(1));
9889     return;
9890   case ISD::SADDSAT:
9891   case ISD::SSUBSAT:
9892     Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
9893     break;
9894   case ISD::READCYCLECOUNTER:
9895     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
9896     return;
9897   case ISD::UDIV:
9898   case ISD::SDIV:
9899     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
9900     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
9901                              Results);
9902   case ISD::ATOMIC_CMP_SWAP:
9903     ReplaceCMP_SWAP_64Results(N, Results, DAG);
9904     return;
9905   case ISD::INTRINSIC_WO_CHAIN:
9906     return ReplaceLongIntrinsic(N, Results, DAG);
9907   case ISD::ABS:
9908      lowerABS(N, Results, DAG);
9909      return ;
9910   case ISD::LOAD:
9911     LowerLOAD(N, Results, DAG);
9912     break;
9913   }
9914   if (Res.getNode())
9915     Results.push_back(Res);
9916 }
9917 
9918 //===----------------------------------------------------------------------===//
9919 //                           ARM Scheduler Hooks
9920 //===----------------------------------------------------------------------===//
9921 
9922 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9923 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const9924 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
9925                                                MachineBasicBlock *MBB,
9926                                                MachineBasicBlock *DispatchBB,
9927                                                int FI) const {
9928   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
9929          "ROPI/RWPI not currently supported with SjLj");
9930   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9931   DebugLoc dl = MI.getDebugLoc();
9932   MachineFunction *MF = MBB->getParent();
9933   MachineRegisterInfo *MRI = &MF->getRegInfo();
9934   MachineConstantPool *MCP = MF->getConstantPool();
9935   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
9936   const Function &F = MF->getFunction();
9937 
9938   bool isThumb = Subtarget->isThumb();
9939   bool isThumb2 = Subtarget->isThumb2();
9940 
9941   unsigned PCLabelId = AFI->createPICLabelUId();
9942   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
9943   ARMConstantPoolValue *CPV =
9944     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
9945   unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
9946 
9947   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
9948                                            : &ARM::GPRRegClass;
9949 
9950   // Grab constant pool and fixed stack memory operands.
9951   MachineMemOperand *CPMMO =
9952       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9953                                MachineMemOperand::MOLoad, 4, Align(4));
9954 
9955   MachineMemOperand *FIMMOSt =
9956       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
9957                                MachineMemOperand::MOStore, 4, Align(4));
9958 
9959   // Load the address of the dispatch MBB into the jump buffer.
9960   if (isThumb2) {
9961     // Incoming value: jbuf
9962     //   ldr.n  r5, LCPI1_1
9963     //   orr    r5, r5, #1
9964     //   add    r5, pc
9965     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
9966     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9967     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
9968         .addConstantPoolIndex(CPI)
9969         .addMemOperand(CPMMO)
9970         .add(predOps(ARMCC::AL));
9971     // Set the low bit because of thumb mode.
9972     Register NewVReg2 = MRI->createVirtualRegister(TRC);
9973     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
9974         .addReg(NewVReg1, RegState::Kill)
9975         .addImm(0x01)
9976         .add(predOps(ARMCC::AL))
9977         .add(condCodeOp());
9978     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9979     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
9980       .addReg(NewVReg2, RegState::Kill)
9981       .addImm(PCLabelId);
9982     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
9983         .addReg(NewVReg3, RegState::Kill)
9984         .addFrameIndex(FI)
9985         .addImm(36) // &jbuf[1] :: pc
9986         .addMemOperand(FIMMOSt)
9987         .add(predOps(ARMCC::AL));
9988   } else if (isThumb) {
9989     // Incoming value: jbuf
9990     //   ldr.n  r1, LCPI1_4
9991     //   add    r1, pc
9992     //   mov    r2, #1
9993     //   orrs   r1, r2
9994     //   add    r2, $jbuf, #+4 ; &jbuf[1]
9995     //   str    r1, [r2]
9996     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9997     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
9998         .addConstantPoolIndex(CPI)
9999         .addMemOperand(CPMMO)
10000         .add(predOps(ARMCC::AL));
10001     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10002     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10003       .addReg(NewVReg1, RegState::Kill)
10004       .addImm(PCLabelId);
10005     // Set the low bit because of thumb mode.
10006     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10007     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10008         .addReg(ARM::CPSR, RegState::Define)
10009         .addImm(1)
10010         .add(predOps(ARMCC::AL));
10011     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10012     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10013         .addReg(ARM::CPSR, RegState::Define)
10014         .addReg(NewVReg2, RegState::Kill)
10015         .addReg(NewVReg3, RegState::Kill)
10016         .add(predOps(ARMCC::AL));
10017     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10018     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10019             .addFrameIndex(FI)
10020             .addImm(36); // &jbuf[1] :: pc
10021     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10022         .addReg(NewVReg4, RegState::Kill)
10023         .addReg(NewVReg5, RegState::Kill)
10024         .addImm(0)
10025         .addMemOperand(FIMMOSt)
10026         .add(predOps(ARMCC::AL));
10027   } else {
10028     // Incoming value: jbuf
10029     //   ldr  r1, LCPI1_1
10030     //   add  r1, pc, r1
10031     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
10032     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10033     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10034         .addConstantPoolIndex(CPI)
10035         .addImm(0)
10036         .addMemOperand(CPMMO)
10037         .add(predOps(ARMCC::AL));
10038     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10039     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10040         .addReg(NewVReg1, RegState::Kill)
10041         .addImm(PCLabelId)
10042         .add(predOps(ARMCC::AL));
10043     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10044         .addReg(NewVReg2, RegState::Kill)
10045         .addFrameIndex(FI)
10046         .addImm(36) // &jbuf[1] :: pc
10047         .addMemOperand(FIMMOSt)
10048         .add(predOps(ARMCC::AL));
10049   }
10050 }
10051 
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const10052 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10053                                               MachineBasicBlock *MBB) const {
10054   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10055   DebugLoc dl = MI.getDebugLoc();
10056   MachineFunction *MF = MBB->getParent();
10057   MachineRegisterInfo *MRI = &MF->getRegInfo();
10058   MachineFrameInfo &MFI = MF->getFrameInfo();
10059   int FI = MFI.getFunctionContextIndex();
10060 
10061   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10062                                                         : &ARM::GPRnopcRegClass;
10063 
10064   // Get a mapping of the call site numbers to all of the landing pads they're
10065   // associated with.
10066   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10067   unsigned MaxCSNum = 0;
10068   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
10069        ++BB) {
10070     if (!BB->isEHPad()) continue;
10071 
10072     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10073     // pad.
10074     for (MachineBasicBlock::iterator
10075            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
10076       if (!II->isEHLabel()) continue;
10077 
10078       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
10079       if (!MF->hasCallSiteLandingPad(Sym)) continue;
10080 
10081       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10082       for (SmallVectorImpl<unsigned>::iterator
10083              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
10084            CSI != CSE; ++CSI) {
10085         CallSiteNumToLPad[*CSI].push_back(&*BB);
10086         MaxCSNum = std::max(MaxCSNum, *CSI);
10087       }
10088       break;
10089     }
10090   }
10091 
10092   // Get an ordered list of the machine basic blocks for the jump table.
10093   std::vector<MachineBasicBlock*> LPadList;
10094   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10095   LPadList.reserve(CallSiteNumToLPad.size());
10096   for (unsigned I = 1; I <= MaxCSNum; ++I) {
10097     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10098     for (SmallVectorImpl<MachineBasicBlock*>::iterator
10099            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
10100       LPadList.push_back(*II);
10101       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
10102     }
10103   }
10104 
10105   assert(!LPadList.empty() &&
10106          "No landing pad destinations for the dispatch jump table!");
10107 
10108   // Create the jump table and associated information.
10109   MachineJumpTableInfo *JTI =
10110     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10111   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10112 
10113   // Create the MBBs for the dispatch code.
10114 
10115   // Shove the dispatch's address into the return slot in the function context.
10116   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10117   DispatchBB->setIsEHPad();
10118 
10119   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10120   unsigned trap_opcode;
10121   if (Subtarget->isThumb())
10122     trap_opcode = ARM::tTRAP;
10123   else
10124     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10125 
10126   BuildMI(TrapBB, dl, TII->get(trap_opcode));
10127   DispatchBB->addSuccessor(TrapBB);
10128 
10129   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
10130   DispatchBB->addSuccessor(DispContBB);
10131 
10132   // Insert and MBBs.
10133   MF->insert(MF->end(), DispatchBB);
10134   MF->insert(MF->end(), DispContBB);
10135   MF->insert(MF->end(), TrapBB);
10136 
10137   // Insert code into the entry block that creates and registers the function
10138   // context.
10139   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
10140 
10141   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
10142       MachinePointerInfo::getFixedStack(*MF, FI),
10143       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
10144 
10145   MachineInstrBuilder MIB;
10146   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
10147 
10148   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
10149   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
10150 
10151   // Add a register mask with no preserved registers.  This results in all
10152   // registers being marked as clobbered. This can't work if the dispatch block
10153   // is in a Thumb1 function and is linked with ARM code which uses the FP
10154   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
10155   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
10156 
10157   bool IsPositionIndependent = isPositionIndependent();
10158   unsigned NumLPads = LPadList.size();
10159   if (Subtarget->isThumb2()) {
10160     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10161     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
10162         .addFrameIndex(FI)
10163         .addImm(4)
10164         .addMemOperand(FIMMOLd)
10165         .add(predOps(ARMCC::AL));
10166 
10167     if (NumLPads < 256) {
10168       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
10169           .addReg(NewVReg1)
10170           .addImm(LPadList.size())
10171           .add(predOps(ARMCC::AL));
10172     } else {
10173       Register VReg1 = MRI->createVirtualRegister(TRC);
10174       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
10175           .addImm(NumLPads & 0xFFFF)
10176           .add(predOps(ARMCC::AL));
10177 
10178       unsigned VReg2 = VReg1;
10179       if ((NumLPads & 0xFFFF0000) != 0) {
10180         VReg2 = MRI->createVirtualRegister(TRC);
10181         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
10182             .addReg(VReg1)
10183             .addImm(NumLPads >> 16)
10184             .add(predOps(ARMCC::AL));
10185       }
10186 
10187       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
10188           .addReg(NewVReg1)
10189           .addReg(VReg2)
10190           .add(predOps(ARMCC::AL));
10191     }
10192 
10193     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
10194       .addMBB(TrapBB)
10195       .addImm(ARMCC::HI)
10196       .addReg(ARM::CPSR);
10197 
10198     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10199     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
10200         .addJumpTableIndex(MJTI)
10201         .add(predOps(ARMCC::AL));
10202 
10203     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10204     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
10205         .addReg(NewVReg3, RegState::Kill)
10206         .addReg(NewVReg1)
10207         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10208         .add(predOps(ARMCC::AL))
10209         .add(condCodeOp());
10210 
10211     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
10212       .addReg(NewVReg4, RegState::Kill)
10213       .addReg(NewVReg1)
10214       .addJumpTableIndex(MJTI);
10215   } else if (Subtarget->isThumb()) {
10216     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10217     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
10218         .addFrameIndex(FI)
10219         .addImm(1)
10220         .addMemOperand(FIMMOLd)
10221         .add(predOps(ARMCC::AL));
10222 
10223     if (NumLPads < 256) {
10224       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
10225           .addReg(NewVReg1)
10226           .addImm(NumLPads)
10227           .add(predOps(ARMCC::AL));
10228     } else {
10229       MachineConstantPool *ConstantPool = MF->getConstantPool();
10230       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10231       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10232 
10233       // MachineConstantPool wants an explicit alignment.
10234       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10235       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10236 
10237       Register VReg1 = MRI->createVirtualRegister(TRC);
10238       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
10239           .addReg(VReg1, RegState::Define)
10240           .addConstantPoolIndex(Idx)
10241           .add(predOps(ARMCC::AL));
10242       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
10243           .addReg(NewVReg1)
10244           .addReg(VReg1)
10245           .add(predOps(ARMCC::AL));
10246     }
10247 
10248     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
10249       .addMBB(TrapBB)
10250       .addImm(ARMCC::HI)
10251       .addReg(ARM::CPSR);
10252 
10253     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10254     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
10255         .addReg(ARM::CPSR, RegState::Define)
10256         .addReg(NewVReg1)
10257         .addImm(2)
10258         .add(predOps(ARMCC::AL));
10259 
10260     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10261     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
10262         .addJumpTableIndex(MJTI)
10263         .add(predOps(ARMCC::AL));
10264 
10265     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10266     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
10267         .addReg(ARM::CPSR, RegState::Define)
10268         .addReg(NewVReg2, RegState::Kill)
10269         .addReg(NewVReg3)
10270         .add(predOps(ARMCC::AL));
10271 
10272     MachineMemOperand *JTMMOLd =
10273         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10274                                  MachineMemOperand::MOLoad, 4, Align(4));
10275 
10276     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10277     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
10278         .addReg(NewVReg4, RegState::Kill)
10279         .addImm(0)
10280         .addMemOperand(JTMMOLd)
10281         .add(predOps(ARMCC::AL));
10282 
10283     unsigned NewVReg6 = NewVReg5;
10284     if (IsPositionIndependent) {
10285       NewVReg6 = MRI->createVirtualRegister(TRC);
10286       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
10287           .addReg(ARM::CPSR, RegState::Define)
10288           .addReg(NewVReg5, RegState::Kill)
10289           .addReg(NewVReg3)
10290           .add(predOps(ARMCC::AL));
10291     }
10292 
10293     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
10294       .addReg(NewVReg6, RegState::Kill)
10295       .addJumpTableIndex(MJTI);
10296   } else {
10297     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10298     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
10299         .addFrameIndex(FI)
10300         .addImm(4)
10301         .addMemOperand(FIMMOLd)
10302         .add(predOps(ARMCC::AL));
10303 
10304     if (NumLPads < 256) {
10305       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
10306           .addReg(NewVReg1)
10307           .addImm(NumLPads)
10308           .add(predOps(ARMCC::AL));
10309     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
10310       Register VReg1 = MRI->createVirtualRegister(TRC);
10311       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
10312           .addImm(NumLPads & 0xFFFF)
10313           .add(predOps(ARMCC::AL));
10314 
10315       unsigned VReg2 = VReg1;
10316       if ((NumLPads & 0xFFFF0000) != 0) {
10317         VReg2 = MRI->createVirtualRegister(TRC);
10318         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
10319             .addReg(VReg1)
10320             .addImm(NumLPads >> 16)
10321             .add(predOps(ARMCC::AL));
10322       }
10323 
10324       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10325           .addReg(NewVReg1)
10326           .addReg(VReg2)
10327           .add(predOps(ARMCC::AL));
10328     } else {
10329       MachineConstantPool *ConstantPool = MF->getConstantPool();
10330       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10331       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10332 
10333       // MachineConstantPool wants an explicit alignment.
10334       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10335       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10336 
10337       Register VReg1 = MRI->createVirtualRegister(TRC);
10338       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
10339           .addReg(VReg1, RegState::Define)
10340           .addConstantPoolIndex(Idx)
10341           .addImm(0)
10342           .add(predOps(ARMCC::AL));
10343       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10344           .addReg(NewVReg1)
10345           .addReg(VReg1, RegState::Kill)
10346           .add(predOps(ARMCC::AL));
10347     }
10348 
10349     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
10350       .addMBB(TrapBB)
10351       .addImm(ARMCC::HI)
10352       .addReg(ARM::CPSR);
10353 
10354     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10355     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
10356         .addReg(NewVReg1)
10357         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10358         .add(predOps(ARMCC::AL))
10359         .add(condCodeOp());
10360     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10361     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
10362         .addJumpTableIndex(MJTI)
10363         .add(predOps(ARMCC::AL));
10364 
10365     MachineMemOperand *JTMMOLd =
10366         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10367                                  MachineMemOperand::MOLoad, 4, Align(4));
10368     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10369     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
10370         .addReg(NewVReg3, RegState::Kill)
10371         .addReg(NewVReg4)
10372         .addImm(0)
10373         .addMemOperand(JTMMOLd)
10374         .add(predOps(ARMCC::AL));
10375 
10376     if (IsPositionIndependent) {
10377       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
10378         .addReg(NewVReg5, RegState::Kill)
10379         .addReg(NewVReg4)
10380         .addJumpTableIndex(MJTI);
10381     } else {
10382       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
10383         .addReg(NewVReg5, RegState::Kill)
10384         .addJumpTableIndex(MJTI);
10385     }
10386   }
10387 
10388   // Add the jump table entries as successors to the MBB.
10389   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
10390   for (std::vector<MachineBasicBlock*>::iterator
10391          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
10392     MachineBasicBlock *CurMBB = *I;
10393     if (SeenMBBs.insert(CurMBB).second)
10394       DispContBB->addSuccessor(CurMBB);
10395   }
10396 
10397   // N.B. the order the invoke BBs are processed in doesn't matter here.
10398   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
10399   SmallVector<MachineBasicBlock*, 64> MBBLPads;
10400   for (MachineBasicBlock *BB : InvokeBBs) {
10401 
10402     // Remove the landing pad successor from the invoke block and replace it
10403     // with the new dispatch block.
10404     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
10405                                                   BB->succ_end());
10406     while (!Successors.empty()) {
10407       MachineBasicBlock *SMBB = Successors.pop_back_val();
10408       if (SMBB->isEHPad()) {
10409         BB->removeSuccessor(SMBB);
10410         MBBLPads.push_back(SMBB);
10411       }
10412     }
10413 
10414     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
10415     BB->normalizeSuccProbs();
10416 
10417     // Find the invoke call and mark all of the callee-saved registers as
10418     // 'implicit defined' so that they're spilled. This prevents code from
10419     // moving instructions to before the EH block, where they will never be
10420     // executed.
10421     for (MachineBasicBlock::reverse_iterator
10422            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
10423       if (!II->isCall()) continue;
10424 
10425       DenseMap<unsigned, bool> DefRegs;
10426       for (MachineInstr::mop_iterator
10427              OI = II->operands_begin(), OE = II->operands_end();
10428            OI != OE; ++OI) {
10429         if (!OI->isReg()) continue;
10430         DefRegs[OI->getReg()] = true;
10431       }
10432 
10433       MachineInstrBuilder MIB(*MF, &*II);
10434 
10435       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
10436         unsigned Reg = SavedRegs[i];
10437         if (Subtarget->isThumb2() &&
10438             !ARM::tGPRRegClass.contains(Reg) &&
10439             !ARM::hGPRRegClass.contains(Reg))
10440           continue;
10441         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
10442           continue;
10443         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
10444           continue;
10445         if (!DefRegs[Reg])
10446           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
10447       }
10448 
10449       break;
10450     }
10451   }
10452 
10453   // Mark all former landing pads as non-landing pads. The dispatch is the only
10454   // landing pad now.
10455   for (SmallVectorImpl<MachineBasicBlock*>::iterator
10456          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
10457     (*I)->setIsEHPad(false);
10458 
10459   // The instruction is gone now.
10460   MI.eraseFromParent();
10461 }
10462 
10463 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)10464 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
10465   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
10466        E = MBB->succ_end(); I != E; ++I)
10467     if (*I != Succ)
10468       return *I;
10469   llvm_unreachable("Expecting a BB with two successors!");
10470 }
10471 
10472 /// Return the load opcode for a given load size. If load size >= 8,
10473 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)10474 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
10475   if (LdSize >= 8)
10476     return LdSize == 16 ? ARM::VLD1q32wb_fixed
10477                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
10478   if (IsThumb1)
10479     return LdSize == 4 ? ARM::tLDRi
10480                        : LdSize == 2 ? ARM::tLDRHi
10481                                      : LdSize == 1 ? ARM::tLDRBi : 0;
10482   if (IsThumb2)
10483     return LdSize == 4 ? ARM::t2LDR_POST
10484                        : LdSize == 2 ? ARM::t2LDRH_POST
10485                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
10486   return LdSize == 4 ? ARM::LDR_POST_IMM
10487                      : LdSize == 2 ? ARM::LDRH_POST
10488                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
10489 }
10490 
10491 /// Return the store opcode for a given store size. If store size >= 8,
10492 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)10493 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
10494   if (StSize >= 8)
10495     return StSize == 16 ? ARM::VST1q32wb_fixed
10496                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
10497   if (IsThumb1)
10498     return StSize == 4 ? ARM::tSTRi
10499                        : StSize == 2 ? ARM::tSTRHi
10500                                      : StSize == 1 ? ARM::tSTRBi : 0;
10501   if (IsThumb2)
10502     return StSize == 4 ? ARM::t2STR_POST
10503                        : StSize == 2 ? ARM::t2STRH_POST
10504                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
10505   return StSize == 4 ? ARM::STR_POST_IMM
10506                      : StSize == 2 ? ARM::STRH_POST
10507                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
10508 }
10509 
10510 /// Emit a post-increment load operation with given size. The instructions
10511 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10512 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10513                        const TargetInstrInfo *TII, const DebugLoc &dl,
10514                        unsigned LdSize, unsigned Data, unsigned AddrIn,
10515                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10516   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
10517   assert(LdOpc != 0 && "Should have a load opcode");
10518   if (LdSize >= 8) {
10519     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10520         .addReg(AddrOut, RegState::Define)
10521         .addReg(AddrIn)
10522         .addImm(0)
10523         .add(predOps(ARMCC::AL));
10524   } else if (IsThumb1) {
10525     // load + update AddrIn
10526     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10527         .addReg(AddrIn)
10528         .addImm(0)
10529         .add(predOps(ARMCC::AL));
10530     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10531         .add(t1CondCodeOp())
10532         .addReg(AddrIn)
10533         .addImm(LdSize)
10534         .add(predOps(ARMCC::AL));
10535   } else if (IsThumb2) {
10536     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10537         .addReg(AddrOut, RegState::Define)
10538         .addReg(AddrIn)
10539         .addImm(LdSize)
10540         .add(predOps(ARMCC::AL));
10541   } else { // arm
10542     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10543         .addReg(AddrOut, RegState::Define)
10544         .addReg(AddrIn)
10545         .addReg(0)
10546         .addImm(LdSize)
10547         .add(predOps(ARMCC::AL));
10548   }
10549 }
10550 
10551 /// Emit a post-increment store operation with given size. The instructions
10552 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10553 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10554                        const TargetInstrInfo *TII, const DebugLoc &dl,
10555                        unsigned StSize, unsigned Data, unsigned AddrIn,
10556                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10557   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
10558   assert(StOpc != 0 && "Should have a store opcode");
10559   if (StSize >= 8) {
10560     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10561         .addReg(AddrIn)
10562         .addImm(0)
10563         .addReg(Data)
10564         .add(predOps(ARMCC::AL));
10565   } else if (IsThumb1) {
10566     // store + update AddrIn
10567     BuildMI(*BB, Pos, dl, TII->get(StOpc))
10568         .addReg(Data)
10569         .addReg(AddrIn)
10570         .addImm(0)
10571         .add(predOps(ARMCC::AL));
10572     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10573         .add(t1CondCodeOp())
10574         .addReg(AddrIn)
10575         .addImm(StSize)
10576         .add(predOps(ARMCC::AL));
10577   } else if (IsThumb2) {
10578     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10579         .addReg(Data)
10580         .addReg(AddrIn)
10581         .addImm(StSize)
10582         .add(predOps(ARMCC::AL));
10583   } else { // arm
10584     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10585         .addReg(Data)
10586         .addReg(AddrIn)
10587         .addReg(0)
10588         .addImm(StSize)
10589         .add(predOps(ARMCC::AL));
10590   }
10591 }
10592 
10593 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const10594 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
10595                                    MachineBasicBlock *BB) const {
10596   // This pseudo instruction has 3 operands: dst, src, size
10597   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
10598   // Otherwise, we will generate unrolled scalar copies.
10599   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10600   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10601   MachineFunction::iterator It = ++BB->getIterator();
10602 
10603   Register dest = MI.getOperand(0).getReg();
10604   Register src = MI.getOperand(1).getReg();
10605   unsigned SizeVal = MI.getOperand(2).getImm();
10606   unsigned Alignment = MI.getOperand(3).getImm();
10607   DebugLoc dl = MI.getDebugLoc();
10608 
10609   MachineFunction *MF = BB->getParent();
10610   MachineRegisterInfo &MRI = MF->getRegInfo();
10611   unsigned UnitSize = 0;
10612   const TargetRegisterClass *TRC = nullptr;
10613   const TargetRegisterClass *VecTRC = nullptr;
10614 
10615   bool IsThumb1 = Subtarget->isThumb1Only();
10616   bool IsThumb2 = Subtarget->isThumb2();
10617   bool IsThumb = Subtarget->isThumb();
10618 
10619   if (Alignment & 1) {
10620     UnitSize = 1;
10621   } else if (Alignment & 2) {
10622     UnitSize = 2;
10623   } else {
10624     // Check whether we can use NEON instructions.
10625     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
10626         Subtarget->hasNEON()) {
10627       if ((Alignment % 16 == 0) && SizeVal >= 16)
10628         UnitSize = 16;
10629       else if ((Alignment % 8 == 0) && SizeVal >= 8)
10630         UnitSize = 8;
10631     }
10632     // Can't use NEON instructions.
10633     if (UnitSize == 0)
10634       UnitSize = 4;
10635   }
10636 
10637   // Select the correct opcode and register class for unit size load/store
10638   bool IsNeon = UnitSize >= 8;
10639   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
10640   if (IsNeon)
10641     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
10642                             : UnitSize == 8 ? &ARM::DPRRegClass
10643                                             : nullptr;
10644 
10645   unsigned BytesLeft = SizeVal % UnitSize;
10646   unsigned LoopSize = SizeVal - BytesLeft;
10647 
10648   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
10649     // Use LDR and STR to copy.
10650     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10651     // [destOut] = STR_POST(scratch, destIn, UnitSize)
10652     unsigned srcIn = src;
10653     unsigned destIn = dest;
10654     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
10655       Register srcOut = MRI.createVirtualRegister(TRC);
10656       Register destOut = MRI.createVirtualRegister(TRC);
10657       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10658       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
10659                  IsThumb1, IsThumb2);
10660       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
10661                  IsThumb1, IsThumb2);
10662       srcIn = srcOut;
10663       destIn = destOut;
10664     }
10665 
10666     // Handle the leftover bytes with LDRB and STRB.
10667     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10668     // [destOut] = STRB_POST(scratch, destIn, 1)
10669     for (unsigned i = 0; i < BytesLeft; i++) {
10670       Register srcOut = MRI.createVirtualRegister(TRC);
10671       Register destOut = MRI.createVirtualRegister(TRC);
10672       Register scratch = MRI.createVirtualRegister(TRC);
10673       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
10674                  IsThumb1, IsThumb2);
10675       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
10676                  IsThumb1, IsThumb2);
10677       srcIn = srcOut;
10678       destIn = destOut;
10679     }
10680     MI.eraseFromParent(); // The instruction is gone now.
10681     return BB;
10682   }
10683 
10684   // Expand the pseudo op to a loop.
10685   // thisMBB:
10686   //   ...
10687   //   movw varEnd, # --> with thumb2
10688   //   movt varEnd, #
10689   //   ldrcp varEnd, idx --> without thumb2
10690   //   fallthrough --> loopMBB
10691   // loopMBB:
10692   //   PHI varPhi, varEnd, varLoop
10693   //   PHI srcPhi, src, srcLoop
10694   //   PHI destPhi, dst, destLoop
10695   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10696   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10697   //   subs varLoop, varPhi, #UnitSize
10698   //   bne loopMBB
10699   //   fallthrough --> exitMBB
10700   // exitMBB:
10701   //   epilogue to handle left-over bytes
10702   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10703   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10704   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10705   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10706   MF->insert(It, loopMBB);
10707   MF->insert(It, exitMBB);
10708 
10709   // Transfer the remainder of BB and its successor edges to exitMBB.
10710   exitMBB->splice(exitMBB->begin(), BB,
10711                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10712   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10713 
10714   // Load an immediate to varEnd.
10715   Register varEnd = MRI.createVirtualRegister(TRC);
10716   if (Subtarget->useMovt()) {
10717     unsigned Vtmp = varEnd;
10718     if ((LoopSize & 0xFFFF0000) != 0)
10719       Vtmp = MRI.createVirtualRegister(TRC);
10720     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
10721         .addImm(LoopSize & 0xFFFF)
10722         .add(predOps(ARMCC::AL));
10723 
10724     if ((LoopSize & 0xFFFF0000) != 0)
10725       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
10726           .addReg(Vtmp)
10727           .addImm(LoopSize >> 16)
10728           .add(predOps(ARMCC::AL));
10729   } else {
10730     MachineConstantPool *ConstantPool = MF->getConstantPool();
10731     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10732     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
10733 
10734     // MachineConstantPool wants an explicit alignment.
10735     Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10736     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10737     MachineMemOperand *CPMMO =
10738         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10739                                  MachineMemOperand::MOLoad, 4, Align(4));
10740 
10741     if (IsThumb)
10742       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
10743           .addReg(varEnd, RegState::Define)
10744           .addConstantPoolIndex(Idx)
10745           .add(predOps(ARMCC::AL))
10746           .addMemOperand(CPMMO);
10747     else
10748       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
10749           .addReg(varEnd, RegState::Define)
10750           .addConstantPoolIndex(Idx)
10751           .addImm(0)
10752           .add(predOps(ARMCC::AL))
10753           .addMemOperand(CPMMO);
10754   }
10755   BB->addSuccessor(loopMBB);
10756 
10757   // Generate the loop body:
10758   //   varPhi = PHI(varLoop, varEnd)
10759   //   srcPhi = PHI(srcLoop, src)
10760   //   destPhi = PHI(destLoop, dst)
10761   MachineBasicBlock *entryBB = BB;
10762   BB = loopMBB;
10763   Register varLoop = MRI.createVirtualRegister(TRC);
10764   Register varPhi = MRI.createVirtualRegister(TRC);
10765   Register srcLoop = MRI.createVirtualRegister(TRC);
10766   Register srcPhi = MRI.createVirtualRegister(TRC);
10767   Register destLoop = MRI.createVirtualRegister(TRC);
10768   Register destPhi = MRI.createVirtualRegister(TRC);
10769 
10770   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
10771     .addReg(varLoop).addMBB(loopMBB)
10772     .addReg(varEnd).addMBB(entryBB);
10773   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
10774     .addReg(srcLoop).addMBB(loopMBB)
10775     .addReg(src).addMBB(entryBB);
10776   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
10777     .addReg(destLoop).addMBB(loopMBB)
10778     .addReg(dest).addMBB(entryBB);
10779 
10780   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10781   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10782   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10783   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
10784              IsThumb1, IsThumb2);
10785   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
10786              IsThumb1, IsThumb2);
10787 
10788   // Decrement loop variable by UnitSize.
10789   if (IsThumb1) {
10790     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
10791         .add(t1CondCodeOp())
10792         .addReg(varPhi)
10793         .addImm(UnitSize)
10794         .add(predOps(ARMCC::AL));
10795   } else {
10796     MachineInstrBuilder MIB =
10797         BuildMI(*BB, BB->end(), dl,
10798                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
10799     MIB.addReg(varPhi)
10800         .addImm(UnitSize)
10801         .add(predOps(ARMCC::AL))
10802         .add(condCodeOp());
10803     MIB->getOperand(5).setReg(ARM::CPSR);
10804     MIB->getOperand(5).setIsDef(true);
10805   }
10806   BuildMI(*BB, BB->end(), dl,
10807           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
10808       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
10809 
10810   // loopMBB can loop back to loopMBB or fall through to exitMBB.
10811   BB->addSuccessor(loopMBB);
10812   BB->addSuccessor(exitMBB);
10813 
10814   // Add epilogue to handle BytesLeft.
10815   BB = exitMBB;
10816   auto StartOfExit = exitMBB->begin();
10817 
10818   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10819   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10820   unsigned srcIn = srcLoop;
10821   unsigned destIn = destLoop;
10822   for (unsigned i = 0; i < BytesLeft; i++) {
10823     Register srcOut = MRI.createVirtualRegister(TRC);
10824     Register destOut = MRI.createVirtualRegister(TRC);
10825     Register scratch = MRI.createVirtualRegister(TRC);
10826     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
10827                IsThumb1, IsThumb2);
10828     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
10829                IsThumb1, IsThumb2);
10830     srcIn = srcOut;
10831     destIn = destOut;
10832   }
10833 
10834   MI.eraseFromParent(); // The instruction is gone now.
10835   return BB;
10836 }
10837 
10838 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const10839 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
10840                                        MachineBasicBlock *MBB) const {
10841   const TargetMachine &TM = getTargetMachine();
10842   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
10843   DebugLoc DL = MI.getDebugLoc();
10844 
10845   assert(Subtarget->isTargetWindows() &&
10846          "__chkstk is only supported on Windows");
10847   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10848 
10849   // __chkstk takes the number of words to allocate on the stack in R4, and
10850   // returns the stack adjustment in number of bytes in R4.  This will not
10851   // clober any other registers (other than the obvious lr).
10852   //
10853   // Although, technically, IP should be considered a register which may be
10854   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
10855   // thumb-2 environment, so there is no interworking required.  As a result, we
10856   // do not expect a veneer to be emitted by the linker, clobbering IP.
10857   //
10858   // Each module receives its own copy of __chkstk, so no import thunk is
10859   // required, again, ensuring that IP is not clobbered.
10860   //
10861   // Finally, although some linkers may theoretically provide a trampoline for
10862   // out of range calls (which is quite common due to a 32M range limitation of
10863   // branches for Thumb), we can generate the long-call version via
10864   // -mcmodel=large, alleviating the need for the trampoline which may clobber
10865   // IP.
10866 
10867   switch (TM.getCodeModel()) {
10868   case CodeModel::Tiny:
10869     llvm_unreachable("Tiny code model not available on ARM.");
10870   case CodeModel::Small:
10871   case CodeModel::Medium:
10872   case CodeModel::Kernel:
10873     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
10874         .add(predOps(ARMCC::AL))
10875         .addExternalSymbol("__chkstk")
10876         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10877         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10878         .addReg(ARM::R12,
10879                 RegState::Implicit | RegState::Define | RegState::Dead)
10880         .addReg(ARM::CPSR,
10881                 RegState::Implicit | RegState::Define | RegState::Dead);
10882     break;
10883   case CodeModel::Large: {
10884     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10885     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
10886 
10887     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
10888       .addExternalSymbol("__chkstk");
10889     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
10890         .add(predOps(ARMCC::AL))
10891         .addReg(Reg, RegState::Kill)
10892         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10893         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10894         .addReg(ARM::R12,
10895                 RegState::Implicit | RegState::Define | RegState::Dead)
10896         .addReg(ARM::CPSR,
10897                 RegState::Implicit | RegState::Define | RegState::Dead);
10898     break;
10899   }
10900   }
10901 
10902   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
10903       .addReg(ARM::SP, RegState::Kill)
10904       .addReg(ARM::R4, RegState::Kill)
10905       .setMIFlags(MachineInstr::FrameSetup)
10906       .add(predOps(ARMCC::AL))
10907       .add(condCodeOp());
10908 
10909   MI.eraseFromParent();
10910   return MBB;
10911 }
10912 
10913 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const10914 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
10915                                        MachineBasicBlock *MBB) const {
10916   DebugLoc DL = MI.getDebugLoc();
10917   MachineFunction *MF = MBB->getParent();
10918   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10919 
10920   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
10921   MF->insert(++MBB->getIterator(), ContBB);
10922   ContBB->splice(ContBB->begin(), MBB,
10923                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10924   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
10925   MBB->addSuccessor(ContBB);
10926 
10927   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10928   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
10929   MF->push_back(TrapBB);
10930   MBB->addSuccessor(TrapBB);
10931 
10932   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
10933       .addReg(MI.getOperand(0).getReg())
10934       .addImm(0)
10935       .add(predOps(ARMCC::AL));
10936   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
10937       .addMBB(TrapBB)
10938       .addImm(ARMCC::EQ)
10939       .addReg(ARM::CPSR);
10940 
10941   MI.eraseFromParent();
10942   return ContBB;
10943 }
10944 
10945 // The CPSR operand of SelectItr might be missing a kill marker
10946 // because there were multiple uses of CPSR, and ISel didn't know
10947 // which to mark. Figure out whether SelectItr should have had a
10948 // kill marker, and set it if it should. Returns the correct kill
10949 // marker value.
checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,MachineBasicBlock * BB,const TargetRegisterInfo * TRI)10950 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
10951                                    MachineBasicBlock* BB,
10952                                    const TargetRegisterInfo* TRI) {
10953   // Scan forward through BB for a use/def of CPSR.
10954   MachineBasicBlock::iterator miI(std::next(SelectItr));
10955   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
10956     const MachineInstr& mi = *miI;
10957     if (mi.readsRegister(ARM::CPSR))
10958       return false;
10959     if (mi.definesRegister(ARM::CPSR))
10960       break; // Should have kill-flag - update below.
10961   }
10962 
10963   // If we hit the end of the block, check whether CPSR is live into a
10964   // successor.
10965   if (miI == BB->end()) {
10966     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
10967                                           sEnd = BB->succ_end();
10968          sItr != sEnd; ++sItr) {
10969       MachineBasicBlock* succ = *sItr;
10970       if (succ->isLiveIn(ARM::CPSR))
10971         return false;
10972     }
10973   }
10974 
10975   // We found a def, or hit the end of the basic block and CPSR wasn't live
10976   // out. SelectMI should have a kill flag on CPSR.
10977   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
10978   return true;
10979 }
10980 
10981 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const10982 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10983                                                MachineBasicBlock *BB) const {
10984   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10985   DebugLoc dl = MI.getDebugLoc();
10986   bool isThumb2 = Subtarget->isThumb2();
10987   switch (MI.getOpcode()) {
10988   default: {
10989     MI.print(errs());
10990     llvm_unreachable("Unexpected instr type to insert");
10991   }
10992 
10993   // Thumb1 post-indexed loads are really just single-register LDMs.
10994   case ARM::tLDR_postidx: {
10995     MachineOperand Def(MI.getOperand(1));
10996     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
10997         .add(Def)  // Rn_wb
10998         .add(MI.getOperand(2))  // Rn
10999         .add(MI.getOperand(3))  // PredImm
11000         .add(MI.getOperand(4))  // PredReg
11001         .add(MI.getOperand(0))  // Rt
11002         .cloneMemRefs(MI);
11003     MI.eraseFromParent();
11004     return BB;
11005   }
11006 
11007   // The Thumb2 pre-indexed stores have the same MI operands, they just
11008   // define them differently in the .td files from the isel patterns, so
11009   // they need pseudos.
11010   case ARM::t2STR_preidx:
11011     MI.setDesc(TII->get(ARM::t2STR_PRE));
11012     return BB;
11013   case ARM::t2STRB_preidx:
11014     MI.setDesc(TII->get(ARM::t2STRB_PRE));
11015     return BB;
11016   case ARM::t2STRH_preidx:
11017     MI.setDesc(TII->get(ARM::t2STRH_PRE));
11018     return BB;
11019 
11020   case ARM::STRi_preidx:
11021   case ARM::STRBi_preidx: {
11022     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
11023                                                          : ARM::STRB_PRE_IMM;
11024     // Decode the offset.
11025     unsigned Offset = MI.getOperand(4).getImm();
11026     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
11027     Offset = ARM_AM::getAM2Offset(Offset);
11028     if (isSub)
11029       Offset = -Offset;
11030 
11031     MachineMemOperand *MMO = *MI.memoperands_begin();
11032     BuildMI(*BB, MI, dl, TII->get(NewOpc))
11033         .add(MI.getOperand(0)) // Rn_wb
11034         .add(MI.getOperand(1)) // Rt
11035         .add(MI.getOperand(2)) // Rn
11036         .addImm(Offset)        // offset (skip GPR==zero_reg)
11037         .add(MI.getOperand(5)) // pred
11038         .add(MI.getOperand(6))
11039         .addMemOperand(MMO);
11040     MI.eraseFromParent();
11041     return BB;
11042   }
11043   case ARM::STRr_preidx:
11044   case ARM::STRBr_preidx:
11045   case ARM::STRH_preidx: {
11046     unsigned NewOpc;
11047     switch (MI.getOpcode()) {
11048     default: llvm_unreachable("unexpected opcode!");
11049     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
11050     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
11051     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
11052     }
11053     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
11054     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
11055       MIB.add(MI.getOperand(i));
11056     MI.eraseFromParent();
11057     return BB;
11058   }
11059 
11060   case ARM::tMOVCCr_pseudo: {
11061     // To "insert" a SELECT_CC instruction, we actually have to insert the
11062     // diamond control-flow pattern.  The incoming instruction knows the
11063     // destination vreg to set, the condition code register to branch on, the
11064     // true/false values to select between, and a branch opcode to use.
11065     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11066     MachineFunction::iterator It = ++BB->getIterator();
11067 
11068     //  thisMBB:
11069     //  ...
11070     //   TrueVal = ...
11071     //   cmpTY ccX, r1, r2
11072     //   bCC copy1MBB
11073     //   fallthrough --> copy0MBB
11074     MachineBasicBlock *thisMBB  = BB;
11075     MachineFunction *F = BB->getParent();
11076     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11077     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
11078     F->insert(It, copy0MBB);
11079     F->insert(It, sinkMBB);
11080 
11081     // Check whether CPSR is live past the tMOVCCr_pseudo.
11082     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
11083     if (!MI.killsRegister(ARM::CPSR) &&
11084         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
11085       copy0MBB->addLiveIn(ARM::CPSR);
11086       sinkMBB->addLiveIn(ARM::CPSR);
11087     }
11088 
11089     // Transfer the remainder of BB and its successor edges to sinkMBB.
11090     sinkMBB->splice(sinkMBB->begin(), BB,
11091                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11092     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11093 
11094     BB->addSuccessor(copy0MBB);
11095     BB->addSuccessor(sinkMBB);
11096 
11097     BuildMI(BB, dl, TII->get(ARM::tBcc))
11098         .addMBB(sinkMBB)
11099         .addImm(MI.getOperand(3).getImm())
11100         .addReg(MI.getOperand(4).getReg());
11101 
11102     //  copy0MBB:
11103     //   %FalseValue = ...
11104     //   # fallthrough to sinkMBB
11105     BB = copy0MBB;
11106 
11107     // Update machine-CFG edges
11108     BB->addSuccessor(sinkMBB);
11109 
11110     //  sinkMBB:
11111     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11112     //  ...
11113     BB = sinkMBB;
11114     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
11115         .addReg(MI.getOperand(1).getReg())
11116         .addMBB(copy0MBB)
11117         .addReg(MI.getOperand(2).getReg())
11118         .addMBB(thisMBB);
11119 
11120     MI.eraseFromParent(); // The pseudo instruction is gone now.
11121     return BB;
11122   }
11123 
11124   case ARM::BCCi64:
11125   case ARM::BCCZi64: {
11126     // If there is an unconditional branch to the other successor, remove it.
11127     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
11128 
11129     // Compare both parts that make up the double comparison separately for
11130     // equality.
11131     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
11132 
11133     Register LHS1 = MI.getOperand(1).getReg();
11134     Register LHS2 = MI.getOperand(2).getReg();
11135     if (RHSisZero) {
11136       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11137           .addReg(LHS1)
11138           .addImm(0)
11139           .add(predOps(ARMCC::AL));
11140       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11141         .addReg(LHS2).addImm(0)
11142         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11143     } else {
11144       Register RHS1 = MI.getOperand(3).getReg();
11145       Register RHS2 = MI.getOperand(4).getReg();
11146       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11147           .addReg(LHS1)
11148           .addReg(RHS1)
11149           .add(predOps(ARMCC::AL));
11150       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11151         .addReg(LHS2).addReg(RHS2)
11152         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11153     }
11154 
11155     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
11156     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
11157     if (MI.getOperand(0).getImm() == ARMCC::NE)
11158       std::swap(destMBB, exitMBB);
11159 
11160     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
11161       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
11162     if (isThumb2)
11163       BuildMI(BB, dl, TII->get(ARM::t2B))
11164           .addMBB(exitMBB)
11165           .add(predOps(ARMCC::AL));
11166     else
11167       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
11168 
11169     MI.eraseFromParent(); // The pseudo instruction is gone now.
11170     return BB;
11171   }
11172 
11173   case ARM::Int_eh_sjlj_setjmp:
11174   case ARM::Int_eh_sjlj_setjmp_nofp:
11175   case ARM::tInt_eh_sjlj_setjmp:
11176   case ARM::t2Int_eh_sjlj_setjmp:
11177   case ARM::t2Int_eh_sjlj_setjmp_nofp:
11178     return BB;
11179 
11180   case ARM::Int_eh_sjlj_setup_dispatch:
11181     EmitSjLjDispatchBlock(MI, BB);
11182     return BB;
11183 
11184   case ARM::ABS:
11185   case ARM::t2ABS: {
11186     // To insert an ABS instruction, we have to insert the
11187     // diamond control-flow pattern.  The incoming instruction knows the
11188     // source vreg to test against 0, the destination vreg to set,
11189     // the condition code register to branch on, the
11190     // true/false values to select between, and a branch opcode to use.
11191     // It transforms
11192     //     V1 = ABS V0
11193     // into
11194     //     V2 = MOVS V0
11195     //     BCC                      (branch to SinkBB if V0 >= 0)
11196     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
11197     //     SinkBB: V1 = PHI(V2, V3)
11198     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11199     MachineFunction::iterator BBI = ++BB->getIterator();
11200     MachineFunction *Fn = BB->getParent();
11201     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
11202     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
11203     Fn->insert(BBI, RSBBB);
11204     Fn->insert(BBI, SinkBB);
11205 
11206     Register ABSSrcReg = MI.getOperand(1).getReg();
11207     Register ABSDstReg = MI.getOperand(0).getReg();
11208     bool ABSSrcKIll = MI.getOperand(1).isKill();
11209     bool isThumb2 = Subtarget->isThumb2();
11210     MachineRegisterInfo &MRI = Fn->getRegInfo();
11211     // In Thumb mode S must not be specified if source register is the SP or
11212     // PC and if destination register is the SP, so restrict register class
11213     Register NewRsbDstReg = MRI.createVirtualRegister(
11214         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
11215 
11216     // Transfer the remainder of BB and its successor edges to sinkMBB.
11217     SinkBB->splice(SinkBB->begin(), BB,
11218                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11219     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
11220 
11221     BB->addSuccessor(RSBBB);
11222     BB->addSuccessor(SinkBB);
11223 
11224     // fall through to SinkMBB
11225     RSBBB->addSuccessor(SinkBB);
11226 
11227     // insert a cmp at the end of BB
11228     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11229         .addReg(ABSSrcReg)
11230         .addImm(0)
11231         .add(predOps(ARMCC::AL));
11232 
11233     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
11234     BuildMI(BB, dl,
11235       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
11236       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
11237 
11238     // insert rsbri in RSBBB
11239     // Note: BCC and rsbri will be converted into predicated rsbmi
11240     // by if-conversion pass
11241     BuildMI(*RSBBB, RSBBB->begin(), dl,
11242             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
11243         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
11244         .addImm(0)
11245         .add(predOps(ARMCC::AL))
11246         .add(condCodeOp());
11247 
11248     // insert PHI in SinkBB,
11249     // reuse ABSDstReg to not change uses of ABS instruction
11250     BuildMI(*SinkBB, SinkBB->begin(), dl,
11251       TII->get(ARM::PHI), ABSDstReg)
11252       .addReg(NewRsbDstReg).addMBB(RSBBB)
11253       .addReg(ABSSrcReg).addMBB(BB);
11254 
11255     // remove ABS instruction
11256     MI.eraseFromParent();
11257 
11258     // return last added BB
11259     return SinkBB;
11260   }
11261   case ARM::COPY_STRUCT_BYVAL_I32:
11262     ++NumLoopByVals;
11263     return EmitStructByval(MI, BB);
11264   case ARM::WIN__CHKSTK:
11265     return EmitLowered__chkstk(MI, BB);
11266   case ARM::WIN__DBZCHK:
11267     return EmitLowered__dbzchk(MI, BB);
11268   case ARM::t2DoLoopStart:
11269     // We are just here to set a register allocation hint, prefering lr for the
11270     // input register to make it more likely to be movable and removable, later
11271     // in the pipeline.
11272     Register R = MI.getOperand(1).getReg();
11273     MachineFunction *MF = MI.getParent()->getParent();
11274     MF->getRegInfo().setRegAllocationHint(R, ARMRI::RegLR, 0);
11275     return BB;
11276   }
11277 }
11278 
11279 /// Attaches vregs to MEMCPY that it will use as scratch registers
11280 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
11281 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)11282 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
11283                                     MachineInstr &MI, const SDNode *Node) {
11284   bool isThumb1 = Subtarget->isThumb1Only();
11285 
11286   DebugLoc DL = MI.getDebugLoc();
11287   MachineFunction *MF = MI.getParent()->getParent();
11288   MachineRegisterInfo &MRI = MF->getRegInfo();
11289   MachineInstrBuilder MIB(*MF, MI);
11290 
11291   // If the new dst/src is unused mark it as dead.
11292   if (!Node->hasAnyUseOfValue(0)) {
11293     MI.getOperand(0).setIsDead(true);
11294   }
11295   if (!Node->hasAnyUseOfValue(1)) {
11296     MI.getOperand(1).setIsDead(true);
11297   }
11298 
11299   // The MEMCPY both defines and kills the scratch registers.
11300   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
11301     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
11302                                                          : &ARM::GPRRegClass);
11303     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
11304   }
11305 }
11306 
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const11307 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11308                                                       SDNode *Node) const {
11309   if (MI.getOpcode() == ARM::MEMCPY) {
11310     attachMEMCPYScratchRegs(Subtarget, MI, Node);
11311     return;
11312   }
11313 
11314   const MCInstrDesc *MCID = &MI.getDesc();
11315   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
11316   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
11317   // operand is still set to noreg. If needed, set the optional operand's
11318   // register to CPSR, and remove the redundant implicit def.
11319   //
11320   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
11321 
11322   // Rename pseudo opcodes.
11323   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
11324   unsigned ccOutIdx;
11325   if (NewOpc) {
11326     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
11327     MCID = &TII->get(NewOpc);
11328 
11329     assert(MCID->getNumOperands() ==
11330            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
11331         && "converted opcode should be the same except for cc_out"
11332            " (and, on Thumb1, pred)");
11333 
11334     MI.setDesc(*MCID);
11335 
11336     // Add the optional cc_out operand
11337     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
11338 
11339     // On Thumb1, move all input operands to the end, then add the predicate
11340     if (Subtarget->isThumb1Only()) {
11341       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
11342         MI.addOperand(MI.getOperand(1));
11343         MI.RemoveOperand(1);
11344       }
11345 
11346       // Restore the ties
11347       for (unsigned i = MI.getNumOperands(); i--;) {
11348         const MachineOperand& op = MI.getOperand(i);
11349         if (op.isReg() && op.isUse()) {
11350           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
11351           if (DefIdx != -1)
11352             MI.tieOperands(DefIdx, i);
11353         }
11354       }
11355 
11356       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
11357       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
11358       ccOutIdx = 1;
11359     } else
11360       ccOutIdx = MCID->getNumOperands() - 1;
11361   } else
11362     ccOutIdx = MCID->getNumOperands() - 1;
11363 
11364   // Any ARM instruction that sets the 's' bit should specify an optional
11365   // "cc_out" operand in the last operand position.
11366   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
11367     assert(!NewOpc && "Optional cc_out operand required");
11368     return;
11369   }
11370   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
11371   // since we already have an optional CPSR def.
11372   bool definesCPSR = false;
11373   bool deadCPSR = false;
11374   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
11375        ++i) {
11376     const MachineOperand &MO = MI.getOperand(i);
11377     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
11378       definesCPSR = true;
11379       if (MO.isDead())
11380         deadCPSR = true;
11381       MI.RemoveOperand(i);
11382       break;
11383     }
11384   }
11385   if (!definesCPSR) {
11386     assert(!NewOpc && "Optional cc_out operand required");
11387     return;
11388   }
11389   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
11390   if (deadCPSR) {
11391     assert(!MI.getOperand(ccOutIdx).getReg() &&
11392            "expect uninitialized optional cc_out operand");
11393     // Thumb1 instructions must have the S bit even if the CPSR is dead.
11394     if (!Subtarget->isThumb1Only())
11395       return;
11396   }
11397 
11398   // If this instruction was defined with an optional CPSR def and its dag node
11399   // had a live implicit CPSR def, then activate the optional CPSR def.
11400   MachineOperand &MO = MI.getOperand(ccOutIdx);
11401   MO.setReg(ARM::CPSR);
11402   MO.setIsDef(true);
11403 }
11404 
11405 //===----------------------------------------------------------------------===//
11406 //                           ARM Optimization Hooks
11407 //===----------------------------------------------------------------------===//
11408 
11409 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)11410 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
11411   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
11412 }
11413 
11414 // Return true if N is conditionally 0 or all ones.
11415 // Detects these expressions where cc is an i1 value:
11416 //
11417 //   (select cc 0, y)   [AllOnes=0]
11418 //   (select cc y, 0)   [AllOnes=0]
11419 //   (zext cc)          [AllOnes=0]
11420 //   (sext cc)          [AllOnes=0/1]
11421 //   (select cc -1, y)  [AllOnes=1]
11422 //   (select cc y, -1)  [AllOnes=1]
11423 //
11424 // Invert is set when N is the null/all ones constant when CC is false.
11425 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)11426 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
11427                                        SDValue &CC, bool &Invert,
11428                                        SDValue &OtherOp,
11429                                        SelectionDAG &DAG) {
11430   switch (N->getOpcode()) {
11431   default: return false;
11432   case ISD::SELECT: {
11433     CC = N->getOperand(0);
11434     SDValue N1 = N->getOperand(1);
11435     SDValue N2 = N->getOperand(2);
11436     if (isZeroOrAllOnes(N1, AllOnes)) {
11437       Invert = false;
11438       OtherOp = N2;
11439       return true;
11440     }
11441     if (isZeroOrAllOnes(N2, AllOnes)) {
11442       Invert = true;
11443       OtherOp = N1;
11444       return true;
11445     }
11446     return false;
11447   }
11448   case ISD::ZERO_EXTEND:
11449     // (zext cc) can never be the all ones value.
11450     if (AllOnes)
11451       return false;
11452     LLVM_FALLTHROUGH;
11453   case ISD::SIGN_EXTEND: {
11454     SDLoc dl(N);
11455     EVT VT = N->getValueType(0);
11456     CC = N->getOperand(0);
11457     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
11458       return false;
11459     Invert = !AllOnes;
11460     if (AllOnes)
11461       // When looking for an AllOnes constant, N is an sext, and the 'other'
11462       // value is 0.
11463       OtherOp = DAG.getConstant(0, dl, VT);
11464     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11465       // When looking for a 0 constant, N can be zext or sext.
11466       OtherOp = DAG.getConstant(1, dl, VT);
11467     else
11468       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
11469                                 VT);
11470     return true;
11471   }
11472   }
11473 }
11474 
11475 // Combine a constant select operand into its use:
11476 //
11477 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
11478 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
11479 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
11480 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
11481 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
11482 //
11483 // The transform is rejected if the select doesn't have a constant operand that
11484 // is null, or all ones when AllOnes is set.
11485 //
11486 // Also recognize sext/zext from i1:
11487 //
11488 //   (add (zext cc), x) -> (select cc (add x, 1), x)
11489 //   (add (sext cc), x) -> (select cc (add x, -1), x)
11490 //
11491 // These transformations eventually create predicated instructions.
11492 //
11493 // @param N       The node to transform.
11494 // @param Slct    The N operand that is a select.
11495 // @param OtherOp The other N operand (x above).
11496 // @param DCI     Context.
11497 // @param AllOnes Require the select constant to be all ones instead of null.
11498 // @returns The new node, or SDValue() on failure.
11499 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)11500 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
11501                             TargetLowering::DAGCombinerInfo &DCI,
11502                             bool AllOnes = false) {
11503   SelectionDAG &DAG = DCI.DAG;
11504   EVT VT = N->getValueType(0);
11505   SDValue NonConstantVal;
11506   SDValue CCOp;
11507   bool SwapSelectOps;
11508   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
11509                                   NonConstantVal, DAG))
11510     return SDValue();
11511 
11512   // Slct is now know to be the desired identity constant when CC is true.
11513   SDValue TrueVal = OtherOp;
11514   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
11515                                  OtherOp, NonConstantVal);
11516   // Unless SwapSelectOps says CC should be false.
11517   if (SwapSelectOps)
11518     std::swap(TrueVal, FalseVal);
11519 
11520   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
11521                      CCOp, TrueVal, FalseVal);
11522 }
11523 
11524 // Attempt combineSelectAndUse on each operand of a commutative operator N.
11525 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)11526 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
11527                                        TargetLowering::DAGCombinerInfo &DCI) {
11528   SDValue N0 = N->getOperand(0);
11529   SDValue N1 = N->getOperand(1);
11530   if (N0.getNode()->hasOneUse())
11531     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
11532       return Result;
11533   if (N1.getNode()->hasOneUse())
11534     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
11535       return Result;
11536   return SDValue();
11537 }
11538 
IsVUZPShuffleNode(SDNode * N)11539 static bool IsVUZPShuffleNode(SDNode *N) {
11540   // VUZP shuffle node.
11541   if (N->getOpcode() == ARMISD::VUZP)
11542     return true;
11543 
11544   // "VUZP" on i32 is an alias for VTRN.
11545   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
11546     return true;
11547 
11548   return false;
11549 }
11550 
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11551 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
11552                                  TargetLowering::DAGCombinerInfo &DCI,
11553                                  const ARMSubtarget *Subtarget) {
11554   // Look for ADD(VUZP.0, VUZP.1).
11555   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
11556       N0 == N1)
11557    return SDValue();
11558 
11559   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
11560   if (!N->getValueType(0).is64BitVector())
11561     return SDValue();
11562 
11563   // Generate vpadd.
11564   SelectionDAG &DAG = DCI.DAG;
11565   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11566   SDLoc dl(N);
11567   SDNode *Unzip = N0.getNode();
11568   EVT VT = N->getValueType(0);
11569 
11570   SmallVector<SDValue, 8> Ops;
11571   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
11572                                 TLI.getPointerTy(DAG.getDataLayout())));
11573   Ops.push_back(Unzip->getOperand(0));
11574   Ops.push_back(Unzip->getOperand(1));
11575 
11576   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11577 }
11578 
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11579 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11580                                       TargetLowering::DAGCombinerInfo &DCI,
11581                                       const ARMSubtarget *Subtarget) {
11582   // Check for two extended operands.
11583   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
11584         N1.getOpcode() == ISD::SIGN_EXTEND) &&
11585       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
11586         N1.getOpcode() == ISD::ZERO_EXTEND))
11587     return SDValue();
11588 
11589   SDValue N00 = N0.getOperand(0);
11590   SDValue N10 = N1.getOperand(0);
11591 
11592   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
11593   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
11594       N00 == N10)
11595     return SDValue();
11596 
11597   // We only recognize Q register paddl here; this can't be reached until
11598   // after type legalization.
11599   if (!N00.getValueType().is64BitVector() ||
11600       !N0.getValueType().is128BitVector())
11601     return SDValue();
11602 
11603   // Generate vpaddl.
11604   SelectionDAG &DAG = DCI.DAG;
11605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11606   SDLoc dl(N);
11607   EVT VT = N->getValueType(0);
11608 
11609   SmallVector<SDValue, 8> Ops;
11610   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
11611   unsigned Opcode;
11612   if (N0.getOpcode() == ISD::SIGN_EXTEND)
11613     Opcode = Intrinsic::arm_neon_vpaddls;
11614   else
11615     Opcode = Intrinsic::arm_neon_vpaddlu;
11616   Ops.push_back(DAG.getConstant(Opcode, dl,
11617                                 TLI.getPointerTy(DAG.getDataLayout())));
11618   EVT ElemTy = N00.getValueType().getVectorElementType();
11619   unsigned NumElts = VT.getVectorNumElements();
11620   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
11621   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
11622                                N00.getOperand(0), N00.getOperand(1));
11623   Ops.push_back(Concat);
11624 
11625   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11626 }
11627 
11628 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
11629 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
11630 // much easier to match.
11631 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11632 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11633                                TargetLowering::DAGCombinerInfo &DCI,
11634                                const ARMSubtarget *Subtarget) {
11635   // Only perform optimization if after legalize, and if NEON is available. We
11636   // also expected both operands to be BUILD_VECTORs.
11637   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
11638       || N0.getOpcode() != ISD::BUILD_VECTOR
11639       || N1.getOpcode() != ISD::BUILD_VECTOR)
11640     return SDValue();
11641 
11642   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
11643   EVT VT = N->getValueType(0);
11644   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
11645     return SDValue();
11646 
11647   // Check that the vector operands are of the right form.
11648   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
11649   // operands, where N is the size of the formed vector.
11650   // Each EXTRACT_VECTOR should have the same input vector and odd or even
11651   // index such that we have a pair wise add pattern.
11652 
11653   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
11654   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11655     return SDValue();
11656   SDValue Vec = N0->getOperand(0)->getOperand(0);
11657   SDNode *V = Vec.getNode();
11658   unsigned nextIndex = 0;
11659 
11660   // For each operands to the ADD which are BUILD_VECTORs,
11661   // check to see if each of their operands are an EXTRACT_VECTOR with
11662   // the same vector and appropriate index.
11663   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
11664     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
11665         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11666 
11667       SDValue ExtVec0 = N0->getOperand(i);
11668       SDValue ExtVec1 = N1->getOperand(i);
11669 
11670       // First operand is the vector, verify its the same.
11671       if (V != ExtVec0->getOperand(0).getNode() ||
11672           V != ExtVec1->getOperand(0).getNode())
11673         return SDValue();
11674 
11675       // Second is the constant, verify its correct.
11676       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
11677       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
11678 
11679       // For the constant, we want to see all the even or all the odd.
11680       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
11681           || C1->getZExtValue() != nextIndex+1)
11682         return SDValue();
11683 
11684       // Increment index.
11685       nextIndex+=2;
11686     } else
11687       return SDValue();
11688   }
11689 
11690   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
11691   // we're using the entire input vector, otherwise there's a size/legality
11692   // mismatch somewhere.
11693   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
11694       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
11695     return SDValue();
11696 
11697   // Create VPADDL node.
11698   SelectionDAG &DAG = DCI.DAG;
11699   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11700 
11701   SDLoc dl(N);
11702 
11703   // Build operand list.
11704   SmallVector<SDValue, 8> Ops;
11705   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
11706                                 TLI.getPointerTy(DAG.getDataLayout())));
11707 
11708   // Input is the vector.
11709   Ops.push_back(Vec);
11710 
11711   // Get widened type and narrowed type.
11712   MVT widenType;
11713   unsigned numElem = VT.getVectorNumElements();
11714 
11715   EVT inputLaneType = Vec.getValueType().getVectorElementType();
11716   switch (inputLaneType.getSimpleVT().SimpleTy) {
11717     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
11718     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
11719     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
11720     default:
11721       llvm_unreachable("Invalid vector element type for padd optimization.");
11722   }
11723 
11724   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
11725   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
11726   return DAG.getNode(ExtOp, dl, VT, tmp);
11727 }
11728 
findMUL_LOHI(SDValue V)11729 static SDValue findMUL_LOHI(SDValue V) {
11730   if (V->getOpcode() == ISD::UMUL_LOHI ||
11731       V->getOpcode() == ISD::SMUL_LOHI)
11732     return V;
11733   return SDValue();
11734 }
11735 
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11736 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
11737                                         TargetLowering::DAGCombinerInfo &DCI,
11738                                         const ARMSubtarget *Subtarget) {
11739   if (!Subtarget->hasBaseDSP())
11740     return SDValue();
11741 
11742   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11743   // accumulates the product into a 64-bit value. The 16-bit values will
11744   // be sign extended somehow or SRA'd into 32-bit values
11745   // (addc (adde (mul 16bit, 16bit), lo), hi)
11746   SDValue Mul = AddcNode->getOperand(0);
11747   SDValue Lo = AddcNode->getOperand(1);
11748   if (Mul.getOpcode() != ISD::MUL) {
11749     Lo = AddcNode->getOperand(0);
11750     Mul = AddcNode->getOperand(1);
11751     if (Mul.getOpcode() != ISD::MUL)
11752       return SDValue();
11753   }
11754 
11755   SDValue SRA = AddeNode->getOperand(0);
11756   SDValue Hi = AddeNode->getOperand(1);
11757   if (SRA.getOpcode() != ISD::SRA) {
11758     SRA = AddeNode->getOperand(1);
11759     Hi = AddeNode->getOperand(0);
11760     if (SRA.getOpcode() != ISD::SRA)
11761       return SDValue();
11762   }
11763   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
11764     if (Const->getZExtValue() != 31)
11765       return SDValue();
11766   } else
11767     return SDValue();
11768 
11769   if (SRA.getOperand(0) != Mul)
11770     return SDValue();
11771 
11772   SelectionDAG &DAG = DCI.DAG;
11773   SDLoc dl(AddcNode);
11774   unsigned Opcode = 0;
11775   SDValue Op0;
11776   SDValue Op1;
11777 
11778   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
11779     Opcode = ARMISD::SMLALBB;
11780     Op0 = Mul.getOperand(0);
11781     Op1 = Mul.getOperand(1);
11782   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
11783     Opcode = ARMISD::SMLALBT;
11784     Op0 = Mul.getOperand(0);
11785     Op1 = Mul.getOperand(1).getOperand(0);
11786   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
11787     Opcode = ARMISD::SMLALTB;
11788     Op0 = Mul.getOperand(0).getOperand(0);
11789     Op1 = Mul.getOperand(1);
11790   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
11791     Opcode = ARMISD::SMLALTT;
11792     Op0 = Mul->getOperand(0).getOperand(0);
11793     Op1 = Mul->getOperand(1).getOperand(0);
11794   }
11795 
11796   if (!Op0 || !Op1)
11797     return SDValue();
11798 
11799   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
11800                               Op0, Op1, Lo, Hi);
11801   // Replace the ADDs' nodes uses by the MLA node's values.
11802   SDValue HiMLALResult(SMLAL.getNode(), 1);
11803   SDValue LoMLALResult(SMLAL.getNode(), 0);
11804 
11805   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
11806   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
11807 
11808   // Return original node to notify the driver to stop replacing.
11809   SDValue resNode(AddcNode, 0);
11810   return resNode;
11811 }
11812 
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11813 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
11814                                      TargetLowering::DAGCombinerInfo &DCI,
11815                                      const ARMSubtarget *Subtarget) {
11816   // Look for multiply add opportunities.
11817   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11818   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11819   // a glue link from the first add to the second add.
11820   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11821   // a S/UMLAL instruction.
11822   //                  UMUL_LOHI
11823   //                 / :lo    \ :hi
11824   //                V          \          [no multiline comment]
11825   //    loAdd ->  ADDC         |
11826   //                 \ :carry /
11827   //                  V      V
11828   //                    ADDE   <- hiAdd
11829   //
11830   // In the special case where only the higher part of a signed result is used
11831   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11832   // a constant with the exact value of 0x80000000, we recognize we are dealing
11833   // with a "rounded multiply and add" (or subtract) and transform it into
11834   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11835 
11836   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
11837           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
11838          "Expect an ADDE or SUBE");
11839 
11840   assert(AddeSubeNode->getNumOperands() == 3 &&
11841          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
11842          "ADDE node has the wrong inputs");
11843 
11844   // Check that we are chained to the right ADDC or SUBC node.
11845   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
11846   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11847        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
11848       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
11849        AddcSubcNode->getOpcode() != ARMISD::SUBC))
11850     return SDValue();
11851 
11852   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
11853   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
11854 
11855   // Check if the two operands are from the same mul_lohi node.
11856   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
11857     return SDValue();
11858 
11859   assert(AddcSubcNode->getNumValues() == 2 &&
11860          AddcSubcNode->getValueType(0) == MVT::i32 &&
11861          "Expect ADDC with two result values. First: i32");
11862 
11863   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11864   // maybe a SMLAL which multiplies two 16-bit values.
11865   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11866       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
11867       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
11868       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
11869       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
11870     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
11871 
11872   // Check for the triangle shape.
11873   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
11874   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
11875 
11876   // Make sure that the ADDE/SUBE operands are not coming from the same node.
11877   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
11878     return SDValue();
11879 
11880   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11881   bool IsLeftOperandMUL = false;
11882   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
11883   if (MULOp == SDValue())
11884     MULOp = findMUL_LOHI(AddeSubeOp1);
11885   else
11886     IsLeftOperandMUL = true;
11887   if (MULOp == SDValue())
11888     return SDValue();
11889 
11890   // Figure out the right opcode.
11891   unsigned Opc = MULOp->getOpcode();
11892   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
11893 
11894   // Figure out the high and low input values to the MLAL node.
11895   SDValue *HiAddSub = nullptr;
11896   SDValue *LoMul = nullptr;
11897   SDValue *LowAddSub = nullptr;
11898 
11899   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11900   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
11901     return SDValue();
11902 
11903   if (IsLeftOperandMUL)
11904     HiAddSub = &AddeSubeOp1;
11905   else
11906     HiAddSub = &AddeSubeOp0;
11907 
11908   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11909   // whose low result is fed to the ADDC/SUBC we are checking.
11910 
11911   if (AddcSubcOp0 == MULOp.getValue(0)) {
11912     LoMul = &AddcSubcOp0;
11913     LowAddSub = &AddcSubcOp1;
11914   }
11915   if (AddcSubcOp1 == MULOp.getValue(0)) {
11916     LoMul = &AddcSubcOp1;
11917     LowAddSub = &AddcSubcOp0;
11918   }
11919 
11920   if (!LoMul)
11921     return SDValue();
11922 
11923   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11924   // the replacement below will create a cycle.
11925   if (AddcSubcNode == HiAddSub->getNode() ||
11926       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
11927     return SDValue();
11928 
11929   // Create the merged node.
11930   SelectionDAG &DAG = DCI.DAG;
11931 
11932   // Start building operand list.
11933   SmallVector<SDValue, 8> Ops;
11934   Ops.push_back(LoMul->getOperand(0));
11935   Ops.push_back(LoMul->getOperand(1));
11936 
11937   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
11938   // the case, we must be doing signed multiplication and only use the higher
11939   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11940   // addition or subtraction with the value of 0x800000.
11941   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
11942       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
11943       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
11944       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
11945           0x80000000) {
11946     Ops.push_back(*HiAddSub);
11947     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
11948       FinalOpc = ARMISD::SMMLSR;
11949     } else {
11950       FinalOpc = ARMISD::SMMLAR;
11951     }
11952     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
11953     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
11954 
11955     return SDValue(AddeSubeNode, 0);
11956   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
11957     // SMMLS is generated during instruction selection and the rest of this
11958     // function can not handle the case where AddcSubcNode is a SUBC.
11959     return SDValue();
11960 
11961   // Finish building the operand list for {U/S}MLAL
11962   Ops.push_back(*LowAddSub);
11963   Ops.push_back(*HiAddSub);
11964 
11965   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
11966                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
11967 
11968   // Replace the ADDs' nodes uses by the MLA node's values.
11969   SDValue HiMLALResult(MLALNode.getNode(), 1);
11970   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
11971 
11972   SDValue LoMLALResult(MLALNode.getNode(), 0);
11973   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
11974 
11975   // Return original node to notify the driver to stop replacing.
11976   return SDValue(AddeSubeNode, 0);
11977 }
11978 
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11979 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
11980                                       TargetLowering::DAGCombinerInfo &DCI,
11981                                       const ARMSubtarget *Subtarget) {
11982   // UMAAL is similar to UMLAL except that it adds two unsigned values.
11983   // While trying to combine for the other MLAL nodes, first search for the
11984   // chance to use UMAAL. Check if Addc uses a node which has already
11985   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11986   // as the addend, and it's handled in PerformUMLALCombine.
11987 
11988   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11989     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11990 
11991   // Check that we have a glued ADDC node.
11992   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
11993   if (AddcNode->getOpcode() != ARMISD::ADDC)
11994     return SDValue();
11995 
11996   // Find the converted UMAAL or quit if it doesn't exist.
11997   SDNode *UmlalNode = nullptr;
11998   SDValue AddHi;
11999   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
12000     UmlalNode = AddcNode->getOperand(0).getNode();
12001     AddHi = AddcNode->getOperand(1);
12002   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
12003     UmlalNode = AddcNode->getOperand(1).getNode();
12004     AddHi = AddcNode->getOperand(0);
12005   } else {
12006     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12007   }
12008 
12009   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
12010   // the ADDC as well as Zero.
12011   if (!isNullConstant(UmlalNode->getOperand(3)))
12012     return SDValue();
12013 
12014   if ((isNullConstant(AddeNode->getOperand(0)) &&
12015        AddeNode->getOperand(1).getNode() == UmlalNode) ||
12016       (AddeNode->getOperand(0).getNode() == UmlalNode &&
12017        isNullConstant(AddeNode->getOperand(1)))) {
12018     SelectionDAG &DAG = DCI.DAG;
12019     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
12020                       UmlalNode->getOperand(2), AddHi };
12021     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
12022                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12023 
12024     // Replace the ADDs' nodes uses by the UMAAL node's values.
12025     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
12026     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
12027 
12028     // Return original node to notify the driver to stop replacing.
12029     return SDValue(AddeNode, 0);
12030   }
12031   return SDValue();
12032 }
12033 
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12034 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
12035                                    const ARMSubtarget *Subtarget) {
12036   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12037     return SDValue();
12038 
12039   // Check that we have a pair of ADDC and ADDE as operands.
12040   // Both addends of the ADDE must be zero.
12041   SDNode* AddcNode = N->getOperand(2).getNode();
12042   SDNode* AddeNode = N->getOperand(3).getNode();
12043   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
12044       (AddeNode->getOpcode() == ARMISD::ADDE) &&
12045       isNullConstant(AddeNode->getOperand(0)) &&
12046       isNullConstant(AddeNode->getOperand(1)) &&
12047       (AddeNode->getOperand(2).getNode() == AddcNode))
12048     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
12049                        DAG.getVTList(MVT::i32, MVT::i32),
12050                        {N->getOperand(0), N->getOperand(1),
12051                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
12052   else
12053     return SDValue();
12054 }
12055 
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12056 static SDValue PerformAddcSubcCombine(SDNode *N,
12057                                       TargetLowering::DAGCombinerInfo &DCI,
12058                                       const ARMSubtarget *Subtarget) {
12059   SelectionDAG &DAG(DCI.DAG);
12060 
12061   if (N->getOpcode() == ARMISD::SUBC) {
12062     // (SUBC (ADDE 0, 0, C), 1) -> C
12063     SDValue LHS = N->getOperand(0);
12064     SDValue RHS = N->getOperand(1);
12065     if (LHS->getOpcode() == ARMISD::ADDE &&
12066         isNullConstant(LHS->getOperand(0)) &&
12067         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
12068       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
12069     }
12070   }
12071 
12072   if (Subtarget->isThumb1Only()) {
12073     SDValue RHS = N->getOperand(1);
12074     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12075       int32_t imm = C->getSExtValue();
12076       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
12077         SDLoc DL(N);
12078         RHS = DAG.getConstant(-imm, DL, MVT::i32);
12079         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
12080                                                            : ARMISD::ADDC;
12081         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
12082       }
12083     }
12084   }
12085 
12086   return SDValue();
12087 }
12088 
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12089 static SDValue PerformAddeSubeCombine(SDNode *N,
12090                                       TargetLowering::DAGCombinerInfo &DCI,
12091                                       const ARMSubtarget *Subtarget) {
12092   if (Subtarget->isThumb1Only()) {
12093     SelectionDAG &DAG = DCI.DAG;
12094     SDValue RHS = N->getOperand(1);
12095     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12096       int64_t imm = C->getSExtValue();
12097       if (imm < 0) {
12098         SDLoc DL(N);
12099 
12100         // The with-carry-in form matches bitwise not instead of the negation.
12101         // Effectively, the inverse interpretation of the carry flag already
12102         // accounts for part of the negation.
12103         RHS = DAG.getConstant(~imm, DL, MVT::i32);
12104 
12105         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
12106                                                            : ARMISD::ADDE;
12107         return DAG.getNode(Opcode, DL, N->getVTList(),
12108                            N->getOperand(0), RHS, N->getOperand(2));
12109       }
12110     }
12111   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
12112     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
12113   }
12114   return SDValue();
12115 }
12116 
PerformSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12117 static SDValue PerformSELECTCombine(SDNode *N,
12118                                     TargetLowering::DAGCombinerInfo &DCI,
12119                                     const ARMSubtarget *Subtarget) {
12120   if (!Subtarget->hasMVEIntegerOps())
12121     return SDValue();
12122 
12123   SDLoc dl(N);
12124   SDValue SetCC;
12125   SDValue LHS;
12126   SDValue RHS;
12127   ISD::CondCode CC;
12128   SDValue TrueVal;
12129   SDValue FalseVal;
12130 
12131   if (N->getOpcode() == ISD::SELECT &&
12132       N->getOperand(0)->getOpcode() == ISD::SETCC) {
12133     SetCC = N->getOperand(0);
12134     LHS = SetCC->getOperand(0);
12135     RHS = SetCC->getOperand(1);
12136     CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
12137     TrueVal = N->getOperand(1);
12138     FalseVal = N->getOperand(2);
12139   } else if (N->getOpcode() == ISD::SELECT_CC) {
12140     LHS = N->getOperand(0);
12141     RHS = N->getOperand(1);
12142     CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
12143     TrueVal = N->getOperand(2);
12144     FalseVal = N->getOperand(3);
12145   } else {
12146     return SDValue();
12147   }
12148 
12149   unsigned int Opcode = 0;
12150   if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
12151        FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
12152       (CC == ISD::SETULT || CC == ISD::SETUGT)) {
12153     Opcode = ARMISD::VMINVu;
12154     if (CC == ISD::SETUGT)
12155       std::swap(TrueVal, FalseVal);
12156   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
12157               FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
12158              (CC == ISD::SETLT || CC == ISD::SETGT)) {
12159     Opcode = ARMISD::VMINVs;
12160     if (CC == ISD::SETGT)
12161       std::swap(TrueVal, FalseVal);
12162   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
12163               FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
12164              (CC == ISD::SETUGT || CC == ISD::SETULT)) {
12165     Opcode = ARMISD::VMAXVu;
12166     if (CC == ISD::SETULT)
12167       std::swap(TrueVal, FalseVal);
12168   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
12169               FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
12170              (CC == ISD::SETGT || CC == ISD::SETLT)) {
12171     Opcode = ARMISD::VMAXVs;
12172     if (CC == ISD::SETLT)
12173       std::swap(TrueVal, FalseVal);
12174   } else
12175     return SDValue();
12176 
12177   // Normalise to the right hand side being the vector reduction
12178   switch (TrueVal->getOpcode()) {
12179   case ISD::VECREDUCE_UMIN:
12180   case ISD::VECREDUCE_SMIN:
12181   case ISD::VECREDUCE_UMAX:
12182   case ISD::VECREDUCE_SMAX:
12183     std::swap(LHS, RHS);
12184     std::swap(TrueVal, FalseVal);
12185     break;
12186   }
12187 
12188   EVT VectorType = FalseVal->getOperand(0).getValueType();
12189 
12190   if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
12191       VectorType != MVT::v4i32)
12192     return SDValue();
12193 
12194   EVT VectorScalarType = VectorType.getVectorElementType();
12195 
12196   // The values being selected must also be the ones being compared
12197   if (TrueVal != LHS || FalseVal != RHS)
12198     return SDValue();
12199 
12200   EVT LeftType = LHS->getValueType(0);
12201   EVT RightType = RHS->getValueType(0);
12202 
12203   // The types must match the reduced type too
12204   if (LeftType != VectorScalarType || RightType != VectorScalarType)
12205     return SDValue();
12206 
12207   // Legalise the scalar to an i32
12208   if (VectorScalarType != MVT::i32)
12209     LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
12210 
12211   // Generate the reduction as an i32 for legalisation purposes
12212   auto Reduction =
12213       DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
12214 
12215   // The result isn't actually an i32 so truncate it back to its original type
12216   if (VectorScalarType != MVT::i32)
12217     Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
12218 
12219   return Reduction;
12220 }
12221 
12222 // A special combine for the vqdmulh family of instructions. This is one of the
12223 // potential set of patterns that could patch this instruction. The base pattern
12224 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
12225 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
12226 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
12227 // the max is unnecessary.
PerformVQDMULHCombine(SDNode * N,SelectionDAG & DAG)12228 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
12229   EVT VT = N->getValueType(0);
12230   SDValue Shft;
12231   ConstantSDNode *Clamp;
12232 
12233   if (N->getOpcode() == ISD::SMIN) {
12234     Shft = N->getOperand(0);
12235     Clamp = isConstOrConstSplat(N->getOperand(1));
12236   } else if (N->getOpcode() == ISD::VSELECT) {
12237     // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
12238     SDValue Cmp = N->getOperand(0);
12239     if (Cmp.getOpcode() != ISD::SETCC ||
12240         cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
12241         Cmp.getOperand(0) != N->getOperand(1) ||
12242         Cmp.getOperand(1) != N->getOperand(2))
12243       return SDValue();
12244     Shft = N->getOperand(1);
12245     Clamp = isConstOrConstSplat(N->getOperand(2));
12246   } else
12247     return SDValue();
12248 
12249   if (!Clamp)
12250     return SDValue();
12251 
12252   MVT ScalarType;
12253   int ShftAmt = 0;
12254   switch (Clamp->getSExtValue()) {
12255   case (1 << 7) - 1:
12256     ScalarType = MVT::i8;
12257     ShftAmt = 7;
12258     break;
12259   case (1 << 15) - 1:
12260     ScalarType = MVT::i16;
12261     ShftAmt = 15;
12262     break;
12263   case (1ULL << 31) - 1:
12264     ScalarType = MVT::i32;
12265     ShftAmt = 31;
12266     break;
12267   default:
12268     return SDValue();
12269   }
12270 
12271   if (Shft.getOpcode() != ISD::SRA)
12272     return SDValue();
12273   ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
12274   if (!N1 || N1->getSExtValue() != ShftAmt)
12275     return SDValue();
12276 
12277   SDValue Mul = Shft.getOperand(0);
12278   if (Mul.getOpcode() != ISD::MUL)
12279     return SDValue();
12280 
12281   SDValue Ext0 = Mul.getOperand(0);
12282   SDValue Ext1 = Mul.getOperand(1);
12283   if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
12284       Ext1.getOpcode() != ISD::SIGN_EXTEND)
12285     return SDValue();
12286   EVT VecVT = Ext0.getOperand(0).getValueType();
12287   if (VecVT != MVT::v4i32 && VecVT != MVT::v8i16 && VecVT != MVT::v16i8)
12288     return SDValue();
12289   if (Ext1.getOperand(0).getValueType() != VecVT ||
12290       VecVT.getScalarType() != ScalarType ||
12291       VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
12292     return SDValue();
12293 
12294   SDLoc DL(Mul);
12295   SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, VecVT, Ext0.getOperand(0),
12296                                 Ext1.getOperand(0));
12297   return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, VQDMULH);
12298 }
12299 
PerformVSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12300 static SDValue PerformVSELECTCombine(SDNode *N,
12301                                      TargetLowering::DAGCombinerInfo &DCI,
12302                                      const ARMSubtarget *Subtarget) {
12303   if (!Subtarget->hasMVEIntegerOps())
12304     return SDValue();
12305 
12306   if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
12307     return V;
12308 
12309   // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
12310   //
12311   // We need to re-implement this optimization here as the implementation in the
12312   // Target-Independent DAGCombiner does not handle the kind of constant we make
12313   // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
12314   // good reason, allowing truncation there would break other targets).
12315   //
12316   // Currently, this is only done for MVE, as it's the only target that benefits
12317   // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
12318   if (N->getOperand(0).getOpcode() != ISD::XOR)
12319     return SDValue();
12320   SDValue XOR = N->getOperand(0);
12321 
12322   // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
12323   // It is important to check with truncation allowed as the BUILD_VECTORs we
12324   // generate in those situations will truncate their operands.
12325   ConstantSDNode *Const =
12326       isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
12327                           /*AllowTruncation*/ true);
12328   if (!Const || !Const->isOne())
12329     return SDValue();
12330 
12331   // Rewrite into vselect(cond, rhs, lhs).
12332   SDValue Cond = XOR->getOperand(0);
12333   SDValue LHS = N->getOperand(1);
12334   SDValue RHS = N->getOperand(2);
12335   EVT Type = N->getValueType(0);
12336   return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
12337 }
12338 
PerformABSCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12339 static SDValue PerformABSCombine(SDNode *N,
12340                                   TargetLowering::DAGCombinerInfo &DCI,
12341                                   const ARMSubtarget *Subtarget) {
12342   SDValue res;
12343   SelectionDAG &DAG = DCI.DAG;
12344   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12345 
12346   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
12347     return SDValue();
12348 
12349   if (!TLI.expandABS(N, res, DAG))
12350       return SDValue();
12351 
12352   return res;
12353 }
12354 
12355 /// PerformADDECombine - Target-specific dag combine transform from
12356 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
12357 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12358 static SDValue PerformADDECombine(SDNode *N,
12359                                   TargetLowering::DAGCombinerInfo &DCI,
12360                                   const ARMSubtarget *Subtarget) {
12361   // Only ARM and Thumb2 support UMLAL/SMLAL.
12362   if (Subtarget->isThumb1Only())
12363     return PerformAddeSubeCombine(N, DCI, Subtarget);
12364 
12365   // Only perform the checks after legalize when the pattern is available.
12366   if (DCI.isBeforeLegalize()) return SDValue();
12367 
12368   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
12369 }
12370 
12371 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
12372 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
12373 /// called with the default operands, and if that fails, with commuted
12374 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12375 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
12376                                           TargetLowering::DAGCombinerInfo &DCI,
12377                                           const ARMSubtarget *Subtarget){
12378   // Attempt to create vpadd for this add.
12379   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
12380     return Result;
12381 
12382   // Attempt to create vpaddl for this add.
12383   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
12384     return Result;
12385   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
12386                                                       Subtarget))
12387     return Result;
12388 
12389   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
12390   if (N0.getNode()->hasOneUse())
12391     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
12392       return Result;
12393   return SDValue();
12394 }
12395 
PerformADDVecReduce(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12396 static SDValue PerformADDVecReduce(SDNode *N,
12397                                    TargetLowering::DAGCombinerInfo &DCI,
12398                                    const ARMSubtarget *Subtarget) {
12399   if (!Subtarget->hasMVEIntegerOps() || N->getValueType(0) != MVT::i64)
12400     return SDValue();
12401 
12402   SDValue N0 = N->getOperand(0);
12403   SDValue N1 = N->getOperand(1);
12404 
12405   // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
12406   // will look like:
12407   //   t1: i32,i32 = ARMISD::VADDLVs x
12408   //   t2: i64 = build_pair t1, t1:1
12409   //   t3: i64 = add t2, y
12410   // We also need to check for sext / zext and commutitive adds.
12411   auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
12412                            SDValue NB) {
12413     if (NB->getOpcode() != ISD::BUILD_PAIR)
12414       return SDValue();
12415     SDValue VecRed = NB->getOperand(0);
12416     if (VecRed->getOpcode() != Opcode || VecRed.getResNo() != 0 ||
12417         NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
12418       return SDValue();
12419 
12420     SDLoc dl(N);
12421     SmallVector<SDValue, 4> Ops;
12422     Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
12423                                   DCI.DAG.getConstant(0, dl, MVT::i32)));
12424     Ops.push_back(DCI.DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
12425                                   DCI.DAG.getConstant(1, dl, MVT::i32)));
12426     for (unsigned i = 0, e = VecRed.getNumOperands(); i < e; i++)
12427       Ops.push_back(VecRed->getOperand(i));
12428     SDValue Red = DCI.DAG.getNode(OpcodeA, dl,
12429                                   DCI.DAG.getVTList({MVT::i32, MVT::i32}), Ops);
12430     return DCI.DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
12431                            SDValue(Red.getNode(), 1));
12432   };
12433 
12434   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
12435     return M;
12436   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
12437     return M;
12438   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
12439     return M;
12440   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
12441     return M;
12442   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
12443     return M;
12444   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
12445     return M;
12446   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
12447     return M;
12448   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
12449     return M;
12450   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
12451     return M;
12452   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
12453     return M;
12454   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
12455     return M;
12456   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
12457     return M;
12458   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
12459     return M;
12460   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
12461     return M;
12462   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
12463     return M;
12464   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
12465     return M;
12466   return SDValue();
12467 }
12468 
12469 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const12470 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
12471                                                  CombineLevel Level) const {
12472   if (Level == BeforeLegalizeTypes)
12473     return true;
12474 
12475   if (N->getOpcode() != ISD::SHL)
12476     return true;
12477 
12478   if (Subtarget->isThumb1Only()) {
12479     // Avoid making expensive immediates by commuting shifts. (This logic
12480     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
12481     // for free.)
12482     if (N->getOpcode() != ISD::SHL)
12483       return true;
12484     SDValue N1 = N->getOperand(0);
12485     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
12486         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
12487       return true;
12488     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
12489       if (Const->getAPIntValue().ult(256))
12490         return false;
12491       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
12492           Const->getAPIntValue().sgt(-256))
12493         return false;
12494     }
12495     return true;
12496   }
12497 
12498   // Turn off commute-with-shift transform after legalization, so it doesn't
12499   // conflict with PerformSHLSimplify.  (We could try to detect when
12500   // PerformSHLSimplify would trigger more precisely, but it isn't
12501   // really necessary.)
12502   return false;
12503 }
12504 
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level) const12505 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
12506     const SDNode *N, CombineLevel Level) const {
12507   if (!Subtarget->isThumb1Only())
12508     return true;
12509 
12510   if (Level == BeforeLegalizeTypes)
12511     return true;
12512 
12513   return false;
12514 }
12515 
preferIncOfAddToSubOfNot(EVT VT) const12516 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
12517   if (!Subtarget->hasNEON()) {
12518     if (Subtarget->isThumb1Only())
12519       return VT.getScalarSizeInBits() <= 32;
12520     return true;
12521   }
12522   return VT.isScalarInteger();
12523 }
12524 
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)12525 static SDValue PerformSHLSimplify(SDNode *N,
12526                                 TargetLowering::DAGCombinerInfo &DCI,
12527                                 const ARMSubtarget *ST) {
12528   // Allow the generic combiner to identify potential bswaps.
12529   if (DCI.isBeforeLegalize())
12530     return SDValue();
12531 
12532   // DAG combiner will fold:
12533   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
12534   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
12535   // Other code patterns that can be also be modified have the following form:
12536   // b + ((a << 1) | 510)
12537   // b + ((a << 1) & 510)
12538   // b + ((a << 1) ^ 510)
12539   // b + ((a << 1) + 510)
12540 
12541   // Many instructions can  perform the shift for free, but it requires both
12542   // the operands to be registers. If c1 << c2 is too large, a mov immediate
12543   // instruction will needed. So, unfold back to the original pattern if:
12544   // - if c1 and c2 are small enough that they don't require mov imms.
12545   // - the user(s) of the node can perform an shl
12546 
12547   // No shifted operands for 16-bit instructions.
12548   if (ST->isThumb() && ST->isThumb1Only())
12549     return SDValue();
12550 
12551   // Check that all the users could perform the shl themselves.
12552   for (auto U : N->uses()) {
12553     switch(U->getOpcode()) {
12554     default:
12555       return SDValue();
12556     case ISD::SUB:
12557     case ISD::ADD:
12558     case ISD::AND:
12559     case ISD::OR:
12560     case ISD::XOR:
12561     case ISD::SETCC:
12562     case ARMISD::CMP:
12563       // Check that the user isn't already using a constant because there
12564       // aren't any instructions that support an immediate operand and a
12565       // shifted operand.
12566       if (isa<ConstantSDNode>(U->getOperand(0)) ||
12567           isa<ConstantSDNode>(U->getOperand(1)))
12568         return SDValue();
12569 
12570       // Check that it's not already using a shift.
12571       if (U->getOperand(0).getOpcode() == ISD::SHL ||
12572           U->getOperand(1).getOpcode() == ISD::SHL)
12573         return SDValue();
12574       break;
12575     }
12576   }
12577 
12578   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
12579       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
12580     return SDValue();
12581 
12582   if (N->getOperand(0).getOpcode() != ISD::SHL)
12583     return SDValue();
12584 
12585   SDValue SHL = N->getOperand(0);
12586 
12587   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
12588   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
12589   if (!C1ShlC2 || !C2)
12590     return SDValue();
12591 
12592   APInt C2Int = C2->getAPIntValue();
12593   APInt C1Int = C1ShlC2->getAPIntValue();
12594 
12595   // Check that performing a lshr will not lose any information.
12596   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
12597                                      C2Int.getBitWidth() - C2->getZExtValue());
12598   if ((C1Int & Mask) != C1Int)
12599     return SDValue();
12600 
12601   // Shift the first constant.
12602   C1Int.lshrInPlace(C2Int);
12603 
12604   // The immediates are encoded as an 8-bit value that can be rotated.
12605   auto LargeImm = [](const APInt &Imm) {
12606     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
12607     return Imm.getBitWidth() - Zeros > 8;
12608   };
12609 
12610   if (LargeImm(C1Int) || LargeImm(C2Int))
12611     return SDValue();
12612 
12613   SelectionDAG &DAG = DCI.DAG;
12614   SDLoc dl(N);
12615   SDValue X = SHL.getOperand(0);
12616   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
12617                               DAG.getConstant(C1Int, dl, MVT::i32));
12618   // Shift left to compensate for the lshr of C1Int.
12619   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
12620 
12621   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
12622              SHL.dump(); N->dump());
12623   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
12624   return Res;
12625 }
12626 
12627 
12628 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
12629 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12630 static SDValue PerformADDCombine(SDNode *N,
12631                                  TargetLowering::DAGCombinerInfo &DCI,
12632                                  const ARMSubtarget *Subtarget) {
12633   SDValue N0 = N->getOperand(0);
12634   SDValue N1 = N->getOperand(1);
12635 
12636   // Only works one way, because it needs an immediate operand.
12637   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12638     return Result;
12639 
12640   if (SDValue Result = PerformADDVecReduce(N, DCI, Subtarget))
12641     return Result;
12642 
12643   // First try with the default operand order.
12644   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
12645     return Result;
12646 
12647   // If that didn't work, try again with the operands commuted.
12648   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
12649 }
12650 
12651 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
12652 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12653 static SDValue PerformSUBCombine(SDNode *N,
12654                                  TargetLowering::DAGCombinerInfo &DCI,
12655                                  const ARMSubtarget *Subtarget) {
12656   SDValue N0 = N->getOperand(0);
12657   SDValue N1 = N->getOperand(1);
12658 
12659   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
12660   if (N1.getNode()->hasOneUse())
12661     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
12662       return Result;
12663 
12664   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
12665     return SDValue();
12666 
12667   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
12668   // so that we can readily pattern match more mve instructions which can use
12669   // a scalar operand.
12670   SDValue VDup = N->getOperand(1);
12671   if (VDup->getOpcode() != ARMISD::VDUP)
12672     return SDValue();
12673 
12674   SDValue VMov = N->getOperand(0);
12675   if (VMov->getOpcode() == ISD::BITCAST)
12676     VMov = VMov->getOperand(0);
12677 
12678   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
12679     return SDValue();
12680 
12681   SDLoc dl(N);
12682   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
12683                                    DCI.DAG.getConstant(0, dl, MVT::i32),
12684                                    VDup->getOperand(0));
12685   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
12686 }
12687 
12688 /// PerformVMULCombine
12689 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
12690 /// special multiplier accumulator forwarding.
12691 ///   vmul d3, d0, d2
12692 ///   vmla d3, d1, d2
12693 /// is faster than
12694 ///   vadd d3, d0, d1
12695 ///   vmul d3, d3, d2
12696 //  However, for (A + B) * (A + B),
12697 //    vadd d2, d0, d1
12698 //    vmul d3, d0, d2
12699 //    vmla d3, d1, d2
12700 //  is slower than
12701 //    vadd d2, d0, d1
12702 //    vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12703 static SDValue PerformVMULCombine(SDNode *N,
12704                                   TargetLowering::DAGCombinerInfo &DCI,
12705                                   const ARMSubtarget *Subtarget) {
12706   if (!Subtarget->hasVMLxForwarding())
12707     return SDValue();
12708 
12709   SelectionDAG &DAG = DCI.DAG;
12710   SDValue N0 = N->getOperand(0);
12711   SDValue N1 = N->getOperand(1);
12712   unsigned Opcode = N0.getOpcode();
12713   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
12714       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
12715     Opcode = N1.getOpcode();
12716     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
12717         Opcode != ISD::FADD && Opcode != ISD::FSUB)
12718       return SDValue();
12719     std::swap(N0, N1);
12720   }
12721 
12722   if (N0 == N1)
12723     return SDValue();
12724 
12725   EVT VT = N->getValueType(0);
12726   SDLoc DL(N);
12727   SDValue N00 = N0->getOperand(0);
12728   SDValue N01 = N0->getOperand(1);
12729   return DAG.getNode(Opcode, DL, VT,
12730                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
12731                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
12732 }
12733 
PerformMVEVMULLCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)12734 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
12735                                       const ARMSubtarget *Subtarget) {
12736   EVT VT = N->getValueType(0);
12737   if (VT != MVT::v2i64)
12738     return SDValue();
12739 
12740   SDValue N0 = N->getOperand(0);
12741   SDValue N1 = N->getOperand(1);
12742 
12743   auto IsSignExt = [&](SDValue Op) {
12744     if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
12745       return SDValue();
12746     EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
12747     if (VT.getScalarSizeInBits() == 32)
12748       return Op->getOperand(0);
12749     return SDValue();
12750   };
12751   auto IsZeroExt = [&](SDValue Op) {
12752     // Zero extends are a little more awkward. At the point we are matching
12753     // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
12754     // That might be before of after a bitcast depending on how the and is
12755     // placed. Because this has to look through bitcasts, it is currently only
12756     // supported on LE.
12757     if (!Subtarget->isLittle())
12758       return SDValue();
12759 
12760     SDValue And = Op;
12761     if (And->getOpcode() == ISD::BITCAST)
12762       And = And->getOperand(0);
12763     if (And->getOpcode() != ISD::AND)
12764       return SDValue();
12765     SDValue Mask = And->getOperand(1);
12766     if (Mask->getOpcode() == ISD::BITCAST)
12767       Mask = Mask->getOperand(0);
12768 
12769     if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
12770         Mask.getValueType() != MVT::v4i32)
12771       return SDValue();
12772     if (isAllOnesConstant(Mask->getOperand(0)) &&
12773         isNullConstant(Mask->getOperand(1)) &&
12774         isAllOnesConstant(Mask->getOperand(2)) &&
12775         isNullConstant(Mask->getOperand(3)))
12776       return And->getOperand(0);
12777     return SDValue();
12778   };
12779 
12780   SDLoc dl(N);
12781   if (SDValue Op0 = IsSignExt(N0)) {
12782     if (SDValue Op1 = IsSignExt(N1)) {
12783       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
12784       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
12785       return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
12786     }
12787   }
12788   if (SDValue Op0 = IsZeroExt(N0)) {
12789     if (SDValue Op1 = IsZeroExt(N1)) {
12790       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
12791       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
12792       return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
12793     }
12794   }
12795 
12796   return SDValue();
12797 }
12798 
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12799 static SDValue PerformMULCombine(SDNode *N,
12800                                  TargetLowering::DAGCombinerInfo &DCI,
12801                                  const ARMSubtarget *Subtarget) {
12802   SelectionDAG &DAG = DCI.DAG;
12803 
12804   EVT VT = N->getValueType(0);
12805   if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
12806     return PerformMVEVMULLCombine(N, DAG, Subtarget);
12807 
12808   if (Subtarget->isThumb1Only())
12809     return SDValue();
12810 
12811   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12812     return SDValue();
12813 
12814   if (VT.is64BitVector() || VT.is128BitVector())
12815     return PerformVMULCombine(N, DCI, Subtarget);
12816   if (VT != MVT::i32)
12817     return SDValue();
12818 
12819   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12820   if (!C)
12821     return SDValue();
12822 
12823   int64_t MulAmt = C->getSExtValue();
12824   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
12825 
12826   ShiftAmt = ShiftAmt & (32 - 1);
12827   SDValue V = N->getOperand(0);
12828   SDLoc DL(N);
12829 
12830   SDValue Res;
12831   MulAmt >>= ShiftAmt;
12832 
12833   if (MulAmt >= 0) {
12834     if (isPowerOf2_32(MulAmt - 1)) {
12835       // (mul x, 2^N + 1) => (add (shl x, N), x)
12836       Res = DAG.getNode(ISD::ADD, DL, VT,
12837                         V,
12838                         DAG.getNode(ISD::SHL, DL, VT,
12839                                     V,
12840                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
12841                                                     MVT::i32)));
12842     } else if (isPowerOf2_32(MulAmt + 1)) {
12843       // (mul x, 2^N - 1) => (sub (shl x, N), x)
12844       Res = DAG.getNode(ISD::SUB, DL, VT,
12845                         DAG.getNode(ISD::SHL, DL, VT,
12846                                     V,
12847                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
12848                                                     MVT::i32)),
12849                         V);
12850     } else
12851       return SDValue();
12852   } else {
12853     uint64_t MulAmtAbs = -MulAmt;
12854     if (isPowerOf2_32(MulAmtAbs + 1)) {
12855       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
12856       Res = DAG.getNode(ISD::SUB, DL, VT,
12857                         V,
12858                         DAG.getNode(ISD::SHL, DL, VT,
12859                                     V,
12860                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
12861                                                     MVT::i32)));
12862     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
12863       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
12864       Res = DAG.getNode(ISD::ADD, DL, VT,
12865                         V,
12866                         DAG.getNode(ISD::SHL, DL, VT,
12867                                     V,
12868                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
12869                                                     MVT::i32)));
12870       Res = DAG.getNode(ISD::SUB, DL, VT,
12871                         DAG.getConstant(0, DL, MVT::i32), Res);
12872     } else
12873       return SDValue();
12874   }
12875 
12876   if (ShiftAmt != 0)
12877     Res = DAG.getNode(ISD::SHL, DL, VT,
12878                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
12879 
12880   // Do not add new nodes to DAG combiner worklist.
12881   DCI.CombineTo(N, Res, false);
12882   return SDValue();
12883 }
12884 
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12885 static SDValue CombineANDShift(SDNode *N,
12886                                TargetLowering::DAGCombinerInfo &DCI,
12887                                const ARMSubtarget *Subtarget) {
12888   // Allow DAGCombine to pattern-match before we touch the canonical form.
12889   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12890     return SDValue();
12891 
12892   if (N->getValueType(0) != MVT::i32)
12893     return SDValue();
12894 
12895   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12896   if (!N1C)
12897     return SDValue();
12898 
12899   uint32_t C1 = (uint32_t)N1C->getZExtValue();
12900   // Don't transform uxtb/uxth.
12901   if (C1 == 255 || C1 == 65535)
12902     return SDValue();
12903 
12904   SDNode *N0 = N->getOperand(0).getNode();
12905   if (!N0->hasOneUse())
12906     return SDValue();
12907 
12908   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
12909     return SDValue();
12910 
12911   bool LeftShift = N0->getOpcode() == ISD::SHL;
12912 
12913   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
12914   if (!N01C)
12915     return SDValue();
12916 
12917   uint32_t C2 = (uint32_t)N01C->getZExtValue();
12918   if (!C2 || C2 >= 32)
12919     return SDValue();
12920 
12921   // Clear irrelevant bits in the mask.
12922   if (LeftShift)
12923     C1 &= (-1U << C2);
12924   else
12925     C1 &= (-1U >> C2);
12926 
12927   SelectionDAG &DAG = DCI.DAG;
12928   SDLoc DL(N);
12929 
12930   // We have a pattern of the form "(and (shl x, c2) c1)" or
12931   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
12932   // transform to a pair of shifts, to save materializing c1.
12933 
12934   // First pattern: right shift, then mask off leading bits.
12935   // FIXME: Use demanded bits?
12936   if (!LeftShift && isMask_32(C1)) {
12937     uint32_t C3 = countLeadingZeros(C1);
12938     if (C2 < C3) {
12939       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12940                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
12941       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12942                          DAG.getConstant(C3, DL, MVT::i32));
12943     }
12944   }
12945 
12946   // First pattern, reversed: left shift, then mask off trailing bits.
12947   if (LeftShift && isMask_32(~C1)) {
12948     uint32_t C3 = countTrailingZeros(C1);
12949     if (C2 < C3) {
12950       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12951                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
12952       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12953                          DAG.getConstant(C3, DL, MVT::i32));
12954     }
12955   }
12956 
12957   // Second pattern: left shift, then mask off leading bits.
12958   // FIXME: Use demanded bits?
12959   if (LeftShift && isShiftedMask_32(C1)) {
12960     uint32_t Trailing = countTrailingZeros(C1);
12961     uint32_t C3 = countLeadingZeros(C1);
12962     if (Trailing == C2 && C2 + C3 < 32) {
12963       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12964                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
12965       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12966                         DAG.getConstant(C3, DL, MVT::i32));
12967     }
12968   }
12969 
12970   // Second pattern, reversed: right shift, then mask off trailing bits.
12971   // FIXME: Handle other patterns of known/demanded bits.
12972   if (!LeftShift && isShiftedMask_32(C1)) {
12973     uint32_t Leading = countLeadingZeros(C1);
12974     uint32_t C3 = countTrailingZeros(C1);
12975     if (Leading == C2 && C2 + C3 < 32) {
12976       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12977                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
12978       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12979                          DAG.getConstant(C3, DL, MVT::i32));
12980     }
12981   }
12982 
12983   // FIXME: Transform "(and (shl x, c2) c1)" ->
12984   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
12985   // c1.
12986   return SDValue();
12987 }
12988 
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12989 static SDValue PerformANDCombine(SDNode *N,
12990                                  TargetLowering::DAGCombinerInfo &DCI,
12991                                  const ARMSubtarget *Subtarget) {
12992   // Attempt to use immediate-form VBIC
12993   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
12994   SDLoc dl(N);
12995   EVT VT = N->getValueType(0);
12996   SelectionDAG &DAG = DCI.DAG;
12997 
12998   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v4i1 ||
12999       VT == MVT::v8i1 || VT == MVT::v16i1)
13000     return SDValue();
13001 
13002   APInt SplatBits, SplatUndef;
13003   unsigned SplatBitSize;
13004   bool HasAnyUndefs;
13005   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
13006       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
13007     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
13008         SplatBitSize == 64) {
13009       EVT VbicVT;
13010       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
13011                                       SplatUndef.getZExtValue(), SplatBitSize,
13012                                       DAG, dl, VbicVT, VT, OtherModImm);
13013       if (Val.getNode()) {
13014         SDValue Input =
13015           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
13016         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
13017         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
13018       }
13019     }
13020   }
13021 
13022   if (!Subtarget->isThumb1Only()) {
13023     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
13024     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
13025       return Result;
13026 
13027     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13028       return Result;
13029   }
13030 
13031   if (Subtarget->isThumb1Only())
13032     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
13033       return Result;
13034 
13035   return SDValue();
13036 }
13037 
13038 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13039 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
13040                                          TargetLowering::DAGCombinerInfo &DCI,
13041                                          const ARMSubtarget *Subtarget) {
13042   if (!Subtarget->hasV6Ops() ||
13043       (Subtarget->isThumb() &&
13044        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
13045     return SDValue();
13046 
13047   SDValue SRL = OR->getOperand(0);
13048   SDValue SHL = OR->getOperand(1);
13049 
13050   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
13051     SRL = OR->getOperand(1);
13052     SHL = OR->getOperand(0);
13053   }
13054   if (!isSRL16(SRL) || !isSHL16(SHL))
13055     return SDValue();
13056 
13057   // The first operands to the shifts need to be the two results from the
13058   // same smul_lohi node.
13059   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
13060        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
13061     return SDValue();
13062 
13063   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
13064   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
13065       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
13066     return SDValue();
13067 
13068   // Now we have:
13069   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
13070   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
13071   // For SMUWB the 16-bit value will signed extended somehow.
13072   // For SMULWT only the SRA is required.
13073   // Check both sides of SMUL_LOHI
13074   SDValue OpS16 = SMULLOHI->getOperand(0);
13075   SDValue OpS32 = SMULLOHI->getOperand(1);
13076 
13077   SelectionDAG &DAG = DCI.DAG;
13078   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
13079     OpS16 = OpS32;
13080     OpS32 = SMULLOHI->getOperand(0);
13081   }
13082 
13083   SDLoc dl(OR);
13084   unsigned Opcode = 0;
13085   if (isS16(OpS16, DAG))
13086     Opcode = ARMISD::SMULWB;
13087   else if (isSRA16(OpS16)) {
13088     Opcode = ARMISD::SMULWT;
13089     OpS16 = OpS16->getOperand(0);
13090   }
13091   else
13092     return SDValue();
13093 
13094   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
13095   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
13096   return SDValue(OR, 0);
13097 }
13098 
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13099 static SDValue PerformORCombineToBFI(SDNode *N,
13100                                      TargetLowering::DAGCombinerInfo &DCI,
13101                                      const ARMSubtarget *Subtarget) {
13102   // BFI is only available on V6T2+
13103   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
13104     return SDValue();
13105 
13106   EVT VT = N->getValueType(0);
13107   SDValue N0 = N->getOperand(0);
13108   SDValue N1 = N->getOperand(1);
13109   SelectionDAG &DAG = DCI.DAG;
13110   SDLoc DL(N);
13111   // 1) or (and A, mask), val => ARMbfi A, val, mask
13112   //      iff (val & mask) == val
13113   //
13114   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
13115   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
13116   //          && mask == ~mask2
13117   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
13118   //          && ~mask == mask2
13119   //  (i.e., copy a bitfield value into another bitfield of the same width)
13120 
13121   if (VT != MVT::i32)
13122     return SDValue();
13123 
13124   SDValue N00 = N0.getOperand(0);
13125 
13126   // The value and the mask need to be constants so we can verify this is
13127   // actually a bitfield set. If the mask is 0xffff, we can do better
13128   // via a movt instruction, so don't use BFI in that case.
13129   SDValue MaskOp = N0.getOperand(1);
13130   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
13131   if (!MaskC)
13132     return SDValue();
13133   unsigned Mask = MaskC->getZExtValue();
13134   if (Mask == 0xffff)
13135     return SDValue();
13136   SDValue Res;
13137   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
13138   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13139   if (N1C) {
13140     unsigned Val = N1C->getZExtValue();
13141     if ((Val & ~Mask) != Val)
13142       return SDValue();
13143 
13144     if (ARM::isBitFieldInvertedMask(Mask)) {
13145       Val >>= countTrailingZeros(~Mask);
13146 
13147       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
13148                         DAG.getConstant(Val, DL, MVT::i32),
13149                         DAG.getConstant(Mask, DL, MVT::i32));
13150 
13151       DCI.CombineTo(N, Res, false);
13152       // Return value from the original node to inform the combiner than N is
13153       // now dead.
13154       return SDValue(N, 0);
13155     }
13156   } else if (N1.getOpcode() == ISD::AND) {
13157     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
13158     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
13159     if (!N11C)
13160       return SDValue();
13161     unsigned Mask2 = N11C->getZExtValue();
13162 
13163     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
13164     // as is to match.
13165     if (ARM::isBitFieldInvertedMask(Mask) &&
13166         (Mask == ~Mask2)) {
13167       // The pack halfword instruction works better for masks that fit it,
13168       // so use that when it's available.
13169       if (Subtarget->hasDSP() &&
13170           (Mask == 0xffff || Mask == 0xffff0000))
13171         return SDValue();
13172       // 2a
13173       unsigned amt = countTrailingZeros(Mask2);
13174       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
13175                         DAG.getConstant(amt, DL, MVT::i32));
13176       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
13177                         DAG.getConstant(Mask, DL, MVT::i32));
13178       DCI.CombineTo(N, Res, false);
13179       // Return value from the original node to inform the combiner than N is
13180       // now dead.
13181       return SDValue(N, 0);
13182     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
13183                (~Mask == Mask2)) {
13184       // The pack halfword instruction works better for masks that fit it,
13185       // so use that when it's available.
13186       if (Subtarget->hasDSP() &&
13187           (Mask2 == 0xffff || Mask2 == 0xffff0000))
13188         return SDValue();
13189       // 2b
13190       unsigned lsb = countTrailingZeros(Mask);
13191       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
13192                         DAG.getConstant(lsb, DL, MVT::i32));
13193       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
13194                         DAG.getConstant(Mask2, DL, MVT::i32));
13195       DCI.CombineTo(N, Res, false);
13196       // Return value from the original node to inform the combiner than N is
13197       // now dead.
13198       return SDValue(N, 0);
13199     }
13200   }
13201 
13202   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
13203       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
13204       ARM::isBitFieldInvertedMask(~Mask)) {
13205     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
13206     // where lsb(mask) == #shamt and masked bits of B are known zero.
13207     SDValue ShAmt = N00.getOperand(1);
13208     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
13209     unsigned LSB = countTrailingZeros(Mask);
13210     if (ShAmtC != LSB)
13211       return SDValue();
13212 
13213     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
13214                       DAG.getConstant(~Mask, DL, MVT::i32));
13215 
13216     DCI.CombineTo(N, Res, false);
13217     // Return value from the original node to inform the combiner than N is
13218     // now dead.
13219     return SDValue(N, 0);
13220   }
13221 
13222   return SDValue();
13223 }
13224 
isValidMVECond(unsigned CC,bool IsFloat)13225 static bool isValidMVECond(unsigned CC, bool IsFloat) {
13226   switch (CC) {
13227   case ARMCC::EQ:
13228   case ARMCC::NE:
13229   case ARMCC::LE:
13230   case ARMCC::GT:
13231   case ARMCC::GE:
13232   case ARMCC::LT:
13233     return true;
13234   case ARMCC::HS:
13235   case ARMCC::HI:
13236     return !IsFloat;
13237   default:
13238     return false;
13239   };
13240 }
13241 
getVCMPCondCode(SDValue N)13242 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
13243   if (N->getOpcode() == ARMISD::VCMP)
13244     return (ARMCC::CondCodes)N->getConstantOperandVal(2);
13245   else if (N->getOpcode() == ARMISD::VCMPZ)
13246     return (ARMCC::CondCodes)N->getConstantOperandVal(1);
13247   else
13248     llvm_unreachable("Not a VCMP/VCMPZ!");
13249 }
13250 
CanInvertMVEVCMP(SDValue N)13251 static bool CanInvertMVEVCMP(SDValue N) {
13252   ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
13253   return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
13254 }
13255 
PerformORCombine_i1(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13256 static SDValue PerformORCombine_i1(SDNode *N,
13257                                    TargetLowering::DAGCombinerInfo &DCI,
13258                                    const ARMSubtarget *Subtarget) {
13259   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
13260   // together with predicates
13261   EVT VT = N->getValueType(0);
13262   SDLoc DL(N);
13263   SDValue N0 = N->getOperand(0);
13264   SDValue N1 = N->getOperand(1);
13265 
13266   auto IsFreelyInvertable = [&](SDValue V) {
13267     if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
13268       return CanInvertMVEVCMP(V);
13269     return false;
13270   };
13271 
13272   // At least one operand must be freely invertable.
13273   if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
13274     return SDValue();
13275 
13276   SDValue NewN0 = DCI.DAG.getLogicalNOT(DL, N0, VT);
13277   SDValue NewN1 = DCI.DAG.getLogicalNOT(DL, N1, VT);
13278   SDValue And = DCI.DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
13279   return DCI.DAG.getLogicalNOT(DL, And, VT);
13280 }
13281 
13282 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13283 static SDValue PerformORCombine(SDNode *N,
13284                                 TargetLowering::DAGCombinerInfo &DCI,
13285                                 const ARMSubtarget *Subtarget) {
13286   // Attempt to use immediate-form VORR
13287   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
13288   SDLoc dl(N);
13289   EVT VT = N->getValueType(0);
13290   SelectionDAG &DAG = DCI.DAG;
13291 
13292   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13293     return SDValue();
13294 
13295   if (Subtarget->hasMVEIntegerOps() &&
13296       (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
13297     return PerformORCombine_i1(N, DCI, Subtarget);
13298 
13299   APInt SplatBits, SplatUndef;
13300   unsigned SplatBitSize;
13301   bool HasAnyUndefs;
13302   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
13303       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
13304     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
13305         SplatBitSize == 64) {
13306       EVT VorrVT;
13307       SDValue Val =
13308           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
13309                             SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
13310       if (Val.getNode()) {
13311         SDValue Input =
13312           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
13313         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
13314         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
13315       }
13316     }
13317   }
13318 
13319   if (!Subtarget->isThumb1Only()) {
13320     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
13321     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
13322       return Result;
13323     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
13324       return Result;
13325   }
13326 
13327   SDValue N0 = N->getOperand(0);
13328   SDValue N1 = N->getOperand(1);
13329 
13330   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
13331   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
13332       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13333 
13334     // The code below optimizes (or (and X, Y), Z).
13335     // The AND operand needs to have a single user to make these optimizations
13336     // profitable.
13337     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
13338       return SDValue();
13339 
13340     APInt SplatUndef;
13341     unsigned SplatBitSize;
13342     bool HasAnyUndefs;
13343 
13344     APInt SplatBits0, SplatBits1;
13345     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
13346     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
13347     // Ensure that the second operand of both ands are constants
13348     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
13349                                       HasAnyUndefs) && !HasAnyUndefs) {
13350         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
13351                                           HasAnyUndefs) && !HasAnyUndefs) {
13352             // Ensure that the bit width of the constants are the same and that
13353             // the splat arguments are logical inverses as per the pattern we
13354             // are trying to simplify.
13355             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
13356                 SplatBits0 == ~SplatBits1) {
13357                 // Canonicalize the vector type to make instruction selection
13358                 // simpler.
13359                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
13360                 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
13361                                              N0->getOperand(1),
13362                                              N0->getOperand(0),
13363                                              N1->getOperand(0));
13364                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
13365             }
13366         }
13367     }
13368   }
13369 
13370   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
13371   // reasonable.
13372   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
13373     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
13374       return Res;
13375   }
13376 
13377   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13378     return Result;
13379 
13380   return SDValue();
13381 }
13382 
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13383 static SDValue PerformXORCombine(SDNode *N,
13384                                  TargetLowering::DAGCombinerInfo &DCI,
13385                                  const ARMSubtarget *Subtarget) {
13386   EVT VT = N->getValueType(0);
13387   SelectionDAG &DAG = DCI.DAG;
13388 
13389   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13390     return SDValue();
13391 
13392   if (!Subtarget->isThumb1Only()) {
13393     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
13394     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
13395       return Result;
13396 
13397     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13398       return Result;
13399   }
13400 
13401   if (Subtarget->hasMVEIntegerOps()) {
13402     // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
13403     SDValue N0 = N->getOperand(0);
13404     SDValue N1 = N->getOperand(1);
13405     const TargetLowering *TLI = Subtarget->getTargetLowering();
13406     if (TLI->isConstTrueVal(N1.getNode()) &&
13407         (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
13408       if (CanInvertMVEVCMP(N0)) {
13409         SDLoc DL(N0);
13410         ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
13411 
13412         SmallVector<SDValue, 4> Ops;
13413         Ops.push_back(N0->getOperand(0));
13414         if (N0->getOpcode() == ARMISD::VCMP)
13415           Ops.push_back(N0->getOperand(1));
13416         Ops.push_back(DCI.DAG.getConstant(CC, DL, MVT::i32));
13417         return DCI.DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
13418       }
13419     }
13420   }
13421 
13422   return SDValue();
13423 }
13424 
13425 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
13426 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
13427 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)13428 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
13429   assert(N->getOpcode() == ARMISD::BFI);
13430 
13431   SDValue From = N->getOperand(1);
13432   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
13433   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
13434 
13435   // If the Base came from a SHR #C, we can deduce that it is really testing bit
13436   // #C in the base of the SHR.
13437   if (From->getOpcode() == ISD::SRL &&
13438       isa<ConstantSDNode>(From->getOperand(1))) {
13439     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
13440     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
13441     FromMask <<= Shift.getLimitedValue(31);
13442     From = From->getOperand(0);
13443   }
13444 
13445   return From;
13446 }
13447 
13448 // If A and B contain one contiguous set of bits, does A | B == A . B?
13449 //
13450 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)13451 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
13452   unsigned LastActiveBitInA =  A.countTrailingZeros();
13453   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
13454   return LastActiveBitInA - 1 == FirstActiveBitInB;
13455 }
13456 
FindBFIToCombineWith(SDNode * N)13457 static SDValue FindBFIToCombineWith(SDNode *N) {
13458   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
13459   // if one exists.
13460   APInt ToMask, FromMask;
13461   SDValue From = ParseBFI(N, ToMask, FromMask);
13462   SDValue To = N->getOperand(0);
13463 
13464   // Now check for a compatible BFI to merge with. We can pass through BFIs that
13465   // aren't compatible, but not if they set the same bit in their destination as
13466   // we do (or that of any BFI we're going to combine with).
13467   SDValue V = To;
13468   APInt CombinedToMask = ToMask;
13469   while (V.getOpcode() == ARMISD::BFI) {
13470     APInt NewToMask, NewFromMask;
13471     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
13472     if (NewFrom != From) {
13473       // This BFI has a different base. Keep going.
13474       CombinedToMask |= NewToMask;
13475       V = V.getOperand(0);
13476       continue;
13477     }
13478 
13479     // Do the written bits conflict with any we've seen so far?
13480     if ((NewToMask & CombinedToMask).getBoolValue())
13481       // Conflicting bits - bail out because going further is unsafe.
13482       return SDValue();
13483 
13484     // Are the new bits contiguous when combined with the old bits?
13485     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
13486         BitsProperlyConcatenate(FromMask, NewFromMask))
13487       return V;
13488     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
13489         BitsProperlyConcatenate(NewFromMask, FromMask))
13490       return V;
13491 
13492     // We've seen a write to some bits, so track it.
13493     CombinedToMask |= NewToMask;
13494     // Keep going...
13495     V = V.getOperand(0);
13496   }
13497 
13498   return SDValue();
13499 }
13500 
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13501 static SDValue PerformBFICombine(SDNode *N,
13502                                  TargetLowering::DAGCombinerInfo &DCI) {
13503   SDValue N1 = N->getOperand(1);
13504   if (N1.getOpcode() == ISD::AND) {
13505     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
13506     // the bits being cleared by the AND are not demanded by the BFI.
13507     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
13508     if (!N11C)
13509       return SDValue();
13510     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
13511     unsigned LSB = countTrailingZeros(~InvMask);
13512     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
13513     assert(Width <
13514                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
13515            "undefined behavior");
13516     unsigned Mask = (1u << Width) - 1;
13517     unsigned Mask2 = N11C->getZExtValue();
13518     if ((Mask & (~Mask2)) == 0)
13519       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
13520                              N->getOperand(0), N1.getOperand(0),
13521                              N->getOperand(2));
13522   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
13523     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
13524     // Keep track of any consecutive bits set that all come from the same base
13525     // value. We can combine these together into a single BFI.
13526     SDValue CombineBFI = FindBFIToCombineWith(N);
13527     if (CombineBFI == SDValue())
13528       return SDValue();
13529 
13530     // We've found a BFI.
13531     APInt ToMask1, FromMask1;
13532     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
13533 
13534     APInt ToMask2, FromMask2;
13535     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
13536     assert(From1 == From2);
13537     (void)From2;
13538 
13539     // First, unlink CombineBFI.
13540     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
13541     // Then create a new BFI, combining the two together.
13542     APInt NewFromMask = FromMask1 | FromMask2;
13543     APInt NewToMask = ToMask1 | ToMask2;
13544 
13545     EVT VT = N->getValueType(0);
13546     SDLoc dl(N);
13547 
13548     if (NewFromMask[0] == 0)
13549       From1 = DCI.DAG.getNode(
13550         ISD::SRL, dl, VT, From1,
13551         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
13552     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
13553                            DCI.DAG.getConstant(~NewToMask, dl, VT));
13554   }
13555   return SDValue();
13556 }
13557 
13558 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
13559 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13560 static SDValue PerformVMOVRRDCombine(SDNode *N,
13561                                      TargetLowering::DAGCombinerInfo &DCI,
13562                                      const ARMSubtarget *Subtarget) {
13563   // vmovrrd(vmovdrr x, y) -> x,y
13564   SDValue InDouble = N->getOperand(0);
13565   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
13566     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
13567 
13568   // vmovrrd(load f64) -> (load i32), (load i32)
13569   SDNode *InNode = InDouble.getNode();
13570   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
13571       InNode->getValueType(0) == MVT::f64 &&
13572       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
13573       !cast<LoadSDNode>(InNode)->isVolatile()) {
13574     // TODO: Should this be done for non-FrameIndex operands?
13575     LoadSDNode *LD = cast<LoadSDNode>(InNode);
13576 
13577     SelectionDAG &DAG = DCI.DAG;
13578     SDLoc DL(LD);
13579     SDValue BasePtr = LD->getBasePtr();
13580     SDValue NewLD1 =
13581         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
13582                     LD->getAlignment(), LD->getMemOperand()->getFlags());
13583 
13584     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
13585                                     DAG.getConstant(4, DL, MVT::i32));
13586 
13587     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
13588                                  LD->getPointerInfo().getWithOffset(4),
13589                                  std::min(4U, LD->getAlignment()),
13590                                  LD->getMemOperand()->getFlags());
13591 
13592     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
13593     if (DCI.DAG.getDataLayout().isBigEndian())
13594       std::swap (NewLD1, NewLD2);
13595     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
13596     return Result;
13597   }
13598 
13599   return SDValue();
13600 }
13601 
13602 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
13603 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)13604 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
13605   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
13606   SDValue Op0 = N->getOperand(0);
13607   SDValue Op1 = N->getOperand(1);
13608   if (Op0.getOpcode() == ISD::BITCAST)
13609     Op0 = Op0.getOperand(0);
13610   if (Op1.getOpcode() == ISD::BITCAST)
13611     Op1 = Op1.getOperand(0);
13612   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
13613       Op0.getNode() == Op1.getNode() &&
13614       Op0.getResNo() == 0 && Op1.getResNo() == 1)
13615     return DAG.getNode(ISD::BITCAST, SDLoc(N),
13616                        N->getValueType(0), Op0.getOperand(0));
13617   return SDValue();
13618 }
13619 
PerformVMOVhrCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13620 static SDValue PerformVMOVhrCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13621   SDValue Op0 = N->getOperand(0);
13622 
13623   // VMOVhr (VMOVrh (X)) -> X
13624   if (Op0->getOpcode() == ARMISD::VMOVrh)
13625     return Op0->getOperand(0);
13626 
13627   // FullFP16: half values are passed in S-registers, and we don't
13628   // need any of the bitcast and moves:
13629   //
13630   //     t2: f32,ch = CopyFromReg t0, Register:f32 %0
13631   //   t5: i32 = bitcast t2
13632   // t18: f16 = ARMISD::VMOVhr t5
13633   if (Op0->getOpcode() == ISD::BITCAST) {
13634     SDValue Copy = Op0->getOperand(0);
13635     if (Copy.getValueType() == MVT::f32 &&
13636         Copy->getOpcode() == ISD::CopyFromReg) {
13637       SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1)};
13638       SDValue NewCopy =
13639           DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), N->getValueType(0), Ops);
13640       return NewCopy;
13641     }
13642   }
13643 
13644   // fold (VMOVhr (load x)) -> (load (f16*)x)
13645   if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
13646     if (LN0->hasOneUse() && LN0->isUnindexed() &&
13647         LN0->getMemoryVT() == MVT::i16) {
13648       SDValue Load =
13649           DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
13650                           LN0->getBasePtr(), LN0->getMemOperand());
13651       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
13652       DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
13653       return Load;
13654     }
13655   }
13656 
13657   // Only the bottom 16 bits of the source register are used.
13658   APInt DemandedMask = APInt::getLowBitsSet(32, 16);
13659   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
13660   if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
13661     return SDValue(N, 0);
13662 
13663   return SDValue();
13664 }
13665 
PerformVMOVrhCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13666 static SDValue PerformVMOVrhCombine(SDNode *N,
13667                                     TargetLowering::DAGCombinerInfo &DCI) {
13668   SDValue N0 = N->getOperand(0);
13669   EVT VT = N->getValueType(0);
13670 
13671   // fold (VMOVrh (fpconst x)) -> const x
13672   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
13673     APFloat V = C->getValueAPF();
13674     return DCI.DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
13675   }
13676 
13677   // fold (VMOVrh (load x)) -> (zextload (i16*)x)
13678   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
13679     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
13680 
13681     SDValue Load =
13682         DCI.DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
13683                            LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
13684     DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
13685     DCI.DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
13686     return Load;
13687   }
13688 
13689   // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
13690   if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
13691       isa<ConstantSDNode>(N0->getOperand(1)))
13692     return DCI.DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
13693                            N0->getOperand(1));
13694 
13695   return SDValue();
13696 }
13697 
13698 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
13699 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
13700 /// i64 vector to have f64 elements, since the value can then be loaded
13701 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)13702 static bool hasNormalLoadOperand(SDNode *N) {
13703   unsigned NumElts = N->getValueType(0).getVectorNumElements();
13704   for (unsigned i = 0; i < NumElts; ++i) {
13705     SDNode *Elt = N->getOperand(i).getNode();
13706     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
13707       return true;
13708   }
13709   return false;
13710 }
13711 
13712 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
13713 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13714 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
13715                                           TargetLowering::DAGCombinerInfo &DCI,
13716                                           const ARMSubtarget *Subtarget) {
13717   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
13718   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
13719   // into a pair of GPRs, which is fine when the value is used as a scalar,
13720   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
13721   SelectionDAG &DAG = DCI.DAG;
13722   if (N->getNumOperands() == 2)
13723     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
13724       return RV;
13725 
13726   // Load i64 elements as f64 values so that type legalization does not split
13727   // them up into i32 values.
13728   EVT VT = N->getValueType(0);
13729   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
13730     return SDValue();
13731   SDLoc dl(N);
13732   SmallVector<SDValue, 8> Ops;
13733   unsigned NumElts = VT.getVectorNumElements();
13734   for (unsigned i = 0; i < NumElts; ++i) {
13735     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
13736     Ops.push_back(V);
13737     // Make the DAGCombiner fold the bitcast.
13738     DCI.AddToWorklist(V.getNode());
13739   }
13740   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
13741   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
13742   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
13743 }
13744 
13745 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
13746 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13747 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13748   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
13749   // At that time, we may have inserted bitcasts from integer to float.
13750   // If these bitcasts have survived DAGCombine, change the lowering of this
13751   // BUILD_VECTOR in something more vector friendly, i.e., that does not
13752   // force to use floating point types.
13753 
13754   // Make sure we can change the type of the vector.
13755   // This is possible iff:
13756   // 1. The vector is only used in a bitcast to a integer type. I.e.,
13757   //    1.1. Vector is used only once.
13758   //    1.2. Use is a bit convert to an integer type.
13759   // 2. The size of its operands are 32-bits (64-bits are not legal).
13760   EVT VT = N->getValueType(0);
13761   EVT EltVT = VT.getVectorElementType();
13762 
13763   // Check 1.1. and 2.
13764   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
13765     return SDValue();
13766 
13767   // By construction, the input type must be float.
13768   assert(EltVT == MVT::f32 && "Unexpected type!");
13769 
13770   // Check 1.2.
13771   SDNode *Use = *N->use_begin();
13772   if (Use->getOpcode() != ISD::BITCAST ||
13773       Use->getValueType(0).isFloatingPoint())
13774     return SDValue();
13775 
13776   // Check profitability.
13777   // Model is, if more than half of the relevant operands are bitcast from
13778   // i32, turn the build_vector into a sequence of insert_vector_elt.
13779   // Relevant operands are everything that is not statically
13780   // (i.e., at compile time) bitcasted.
13781   unsigned NumOfBitCastedElts = 0;
13782   unsigned NumElts = VT.getVectorNumElements();
13783   unsigned NumOfRelevantElts = NumElts;
13784   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
13785     SDValue Elt = N->getOperand(Idx);
13786     if (Elt->getOpcode() == ISD::BITCAST) {
13787       // Assume only bit cast to i32 will go away.
13788       if (Elt->getOperand(0).getValueType() == MVT::i32)
13789         ++NumOfBitCastedElts;
13790     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
13791       // Constants are statically casted, thus do not count them as
13792       // relevant operands.
13793       --NumOfRelevantElts;
13794   }
13795 
13796   // Check if more than half of the elements require a non-free bitcast.
13797   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
13798     return SDValue();
13799 
13800   SelectionDAG &DAG = DCI.DAG;
13801   // Create the new vector type.
13802   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
13803   // Check if the type is legal.
13804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13805   if (!TLI.isTypeLegal(VecVT))
13806     return SDValue();
13807 
13808   // Combine:
13809   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
13810   // => BITCAST INSERT_VECTOR_ELT
13811   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
13812   //                      (BITCAST EN), N.
13813   SDValue Vec = DAG.getUNDEF(VecVT);
13814   SDLoc dl(N);
13815   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
13816     SDValue V = N->getOperand(Idx);
13817     if (V.isUndef())
13818       continue;
13819     if (V.getOpcode() == ISD::BITCAST &&
13820         V->getOperand(0).getValueType() == MVT::i32)
13821       // Fold obvious case.
13822       V = V.getOperand(0);
13823     else {
13824       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
13825       // Make the DAGCombiner fold the bitcasts.
13826       DCI.AddToWorklist(V.getNode());
13827     }
13828     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
13829     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
13830   }
13831   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
13832   // Make the DAGCombiner fold the bitcasts.
13833   DCI.AddToWorklist(Vec.getNode());
13834   return Vec;
13835 }
13836 
13837 static SDValue
PerformPREDICATE_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13838 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13839   EVT VT = N->getValueType(0);
13840   SDValue Op = N->getOperand(0);
13841   SDLoc dl(N);
13842 
13843   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
13844   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
13845     // If the valuetypes are the same, we can remove the cast entirely.
13846     if (Op->getOperand(0).getValueType() == VT)
13847       return Op->getOperand(0);
13848     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
13849   }
13850 
13851   // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
13852   // more VPNOT which might get folded as else predicates.
13853   if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
13854     SDValue X =
13855         DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
13856     SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
13857                                 DCI.DAG.getConstant(65535, dl, MVT::i32));
13858     return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
13859   }
13860 
13861   // Only the bottom 16 bits of the source register are used.
13862   if (Op.getValueType() == MVT::i32) {
13863     APInt DemandedMask = APInt::getLowBitsSet(32, 16);
13864     const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
13865     if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
13866       return SDValue(N, 0);
13867   }
13868   return SDValue();
13869 }
13870 
13871 static SDValue
PerformVECTOR_REG_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)13872 PerformVECTOR_REG_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
13873                               const ARMSubtarget *ST) {
13874   EVT VT = N->getValueType(0);
13875   SDValue Op = N->getOperand(0);
13876   SDLoc dl(N);
13877 
13878   // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
13879   if (ST->isLittle())
13880     return DCI.DAG.getNode(ISD::BITCAST, dl, VT, Op);
13881 
13882   // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
13883   if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
13884     // If the valuetypes are the same, we can remove the cast entirely.
13885     if (Op->getOperand(0).getValueType() == VT)
13886       return Op->getOperand(0);
13887     return DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
13888   }
13889 
13890   return SDValue();
13891 }
13892 
PerformVCMPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13893 static SDValue PerformVCMPCombine(SDNode *N,
13894                                   TargetLowering::DAGCombinerInfo &DCI,
13895                                   const ARMSubtarget *Subtarget) {
13896   if (!Subtarget->hasMVEIntegerOps())
13897     return SDValue();
13898 
13899   EVT VT = N->getValueType(0);
13900   SDValue Op0 = N->getOperand(0);
13901   SDValue Op1 = N->getOperand(1);
13902   ARMCC::CondCodes Cond =
13903       (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
13904   SDLoc dl(N);
13905 
13906   // vcmp X, 0, cc -> vcmpz X, cc
13907   if (isZeroVector(Op1))
13908     return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0,
13909                            N->getOperand(2));
13910 
13911   unsigned SwappedCond = getSwappedCondition(Cond);
13912   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
13913     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
13914     if (isZeroVector(Op0))
13915       return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
13916                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
13917     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
13918     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
13919       return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
13920                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
13921   }
13922 
13923   return SDValue();
13924 }
13925 
13926 /// PerformInsertEltCombine - Target-specific dag combine xforms for
13927 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13928 static SDValue PerformInsertEltCombine(SDNode *N,
13929                                        TargetLowering::DAGCombinerInfo &DCI) {
13930   // Bitcast an i64 load inserted into a vector to f64.
13931   // Otherwise, the i64 value will be legalized to a pair of i32 values.
13932   EVT VT = N->getValueType(0);
13933   SDNode *Elt = N->getOperand(1).getNode();
13934   if (VT.getVectorElementType() != MVT::i64 ||
13935       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
13936     return SDValue();
13937 
13938   SelectionDAG &DAG = DCI.DAG;
13939   SDLoc dl(N);
13940   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
13941                                  VT.getVectorNumElements());
13942   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
13943   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
13944   // Make the DAGCombiner fold the bitcasts.
13945   DCI.AddToWorklist(Vec.getNode());
13946   DCI.AddToWorklist(V.getNode());
13947   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
13948                                Vec, V, N->getOperand(2));
13949   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
13950 }
13951 
PerformExtractEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13952 static SDValue PerformExtractEltCombine(SDNode *N,
13953                                         TargetLowering::DAGCombinerInfo &DCI) {
13954   SDValue Op0 = N->getOperand(0);
13955   EVT VT = N->getValueType(0);
13956   SDLoc dl(N);
13957 
13958   // extract (vdup x) -> x
13959   if (Op0->getOpcode() == ARMISD::VDUP) {
13960     SDValue X = Op0->getOperand(0);
13961     if (VT == MVT::f16 && X.getValueType() == MVT::i32)
13962       return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
13963     if (VT == MVT::i32 && X.getValueType() == MVT::f16)
13964       return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
13965 
13966     while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
13967       X = X->getOperand(0);
13968     if (X.getValueType() == VT)
13969       return X;
13970   }
13971 
13972   return SDValue();
13973 }
13974 
13975 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
13976 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)13977 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
13978   // The LLVM shufflevector instruction does not require the shuffle mask
13979   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
13980   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
13981   // operands do not match the mask length, they are extended by concatenating
13982   // them with undef vectors.  That is probably the right thing for other
13983   // targets, but for NEON it is better to concatenate two double-register
13984   // size vector operands into a single quad-register size vector.  Do that
13985   // transformation here:
13986   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
13987   //   shuffle(concat(v1, v2), undef)
13988   SDValue Op0 = N->getOperand(0);
13989   SDValue Op1 = N->getOperand(1);
13990   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
13991       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
13992       Op0.getNumOperands() != 2 ||
13993       Op1.getNumOperands() != 2)
13994     return SDValue();
13995   SDValue Concat0Op1 = Op0.getOperand(1);
13996   SDValue Concat1Op1 = Op1.getOperand(1);
13997   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
13998     return SDValue();
13999   // Skip the transformation if any of the types are illegal.
14000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14001   EVT VT = N->getValueType(0);
14002   if (!TLI.isTypeLegal(VT) ||
14003       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
14004       !TLI.isTypeLegal(Concat1Op1.getValueType()))
14005     return SDValue();
14006 
14007   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
14008                                   Op0.getOperand(0), Op1.getOperand(0));
14009   // Translate the shuffle mask.
14010   SmallVector<int, 16> NewMask;
14011   unsigned NumElts = VT.getVectorNumElements();
14012   unsigned HalfElts = NumElts/2;
14013   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
14014   for (unsigned n = 0; n < NumElts; ++n) {
14015     int MaskElt = SVN->getMaskElt(n);
14016     int NewElt = -1;
14017     if (MaskElt < (int)HalfElts)
14018       NewElt = MaskElt;
14019     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
14020       NewElt = HalfElts + MaskElt - NumElts;
14021     NewMask.push_back(NewElt);
14022   }
14023   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
14024                               DAG.getUNDEF(VT), NewMask);
14025 }
14026 
14027 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
14028 /// NEON load/store intrinsics, and generic vector load/stores, to merge
14029 /// base address updates.
14030 /// For generic load/stores, the memory type is assumed to be a vector.
14031 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14032 static SDValue CombineBaseUpdate(SDNode *N,
14033                                  TargetLowering::DAGCombinerInfo &DCI) {
14034   SelectionDAG &DAG = DCI.DAG;
14035   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
14036                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
14037   const bool isStore = N->getOpcode() == ISD::STORE;
14038   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
14039   SDValue Addr = N->getOperand(AddrOpIdx);
14040   MemSDNode *MemN = cast<MemSDNode>(N);
14041   SDLoc dl(N);
14042 
14043   // Search for a use of the address operand that is an increment.
14044   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14045          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
14046     SDNode *User = *UI;
14047     if (User->getOpcode() != ISD::ADD ||
14048         UI.getUse().getResNo() != Addr.getResNo())
14049       continue;
14050 
14051     // Check that the add is independent of the load/store.  Otherwise, folding
14052     // it would create a cycle. We can avoid searching through Addr as it's a
14053     // predecessor to both.
14054     SmallPtrSet<const SDNode *, 32> Visited;
14055     SmallVector<const SDNode *, 16> Worklist;
14056     Visited.insert(Addr.getNode());
14057     Worklist.push_back(N);
14058     Worklist.push_back(User);
14059     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14060         SDNode::hasPredecessorHelper(User, Visited, Worklist))
14061       continue;
14062 
14063     // Find the new opcode for the updating load/store.
14064     bool isLoadOp = true;
14065     bool isLaneOp = false;
14066     unsigned NewOpc = 0;
14067     unsigned NumVecs = 0;
14068     if (isIntrinsic) {
14069       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14070       switch (IntNo) {
14071       default: llvm_unreachable("unexpected intrinsic for Neon base update");
14072       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
14073         NumVecs = 1; break;
14074       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
14075         NumVecs = 2; break;
14076       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
14077         NumVecs = 3; break;
14078       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
14079         NumVecs = 4; break;
14080       case Intrinsic::arm_neon_vld1x2:
14081       case Intrinsic::arm_neon_vld1x3:
14082       case Intrinsic::arm_neon_vld1x4:
14083       case Intrinsic::arm_neon_vld2dup:
14084       case Intrinsic::arm_neon_vld3dup:
14085       case Intrinsic::arm_neon_vld4dup:
14086         // TODO: Support updating VLD1x and VLDxDUP nodes. For now, we just skip
14087         // combining base updates for such intrinsics.
14088         continue;
14089       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
14090         NumVecs = 2; isLaneOp = true; break;
14091       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
14092         NumVecs = 3; isLaneOp = true; break;
14093       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
14094         NumVecs = 4; isLaneOp = true; break;
14095       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
14096         NumVecs = 1; isLoadOp = false; break;
14097       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
14098         NumVecs = 2; isLoadOp = false; break;
14099       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
14100         NumVecs = 3; isLoadOp = false; break;
14101       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
14102         NumVecs = 4; isLoadOp = false; break;
14103       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
14104         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
14105       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
14106         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
14107       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
14108         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
14109       }
14110     } else {
14111       isLaneOp = true;
14112       switch (N->getOpcode()) {
14113       default: llvm_unreachable("unexpected opcode for Neon base update");
14114       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
14115       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
14116       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
14117       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
14118       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
14119         NumVecs = 1; isLaneOp = false; break;
14120       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
14121         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
14122       }
14123     }
14124 
14125     // Find the size of memory referenced by the load/store.
14126     EVT VecTy;
14127     if (isLoadOp) {
14128       VecTy = N->getValueType(0);
14129     } else if (isIntrinsic) {
14130       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
14131     } else {
14132       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
14133       VecTy = N->getOperand(1).getValueType();
14134     }
14135 
14136     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14137     if (isLaneOp)
14138       NumBytes /= VecTy.getVectorNumElements();
14139 
14140     // If the increment is a constant, it must match the memory ref size.
14141     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14142     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
14143     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
14144       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
14145       // separate instructions that make it harder to use a non-constant update.
14146       continue;
14147     }
14148 
14149     // OK, we found an ADD we can fold into the base update.
14150     // Now, create a _UPD node, taking care of not breaking alignment.
14151 
14152     EVT AlignedVecTy = VecTy;
14153     unsigned Alignment = MemN->getAlignment();
14154 
14155     // If this is a less-than-standard-aligned load/store, change the type to
14156     // match the standard alignment.
14157     // The alignment is overlooked when selecting _UPD variants; and it's
14158     // easier to introduce bitcasts here than fix that.
14159     // There are 3 ways to get to this base-update combine:
14160     // - intrinsics: they are assumed to be properly aligned (to the standard
14161     //   alignment of the memory type), so we don't need to do anything.
14162     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
14163     //   intrinsics, so, likewise, there's nothing to do.
14164     // - generic load/store instructions: the alignment is specified as an
14165     //   explicit operand, rather than implicitly as the standard alignment
14166     //   of the memory type (like the intrisics).  We need to change the
14167     //   memory type to match the explicit alignment.  That way, we don't
14168     //   generate non-standard-aligned ARMISD::VLDx nodes.
14169     if (isa<LSBaseSDNode>(N)) {
14170       if (Alignment == 0)
14171         Alignment = 1;
14172       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
14173         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
14174         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
14175         assert(!isLaneOp && "Unexpected generic load/store lane.");
14176         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
14177         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
14178       }
14179       // Don't set an explicit alignment on regular load/stores that we want
14180       // to transform to VLD/VST 1_UPD nodes.
14181       // This matches the behavior of regular load/stores, which only get an
14182       // explicit alignment if the MMO alignment is larger than the standard
14183       // alignment of the memory type.
14184       // Intrinsics, however, always get an explicit alignment, set to the
14185       // alignment of the MMO.
14186       Alignment = 1;
14187     }
14188 
14189     // Create the new updating load/store node.
14190     // First, create an SDVTList for the new updating node's results.
14191     EVT Tys[6];
14192     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
14193     unsigned n;
14194     for (n = 0; n < NumResultVecs; ++n)
14195       Tys[n] = AlignedVecTy;
14196     Tys[n++] = MVT::i32;
14197     Tys[n] = MVT::Other;
14198     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
14199 
14200     // Then, gather the new node's operands.
14201     SmallVector<SDValue, 8> Ops;
14202     Ops.push_back(N->getOperand(0)); // incoming chain
14203     Ops.push_back(N->getOperand(AddrOpIdx));
14204     Ops.push_back(Inc);
14205 
14206     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
14207       // Try to match the intrinsic's signature
14208       Ops.push_back(StN->getValue());
14209     } else {
14210       // Loads (and of course intrinsics) match the intrinsics' signature,
14211       // so just add all but the alignment operand.
14212       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
14213         Ops.push_back(N->getOperand(i));
14214     }
14215 
14216     // For all node types, the alignment operand is always the last one.
14217     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
14218 
14219     // If this is a non-standard-aligned STORE, the penultimate operand is the
14220     // stored value.  Bitcast it to the aligned type.
14221     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
14222       SDValue &StVal = Ops[Ops.size()-2];
14223       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
14224     }
14225 
14226     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
14227     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
14228                                            MemN->getMemOperand());
14229 
14230     // Update the uses.
14231     SmallVector<SDValue, 5> NewResults;
14232     for (unsigned i = 0; i < NumResultVecs; ++i)
14233       NewResults.push_back(SDValue(UpdN.getNode(), i));
14234 
14235     // If this is an non-standard-aligned LOAD, the first result is the loaded
14236     // value.  Bitcast it to the expected result type.
14237     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
14238       SDValue &LdVal = NewResults[0];
14239       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
14240     }
14241 
14242     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
14243     DCI.CombineTo(N, NewResults);
14244     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14245 
14246     break;
14247   }
14248   return SDValue();
14249 }
14250 
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14251 static SDValue PerformVLDCombine(SDNode *N,
14252                                  TargetLowering::DAGCombinerInfo &DCI) {
14253   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14254     return SDValue();
14255 
14256   return CombineBaseUpdate(N, DCI);
14257 }
14258 
PerformMVEVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14259 static SDValue PerformMVEVLDCombine(SDNode *N,
14260                                     TargetLowering::DAGCombinerInfo &DCI) {
14261   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14262     return SDValue();
14263 
14264   SelectionDAG &DAG = DCI.DAG;
14265   SDValue Addr = N->getOperand(2);
14266   MemSDNode *MemN = cast<MemSDNode>(N);
14267   SDLoc dl(N);
14268 
14269   // For the stores, where there are multiple intrinsics we only actually want
14270   // to post-inc the last of the them.
14271   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
14272   if (IntNo == Intrinsic::arm_mve_vst2q &&
14273       cast<ConstantSDNode>(N->getOperand(5))->getZExtValue() != 1)
14274     return SDValue();
14275   if (IntNo == Intrinsic::arm_mve_vst4q &&
14276       cast<ConstantSDNode>(N->getOperand(7))->getZExtValue() != 3)
14277     return SDValue();
14278 
14279   // Search for a use of the address operand that is an increment.
14280   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
14281                             UE = Addr.getNode()->use_end();
14282        UI != UE; ++UI) {
14283     SDNode *User = *UI;
14284     if (User->getOpcode() != ISD::ADD ||
14285         UI.getUse().getResNo() != Addr.getResNo())
14286       continue;
14287 
14288     // Check that the add is independent of the load/store.  Otherwise, folding
14289     // it would create a cycle. We can avoid searching through Addr as it's a
14290     // predecessor to both.
14291     SmallPtrSet<const SDNode *, 32> Visited;
14292     SmallVector<const SDNode *, 16> Worklist;
14293     Visited.insert(Addr.getNode());
14294     Worklist.push_back(N);
14295     Worklist.push_back(User);
14296     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
14297         SDNode::hasPredecessorHelper(User, Visited, Worklist))
14298       continue;
14299 
14300     // Find the new opcode for the updating load/store.
14301     bool isLoadOp = true;
14302     unsigned NewOpc = 0;
14303     unsigned NumVecs = 0;
14304     switch (IntNo) {
14305     default:
14306       llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
14307     case Intrinsic::arm_mve_vld2q:
14308       NewOpc = ARMISD::VLD2_UPD;
14309       NumVecs = 2;
14310       break;
14311     case Intrinsic::arm_mve_vld4q:
14312       NewOpc = ARMISD::VLD4_UPD;
14313       NumVecs = 4;
14314       break;
14315     case Intrinsic::arm_mve_vst2q:
14316       NewOpc = ARMISD::VST2_UPD;
14317       NumVecs = 2;
14318       isLoadOp = false;
14319       break;
14320     case Intrinsic::arm_mve_vst4q:
14321       NewOpc = ARMISD::VST4_UPD;
14322       NumVecs = 4;
14323       isLoadOp = false;
14324       break;
14325     }
14326 
14327     // Find the size of memory referenced by the load/store.
14328     EVT VecTy;
14329     if (isLoadOp) {
14330       VecTy = N->getValueType(0);
14331     } else {
14332       VecTy = N->getOperand(3).getValueType();
14333     }
14334 
14335     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
14336 
14337     // If the increment is a constant, it must match the memory ref size.
14338     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
14339     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
14340     if (!CInc || CInc->getZExtValue() != NumBytes)
14341       continue;
14342 
14343     // Create the new updating load/store node.
14344     // First, create an SDVTList for the new updating node's results.
14345     EVT Tys[6];
14346     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
14347     unsigned n;
14348     for (n = 0; n < NumResultVecs; ++n)
14349       Tys[n] = VecTy;
14350     Tys[n++] = MVT::i32;
14351     Tys[n] = MVT::Other;
14352     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
14353 
14354     // Then, gather the new node's operands.
14355     SmallVector<SDValue, 8> Ops;
14356     Ops.push_back(N->getOperand(0)); // incoming chain
14357     Ops.push_back(N->getOperand(2)); // ptr
14358     Ops.push_back(Inc);
14359 
14360     for (unsigned i = 3; i < N->getNumOperands(); ++i)
14361       Ops.push_back(N->getOperand(i));
14362 
14363     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
14364                                            MemN->getMemOperand());
14365 
14366     // Update the uses.
14367     SmallVector<SDValue, 5> NewResults;
14368     for (unsigned i = 0; i < NumResultVecs; ++i)
14369       NewResults.push_back(SDValue(UpdN.getNode(), i));
14370 
14371     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
14372     DCI.CombineTo(N, NewResults);
14373     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
14374 
14375     break;
14376   }
14377 
14378   return SDValue();
14379 }
14380 
14381 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
14382 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
14383 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
14384 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14385 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14386   SelectionDAG &DAG = DCI.DAG;
14387   EVT VT = N->getValueType(0);
14388   // vldN-dup instructions only support 64-bit vectors for N > 1.
14389   if (!VT.is64BitVector())
14390     return false;
14391 
14392   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
14393   SDNode *VLD = N->getOperand(0).getNode();
14394   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
14395     return false;
14396   unsigned NumVecs = 0;
14397   unsigned NewOpc = 0;
14398   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
14399   if (IntNo == Intrinsic::arm_neon_vld2lane) {
14400     NumVecs = 2;
14401     NewOpc = ARMISD::VLD2DUP;
14402   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
14403     NumVecs = 3;
14404     NewOpc = ARMISD::VLD3DUP;
14405   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
14406     NumVecs = 4;
14407     NewOpc = ARMISD::VLD4DUP;
14408   } else {
14409     return false;
14410   }
14411 
14412   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
14413   // numbers match the load.
14414   unsigned VLDLaneNo =
14415     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
14416   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
14417        UI != UE; ++UI) {
14418     // Ignore uses of the chain result.
14419     if (UI.getUse().getResNo() == NumVecs)
14420       continue;
14421     SDNode *User = *UI;
14422     if (User->getOpcode() != ARMISD::VDUPLANE ||
14423         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
14424       return false;
14425   }
14426 
14427   // Create the vldN-dup node.
14428   EVT Tys[5];
14429   unsigned n;
14430   for (n = 0; n < NumVecs; ++n)
14431     Tys[n] = VT;
14432   Tys[n] = MVT::Other;
14433   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
14434   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
14435   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
14436   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
14437                                            Ops, VLDMemInt->getMemoryVT(),
14438                                            VLDMemInt->getMemOperand());
14439 
14440   // Update the uses.
14441   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
14442        UI != UE; ++UI) {
14443     unsigned ResNo = UI.getUse().getResNo();
14444     // Ignore uses of the chain result.
14445     if (ResNo == NumVecs)
14446       continue;
14447     SDNode *User = *UI;
14448     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
14449   }
14450 
14451   // Now the vldN-lane intrinsic is dead except for its chain result.
14452   // Update uses of the chain.
14453   std::vector<SDValue> VLDDupResults;
14454   for (unsigned n = 0; n < NumVecs; ++n)
14455     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
14456   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
14457   DCI.CombineTo(VLD, VLDDupResults);
14458 
14459   return true;
14460 }
14461 
14462 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
14463 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14464 static SDValue PerformVDUPLANECombine(SDNode *N,
14465                                       TargetLowering::DAGCombinerInfo &DCI,
14466                                       const ARMSubtarget *Subtarget) {
14467   SDValue Op = N->getOperand(0);
14468   EVT VT = N->getValueType(0);
14469 
14470   // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
14471   if (Subtarget->hasMVEIntegerOps()) {
14472     EVT ExtractVT = VT.getVectorElementType();
14473     // We need to ensure we are creating a legal type.
14474     if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
14475       ExtractVT = MVT::i32;
14476     SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
14477                               N->getOperand(0), N->getOperand(1));
14478     return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
14479   }
14480 
14481   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
14482   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
14483   if (CombineVLDDUP(N, DCI))
14484     return SDValue(N, 0);
14485 
14486   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
14487   // redundant.  Ignore bit_converts for now; element sizes are checked below.
14488   while (Op.getOpcode() == ISD::BITCAST)
14489     Op = Op.getOperand(0);
14490   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
14491     return SDValue();
14492 
14493   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
14494   unsigned EltSize = Op.getScalarValueSizeInBits();
14495   // The canonical VMOV for a zero vector uses a 32-bit element size.
14496   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14497   unsigned EltBits;
14498   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
14499     EltSize = 8;
14500   if (EltSize > VT.getScalarSizeInBits())
14501     return SDValue();
14502 
14503   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
14504 }
14505 
14506 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14507 static SDValue PerformVDUPCombine(SDNode *N,
14508                                   TargetLowering::DAGCombinerInfo &DCI,
14509                                   const ARMSubtarget *Subtarget) {
14510   SelectionDAG &DAG = DCI.DAG;
14511   SDValue Op = N->getOperand(0);
14512   SDLoc dl(N);
14513 
14514   if (Subtarget->hasMVEIntegerOps()) {
14515     // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
14516     // need to come from a GPR.
14517     if (Op.getValueType() == MVT::f32)
14518       return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
14519                              DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
14520     else if (Op.getValueType() == MVT::f16)
14521       return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
14522                              DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
14523   }
14524 
14525   if (!Subtarget->hasNEON())
14526     return SDValue();
14527 
14528   // Match VDUP(LOAD) -> VLD1DUP.
14529   // We match this pattern here rather than waiting for isel because the
14530   // transform is only legal for unindexed loads.
14531   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
14532   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
14533       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
14534     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
14535                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
14536     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
14537     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
14538                                              Ops, LD->getMemoryVT(),
14539                                              LD->getMemOperand());
14540     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
14541     return VLDDup;
14542   }
14543 
14544   return SDValue();
14545 }
14546 
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)14547 static SDValue PerformLOADCombine(SDNode *N,
14548                                   TargetLowering::DAGCombinerInfo &DCI) {
14549   EVT VT = N->getValueType(0);
14550 
14551   // If this is a legal vector load, try to combine it into a VLD1_UPD.
14552   if (ISD::isNormalLoad(N) && VT.isVector() &&
14553       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
14554     return CombineBaseUpdate(N, DCI);
14555 
14556   return SDValue();
14557 }
14558 
14559 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
14560 // pack all of the elements in one place.  Next, store to memory in fewer
14561 // chunks.
PerformTruncatingStoreCombine(StoreSDNode * St,SelectionDAG & DAG)14562 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
14563                                              SelectionDAG &DAG) {
14564   SDValue StVal = St->getValue();
14565   EVT VT = StVal.getValueType();
14566   if (!St->isTruncatingStore() || !VT.isVector())
14567     return SDValue();
14568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14569   EVT StVT = St->getMemoryVT();
14570   unsigned NumElems = VT.getVectorNumElements();
14571   assert(StVT != VT && "Cannot truncate to the same type");
14572   unsigned FromEltSz = VT.getScalarSizeInBits();
14573   unsigned ToEltSz = StVT.getScalarSizeInBits();
14574 
14575   // From, To sizes and ElemCount must be pow of two
14576   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
14577     return SDValue();
14578 
14579   // We are going to use the original vector elt for storing.
14580   // Accumulated smaller vector elements must be a multiple of the store size.
14581   if (0 != (NumElems * FromEltSz) % ToEltSz)
14582     return SDValue();
14583 
14584   unsigned SizeRatio = FromEltSz / ToEltSz;
14585   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
14586 
14587   // Create a type on which we perform the shuffle.
14588   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
14589                                    NumElems * SizeRatio);
14590   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14591 
14592   SDLoc DL(St);
14593   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
14594   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14595   for (unsigned i = 0; i < NumElems; ++i)
14596     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
14597                                                       : i * SizeRatio;
14598 
14599   // Can't shuffle using an illegal type.
14600   if (!TLI.isTypeLegal(WideVecVT))
14601     return SDValue();
14602 
14603   SDValue Shuff = DAG.getVectorShuffle(
14604       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
14605   // At this point all of the data is stored at the bottom of the
14606   // register. We now need to save it to mem.
14607 
14608   // Find the largest store unit
14609   MVT StoreType = MVT::i8;
14610   for (MVT Tp : MVT::integer_valuetypes()) {
14611     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
14612       StoreType = Tp;
14613   }
14614   // Didn't find a legal store type.
14615   if (!TLI.isTypeLegal(StoreType))
14616     return SDValue();
14617 
14618   // Bitcast the original vector into a vector of store-size units
14619   EVT StoreVecVT =
14620       EVT::getVectorVT(*DAG.getContext(), StoreType,
14621                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
14622   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14623   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
14624   SmallVector<SDValue, 8> Chains;
14625   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
14626                                       TLI.getPointerTy(DAG.getDataLayout()));
14627   SDValue BasePtr = St->getBasePtr();
14628 
14629   // Perform one or more big stores into memory.
14630   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
14631   for (unsigned I = 0; I < E; I++) {
14632     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
14633                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
14634     SDValue Ch =
14635         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
14636                      St->getAlignment(), St->getMemOperand()->getFlags());
14637     BasePtr =
14638         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
14639     Chains.push_back(Ch);
14640   }
14641   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
14642 }
14643 
14644 // Try taking a single vector store from an truncate (which would otherwise turn
14645 // into an expensive buildvector) and splitting it into a series of narrowing
14646 // stores.
PerformSplittingToNarrowingStores(StoreSDNode * St,SelectionDAG & DAG)14647 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
14648                                                  SelectionDAG &DAG) {
14649   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
14650     return SDValue();
14651   SDValue Trunc = St->getValue();
14652   if (Trunc->getOpcode() != ISD::TRUNCATE && Trunc->getOpcode() != ISD::FP_ROUND)
14653     return SDValue();
14654   EVT FromVT = Trunc->getOperand(0).getValueType();
14655   EVT ToVT = Trunc.getValueType();
14656   if (!ToVT.isVector())
14657     return SDValue();
14658   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
14659   EVT ToEltVT = ToVT.getVectorElementType();
14660   EVT FromEltVT = FromVT.getVectorElementType();
14661 
14662   unsigned NumElements = 0;
14663   if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
14664     NumElements = 4;
14665   if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
14666     NumElements = 8;
14667   if (FromEltVT == MVT::f32 && ToEltVT == MVT::f16)
14668     NumElements = 4;
14669   if (NumElements == 0 ||
14670       (FromEltVT != MVT::f32 && FromVT.getVectorNumElements() == NumElements) ||
14671       FromVT.getVectorNumElements() % NumElements != 0)
14672     return SDValue();
14673 
14674   // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
14675   // use the VMOVN over splitting the store. We are looking for patterns of:
14676   // !rev: 0 N 1 N+1 2 N+2 ...
14677   //  rev: N 0 N+1 1 N+2 2 ...
14678   auto isVMOVNOriginalMask = [&](ArrayRef<int> M, bool rev) {
14679     unsigned NumElts = ToVT.getVectorNumElements();
14680     if (NumElts != M.size())
14681       return false;
14682 
14683     unsigned Off0 = rev ? NumElts : 0;
14684     unsigned Off1 = rev ? 0 : NumElts;
14685 
14686     for (unsigned i = 0; i < NumElts; i += 2) {
14687       if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
14688         return false;
14689       if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
14690         return false;
14691     }
14692 
14693     return true;
14694   };
14695 
14696   // It may be preferable to keep the store unsplit as the trunc may end up
14697   // being removed. Check that here.
14698   if (Trunc.getOperand(0).getOpcode() == ISD::SMIN) {
14699     if (SDValue U = PerformVQDMULHCombine(Trunc.getOperand(0).getNode(), DAG)) {
14700       DAG.ReplaceAllUsesWith(Trunc.getOperand(0), U);
14701       return SDValue();
14702     }
14703   }
14704   if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc->getOperand(0)))
14705     if (isVMOVNOriginalMask(Shuffle->getMask(), false) ||
14706         isVMOVNOriginalMask(Shuffle->getMask(), true))
14707       return SDValue();
14708 
14709   LLVMContext &C = *DAG.getContext();
14710   SDLoc DL(St);
14711   // Details about the old store
14712   SDValue Ch = St->getChain();
14713   SDValue BasePtr = St->getBasePtr();
14714   Align Alignment = St->getOriginalAlign();
14715   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
14716   AAMDNodes AAInfo = St->getAAInfo();
14717 
14718   // We split the store into slices of NumElements. fp16 trunc stores are vcvt
14719   // and then stored as truncating integer stores.
14720   EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
14721   EVT NewToVT = EVT::getVectorVT(
14722       C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
14723 
14724   SmallVector<SDValue, 4> Stores;
14725   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
14726     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
14727     SDValue NewPtr =
14728         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
14729 
14730     SDValue Extract =
14731         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
14732                     DAG.getConstant(i * NumElements, DL, MVT::i32));
14733 
14734     if (ToEltVT == MVT::f16) {
14735       SDValue FPTrunc =
14736           DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
14737                       Extract, DAG.getConstant(0, DL, MVT::i32));
14738       Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
14739     }
14740 
14741     SDValue Store = DAG.getTruncStore(
14742         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
14743         NewToVT, Alignment.value(), MMOFlags, AAInfo);
14744     Stores.push_back(Store);
14745   }
14746   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
14747 }
14748 
14749 /// PerformSTORECombine - Target-specific dag combine xforms for
14750 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)14751 static SDValue PerformSTORECombine(SDNode *N,
14752                                    TargetLowering::DAGCombinerInfo &DCI,
14753                                    const ARMSubtarget *Subtarget) {
14754   StoreSDNode *St = cast<StoreSDNode>(N);
14755   if (St->isVolatile())
14756     return SDValue();
14757   SDValue StVal = St->getValue();
14758   EVT VT = StVal.getValueType();
14759 
14760   if (Subtarget->hasNEON())
14761     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
14762       return Store;
14763 
14764   if (Subtarget->hasMVEIntegerOps())
14765     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
14766       return NewToken;
14767 
14768   if (!ISD::isNormalStore(St))
14769     return SDValue();
14770 
14771   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
14772   // ARM stores of arguments in the same cache line.
14773   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
14774       StVal.getNode()->hasOneUse()) {
14775     SelectionDAG  &DAG = DCI.DAG;
14776     bool isBigEndian = DAG.getDataLayout().isBigEndian();
14777     SDLoc DL(St);
14778     SDValue BasePtr = St->getBasePtr();
14779     SDValue NewST1 = DAG.getStore(
14780         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
14781         BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
14782         St->getMemOperand()->getFlags());
14783 
14784     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
14785                                     DAG.getConstant(4, DL, MVT::i32));
14786     return DAG.getStore(NewST1.getValue(0), DL,
14787                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
14788                         OffsetPtr, St->getPointerInfo().getWithOffset(4),
14789                         St->getOriginalAlign(),
14790                         St->getMemOperand()->getFlags());
14791   }
14792 
14793   if (StVal.getValueType() == MVT::i64 &&
14794       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14795 
14796     // Bitcast an i64 store extracted from a vector to f64.
14797     // Otherwise, the i64 value will be legalized to a pair of i32 values.
14798     SelectionDAG &DAG = DCI.DAG;
14799     SDLoc dl(StVal);
14800     SDValue IntVec = StVal.getOperand(0);
14801     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
14802                                    IntVec.getValueType().getVectorNumElements());
14803     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
14804     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
14805                                  Vec, StVal.getOperand(1));
14806     dl = SDLoc(N);
14807     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
14808     // Make the DAGCombiner fold the bitcasts.
14809     DCI.AddToWorklist(Vec.getNode());
14810     DCI.AddToWorklist(ExtElt.getNode());
14811     DCI.AddToWorklist(V.getNode());
14812     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
14813                         St->getPointerInfo(), St->getAlignment(),
14814                         St->getMemOperand()->getFlags(), St->getAAInfo());
14815   }
14816 
14817   // If this is a legal vector store, try to combine it into a VST1_UPD.
14818   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
14819       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
14820     return CombineBaseUpdate(N, DCI);
14821 
14822   return SDValue();
14823 }
14824 
14825 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
14826 /// can replace combinations of VMUL and VCVT (floating-point to integer)
14827 /// when the VMUL has a constant operand that is a power of 2.
14828 ///
14829 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
14830 ///  vmul.f32        d16, d17, d16
14831 ///  vcvt.s32.f32    d16, d16
14832 /// becomes:
14833 ///  vcvt.s32.f32    d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)14834 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
14835                                   const ARMSubtarget *Subtarget) {
14836   if (!Subtarget->hasNEON())
14837     return SDValue();
14838 
14839   SDValue Op = N->getOperand(0);
14840   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
14841       Op.getOpcode() != ISD::FMUL)
14842     return SDValue();
14843 
14844   SDValue ConstVec = Op->getOperand(1);
14845   if (!isa<BuildVectorSDNode>(ConstVec))
14846     return SDValue();
14847 
14848   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
14849   uint32_t FloatBits = FloatTy.getSizeInBits();
14850   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
14851   uint32_t IntBits = IntTy.getSizeInBits();
14852   unsigned NumLanes = Op.getValueType().getVectorNumElements();
14853   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
14854     // These instructions only exist converting from f32 to i32. We can handle
14855     // smaller integers by generating an extra truncate, but larger ones would
14856     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
14857     // these intructions only support v2i32/v4i32 types.
14858     return SDValue();
14859   }
14860 
14861   BitVector UndefElements;
14862   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
14863   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
14864   if (C == -1 || C == 0 || C > 32)
14865     return SDValue();
14866 
14867   SDLoc dl(N);
14868   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
14869   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
14870     Intrinsic::arm_neon_vcvtfp2fxu;
14871   SDValue FixConv = DAG.getNode(
14872       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
14873       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
14874       DAG.getConstant(C, dl, MVT::i32));
14875 
14876   if (IntBits < FloatBits)
14877     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
14878 
14879   return FixConv;
14880 }
14881 
14882 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
14883 /// can replace combinations of VCVT (integer to floating-point) and VDIV
14884 /// when the VDIV has a constant operand that is a power of 2.
14885 ///
14886 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
14887 ///  vcvt.f32.s32    d16, d16
14888 ///  vdiv.f32        d16, d17, d16
14889 /// becomes:
14890 ///  vcvt.f32.s32    d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)14891 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
14892                                   const ARMSubtarget *Subtarget) {
14893   if (!Subtarget->hasNEON())
14894     return SDValue();
14895 
14896   SDValue Op = N->getOperand(0);
14897   unsigned OpOpcode = Op.getNode()->getOpcode();
14898   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
14899       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
14900     return SDValue();
14901 
14902   SDValue ConstVec = N->getOperand(1);
14903   if (!isa<BuildVectorSDNode>(ConstVec))
14904     return SDValue();
14905 
14906   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
14907   uint32_t FloatBits = FloatTy.getSizeInBits();
14908   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
14909   uint32_t IntBits = IntTy.getSizeInBits();
14910   unsigned NumLanes = Op.getValueType().getVectorNumElements();
14911   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
14912     // These instructions only exist converting from i32 to f32. We can handle
14913     // smaller integers by generating an extra extend, but larger ones would
14914     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
14915     // these intructions only support v2i32/v4i32 types.
14916     return SDValue();
14917   }
14918 
14919   BitVector UndefElements;
14920   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
14921   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
14922   if (C == -1 || C == 0 || C > 32)
14923     return SDValue();
14924 
14925   SDLoc dl(N);
14926   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
14927   SDValue ConvInput = Op.getOperand(0);
14928   if (IntBits < FloatBits)
14929     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
14930                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
14931                             ConvInput);
14932 
14933   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
14934     Intrinsic::arm_neon_vcvtfxu2fp;
14935   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
14936                      Op.getValueType(),
14937                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
14938                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
14939 }
14940 
PerformVECREDUCE_ADDCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)14941 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
14942                                            const ARMSubtarget *ST) {
14943   if (!ST->hasMVEIntegerOps())
14944     return SDValue();
14945 
14946   assert(N->getOpcode() == ISD::VECREDUCE_ADD);
14947   EVT ResVT = N->getValueType(0);
14948   SDValue N0 = N->getOperand(0);
14949   SDLoc dl(N);
14950 
14951   // We are looking for something that will have illegal types if left alone,
14952   // but that we can convert to a single instruction undef MVE. For example
14953   // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
14954   // or
14955   // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
14956 
14957   // Cases:
14958   //   VADDV u/s 8/16/32
14959   //   VMLAV u/s 8/16/32
14960   //   VADDLV u/s 32
14961   //   VMLALV u/s 16/32
14962 
14963   auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
14964     if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
14965       return SDValue();
14966     SDValue A = N0->getOperand(0);
14967     if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
14968       return A;
14969     return SDValue();
14970   };
14971   auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
14972                          ArrayRef<MVT> ExtTypes, SDValue &Mask) {
14973     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
14974         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
14975       return SDValue();
14976     Mask = N0->getOperand(0);
14977     SDValue Ext = N0->getOperand(1);
14978     if (Ext->getOpcode() != ExtendCode)
14979       return SDValue();
14980     SDValue A = Ext->getOperand(0);
14981     if (llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
14982       return A;
14983     return SDValue();
14984   };
14985   auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
14986                      SDValue &A, SDValue &B) {
14987     // For a vmla we are trying to match a larger pattern:
14988     // ExtA = sext/zext A
14989     // ExtB = sext/zext B
14990     // Mul = mul ExtA, ExtB
14991     // vecreduce.add Mul
14992     // There might also be en extra extend between the mul and the addreduce, so
14993     // long as the bitwidth is high enough to make them equivalent (for example
14994     // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
14995     if (ResVT != RetTy)
14996       return false;
14997     SDValue Mul = N0;
14998     if (Mul->getOpcode() == ExtendCode &&
14999         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
15000             ResVT.getScalarSizeInBits())
15001       Mul = Mul->getOperand(0);
15002     if (Mul->getOpcode() != ISD::MUL)
15003       return false;
15004     SDValue ExtA = Mul->getOperand(0);
15005     SDValue ExtB = Mul->getOperand(1);
15006     if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode)
15007       return false;
15008     A = ExtA->getOperand(0);
15009     B = ExtB->getOperand(0);
15010     if (A.getValueType() == B.getValueType() &&
15011         llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
15012       return true;
15013     return false;
15014   };
15015   auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
15016                      SDValue &A, SDValue &B, SDValue &Mask) {
15017     // Same as the pattern above with a select for the zero predicated lanes
15018     // ExtA = sext/zext A
15019     // ExtB = sext/zext B
15020     // Mul = mul ExtA, ExtB
15021     // N0 = select Mask, Mul, 0
15022     // vecreduce.add N0
15023     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
15024         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
15025       return false;
15026     Mask = N0->getOperand(0);
15027     SDValue Mul = N0->getOperand(1);
15028     if (Mul->getOpcode() == ExtendCode &&
15029         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
15030             ResVT.getScalarSizeInBits())
15031       Mul = Mul->getOperand(0);
15032     if (Mul->getOpcode() != ISD::MUL)
15033       return false;
15034     SDValue ExtA = Mul->getOperand(0);
15035     SDValue ExtB = Mul->getOperand(1);
15036     if (ExtA->getOpcode() != ExtendCode && ExtB->getOpcode() != ExtendCode)
15037       return false;
15038     A = ExtA->getOperand(0);
15039     B = ExtB->getOperand(0);
15040     if (A.getValueType() == B.getValueType() &&
15041         llvm::any_of(ExtTypes, [&A](MVT Ty) { return A.getValueType() == Ty; }))
15042       return true;
15043     return false;
15044   };
15045   auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
15046     SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
15047     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
15048                        SDValue(Node.getNode(), 1));
15049   };
15050 
15051   if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
15052     return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
15053   if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
15054     return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
15055   if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}))
15056     return Create64bitNode(ARMISD::VADDLVs, {A});
15057   if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}))
15058     return Create64bitNode(ARMISD::VADDLVu, {A});
15059   if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
15060     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15061                        DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
15062   if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
15063     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15064                        DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
15065 
15066   SDValue Mask;
15067   if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
15068     return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
15069   if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
15070     return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
15071   if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask))
15072     return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
15073   if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask))
15074     return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
15075   if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
15076     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15077                        DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
15078   if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
15079     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15080                        DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
15081 
15082   SDValue A, B;
15083   if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
15084     return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
15085   if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
15086     return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
15087   if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B))
15088     return Create64bitNode(ARMISD::VMLALVs, {A, B});
15089   if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B))
15090     return Create64bitNode(ARMISD::VMLALVu, {A, B});
15091   if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
15092     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15093                        DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
15094   if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
15095     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15096                        DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
15097 
15098   if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask))
15099     return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
15100   if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B, Mask))
15101     return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
15102   if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B, Mask))
15103     return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
15104   if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B, Mask))
15105     return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
15106   if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
15107     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15108                        DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
15109   if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
15110     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
15111                        DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
15112 
15113   // Some complications. We can get a case where the two inputs of the mul are
15114   // the same, then the output sext will have been helpfully converted to a
15115   // zext. Turn it back.
15116   SDValue Op = N0;
15117   if (Op->getOpcode() == ISD::VSELECT)
15118     Op = Op->getOperand(1);
15119   if (Op->getOpcode() == ISD::ZERO_EXTEND &&
15120       Op->getOperand(0)->getOpcode() == ISD::MUL) {
15121     SDValue Mul = Op->getOperand(0);
15122     if (Mul->getOperand(0) == Mul->getOperand(1) &&
15123         Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
15124       SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
15125       if (Op != N0)
15126         Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
15127                           N0->getOperand(0), Ext, N0->getOperand(2));
15128       return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
15129     }
15130   }
15131 
15132   return SDValue();
15133 }
15134 
PerformVMOVNCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15135 static SDValue PerformVMOVNCombine(SDNode *N,
15136                                    TargetLowering::DAGCombinerInfo &DCI) {
15137   SDValue Op0 = N->getOperand(0);
15138   SDValue Op1 = N->getOperand(1);
15139   unsigned IsTop = N->getConstantOperandVal(2);
15140 
15141   // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
15142   // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
15143   if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
15144        Op1->getOpcode() == ARMISD::VQMOVNu) &&
15145       Op1->getConstantOperandVal(2) == 0)
15146     return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
15147                            Op0, Op1->getOperand(1), N->getOperand(2));
15148 
15149   // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
15150   // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
15151   // into the top or bottom lanes.
15152   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15153   APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
15154   APInt Op0DemandedElts =
15155       IsTop ? Op1DemandedElts
15156             : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
15157 
15158   APInt KnownUndef, KnownZero;
15159   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15160   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
15161                                      KnownZero, DCI))
15162     return SDValue(N, 0);
15163   if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, KnownUndef,
15164                                      KnownZero, DCI))
15165     return SDValue(N, 0);
15166 
15167   return SDValue();
15168 }
15169 
PerformVQMOVNCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)15170 static SDValue PerformVQMOVNCombine(SDNode *N,
15171                                     TargetLowering::DAGCombinerInfo &DCI) {
15172   SDValue Op0 = N->getOperand(0);
15173   unsigned IsTop = N->getConstantOperandVal(2);
15174 
15175   unsigned NumElts = N->getValueType(0).getVectorNumElements();
15176   APInt Op0DemandedElts =
15177       APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
15178                                      : APInt::getHighBitsSet(2, 1));
15179 
15180   APInt KnownUndef, KnownZero;
15181   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15182   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
15183                                      KnownZero, DCI))
15184     return SDValue(N, 0);
15185   return SDValue();
15186 }
15187 
PerformLongShiftCombine(SDNode * N,SelectionDAG & DAG)15188 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
15189   SDLoc DL(N);
15190   SDValue Op0 = N->getOperand(0);
15191   SDValue Op1 = N->getOperand(1);
15192 
15193   // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
15194   // uses of the intrinsics.
15195   if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
15196     int ShiftAmt = C->getSExtValue();
15197     if (ShiftAmt == 0) {
15198       SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
15199       DAG.ReplaceAllUsesWith(N, Merge.getNode());
15200       return SDValue();
15201     }
15202 
15203     if (ShiftAmt >= -32 && ShiftAmt < 0) {
15204       unsigned NewOpcode =
15205           N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
15206       SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
15207                                      DAG.getConstant(-ShiftAmt, DL, MVT::i32));
15208       DAG.ReplaceAllUsesWith(N, NewShift.getNode());
15209       return NewShift;
15210     }
15211   }
15212 
15213   return SDValue();
15214 }
15215 
15216 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,DAGCombinerInfo & DCI) const15217 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
15218                                                    DAGCombinerInfo &DCI) const {
15219   SelectionDAG &DAG = DCI.DAG;
15220   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
15221   switch (IntNo) {
15222   default:
15223     // Don't do anything for most intrinsics.
15224     break;
15225 
15226   // Vector shifts: check for immediate versions and lower them.
15227   // Note: This is done during DAG combining instead of DAG legalizing because
15228   // the build_vectors for 64-bit vector element shift counts are generally
15229   // not legal, and it is hard to see their values after they get legalized to
15230   // loads from a constant pool.
15231   case Intrinsic::arm_neon_vshifts:
15232   case Intrinsic::arm_neon_vshiftu:
15233   case Intrinsic::arm_neon_vrshifts:
15234   case Intrinsic::arm_neon_vrshiftu:
15235   case Intrinsic::arm_neon_vrshiftn:
15236   case Intrinsic::arm_neon_vqshifts:
15237   case Intrinsic::arm_neon_vqshiftu:
15238   case Intrinsic::arm_neon_vqshiftsu:
15239   case Intrinsic::arm_neon_vqshiftns:
15240   case Intrinsic::arm_neon_vqshiftnu:
15241   case Intrinsic::arm_neon_vqshiftnsu:
15242   case Intrinsic::arm_neon_vqrshiftns:
15243   case Intrinsic::arm_neon_vqrshiftnu:
15244   case Intrinsic::arm_neon_vqrshiftnsu: {
15245     EVT VT = N->getOperand(1).getValueType();
15246     int64_t Cnt;
15247     unsigned VShiftOpc = 0;
15248 
15249     switch (IntNo) {
15250     case Intrinsic::arm_neon_vshifts:
15251     case Intrinsic::arm_neon_vshiftu:
15252       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
15253         VShiftOpc = ARMISD::VSHLIMM;
15254         break;
15255       }
15256       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
15257         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
15258                                                           : ARMISD::VSHRuIMM);
15259         break;
15260       }
15261       return SDValue();
15262 
15263     case Intrinsic::arm_neon_vrshifts:
15264     case Intrinsic::arm_neon_vrshiftu:
15265       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
15266         break;
15267       return SDValue();
15268 
15269     case Intrinsic::arm_neon_vqshifts:
15270     case Intrinsic::arm_neon_vqshiftu:
15271       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
15272         break;
15273       return SDValue();
15274 
15275     case Intrinsic::arm_neon_vqshiftsu:
15276       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
15277         break;
15278       llvm_unreachable("invalid shift count for vqshlu intrinsic");
15279 
15280     case Intrinsic::arm_neon_vrshiftn:
15281     case Intrinsic::arm_neon_vqshiftns:
15282     case Intrinsic::arm_neon_vqshiftnu:
15283     case Intrinsic::arm_neon_vqshiftnsu:
15284     case Intrinsic::arm_neon_vqrshiftns:
15285     case Intrinsic::arm_neon_vqrshiftnu:
15286     case Intrinsic::arm_neon_vqrshiftnsu:
15287       // Narrowing shifts require an immediate right shift.
15288       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
15289         break;
15290       llvm_unreachable("invalid shift count for narrowing vector shift "
15291                        "intrinsic");
15292 
15293     default:
15294       llvm_unreachable("unhandled vector shift");
15295     }
15296 
15297     switch (IntNo) {
15298     case Intrinsic::arm_neon_vshifts:
15299     case Intrinsic::arm_neon_vshiftu:
15300       // Opcode already set above.
15301       break;
15302     case Intrinsic::arm_neon_vrshifts:
15303       VShiftOpc = ARMISD::VRSHRsIMM;
15304       break;
15305     case Intrinsic::arm_neon_vrshiftu:
15306       VShiftOpc = ARMISD::VRSHRuIMM;
15307       break;
15308     case Intrinsic::arm_neon_vrshiftn:
15309       VShiftOpc = ARMISD::VRSHRNIMM;
15310       break;
15311     case Intrinsic::arm_neon_vqshifts:
15312       VShiftOpc = ARMISD::VQSHLsIMM;
15313       break;
15314     case Intrinsic::arm_neon_vqshiftu:
15315       VShiftOpc = ARMISD::VQSHLuIMM;
15316       break;
15317     case Intrinsic::arm_neon_vqshiftsu:
15318       VShiftOpc = ARMISD::VQSHLsuIMM;
15319       break;
15320     case Intrinsic::arm_neon_vqshiftns:
15321       VShiftOpc = ARMISD::VQSHRNsIMM;
15322       break;
15323     case Intrinsic::arm_neon_vqshiftnu:
15324       VShiftOpc = ARMISD::VQSHRNuIMM;
15325       break;
15326     case Intrinsic::arm_neon_vqshiftnsu:
15327       VShiftOpc = ARMISD::VQSHRNsuIMM;
15328       break;
15329     case Intrinsic::arm_neon_vqrshiftns:
15330       VShiftOpc = ARMISD::VQRSHRNsIMM;
15331       break;
15332     case Intrinsic::arm_neon_vqrshiftnu:
15333       VShiftOpc = ARMISD::VQRSHRNuIMM;
15334       break;
15335     case Intrinsic::arm_neon_vqrshiftnsu:
15336       VShiftOpc = ARMISD::VQRSHRNsuIMM;
15337       break;
15338     }
15339 
15340     SDLoc dl(N);
15341     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
15342                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
15343   }
15344 
15345   case Intrinsic::arm_neon_vshiftins: {
15346     EVT VT = N->getOperand(1).getValueType();
15347     int64_t Cnt;
15348     unsigned VShiftOpc = 0;
15349 
15350     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
15351       VShiftOpc = ARMISD::VSLIIMM;
15352     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
15353       VShiftOpc = ARMISD::VSRIIMM;
15354     else {
15355       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
15356     }
15357 
15358     SDLoc dl(N);
15359     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
15360                        N->getOperand(1), N->getOperand(2),
15361                        DAG.getConstant(Cnt, dl, MVT::i32));
15362   }
15363 
15364   case Intrinsic::arm_neon_vqrshifts:
15365   case Intrinsic::arm_neon_vqrshiftu:
15366     // No immediate versions of these to check for.
15367     break;
15368 
15369   case Intrinsic::arm_mve_vqdmlah:
15370   case Intrinsic::arm_mve_vqdmlash:
15371   case Intrinsic::arm_mve_vqrdmlah:
15372   case Intrinsic::arm_mve_vqrdmlash:
15373   case Intrinsic::arm_mve_vmla_n_predicated:
15374   case Intrinsic::arm_mve_vmlas_n_predicated:
15375   case Intrinsic::arm_mve_vqdmlah_predicated:
15376   case Intrinsic::arm_mve_vqdmlash_predicated:
15377   case Intrinsic::arm_mve_vqrdmlah_predicated:
15378   case Intrinsic::arm_mve_vqrdmlash_predicated: {
15379     // These intrinsics all take an i32 scalar operand which is narrowed to the
15380     // size of a single lane of the vector type they return. So we don't need
15381     // any bits of that operand above that point, which allows us to eliminate
15382     // uxth/sxth.
15383     unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
15384     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
15385     if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
15386       return SDValue();
15387     break;
15388   }
15389 
15390   case Intrinsic::arm_mve_minv:
15391   case Intrinsic::arm_mve_maxv:
15392   case Intrinsic::arm_mve_minav:
15393   case Intrinsic::arm_mve_maxav:
15394   case Intrinsic::arm_mve_minv_predicated:
15395   case Intrinsic::arm_mve_maxv_predicated:
15396   case Intrinsic::arm_mve_minav_predicated:
15397   case Intrinsic::arm_mve_maxav_predicated: {
15398     // These intrinsics all take an i32 scalar operand which is narrowed to the
15399     // size of a single lane of the vector type they take as the other input.
15400     unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
15401     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
15402     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
15403       return SDValue();
15404     break;
15405   }
15406 
15407   case Intrinsic::arm_mve_addv: {
15408     // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
15409     // which allow PerformADDVecReduce to turn it into VADDLV when possible.
15410     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15411     unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
15412     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
15413   }
15414 
15415   case Intrinsic::arm_mve_addlv:
15416   case Intrinsic::arm_mve_addlv_predicated: {
15417     // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
15418     // which recombines the two outputs into an i64
15419     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15420     unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
15421                     (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
15422                     (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
15423 
15424     SmallVector<SDValue, 4> Ops;
15425     for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
15426       if (i != 2)                      // skip the unsigned flag
15427         Ops.push_back(N->getOperand(i));
15428 
15429     SDLoc dl(N);
15430     SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
15431     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
15432                        val.getValue(1));
15433   }
15434   }
15435 
15436   return SDValue();
15437 }
15438 
15439 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
15440 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
15441 /// combining instead of DAG legalizing because the build_vectors for 64-bit
15442 /// vector element shift counts are generally not legal, and it is hard to see
15443 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)15444 static SDValue PerformShiftCombine(SDNode *N,
15445                                    TargetLowering::DAGCombinerInfo &DCI,
15446                                    const ARMSubtarget *ST) {
15447   SelectionDAG &DAG = DCI.DAG;
15448   EVT VT = N->getValueType(0);
15449   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
15450     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
15451     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
15452     SDValue N1 = N->getOperand(1);
15453     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
15454       SDValue N0 = N->getOperand(0);
15455       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
15456           DAG.MaskedValueIsZero(N0.getOperand(0),
15457                                 APInt::getHighBitsSet(32, 16)))
15458         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
15459     }
15460   }
15461 
15462   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
15463       N->getOperand(0)->getOpcode() == ISD::AND &&
15464       N->getOperand(0)->hasOneUse()) {
15465     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15466       return SDValue();
15467     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
15468     // usually show up because instcombine prefers to canonicalize it to
15469     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
15470     // out of GEP lowering in some cases.
15471     SDValue N0 = N->getOperand(0);
15472     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
15473     if (!ShiftAmtNode)
15474       return SDValue();
15475     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
15476     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
15477     if (!AndMaskNode)
15478       return SDValue();
15479     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
15480     // Don't transform uxtb/uxth.
15481     if (AndMask == 255 || AndMask == 65535)
15482       return SDValue();
15483     if (isMask_32(AndMask)) {
15484       uint32_t MaskedBits = countLeadingZeros(AndMask);
15485       if (MaskedBits > ShiftAmt) {
15486         SDLoc DL(N);
15487         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
15488                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
15489         return DAG.getNode(
15490             ISD::SRL, DL, MVT::i32, SHL,
15491             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
15492       }
15493     }
15494   }
15495 
15496   // Nothing to be done for scalar shifts.
15497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15498   if (!VT.isVector() || !TLI.isTypeLegal(VT))
15499     return SDValue();
15500   if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
15501     return SDValue();
15502 
15503   int64_t Cnt;
15504 
15505   switch (N->getOpcode()) {
15506   default: llvm_unreachable("unexpected shift opcode");
15507 
15508   case ISD::SHL:
15509     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
15510       SDLoc dl(N);
15511       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
15512                          DAG.getConstant(Cnt, dl, MVT::i32));
15513     }
15514     break;
15515 
15516   case ISD::SRA:
15517   case ISD::SRL:
15518     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
15519       unsigned VShiftOpc =
15520           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
15521       SDLoc dl(N);
15522       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
15523                          DAG.getConstant(Cnt, dl, MVT::i32));
15524     }
15525   }
15526   return SDValue();
15527 }
15528 
15529 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
15530 // split into multiple extending loads, which are simpler to deal with than an
15531 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
15532 // to convert the type to an f32.
PerformSplittingToWideningLoad(SDNode * N,SelectionDAG & DAG)15533 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
15534   SDValue N0 = N->getOperand(0);
15535   if (N0.getOpcode() != ISD::LOAD)
15536     return SDValue();
15537   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
15538   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
15539       LD->getExtensionType() != ISD::NON_EXTLOAD)
15540     return SDValue();
15541   EVT FromVT = LD->getValueType(0);
15542   EVT ToVT = N->getValueType(0);
15543   if (!ToVT.isVector())
15544     return SDValue();
15545   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
15546   EVT ToEltVT = ToVT.getVectorElementType();
15547   EVT FromEltVT = FromVT.getVectorElementType();
15548 
15549   unsigned NumElements = 0;
15550   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
15551     NumElements = 4;
15552   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
15553     NumElements = 8;
15554   if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
15555     NumElements = 4;
15556   if (NumElements == 0 ||
15557       (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
15558       FromVT.getVectorNumElements() % NumElements != 0 ||
15559       !isPowerOf2_32(NumElements))
15560     return SDValue();
15561 
15562   LLVMContext &C = *DAG.getContext();
15563   SDLoc DL(LD);
15564   // Details about the old load
15565   SDValue Ch = LD->getChain();
15566   SDValue BasePtr = LD->getBasePtr();
15567   Align Alignment = LD->getOriginalAlign();
15568   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
15569   AAMDNodes AAInfo = LD->getAAInfo();
15570 
15571   ISD::LoadExtType NewExtType =
15572       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
15573   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
15574   EVT NewFromVT = EVT::getVectorVT(
15575       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
15576   EVT NewToVT = EVT::getVectorVT(
15577       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
15578 
15579   SmallVector<SDValue, 4> Loads;
15580   SmallVector<SDValue, 4> Chains;
15581   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
15582     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
15583     SDValue NewPtr =
15584         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
15585 
15586     SDValue NewLoad =
15587         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
15588                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
15589                     Alignment, MMOFlags, AAInfo);
15590     Loads.push_back(NewLoad);
15591     Chains.push_back(SDValue(NewLoad.getNode(), 1));
15592   }
15593 
15594   // Float truncs need to extended with VCVTB's into their floating point types.
15595   if (FromEltVT == MVT::f16) {
15596     SmallVector<SDValue, 4> Extends;
15597 
15598     for (unsigned i = 0; i < Loads.size(); i++) {
15599       SDValue LoadBC =
15600           DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
15601       SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
15602                                   DAG.getConstant(0, DL, MVT::i32));
15603       Extends.push_back(FPExt);
15604     }
15605 
15606     Loads = Extends;
15607   }
15608 
15609   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
15610   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
15611   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
15612 }
15613 
15614 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
15615 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15616 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
15617                                     const ARMSubtarget *ST) {
15618   SDValue N0 = N->getOperand(0);
15619 
15620   // Check for sign- and zero-extensions of vector extract operations of 8- and
15621   // 16-bit vector elements. NEON and MVE support these directly. They are
15622   // handled during DAG combining because type legalization will promote them
15623   // to 32-bit types and it is messy to recognize the operations after that.
15624   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
15625       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
15626     SDValue Vec = N0.getOperand(0);
15627     SDValue Lane = N0.getOperand(1);
15628     EVT VT = N->getValueType(0);
15629     EVT EltVT = N0.getValueType();
15630     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15631 
15632     if (VT == MVT::i32 &&
15633         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
15634         TLI.isTypeLegal(Vec.getValueType()) &&
15635         isa<ConstantSDNode>(Lane)) {
15636 
15637       unsigned Opc = 0;
15638       switch (N->getOpcode()) {
15639       default: llvm_unreachable("unexpected opcode");
15640       case ISD::SIGN_EXTEND:
15641         Opc = ARMISD::VGETLANEs;
15642         break;
15643       case ISD::ZERO_EXTEND:
15644       case ISD::ANY_EXTEND:
15645         Opc = ARMISD::VGETLANEu;
15646         break;
15647       }
15648       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
15649     }
15650   }
15651 
15652   if (ST->hasMVEIntegerOps())
15653     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
15654       return NewLoad;
15655 
15656   return SDValue();
15657 }
15658 
PerformFPExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15659 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
15660                                       const ARMSubtarget *ST) {
15661   if (ST->hasMVEFloatOps())
15662     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
15663       return NewLoad;
15664 
15665   return SDValue();
15666 }
15667 
15668 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
15669 /// saturates.
PerformMinMaxCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)15670 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
15671                                     const ARMSubtarget *ST) {
15672   EVT VT = N->getValueType(0);
15673   SDValue N0 = N->getOperand(0);
15674   if (!ST->hasMVEIntegerOps())
15675     return SDValue();
15676 
15677   if (SDValue V = PerformVQDMULHCombine(N, DAG))
15678     return V;
15679 
15680   if (VT != MVT::v4i32 && VT != MVT::v8i16)
15681     return SDValue();
15682 
15683   auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
15684     // Check one is a smin and the other is a smax
15685     if (Min->getOpcode() != ISD::SMIN)
15686       std::swap(Min, Max);
15687     if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
15688       return false;
15689 
15690     APInt SaturateC;
15691     if (VT == MVT::v4i32)
15692       SaturateC = APInt(32, (1 << 15) - 1, true);
15693     else //if (VT == MVT::v8i16)
15694       SaturateC = APInt(16, (1 << 7) - 1, true);
15695 
15696     APInt MinC, MaxC;
15697     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
15698         MinC != SaturateC)
15699       return false;
15700     if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
15701         MaxC != ~SaturateC)
15702       return false;
15703     return true;
15704   };
15705 
15706   if (IsSignedSaturate(N, N0.getNode())) {
15707     SDLoc DL(N);
15708     MVT ExtVT, HalfVT;
15709     if (VT == MVT::v4i32) {
15710       HalfVT = MVT::v8i16;
15711       ExtVT = MVT::v4i16;
15712     } else { // if (VT == MVT::v8i16)
15713       HalfVT = MVT::v16i8;
15714       ExtVT = MVT::v8i8;
15715     }
15716 
15717     // Create a VQMOVNB with undef top lanes, then signed extended into the top
15718     // half. That extend will hopefully be removed if only the bottom bits are
15719     // demanded (though a truncating store, for example).
15720     SDValue VQMOVN =
15721         DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
15722                     N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
15723     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
15724     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
15725                        DAG.getValueType(ExtVT));
15726   }
15727 
15728   auto IsUnsignedSaturate = [&](SDNode *Min) {
15729     // For unsigned, we just need to check for <= 0xffff
15730     if (Min->getOpcode() != ISD::UMIN)
15731       return false;
15732 
15733     APInt SaturateC;
15734     if (VT == MVT::v4i32)
15735       SaturateC = APInt(32, (1 << 16) - 1, true);
15736     else //if (VT == MVT::v8i16)
15737       SaturateC = APInt(16, (1 << 8) - 1, true);
15738 
15739     APInt MinC;
15740     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
15741         MinC != SaturateC)
15742       return false;
15743     return true;
15744   };
15745 
15746   if (IsUnsignedSaturate(N)) {
15747     SDLoc DL(N);
15748     MVT HalfVT;
15749     unsigned ExtConst;
15750     if (VT == MVT::v4i32) {
15751       HalfVT = MVT::v8i16;
15752       ExtConst = 0x0000FFFF;
15753     } else { //if (VT == MVT::v8i16)
15754       HalfVT = MVT::v16i8;
15755       ExtConst = 0x00FF;
15756     }
15757 
15758     // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
15759     // an AND. That extend will hopefully be removed if only the bottom bits are
15760     // demanded (though a truncating store, for example).
15761     SDValue VQMOVN =
15762         DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
15763                     DAG.getConstant(0, DL, MVT::i32));
15764     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
15765     return DAG.getNode(ISD::AND, DL, VT, Bitcast,
15766                        DAG.getConstant(ExtConst, DL, VT));
15767   }
15768 
15769   return SDValue();
15770 }
15771 
isPowerOf2Constant(SDValue V)15772 static const APInt *isPowerOf2Constant(SDValue V) {
15773   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
15774   if (!C)
15775     return nullptr;
15776   const APInt *CV = &C->getAPIntValue();
15777   return CV->isPowerOf2() ? CV : nullptr;
15778 }
15779 
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const15780 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
15781   // If we have a CMOV, OR and AND combination such as:
15782   //   if (x & CN)
15783   //     y |= CM;
15784   //
15785   // And:
15786   //   * CN is a single bit;
15787   //   * All bits covered by CM are known zero in y
15788   //
15789   // Then we can convert this into a sequence of BFI instructions. This will
15790   // always be a win if CM is a single bit, will always be no worse than the
15791   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
15792   // three bits (due to the extra IT instruction).
15793 
15794   SDValue Op0 = CMOV->getOperand(0);
15795   SDValue Op1 = CMOV->getOperand(1);
15796   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
15797   auto CC = CCNode->getAPIntValue().getLimitedValue();
15798   SDValue CmpZ = CMOV->getOperand(4);
15799 
15800   // The compare must be against zero.
15801   if (!isNullConstant(CmpZ->getOperand(1)))
15802     return SDValue();
15803 
15804   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
15805   SDValue And = CmpZ->getOperand(0);
15806   if (And->getOpcode() != ISD::AND)
15807     return SDValue();
15808   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
15809   if (!AndC)
15810     return SDValue();
15811   SDValue X = And->getOperand(0);
15812 
15813   if (CC == ARMCC::EQ) {
15814     // We're performing an "equal to zero" compare. Swap the operands so we
15815     // canonicalize on a "not equal to zero" compare.
15816     std::swap(Op0, Op1);
15817   } else {
15818     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
15819   }
15820 
15821   if (Op1->getOpcode() != ISD::OR)
15822     return SDValue();
15823 
15824   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
15825   if (!OrC)
15826     return SDValue();
15827   SDValue Y = Op1->getOperand(0);
15828 
15829   if (Op0 != Y)
15830     return SDValue();
15831 
15832   // Now, is it profitable to continue?
15833   APInt OrCI = OrC->getAPIntValue();
15834   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
15835   if (OrCI.countPopulation() > Heuristic)
15836     return SDValue();
15837 
15838   // Lastly, can we determine that the bits defined by OrCI
15839   // are zero in Y?
15840   KnownBits Known = DAG.computeKnownBits(Y);
15841   if ((OrCI & Known.Zero) != OrCI)
15842     return SDValue();
15843 
15844   // OK, we can do the combine.
15845   SDValue V = Y;
15846   SDLoc dl(X);
15847   EVT VT = X.getValueType();
15848   unsigned BitInX = AndC->logBase2();
15849 
15850   if (BitInX != 0) {
15851     // We must shift X first.
15852     X = DAG.getNode(ISD::SRL, dl, VT, X,
15853                     DAG.getConstant(BitInX, dl, VT));
15854   }
15855 
15856   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
15857        BitInY < NumActiveBits; ++BitInY) {
15858     if (OrCI[BitInY] == 0)
15859       continue;
15860     APInt Mask(VT.getSizeInBits(), 0);
15861     Mask.setBit(BitInY);
15862     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
15863                     // Confusingly, the operand is an *inverted* mask.
15864                     DAG.getConstant(~Mask, dl, VT));
15865   }
15866 
15867   return V;
15868 }
15869 
15870 // Given N, the value controlling the conditional branch, search for the loop
15871 // intrinsic, returning it, along with how the value is used. We need to handle
15872 // patterns such as the following:
15873 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
15874 // (brcond (setcc (loop.decrement), 0, eq), exit)
15875 // (brcond (setcc (loop.decrement), 0, ne), header)
SearchLoopIntrinsic(SDValue N,ISD::CondCode & CC,int & Imm,bool & Negate)15876 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
15877                                    bool &Negate) {
15878   switch (N->getOpcode()) {
15879   default:
15880     break;
15881   case ISD::XOR: {
15882     if (!isa<ConstantSDNode>(N.getOperand(1)))
15883       return SDValue();
15884     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
15885       return SDValue();
15886     Negate = !Negate;
15887     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
15888   }
15889   case ISD::SETCC: {
15890     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
15891     if (!Const)
15892       return SDValue();
15893     if (Const->isNullValue())
15894       Imm = 0;
15895     else if (Const->isOne())
15896       Imm = 1;
15897     else
15898       return SDValue();
15899     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
15900     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
15901   }
15902   case ISD::INTRINSIC_W_CHAIN: {
15903     unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
15904     if (IntOp != Intrinsic::test_set_loop_iterations &&
15905         IntOp != Intrinsic::loop_decrement_reg)
15906       return SDValue();
15907     return N;
15908   }
15909   }
15910   return SDValue();
15911 }
15912 
PerformHWLoopCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)15913 static SDValue PerformHWLoopCombine(SDNode *N,
15914                                     TargetLowering::DAGCombinerInfo &DCI,
15915                                     const ARMSubtarget *ST) {
15916 
15917   // The hwloop intrinsics that we're interested are used for control-flow,
15918   // either for entering or exiting the loop:
15919   // - test.set.loop.iterations will test whether its operand is zero. If it
15920   //   is zero, the proceeding branch should not enter the loop.
15921   // - loop.decrement.reg also tests whether its operand is zero. If it is
15922   //   zero, the proceeding branch should not branch back to the beginning of
15923   //   the loop.
15924   // So here, we need to check that how the brcond is using the result of each
15925   // of the intrinsics to ensure that we're branching to the right place at the
15926   // right time.
15927 
15928   ISD::CondCode CC;
15929   SDValue Cond;
15930   int Imm = 1;
15931   bool Negate = false;
15932   SDValue Chain = N->getOperand(0);
15933   SDValue Dest;
15934 
15935   if (N->getOpcode() == ISD::BRCOND) {
15936     CC = ISD::SETEQ;
15937     Cond = N->getOperand(1);
15938     Dest = N->getOperand(2);
15939   } else {
15940     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
15941     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
15942     Cond = N->getOperand(2);
15943     Dest = N->getOperand(4);
15944     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
15945       if (!Const->isOne() && !Const->isNullValue())
15946         return SDValue();
15947       Imm = Const->getZExtValue();
15948     } else
15949       return SDValue();
15950   }
15951 
15952   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
15953   if (!Int)
15954     return SDValue();
15955 
15956   if (Negate)
15957     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
15958 
15959   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
15960     return (CC == ISD::SETEQ && Imm == 0) ||
15961            (CC == ISD::SETNE && Imm == 1) ||
15962            (CC == ISD::SETLT && Imm == 1) ||
15963            (CC == ISD::SETULT && Imm == 1);
15964   };
15965 
15966   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
15967     return (CC == ISD::SETEQ && Imm == 1) ||
15968            (CC == ISD::SETNE && Imm == 0) ||
15969            (CC == ISD::SETGT && Imm == 0) ||
15970            (CC == ISD::SETUGT && Imm == 0) ||
15971            (CC == ISD::SETGE && Imm == 1) ||
15972            (CC == ISD::SETUGE && Imm == 1);
15973   };
15974 
15975   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
15976          "unsupported condition");
15977 
15978   SDLoc dl(Int);
15979   SelectionDAG &DAG = DCI.DAG;
15980   SDValue Elements = Int.getOperand(2);
15981   unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
15982   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
15983           && "expected single br user");
15984   SDNode *Br = *N->use_begin();
15985   SDValue OtherTarget = Br->getOperand(1);
15986 
15987   // Update the unconditional branch to branch to the given Dest.
15988   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
15989     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
15990     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
15991     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
15992   };
15993 
15994   if (IntOp == Intrinsic::test_set_loop_iterations) {
15995     SDValue Res;
15996     // We expect this 'instruction' to branch when the counter is zero.
15997     if (IsTrueIfZero(CC, Imm)) {
15998       SDValue Ops[] = { Chain, Elements, Dest };
15999       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
16000     } else {
16001       // The logic is the reverse of what we need for WLS, so find the other
16002       // basic block target: the target of the proceeding br.
16003       UpdateUncondBr(Br, Dest, DAG);
16004 
16005       SDValue Ops[] = { Chain, Elements, OtherTarget };
16006       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
16007     }
16008     DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
16009     return Res;
16010   } else {
16011     SDValue Size = DAG.getTargetConstant(
16012       cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
16013     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
16014     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
16015                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
16016     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
16017 
16018     // We expect this instruction to branch when the count is not zero.
16019     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
16020 
16021     // Update the unconditional branch to target the loop preheader if we've
16022     // found the condition has been reversed.
16023     if (Target == OtherTarget)
16024       UpdateUncondBr(Br, Dest, DAG);
16025 
16026     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16027                         SDValue(LoopDec.getNode(), 1), Chain);
16028 
16029     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
16030     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
16031   }
16032   return SDValue();
16033 }
16034 
16035 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
16036 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const16037 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
16038   SDValue Cmp = N->getOperand(4);
16039   if (Cmp.getOpcode() != ARMISD::CMPZ)
16040     // Only looking at NE cases.
16041     return SDValue();
16042 
16043   EVT VT = N->getValueType(0);
16044   SDLoc dl(N);
16045   SDValue LHS = Cmp.getOperand(0);
16046   SDValue RHS = Cmp.getOperand(1);
16047   SDValue Chain = N->getOperand(0);
16048   SDValue BB = N->getOperand(1);
16049   SDValue ARMcc = N->getOperand(2);
16050   ARMCC::CondCodes CC =
16051     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
16052 
16053   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
16054   // -> (brcond Chain BB CC CPSR Cmp)
16055   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
16056       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
16057       LHS->getOperand(0)->hasOneUse()) {
16058     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
16059     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
16060     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
16061     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
16062     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
16063         (LHS01C && LHS01C->getZExtValue() == 1) &&
16064         (LHS1C && LHS1C->getZExtValue() == 1) &&
16065         (RHSC && RHSC->getZExtValue() == 0)) {
16066       return DAG.getNode(
16067           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
16068           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
16069     }
16070   }
16071 
16072   return SDValue();
16073 }
16074 
16075 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
16076 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const16077 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
16078   SDValue Cmp = N->getOperand(4);
16079   if (Cmp.getOpcode() != ARMISD::CMPZ)
16080     // Only looking at EQ and NE cases.
16081     return SDValue();
16082 
16083   EVT VT = N->getValueType(0);
16084   SDLoc dl(N);
16085   SDValue LHS = Cmp.getOperand(0);
16086   SDValue RHS = Cmp.getOperand(1);
16087   SDValue FalseVal = N->getOperand(0);
16088   SDValue TrueVal = N->getOperand(1);
16089   SDValue ARMcc = N->getOperand(2);
16090   ARMCC::CondCodes CC =
16091     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
16092 
16093   // BFI is only available on V6T2+.
16094   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
16095     SDValue R = PerformCMOVToBFICombine(N, DAG);
16096     if (R)
16097       return R;
16098   }
16099 
16100   // Simplify
16101   //   mov     r1, r0
16102   //   cmp     r1, x
16103   //   mov     r0, y
16104   //   moveq   r0, x
16105   // to
16106   //   cmp     r0, x
16107   //   movne   r0, y
16108   //
16109   //   mov     r1, r0
16110   //   cmp     r1, x
16111   //   mov     r0, x
16112   //   movne   r0, y
16113   // to
16114   //   cmp     r0, x
16115   //   movne   r0, y
16116   /// FIXME: Turn this into a target neutral optimization?
16117   SDValue Res;
16118   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
16119     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
16120                       N->getOperand(3), Cmp);
16121   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
16122     SDValue ARMcc;
16123     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
16124     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
16125                       N->getOperand(3), NewCmp);
16126   }
16127 
16128   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
16129   // -> (cmov F T CC CPSR Cmp)
16130   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
16131     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
16132     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
16133     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
16134     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
16135         (LHS1C && LHS1C->getZExtValue() == 1) &&
16136         (RHSC && RHSC->getZExtValue() == 0)) {
16137       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
16138                          LHS->getOperand(2), LHS->getOperand(3),
16139                          LHS->getOperand(4));
16140     }
16141   }
16142 
16143   if (!VT.isInteger())
16144       return SDValue();
16145 
16146   // Materialize a boolean comparison for integers so we can avoid branching.
16147   if (isNullConstant(FalseVal)) {
16148     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
16149       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
16150         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
16151         // right 5 bits will make that 32 be 1, otherwise it will be 0.
16152         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
16153         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
16154         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
16155                           DAG.getConstant(5, dl, MVT::i32));
16156       } else {
16157         // CMOV 0, 1, ==, (CMPZ x, y) ->
16158         //     (ADDCARRY (SUB x, y), t:0, t:1)
16159         // where t = (SUBCARRY 0, (SUB x, y), 0)
16160         //
16161         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
16162         // x != y. In other words, a carry C == 1 when x == y, C == 0
16163         // otherwise.
16164         // The final ADDCARRY computes
16165         //     x - y + (0 - (x - y)) + C == C
16166         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
16167         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16168         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
16169         // ISD::SUBCARRY returns a borrow but we want the carry here
16170         // actually.
16171         SDValue Carry =
16172             DAG.getNode(ISD::SUB, dl, MVT::i32,
16173                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
16174         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
16175       }
16176     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
16177                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
16178       // This seems pointless but will allow us to combine it further below.
16179       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
16180       SDValue Sub =
16181           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
16182       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
16183                                           Sub.getValue(1), SDValue());
16184       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
16185                         N->getOperand(3), CPSRGlue.getValue(1));
16186       FalseVal = Sub;
16187     }
16188   } else if (isNullConstant(TrueVal)) {
16189     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
16190         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
16191       // This seems pointless but will allow us to combine it further below
16192       // Note that we change == for != as this is the dual for the case above.
16193       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
16194       SDValue Sub =
16195           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
16196       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
16197                                           Sub.getValue(1), SDValue());
16198       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
16199                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
16200                         N->getOperand(3), CPSRGlue.getValue(1));
16201       FalseVal = Sub;
16202     }
16203   }
16204 
16205   // On Thumb1, the DAG above may be further combined if z is a power of 2
16206   // (z == 2 ^ K).
16207   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
16208   // t1 = (USUBO (SUB x, y), 1)
16209   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
16210   // Result = if K != 0 then (SHL t2:0, K) else t2:0
16211   //
16212   // This also handles the special case of comparing against zero; it's
16213   // essentially, the same pattern, except there's no SUBS:
16214   // CMOV x, z, !=, (CMPZ x, 0) ->
16215   // t1 = (USUBO x, 1)
16216   // t2 = (SUBCARRY x, t1:0, t1:1)
16217   // Result = if K != 0 then (SHL t2:0, K) else t2:0
16218   const APInt *TrueConst;
16219   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
16220       ((FalseVal.getOpcode() == ARMISD::SUBS &&
16221         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
16222        (FalseVal == LHS && isNullConstant(RHS))) &&
16223       (TrueConst = isPowerOf2Constant(TrueVal))) {
16224     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
16225     unsigned ShiftAmount = TrueConst->logBase2();
16226     if (ShiftAmount)
16227       TrueVal = DAG.getConstant(1, dl, VT);
16228     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
16229     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
16230 
16231     if (ShiftAmount)
16232       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
16233                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
16234   }
16235 
16236   if (Res.getNode()) {
16237     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
16238     // Capture demanded bits information that would be otherwise lost.
16239     if (Known.Zero == 0xfffffffe)
16240       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16241                         DAG.getValueType(MVT::i1));
16242     else if (Known.Zero == 0xffffff00)
16243       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16244                         DAG.getValueType(MVT::i8));
16245     else if (Known.Zero == 0xffff0000)
16246       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
16247                         DAG.getValueType(MVT::i16));
16248   }
16249 
16250   return Res;
16251 }
16252 
PerformBITCASTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)16253 static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG,
16254                                     const ARMSubtarget *ST) {
16255   SDValue Src = N->getOperand(0);
16256   EVT DstVT = N->getValueType(0);
16257 
16258   // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
16259   if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
16260     EVT SrcVT = Src.getValueType();
16261     if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
16262       return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
16263   }
16264 
16265   // We may have a bitcast of something that has already had this bitcast
16266   // combine performed on it, so skip past any VECTOR_REG_CASTs.
16267   while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
16268     Src = Src.getOperand(0);
16269 
16270   // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
16271   // would be generated is at least the width of the element type.
16272   EVT SrcVT = Src.getValueType();
16273   if ((Src.getOpcode() == ARMISD::VMOVIMM ||
16274        Src.getOpcode() == ARMISD::VMVNIMM ||
16275        Src.getOpcode() == ARMISD::VMOVFPIMM) &&
16276       SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
16277       DAG.getDataLayout().isBigEndian())
16278     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
16279 
16280   return SDValue();
16281 }
16282 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const16283 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
16284                                              DAGCombinerInfo &DCI) const {
16285   switch (N->getOpcode()) {
16286   default: break;
16287   case ISD::SELECT_CC:
16288   case ISD::SELECT:     return PerformSELECTCombine(N, DCI, Subtarget);
16289   case ISD::VSELECT:    return PerformVSELECTCombine(N, DCI, Subtarget);
16290   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
16291   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
16292   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
16293   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
16294   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
16295   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
16296   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
16297   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
16298   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
16299   case ISD::BRCOND:
16300   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
16301   case ARMISD::ADDC:
16302   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
16303   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
16304   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
16305   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
16306   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
16307   case ARMISD::VMOVhr:  return PerformVMOVhrCombine(N, DCI);
16308   case ARMISD::VMOVrh:  return PerformVMOVrhCombine(N, DCI);
16309   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
16310   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
16311   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
16312   case ISD::EXTRACT_VECTOR_ELT: return PerformExtractEltCombine(N, DCI);
16313   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
16314   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
16315   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
16316   case ISD::FP_TO_SINT:
16317   case ISD::FP_TO_UINT:
16318     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
16319   case ISD::FDIV:
16320     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
16321   case ISD::INTRINSIC_WO_CHAIN:
16322     return PerformIntrinsicCombine(N, DCI);
16323   case ISD::SHL:
16324   case ISD::SRA:
16325   case ISD::SRL:
16326     return PerformShiftCombine(N, DCI, Subtarget);
16327   case ISD::SIGN_EXTEND:
16328   case ISD::ZERO_EXTEND:
16329   case ISD::ANY_EXTEND:
16330     return PerformExtendCombine(N, DCI.DAG, Subtarget);
16331   case ISD::FP_EXTEND:
16332     return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
16333   case ISD::SMIN:
16334   case ISD::UMIN:
16335   case ISD::SMAX:
16336   case ISD::UMAX:
16337     return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
16338   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
16339   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
16340   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
16341   case ARMISD::VLD1DUP:
16342   case ARMISD::VLD2DUP:
16343   case ARMISD::VLD3DUP:
16344   case ARMISD::VLD4DUP:
16345     return PerformVLDCombine(N, DCI);
16346   case ARMISD::BUILD_VECTOR:
16347     return PerformARMBUILD_VECTORCombine(N, DCI);
16348   case ISD::BITCAST:
16349     return PerformBITCASTCombine(N, DCI.DAG, Subtarget);
16350   case ARMISD::PREDICATE_CAST:
16351     return PerformPREDICATE_CASTCombine(N, DCI);
16352   case ARMISD::VECTOR_REG_CAST:
16353     return PerformVECTOR_REG_CASTCombine(N, DCI, Subtarget);
16354   case ARMISD::VCMP:
16355     return PerformVCMPCombine(N, DCI, Subtarget);
16356   case ISD::VECREDUCE_ADD:
16357     return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
16358   case ARMISD::VMOVN:
16359     return PerformVMOVNCombine(N, DCI);
16360   case ARMISD::VQMOVNs:
16361   case ARMISD::VQMOVNu:
16362     return PerformVQMOVNCombine(N, DCI);
16363   case ARMISD::ASRL:
16364   case ARMISD::LSRL:
16365   case ARMISD::LSLL:
16366     return PerformLongShiftCombine(N, DCI.DAG);
16367   case ARMISD::SMULWB: {
16368     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16369     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
16370     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
16371       return SDValue();
16372     break;
16373   }
16374   case ARMISD::SMULWT: {
16375     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16376     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
16377     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
16378       return SDValue();
16379     break;
16380   }
16381   case ARMISD::SMLALBB:
16382   case ARMISD::QADD16b:
16383   case ARMISD::QSUB16b: {
16384     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16385     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
16386     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
16387         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
16388       return SDValue();
16389     break;
16390   }
16391   case ARMISD::SMLALBT: {
16392     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
16393     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
16394     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
16395     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
16396     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
16397         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
16398       return SDValue();
16399     break;
16400   }
16401   case ARMISD::SMLALTB: {
16402     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
16403     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
16404     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
16405     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
16406     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
16407         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
16408       return SDValue();
16409     break;
16410   }
16411   case ARMISD::SMLALTT: {
16412     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16413     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
16414     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
16415         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
16416       return SDValue();
16417     break;
16418   }
16419   case ARMISD::QADD8b:
16420   case ARMISD::QSUB8b: {
16421     unsigned BitWidth = N->getValueType(0).getSizeInBits();
16422     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
16423     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
16424         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
16425       return SDValue();
16426     break;
16427   }
16428   case ISD::INTRINSIC_VOID:
16429   case ISD::INTRINSIC_W_CHAIN:
16430     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
16431     case Intrinsic::arm_neon_vld1:
16432     case Intrinsic::arm_neon_vld1x2:
16433     case Intrinsic::arm_neon_vld1x3:
16434     case Intrinsic::arm_neon_vld1x4:
16435     case Intrinsic::arm_neon_vld2:
16436     case Intrinsic::arm_neon_vld3:
16437     case Intrinsic::arm_neon_vld4:
16438     case Intrinsic::arm_neon_vld2lane:
16439     case Intrinsic::arm_neon_vld3lane:
16440     case Intrinsic::arm_neon_vld4lane:
16441     case Intrinsic::arm_neon_vld2dup:
16442     case Intrinsic::arm_neon_vld3dup:
16443     case Intrinsic::arm_neon_vld4dup:
16444     case Intrinsic::arm_neon_vst1:
16445     case Intrinsic::arm_neon_vst1x2:
16446     case Intrinsic::arm_neon_vst1x3:
16447     case Intrinsic::arm_neon_vst1x4:
16448     case Intrinsic::arm_neon_vst2:
16449     case Intrinsic::arm_neon_vst3:
16450     case Intrinsic::arm_neon_vst4:
16451     case Intrinsic::arm_neon_vst2lane:
16452     case Intrinsic::arm_neon_vst3lane:
16453     case Intrinsic::arm_neon_vst4lane:
16454       return PerformVLDCombine(N, DCI);
16455     case Intrinsic::arm_mve_vld2q:
16456     case Intrinsic::arm_mve_vld4q:
16457     case Intrinsic::arm_mve_vst2q:
16458     case Intrinsic::arm_mve_vst4q:
16459       return PerformMVEVLDCombine(N, DCI);
16460     default: break;
16461     }
16462     break;
16463   }
16464   return SDValue();
16465 }
16466 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const16467 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
16468                                                           EVT VT) const {
16469   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
16470 }
16471 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned Alignment,MachineMemOperand::Flags,bool * Fast) const16472 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
16473                                                        unsigned Alignment,
16474                                                        MachineMemOperand::Flags,
16475                                                        bool *Fast) const {
16476   // Depends what it gets converted into if the type is weird.
16477   if (!VT.isSimple())
16478     return false;
16479 
16480   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
16481   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
16482   auto Ty = VT.getSimpleVT().SimpleTy;
16483 
16484   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
16485     // Unaligned access can use (for example) LRDB, LRDH, LDR
16486     if (AllowsUnaligned) {
16487       if (Fast)
16488         *Fast = Subtarget->hasV7Ops();
16489       return true;
16490     }
16491   }
16492 
16493   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
16494     // For any little-endian targets with neon, we can support unaligned ld/st
16495     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
16496     // A big-endian target may also explicitly support unaligned accesses
16497     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
16498       if (Fast)
16499         *Fast = true;
16500       return true;
16501     }
16502   }
16503 
16504   if (!Subtarget->hasMVEIntegerOps())
16505     return false;
16506 
16507   // These are for predicates
16508   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
16509     if (Fast)
16510       *Fast = true;
16511     return true;
16512   }
16513 
16514   // These are for truncated stores/narrowing loads. They are fine so long as
16515   // the alignment is at least the size of the item being loaded
16516   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
16517       Alignment >= VT.getScalarSizeInBits() / 8) {
16518     if (Fast)
16519       *Fast = true;
16520     return true;
16521   }
16522 
16523   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
16524   // VSTRW.U32 all store the vector register in exactly the same format, and
16525   // differ only in the range of their immediate offset field and the required
16526   // alignment. So there is always a store that can be used, regardless of
16527   // actual type.
16528   //
16529   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
16530   // VREV64.8) pair and get the same effect. This will likely be better than
16531   // aligning the vector through the stack.
16532   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
16533       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
16534       Ty == MVT::v2f64) {
16535     if (Fast)
16536       *Fast = true;
16537     return true;
16538   }
16539 
16540   return false;
16541 }
16542 
16543 
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const16544 EVT ARMTargetLowering::getOptimalMemOpType(
16545     const MemOp &Op, const AttributeList &FuncAttributes) const {
16546   // See if we can use NEON instructions for this...
16547   if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
16548       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
16549     bool Fast;
16550     if (Op.size() >= 16 &&
16551         (Op.isAligned(Align(16)) ||
16552          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
16553                                          MachineMemOperand::MONone, &Fast) &&
16554           Fast))) {
16555       return MVT::v2f64;
16556     } else if (Op.size() >= 8 &&
16557                (Op.isAligned(Align(8)) ||
16558                 (allowsMisalignedMemoryAccesses(
16559                      MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
16560                  Fast))) {
16561       return MVT::f64;
16562     }
16563   }
16564 
16565   // Let the target-independent logic figure it out.
16566   return MVT::Other;
16567 }
16568 
16569 // 64-bit integers are split into their high and low parts and held in two
16570 // different registers, so the trunc is free since the low register can just
16571 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const16572 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
16573   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
16574     return false;
16575   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
16576   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
16577   return (SrcBits == 64 && DestBits == 32);
16578 }
16579 
isTruncateFree(EVT SrcVT,EVT DstVT) const16580 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
16581   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
16582       !DstVT.isInteger())
16583     return false;
16584   unsigned SrcBits = SrcVT.getSizeInBits();
16585   unsigned DestBits = DstVT.getSizeInBits();
16586   return (SrcBits == 64 && DestBits == 32);
16587 }
16588 
isZExtFree(SDValue Val,EVT VT2) const16589 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
16590   if (Val.getOpcode() != ISD::LOAD)
16591     return false;
16592 
16593   EVT VT1 = Val.getValueType();
16594   if (!VT1.isSimple() || !VT1.isInteger() ||
16595       !VT2.isSimple() || !VT2.isInteger())
16596     return false;
16597 
16598   switch (VT1.getSimpleVT().SimpleTy) {
16599   default: break;
16600   case MVT::i1:
16601   case MVT::i8:
16602   case MVT::i16:
16603     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
16604     return true;
16605   }
16606 
16607   return false;
16608 }
16609 
isFNegFree(EVT VT) const16610 bool ARMTargetLowering::isFNegFree(EVT VT) const {
16611   if (!VT.isSimple())
16612     return false;
16613 
16614   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
16615   // negate values directly (fneg is free). So, we don't want to let the DAG
16616   // combiner rewrite fneg into xors and some other instructions.  For f16 and
16617   // FullFP16 argument passing, some bitcast nodes may be introduced,
16618   // triggering this DAG combine rewrite, so we are avoiding that with this.
16619   switch (VT.getSimpleVT().SimpleTy) {
16620   default: break;
16621   case MVT::f16:
16622     return Subtarget->hasFullFP16();
16623   }
16624 
16625   return false;
16626 }
16627 
16628 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
16629 /// of the vector elements.
areExtractExts(Value * Ext1,Value * Ext2)16630 static bool areExtractExts(Value *Ext1, Value *Ext2) {
16631   auto areExtDoubled = [](Instruction *Ext) {
16632     return Ext->getType()->getScalarSizeInBits() ==
16633            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
16634   };
16635 
16636   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
16637       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
16638       !areExtDoubled(cast<Instruction>(Ext1)) ||
16639       !areExtDoubled(cast<Instruction>(Ext2)))
16640     return false;
16641 
16642   return true;
16643 }
16644 
16645 /// Check if sinking \p I's operands to I's basic block is profitable, because
16646 /// the operands can be folded into a target instruction, e.g.
16647 /// sext/zext can be folded into vsubl.
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const16648 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
16649                                            SmallVectorImpl<Use *> &Ops) const {
16650   if (!I->getType()->isVectorTy())
16651     return false;
16652 
16653   if (Subtarget->hasNEON()) {
16654     switch (I->getOpcode()) {
16655     case Instruction::Sub:
16656     case Instruction::Add: {
16657       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
16658         return false;
16659       Ops.push_back(&I->getOperandUse(0));
16660       Ops.push_back(&I->getOperandUse(1));
16661       return true;
16662     }
16663     default:
16664       return false;
16665     }
16666   }
16667 
16668   if (!Subtarget->hasMVEIntegerOps())
16669     return false;
16670 
16671   auto IsFMSMul = [&](Instruction *I) {
16672     if (!I->hasOneUse())
16673       return false;
16674     auto *Sub = cast<Instruction>(*I->users().begin());
16675     return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
16676   };
16677   auto IsFMS = [&](Instruction *I) {
16678     if (match(I->getOperand(0), m_FNeg(m_Value())) ||
16679         match(I->getOperand(1), m_FNeg(m_Value())))
16680       return true;
16681     return false;
16682   };
16683 
16684   auto IsSinker = [&](Instruction *I, int Operand) {
16685     switch (I->getOpcode()) {
16686     case Instruction::Add:
16687     case Instruction::Mul:
16688     case Instruction::FAdd:
16689     case Instruction::ICmp:
16690     case Instruction::FCmp:
16691       return true;
16692     case Instruction::FMul:
16693       return !IsFMSMul(I);
16694     case Instruction::Sub:
16695     case Instruction::FSub:
16696     case Instruction::Shl:
16697     case Instruction::LShr:
16698     case Instruction::AShr:
16699       return Operand == 1;
16700     case Instruction::Call:
16701       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
16702         switch (II->getIntrinsicID()) {
16703         case Intrinsic::fma:
16704           return !IsFMS(I);
16705         case Intrinsic::arm_mve_add_predicated:
16706         case Intrinsic::arm_mve_mul_predicated:
16707         case Intrinsic::arm_mve_qadd_predicated:
16708         case Intrinsic::arm_mve_hadd_predicated:
16709         case Intrinsic::arm_mve_vqdmull_predicated:
16710         case Intrinsic::arm_mve_qdmulh_predicated:
16711         case Intrinsic::arm_mve_qrdmulh_predicated:
16712         case Intrinsic::arm_mve_fma_predicated:
16713           return true;
16714         case Intrinsic::arm_mve_sub_predicated:
16715         case Intrinsic::arm_mve_qsub_predicated:
16716         case Intrinsic::arm_mve_hsub_predicated:
16717           return Operand == 1;
16718         default:
16719           return false;
16720         }
16721       }
16722       return false;
16723     default:
16724       return false;
16725     }
16726   };
16727 
16728   for (auto OpIdx : enumerate(I->operands())) {
16729     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
16730     // Make sure we are not already sinking this operand
16731     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
16732       continue;
16733 
16734     Instruction *Shuffle = Op;
16735     if (Shuffle->getOpcode() == Instruction::BitCast)
16736       Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
16737     // We are looking for a splat that can be sunk.
16738     if (!Shuffle ||
16739         !match(Shuffle, m_Shuffle(
16740                             m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
16741                             m_Undef(), m_ZeroMask())))
16742       continue;
16743     if (!IsSinker(I, OpIdx.index()))
16744       continue;
16745 
16746     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
16747     // and vector registers
16748     for (Use &U : Op->uses()) {
16749       Instruction *Insn = cast<Instruction>(U.getUser());
16750       if (!IsSinker(Insn, U.getOperandNo()))
16751         return false;
16752     }
16753 
16754     Ops.push_back(&Shuffle->getOperandUse(0));
16755     if (Shuffle != Op)
16756       Ops.push_back(&Op->getOperandUse(0));
16757     Ops.push_back(&OpIdx.value());
16758   }
16759   return true;
16760 }
16761 
shouldConvertSplatType(ShuffleVectorInst * SVI) const16762 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
16763   if (!Subtarget->hasMVEIntegerOps())
16764     return nullptr;
16765   Type *SVIType = SVI->getType();
16766   Type *ScalarType = SVIType->getScalarType();
16767 
16768   if (ScalarType->isFloatTy())
16769     return Type::getInt32Ty(SVIType->getContext());
16770   if (ScalarType->isHalfTy())
16771     return Type::getInt16Ty(SVIType->getContext());
16772   return nullptr;
16773 }
16774 
isVectorLoadExtDesirable(SDValue ExtVal) const16775 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
16776   EVT VT = ExtVal.getValueType();
16777 
16778   if (!isTypeLegal(VT))
16779     return false;
16780 
16781   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
16782     if (Ld->isExpandingLoad())
16783       return false;
16784   }
16785 
16786   if (Subtarget->hasMVEIntegerOps())
16787     return true;
16788 
16789   // Don't create a loadext if we can fold the extension into a wide/long
16790   // instruction.
16791   // If there's more than one user instruction, the loadext is desirable no
16792   // matter what.  There can be two uses by the same instruction.
16793   if (ExtVal->use_empty() ||
16794       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
16795     return true;
16796 
16797   SDNode *U = *ExtVal->use_begin();
16798   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
16799        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
16800     return false;
16801 
16802   return true;
16803 }
16804 
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const16805 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
16806   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
16807     return false;
16808 
16809   if (!isTypeLegal(EVT::getEVT(Ty1)))
16810     return false;
16811 
16812   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
16813 
16814   // Assuming the caller doesn't have a zeroext or signext return parameter,
16815   // truncation all the way down to i1 is valid.
16816   return true;
16817 }
16818 
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const16819 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
16820                                                 const AddrMode &AM, Type *Ty,
16821                                                 unsigned AS) const {
16822   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
16823     if (Subtarget->hasFPAO())
16824       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
16825     return 0;
16826   }
16827   return -1;
16828 }
16829 
16830 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
16831 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
16832 /// expanded to FMAs when this method returns true, otherwise fmuladd is
16833 /// expanded to fmul + fadd.
16834 ///
16835 /// ARM supports both fused and unfused multiply-add operations; we already
16836 /// lower a pair of fmul and fadd to the latter so it's not clear that there
16837 /// would be a gain or that the gain would be worthwhile enough to risk
16838 /// correctness bugs.
16839 ///
16840 /// For MVE, we set this to true as it helps simplify the need for some
16841 /// patterns (and we don't have the non-fused floating point instruction).
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const16842 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
16843                                                    EVT VT) const {
16844   if (!VT.isSimple())
16845     return false;
16846 
16847   switch (VT.getSimpleVT().SimpleTy) {
16848   case MVT::v4f32:
16849   case MVT::v8f16:
16850     return Subtarget->hasMVEFloatOps();
16851   case MVT::f16:
16852     return Subtarget->useFPVFMx16();
16853   case MVT::f32:
16854     return Subtarget->useFPVFMx();
16855   case MVT::f64:
16856     return Subtarget->useFPVFMx64();
16857   default:
16858     break;
16859   }
16860 
16861   return false;
16862 }
16863 
isLegalT1AddressImmediate(int64_t V,EVT VT)16864 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
16865   if (V < 0)
16866     return false;
16867 
16868   unsigned Scale = 1;
16869   switch (VT.getSimpleVT().SimpleTy) {
16870   case MVT::i1:
16871   case MVT::i8:
16872     // Scale == 1;
16873     break;
16874   case MVT::i16:
16875     // Scale == 2;
16876     Scale = 2;
16877     break;
16878   default:
16879     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
16880     // Scale == 4;
16881     Scale = 4;
16882     break;
16883   }
16884 
16885   if ((V & (Scale - 1)) != 0)
16886     return false;
16887   return isUInt<5>(V / Scale);
16888 }
16889 
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)16890 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
16891                                       const ARMSubtarget *Subtarget) {
16892   if (!VT.isInteger() && !VT.isFloatingPoint())
16893     return false;
16894   if (VT.isVector() && Subtarget->hasNEON())
16895     return false;
16896   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
16897       !Subtarget->hasMVEFloatOps())
16898     return false;
16899 
16900   bool IsNeg = false;
16901   if (V < 0) {
16902     IsNeg = true;
16903     V = -V;
16904   }
16905 
16906   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
16907 
16908   // MVE: size * imm7
16909   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
16910     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
16911     case MVT::i32:
16912     case MVT::f32:
16913       return isShiftedUInt<7,2>(V);
16914     case MVT::i16:
16915     case MVT::f16:
16916       return isShiftedUInt<7,1>(V);
16917     case MVT::i8:
16918       return isUInt<7>(V);
16919     default:
16920       return false;
16921     }
16922   }
16923 
16924   // half VLDR: 2 * imm8
16925   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
16926     return isShiftedUInt<8, 1>(V);
16927   // VLDR and LDRD: 4 * imm8
16928   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
16929     return isShiftedUInt<8, 2>(V);
16930 
16931   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
16932     // + imm12 or - imm8
16933     if (IsNeg)
16934       return isUInt<8>(V);
16935     return isUInt<12>(V);
16936   }
16937 
16938   return false;
16939 }
16940 
16941 /// isLegalAddressImmediate - Return true if the integer value can be used
16942 /// as the offset of the target addressing mode for load / store of the
16943 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)16944 static bool isLegalAddressImmediate(int64_t V, EVT VT,
16945                                     const ARMSubtarget *Subtarget) {
16946   if (V == 0)
16947     return true;
16948 
16949   if (!VT.isSimple())
16950     return false;
16951 
16952   if (Subtarget->isThumb1Only())
16953     return isLegalT1AddressImmediate(V, VT);
16954   else if (Subtarget->isThumb2())
16955     return isLegalT2AddressImmediate(V, VT, Subtarget);
16956 
16957   // ARM mode.
16958   if (V < 0)
16959     V = - V;
16960   switch (VT.getSimpleVT().SimpleTy) {
16961   default: return false;
16962   case MVT::i1:
16963   case MVT::i8:
16964   case MVT::i32:
16965     // +- imm12
16966     return isUInt<12>(V);
16967   case MVT::i16:
16968     // +- imm8
16969     return isUInt<8>(V);
16970   case MVT::f32:
16971   case MVT::f64:
16972     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
16973       return false;
16974     return isShiftedUInt<8, 2>(V);
16975   }
16976 }
16977 
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const16978 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
16979                                                       EVT VT) const {
16980   int Scale = AM.Scale;
16981   if (Scale < 0)
16982     return false;
16983 
16984   switch (VT.getSimpleVT().SimpleTy) {
16985   default: return false;
16986   case MVT::i1:
16987   case MVT::i8:
16988   case MVT::i16:
16989   case MVT::i32:
16990     if (Scale == 1)
16991       return true;
16992     // r + r << imm
16993     Scale = Scale & ~1;
16994     return Scale == 2 || Scale == 4 || Scale == 8;
16995   case MVT::i64:
16996     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
16997     // version in Thumb mode.
16998     // r + r
16999     if (Scale == 1)
17000       return true;
17001     // r * 2 (this can be lowered to r + r).
17002     if (!AM.HasBaseReg && Scale == 2)
17003       return true;
17004     return false;
17005   case MVT::isVoid:
17006     // Note, we allow "void" uses (basically, uses that aren't loads or
17007     // stores), because arm allows folding a scale into many arithmetic
17008     // operations.  This should be made more precise and revisited later.
17009 
17010     // Allow r << imm, but the imm has to be a multiple of two.
17011     if (Scale & 1) return false;
17012     return isPowerOf2_32(Scale);
17013   }
17014 }
17015 
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const17016 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
17017                                                       EVT VT) const {
17018   const int Scale = AM.Scale;
17019 
17020   // Negative scales are not supported in Thumb1.
17021   if (Scale < 0)
17022     return false;
17023 
17024   // Thumb1 addressing modes do not support register scaling excepting the
17025   // following cases:
17026   // 1. Scale == 1 means no scaling.
17027   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
17028   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
17029 }
17030 
17031 /// isLegalAddressingMode - Return true if the addressing mode represented
17032 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const17033 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
17034                                               const AddrMode &AM, Type *Ty,
17035                                               unsigned AS, Instruction *I) const {
17036   EVT VT = getValueType(DL, Ty, true);
17037   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
17038     return false;
17039 
17040   // Can never fold addr of global into load/store.
17041   if (AM.BaseGV)
17042     return false;
17043 
17044   switch (AM.Scale) {
17045   case 0:  // no scale reg, must be "r+i" or "r", or "i".
17046     break;
17047   default:
17048     // ARM doesn't support any R+R*scale+imm addr modes.
17049     if (AM.BaseOffs)
17050       return false;
17051 
17052     if (!VT.isSimple())
17053       return false;
17054 
17055     if (Subtarget->isThumb1Only())
17056       return isLegalT1ScaledAddressingMode(AM, VT);
17057 
17058     if (Subtarget->isThumb2())
17059       return isLegalT2ScaledAddressingMode(AM, VT);
17060 
17061     int Scale = AM.Scale;
17062     switch (VT.getSimpleVT().SimpleTy) {
17063     default: return false;
17064     case MVT::i1:
17065     case MVT::i8:
17066     case MVT::i32:
17067       if (Scale < 0) Scale = -Scale;
17068       if (Scale == 1)
17069         return true;
17070       // r + r << imm
17071       return isPowerOf2_32(Scale & ~1);
17072     case MVT::i16:
17073     case MVT::i64:
17074       // r +/- r
17075       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
17076         return true;
17077       // r * 2 (this can be lowered to r + r).
17078       if (!AM.HasBaseReg && Scale == 2)
17079         return true;
17080       return false;
17081 
17082     case MVT::isVoid:
17083       // Note, we allow "void" uses (basically, uses that aren't loads or
17084       // stores), because arm allows folding a scale into many arithmetic
17085       // operations.  This should be made more precise and revisited later.
17086 
17087       // Allow r << imm, but the imm has to be a multiple of two.
17088       if (Scale & 1) return false;
17089       return isPowerOf2_32(Scale);
17090     }
17091   }
17092   return true;
17093 }
17094 
17095 /// isLegalICmpImmediate - Return true if the specified immediate is legal
17096 /// icmp immediate, that is the target has icmp instructions which can compare
17097 /// a register against the immediate without having to materialize the
17098 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const17099 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
17100   // Thumb2 and ARM modes can use cmn for negative immediates.
17101   if (!Subtarget->isThumb())
17102     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
17103            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
17104   if (Subtarget->isThumb2())
17105     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
17106            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
17107   // Thumb1 doesn't have cmn, and only 8-bit immediates.
17108   return Imm >= 0 && Imm <= 255;
17109 }
17110 
17111 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
17112 /// *or sub* immediate, that is the target has add or sub instructions which can
17113 /// add a register with the immediate without having to materialize the
17114 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const17115 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
17116   // Same encoding for add/sub, just flip the sign.
17117   int64_t AbsImm = std::abs(Imm);
17118   if (!Subtarget->isThumb())
17119     return ARM_AM::getSOImmVal(AbsImm) != -1;
17120   if (Subtarget->isThumb2())
17121     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
17122   // Thumb1 only has 8-bit unsigned immediate.
17123   return AbsImm >= 0 && AbsImm <= 255;
17124 }
17125 
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17126 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
17127                                       bool isSEXTLoad, SDValue &Base,
17128                                       SDValue &Offset, bool &isInc,
17129                                       SelectionDAG &DAG) {
17130   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17131     return false;
17132 
17133   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
17134     // AddressingMode 3
17135     Base = Ptr->getOperand(0);
17136     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17137       int RHSC = (int)RHS->getZExtValue();
17138       if (RHSC < 0 && RHSC > -256) {
17139         assert(Ptr->getOpcode() == ISD::ADD);
17140         isInc = false;
17141         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17142         return true;
17143       }
17144     }
17145     isInc = (Ptr->getOpcode() == ISD::ADD);
17146     Offset = Ptr->getOperand(1);
17147     return true;
17148   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
17149     // AddressingMode 2
17150     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17151       int RHSC = (int)RHS->getZExtValue();
17152       if (RHSC < 0 && RHSC > -0x1000) {
17153         assert(Ptr->getOpcode() == ISD::ADD);
17154         isInc = false;
17155         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17156         Base = Ptr->getOperand(0);
17157         return true;
17158       }
17159     }
17160 
17161     if (Ptr->getOpcode() == ISD::ADD) {
17162       isInc = true;
17163       ARM_AM::ShiftOpc ShOpcVal=
17164         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
17165       if (ShOpcVal != ARM_AM::no_shift) {
17166         Base = Ptr->getOperand(1);
17167         Offset = Ptr->getOperand(0);
17168       } else {
17169         Base = Ptr->getOperand(0);
17170         Offset = Ptr->getOperand(1);
17171       }
17172       return true;
17173     }
17174 
17175     isInc = (Ptr->getOpcode() == ISD::ADD);
17176     Base = Ptr->getOperand(0);
17177     Offset = Ptr->getOperand(1);
17178     return true;
17179   }
17180 
17181   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
17182   return false;
17183 }
17184 
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17185 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
17186                                      bool isSEXTLoad, SDValue &Base,
17187                                      SDValue &Offset, bool &isInc,
17188                                      SelectionDAG &DAG) {
17189   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17190     return false;
17191 
17192   Base = Ptr->getOperand(0);
17193   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
17194     int RHSC = (int)RHS->getZExtValue();
17195     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
17196       assert(Ptr->getOpcode() == ISD::ADD);
17197       isInc = false;
17198       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17199       return true;
17200     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
17201       isInc = Ptr->getOpcode() == ISD::ADD;
17202       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
17203       return true;
17204     }
17205   }
17206 
17207   return false;
17208 }
17209 
getMVEIndexedAddressParts(SDNode * Ptr,EVT VT,Align Alignment,bool isSEXTLoad,bool IsMasked,bool isLE,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)17210 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
17211                                       bool isSEXTLoad, bool IsMasked, bool isLE,
17212                                       SDValue &Base, SDValue &Offset,
17213                                       bool &isInc, SelectionDAG &DAG) {
17214   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
17215     return false;
17216   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
17217     return false;
17218 
17219   // We allow LE non-masked loads to change the type (for example use a vldrb.8
17220   // as opposed to a vldrw.32). This can allow extra addressing modes or
17221   // alignments for what is otherwise an equivalent instruction.
17222   bool CanChangeType = isLE && !IsMasked;
17223 
17224   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
17225   int RHSC = (int)RHS->getZExtValue();
17226 
17227   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
17228     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
17229       assert(Ptr->getOpcode() == ISD::ADD);
17230       isInc = false;
17231       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
17232       return true;
17233     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
17234       isInc = Ptr->getOpcode() == ISD::ADD;
17235       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
17236       return true;
17237     }
17238     return false;
17239   };
17240 
17241   // Try to find a matching instruction based on s/zext, Alignment, Offset and
17242   // (in BE/masked) type.
17243   Base = Ptr->getOperand(0);
17244   if (VT == MVT::v4i16) {
17245     if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
17246       return true;
17247   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
17248     if (IsInRange(RHSC, 0x80, 1))
17249       return true;
17250   } else if (Alignment >= 4 &&
17251              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
17252              IsInRange(RHSC, 0x80, 4))
17253     return true;
17254   else if (Alignment >= 2 &&
17255            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
17256            IsInRange(RHSC, 0x80, 2))
17257     return true;
17258   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
17259     return true;
17260   return false;
17261 }
17262 
17263 /// getPreIndexedAddressParts - returns true by value, base pointer and
17264 /// offset pointer and addressing mode by reference if the node's address
17265 /// can be legally represented as pre-indexed load / store address.
17266 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const17267 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
17268                                              SDValue &Offset,
17269                                              ISD::MemIndexedMode &AM,
17270                                              SelectionDAG &DAG) const {
17271   if (Subtarget->isThumb1Only())
17272     return false;
17273 
17274   EVT VT;
17275   SDValue Ptr;
17276   Align Alignment;
17277   bool isSEXTLoad = false;
17278   bool IsMasked = false;
17279   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
17280     Ptr = LD->getBasePtr();
17281     VT = LD->getMemoryVT();
17282     Alignment = LD->getAlign();
17283     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17284   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
17285     Ptr = ST->getBasePtr();
17286     VT = ST->getMemoryVT();
17287     Alignment = ST->getAlign();
17288   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
17289     Ptr = LD->getBasePtr();
17290     VT = LD->getMemoryVT();
17291     Alignment = LD->getAlign();
17292     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17293     IsMasked = true;
17294   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
17295     Ptr = ST->getBasePtr();
17296     VT = ST->getMemoryVT();
17297     Alignment = ST->getAlign();
17298     IsMasked = true;
17299   } else
17300     return false;
17301 
17302   bool isInc;
17303   bool isLegal = false;
17304   if (VT.isVector())
17305     isLegal = Subtarget->hasMVEIntegerOps() &&
17306               getMVEIndexedAddressParts(
17307                   Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
17308                   Subtarget->isLittle(), Base, Offset, isInc, DAG);
17309   else {
17310     if (Subtarget->isThumb2())
17311       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
17312                                          Offset, isInc, DAG);
17313     else
17314       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
17315                                           Offset, isInc, DAG);
17316   }
17317   if (!isLegal)
17318     return false;
17319 
17320   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
17321   return true;
17322 }
17323 
17324 /// getPostIndexedAddressParts - returns true by value, base pointer and
17325 /// offset pointer and addressing mode by reference if this node can be
17326 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const17327 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
17328                                                    SDValue &Base,
17329                                                    SDValue &Offset,
17330                                                    ISD::MemIndexedMode &AM,
17331                                                    SelectionDAG &DAG) const {
17332   EVT VT;
17333   SDValue Ptr;
17334   Align Alignment;
17335   bool isSEXTLoad = false, isNonExt;
17336   bool IsMasked = false;
17337   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
17338     VT = LD->getMemoryVT();
17339     Ptr = LD->getBasePtr();
17340     Alignment = LD->getAlign();
17341     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17342     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
17343   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
17344     VT = ST->getMemoryVT();
17345     Ptr = ST->getBasePtr();
17346     Alignment = ST->getAlign();
17347     isNonExt = !ST->isTruncatingStore();
17348   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
17349     VT = LD->getMemoryVT();
17350     Ptr = LD->getBasePtr();
17351     Alignment = LD->getAlign();
17352     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
17353     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
17354     IsMasked = true;
17355   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
17356     VT = ST->getMemoryVT();
17357     Ptr = ST->getBasePtr();
17358     Alignment = ST->getAlign();
17359     isNonExt = !ST->isTruncatingStore();
17360     IsMasked = true;
17361   } else
17362     return false;
17363 
17364   if (Subtarget->isThumb1Only()) {
17365     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
17366     // must be non-extending/truncating, i32, with an offset of 4.
17367     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
17368     if (Op->getOpcode() != ISD::ADD || !isNonExt)
17369       return false;
17370     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
17371     if (!RHS || RHS->getZExtValue() != 4)
17372       return false;
17373 
17374     Offset = Op->getOperand(1);
17375     Base = Op->getOperand(0);
17376     AM = ISD::POST_INC;
17377     return true;
17378   }
17379 
17380   bool isInc;
17381   bool isLegal = false;
17382   if (VT.isVector())
17383     isLegal = Subtarget->hasMVEIntegerOps() &&
17384               getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
17385                                         Subtarget->isLittle(), Base, Offset,
17386                                         isInc, DAG);
17387   else {
17388     if (Subtarget->isThumb2())
17389       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
17390                                          isInc, DAG);
17391     else
17392       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
17393                                           isInc, DAG);
17394   }
17395   if (!isLegal)
17396     return false;
17397 
17398   if (Ptr != Base) {
17399     // Swap base ptr and offset to catch more post-index load / store when
17400     // it's legal. In Thumb2 mode, offset must be an immediate.
17401     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
17402         !Subtarget->isThumb2())
17403       std::swap(Base, Offset);
17404 
17405     // Post-indexed load / store update the base pointer.
17406     if (Ptr != Base)
17407       return false;
17408   }
17409 
17410   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
17411   return true;
17412 }
17413 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const17414 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
17415                                                       KnownBits &Known,
17416                                                       const APInt &DemandedElts,
17417                                                       const SelectionDAG &DAG,
17418                                                       unsigned Depth) const {
17419   unsigned BitWidth = Known.getBitWidth();
17420   Known.resetAll();
17421   switch (Op.getOpcode()) {
17422   default: break;
17423   case ARMISD::ADDC:
17424   case ARMISD::ADDE:
17425   case ARMISD::SUBC:
17426   case ARMISD::SUBE:
17427     // Special cases when we convert a carry to a boolean.
17428     if (Op.getResNo() == 0) {
17429       SDValue LHS = Op.getOperand(0);
17430       SDValue RHS = Op.getOperand(1);
17431       // (ADDE 0, 0, C) will give us a single bit.
17432       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
17433           isNullConstant(RHS)) {
17434         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
17435         return;
17436       }
17437     }
17438     break;
17439   case ARMISD::CMOV: {
17440     // Bits are known zero/one if known on the LHS and RHS.
17441     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
17442     if (Known.isUnknown())
17443       return;
17444 
17445     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
17446     Known = KnownBits::commonBits(Known, KnownRHS);
17447     return;
17448   }
17449   case ISD::INTRINSIC_W_CHAIN: {
17450     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
17451     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
17452     switch (IntID) {
17453     default: return;
17454     case Intrinsic::arm_ldaex:
17455     case Intrinsic::arm_ldrex: {
17456       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
17457       unsigned MemBits = VT.getScalarSizeInBits();
17458       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
17459       return;
17460     }
17461     }
17462   }
17463   case ARMISD::BFI: {
17464     // Conservatively, we can recurse down the first operand
17465     // and just mask out all affected bits.
17466     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
17467 
17468     // The operand to BFI is already a mask suitable for removing the bits it
17469     // sets.
17470     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
17471     const APInt &Mask = CI->getAPIntValue();
17472     Known.Zero &= Mask;
17473     Known.One &= Mask;
17474     return;
17475   }
17476   case ARMISD::VGETLANEs:
17477   case ARMISD::VGETLANEu: {
17478     const SDValue &SrcSV = Op.getOperand(0);
17479     EVT VecVT = SrcSV.getValueType();
17480     assert(VecVT.isVector() && "VGETLANE expected a vector type");
17481     const unsigned NumSrcElts = VecVT.getVectorNumElements();
17482     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
17483     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
17484            "VGETLANE index out of bounds");
17485     unsigned Idx = Pos->getZExtValue();
17486     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
17487     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
17488 
17489     EVT VT = Op.getValueType();
17490     const unsigned DstSz = VT.getScalarSizeInBits();
17491     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
17492     (void)SrcSz;
17493     assert(SrcSz == Known.getBitWidth());
17494     assert(DstSz > SrcSz);
17495     if (Op.getOpcode() == ARMISD::VGETLANEs)
17496       Known = Known.sext(DstSz);
17497     else {
17498       Known = Known.zext(DstSz);
17499     }
17500     assert(DstSz == Known.getBitWidth());
17501     break;
17502   }
17503   case ARMISD::VMOVrh: {
17504     KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
17505     assert(KnownOp.getBitWidth() == 16);
17506     Known = KnownOp.zext(32);
17507     break;
17508   }
17509   }
17510 }
17511 
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const17512 bool ARMTargetLowering::targetShrinkDemandedConstant(
17513     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
17514     TargetLoweringOpt &TLO) const {
17515   // Delay optimization, so we don't have to deal with illegal types, or block
17516   // optimizations.
17517   if (!TLO.LegalOps)
17518     return false;
17519 
17520   // Only optimize AND for now.
17521   if (Op.getOpcode() != ISD::AND)
17522     return false;
17523 
17524   EVT VT = Op.getValueType();
17525 
17526   // Ignore vectors.
17527   if (VT.isVector())
17528     return false;
17529 
17530   assert(VT == MVT::i32 && "Unexpected integer type");
17531 
17532   // Make sure the RHS really is a constant.
17533   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
17534   if (!C)
17535     return false;
17536 
17537   unsigned Mask = C->getZExtValue();
17538 
17539   unsigned Demanded = DemandedBits.getZExtValue();
17540   unsigned ShrunkMask = Mask & Demanded;
17541   unsigned ExpandedMask = Mask | ~Demanded;
17542 
17543   // If the mask is all zeros, let the target-independent code replace the
17544   // result with zero.
17545   if (ShrunkMask == 0)
17546     return false;
17547 
17548   // If the mask is all ones, erase the AND. (Currently, the target-independent
17549   // code won't do this, so we have to do it explicitly to avoid an infinite
17550   // loop in obscure cases.)
17551   if (ExpandedMask == ~0U)
17552     return TLO.CombineTo(Op, Op.getOperand(0));
17553 
17554   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
17555     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
17556   };
17557   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
17558     if (NewMask == Mask)
17559       return true;
17560     SDLoc DL(Op);
17561     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
17562     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
17563     return TLO.CombineTo(Op, NewOp);
17564   };
17565 
17566   // Prefer uxtb mask.
17567   if (IsLegalMask(0xFF))
17568     return UseMask(0xFF);
17569 
17570   // Prefer uxth mask.
17571   if (IsLegalMask(0xFFFF))
17572     return UseMask(0xFFFF);
17573 
17574   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
17575   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
17576   if (ShrunkMask < 256)
17577     return UseMask(ShrunkMask);
17578 
17579   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
17580   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
17581   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
17582     return UseMask(ExpandedMask);
17583 
17584   // Potential improvements:
17585   //
17586   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
17587   // We could try to prefer Thumb1 immediates which can be lowered to a
17588   // two-instruction sequence.
17589   // We could try to recognize more legal ARM/Thumb2 immediates here.
17590 
17591   return false;
17592 }
17593 
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const17594 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
17595     SDValue Op, const APInt &OriginalDemandedBits,
17596     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
17597     unsigned Depth) const {
17598   unsigned Opc = Op.getOpcode();
17599 
17600   switch (Opc) {
17601   case ARMISD::ASRL:
17602   case ARMISD::LSRL: {
17603     // If this is result 0 and the other result is unused, see if the demand
17604     // bits allow us to shrink this long shift into a standard small shift in
17605     // the opposite direction.
17606     if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
17607         isa<ConstantSDNode>(Op->getOperand(2))) {
17608       unsigned ShAmt = Op->getConstantOperandVal(2);
17609       if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(
17610                             APInt::getAllOnesValue(32) << (32 - ShAmt)))
17611         return TLO.CombineTo(
17612             Op, TLO.DAG.getNode(
17613                     ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
17614                     TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
17615     }
17616     break;
17617   }
17618   }
17619 
17620   return TargetLowering::SimplifyDemandedBitsForTargetNode(
17621       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
17622 }
17623 
17624 //===----------------------------------------------------------------------===//
17625 //                           ARM Inline Assembly Support
17626 //===----------------------------------------------------------------------===//
17627 
ExpandInlineAsm(CallInst * CI) const17628 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
17629   // Looking for "rev" which is V6+.
17630   if (!Subtarget->hasV6Ops())
17631     return false;
17632 
17633   InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
17634   std::string AsmStr = IA->getAsmString();
17635   SmallVector<StringRef, 4> AsmPieces;
17636   SplitString(AsmStr, AsmPieces, ";\n");
17637 
17638   switch (AsmPieces.size()) {
17639   default: return false;
17640   case 1:
17641     AsmStr = std::string(AsmPieces[0]);
17642     AsmPieces.clear();
17643     SplitString(AsmStr, AsmPieces, " \t,");
17644 
17645     // rev $0, $1
17646     if (AsmPieces.size() == 3 &&
17647         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
17648         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
17649       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
17650       if (Ty && Ty->getBitWidth() == 32)
17651         return IntrinsicLowering::LowerToByteSwap(CI);
17652     }
17653     break;
17654   }
17655 
17656   return false;
17657 }
17658 
LowerXConstraint(EVT ConstraintVT) const17659 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
17660   // At this point, we have to lower this constraint to something else, so we
17661   // lower it to an "r" or "w". However, by doing this we will force the result
17662   // to be in register, while the X constraint is much more permissive.
17663   //
17664   // Although we are correct (we are free to emit anything, without
17665   // constraints), we might break use cases that would expect us to be more
17666   // efficient and emit something else.
17667   if (!Subtarget->hasVFP2Base())
17668     return "r";
17669   if (ConstraintVT.isFloatingPoint())
17670     return "w";
17671   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
17672      (ConstraintVT.getSizeInBits() == 64 ||
17673       ConstraintVT.getSizeInBits() == 128))
17674     return "w";
17675 
17676   return "r";
17677 }
17678 
17679 /// getConstraintType - Given a constraint letter, return the type of
17680 /// constraint it is for this target.
17681 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const17682 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
17683   unsigned S = Constraint.size();
17684   if (S == 1) {
17685     switch (Constraint[0]) {
17686     default:  break;
17687     case 'l': return C_RegisterClass;
17688     case 'w': return C_RegisterClass;
17689     case 'h': return C_RegisterClass;
17690     case 'x': return C_RegisterClass;
17691     case 't': return C_RegisterClass;
17692     case 'j': return C_Immediate; // Constant for movw.
17693     // An address with a single base register. Due to the way we
17694     // currently handle addresses it is the same as an 'r' memory constraint.
17695     case 'Q': return C_Memory;
17696     }
17697   } else if (S == 2) {
17698     switch (Constraint[0]) {
17699     default: break;
17700     case 'T': return C_RegisterClass;
17701     // All 'U+' constraints are addresses.
17702     case 'U': return C_Memory;
17703     }
17704   }
17705   return TargetLowering::getConstraintType(Constraint);
17706 }
17707 
17708 /// Examine constraint type and operand type and determine a weight value.
17709 /// This object must already have been set up with the operand type
17710 /// and the current alternative constraint selected.
17711 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const17712 ARMTargetLowering::getSingleConstraintMatchWeight(
17713     AsmOperandInfo &info, const char *constraint) const {
17714   ConstraintWeight weight = CW_Invalid;
17715   Value *CallOperandVal = info.CallOperandVal;
17716     // If we don't have a value, we can't do a match,
17717     // but allow it at the lowest weight.
17718   if (!CallOperandVal)
17719     return CW_Default;
17720   Type *type = CallOperandVal->getType();
17721   // Look at the constraint type.
17722   switch (*constraint) {
17723   default:
17724     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17725     break;
17726   case 'l':
17727     if (type->isIntegerTy()) {
17728       if (Subtarget->isThumb())
17729         weight = CW_SpecificReg;
17730       else
17731         weight = CW_Register;
17732     }
17733     break;
17734   case 'w':
17735     if (type->isFloatingPointTy())
17736       weight = CW_Register;
17737     break;
17738   }
17739   return weight;
17740 }
17741 
17742 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
17743 
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const17744 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
17745     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
17746   switch (Constraint.size()) {
17747   case 1:
17748     // GCC ARM Constraint Letters
17749     switch (Constraint[0]) {
17750     case 'l': // Low regs or general regs.
17751       if (Subtarget->isThumb())
17752         return RCPair(0U, &ARM::tGPRRegClass);
17753       return RCPair(0U, &ARM::GPRRegClass);
17754     case 'h': // High regs or no regs.
17755       if (Subtarget->isThumb())
17756         return RCPair(0U, &ARM::hGPRRegClass);
17757       break;
17758     case 'r':
17759       if (Subtarget->isThumb1Only())
17760         return RCPair(0U, &ARM::tGPRRegClass);
17761       return RCPair(0U, &ARM::GPRRegClass);
17762     case 'w':
17763       if (VT == MVT::Other)
17764         break;
17765       if (VT == MVT::f32)
17766         return RCPair(0U, &ARM::SPRRegClass);
17767       if (VT.getSizeInBits() == 64)
17768         return RCPair(0U, &ARM::DPRRegClass);
17769       if (VT.getSizeInBits() == 128)
17770         return RCPair(0U, &ARM::QPRRegClass);
17771       break;
17772     case 'x':
17773       if (VT == MVT::Other)
17774         break;
17775       if (VT == MVT::f32)
17776         return RCPair(0U, &ARM::SPR_8RegClass);
17777       if (VT.getSizeInBits() == 64)
17778         return RCPair(0U, &ARM::DPR_8RegClass);
17779       if (VT.getSizeInBits() == 128)
17780         return RCPair(0U, &ARM::QPR_8RegClass);
17781       break;
17782     case 't':
17783       if (VT == MVT::Other)
17784         break;
17785       if (VT == MVT::f32 || VT == MVT::i32)
17786         return RCPair(0U, &ARM::SPRRegClass);
17787       if (VT.getSizeInBits() == 64)
17788         return RCPair(0U, &ARM::DPR_VFP2RegClass);
17789       if (VT.getSizeInBits() == 128)
17790         return RCPair(0U, &ARM::QPR_VFP2RegClass);
17791       break;
17792     }
17793     break;
17794 
17795   case 2:
17796     if (Constraint[0] == 'T') {
17797       switch (Constraint[1]) {
17798       default:
17799         break;
17800       case 'e':
17801         return RCPair(0U, &ARM::tGPREvenRegClass);
17802       case 'o':
17803         return RCPair(0U, &ARM::tGPROddRegClass);
17804       }
17805     }
17806     break;
17807 
17808   default:
17809     break;
17810   }
17811 
17812   if (StringRef("{cc}").equals_lower(Constraint))
17813     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
17814 
17815   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
17816 }
17817 
17818 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17819 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const17820 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17821                                                      std::string &Constraint,
17822                                                      std::vector<SDValue>&Ops,
17823                                                      SelectionDAG &DAG) const {
17824   SDValue Result;
17825 
17826   // Currently only support length 1 constraints.
17827   if (Constraint.length() != 1) return;
17828 
17829   char ConstraintLetter = Constraint[0];
17830   switch (ConstraintLetter) {
17831   default: break;
17832   case 'j':
17833   case 'I': case 'J': case 'K': case 'L':
17834   case 'M': case 'N': case 'O':
17835     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
17836     if (!C)
17837       return;
17838 
17839     int64_t CVal64 = C->getSExtValue();
17840     int CVal = (int) CVal64;
17841     // None of these constraints allow values larger than 32 bits.  Check
17842     // that the value fits in an int.
17843     if (CVal != CVal64)
17844       return;
17845 
17846     switch (ConstraintLetter) {
17847       case 'j':
17848         // Constant suitable for movw, must be between 0 and
17849         // 65535.
17850         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
17851           if (CVal >= 0 && CVal <= 65535)
17852             break;
17853         return;
17854       case 'I':
17855         if (Subtarget->isThumb1Only()) {
17856           // This must be a constant between 0 and 255, for ADD
17857           // immediates.
17858           if (CVal >= 0 && CVal <= 255)
17859             break;
17860         } else if (Subtarget->isThumb2()) {
17861           // A constant that can be used as an immediate value in a
17862           // data-processing instruction.
17863           if (ARM_AM::getT2SOImmVal(CVal) != -1)
17864             break;
17865         } else {
17866           // A constant that can be used as an immediate value in a
17867           // data-processing instruction.
17868           if (ARM_AM::getSOImmVal(CVal) != -1)
17869             break;
17870         }
17871         return;
17872 
17873       case 'J':
17874         if (Subtarget->isThumb1Only()) {
17875           // This must be a constant between -255 and -1, for negated ADD
17876           // immediates. This can be used in GCC with an "n" modifier that
17877           // prints the negated value, for use with SUB instructions. It is
17878           // not useful otherwise but is implemented for compatibility.
17879           if (CVal >= -255 && CVal <= -1)
17880             break;
17881         } else {
17882           // This must be a constant between -4095 and 4095. It is not clear
17883           // what this constraint is intended for. Implemented for
17884           // compatibility with GCC.
17885           if (CVal >= -4095 && CVal <= 4095)
17886             break;
17887         }
17888         return;
17889 
17890       case 'K':
17891         if (Subtarget->isThumb1Only()) {
17892           // A 32-bit value where only one byte has a nonzero value. Exclude
17893           // zero to match GCC. This constraint is used by GCC internally for
17894           // constants that can be loaded with a move/shift combination.
17895           // It is not useful otherwise but is implemented for compatibility.
17896           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
17897             break;
17898         } else if (Subtarget->isThumb2()) {
17899           // A constant whose bitwise inverse can be used as an immediate
17900           // value in a data-processing instruction. This can be used in GCC
17901           // with a "B" modifier that prints the inverted value, for use with
17902           // BIC and MVN instructions. It is not useful otherwise but is
17903           // implemented for compatibility.
17904           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
17905             break;
17906         } else {
17907           // A constant whose bitwise inverse can be used as an immediate
17908           // value in a data-processing instruction. This can be used in GCC
17909           // with a "B" modifier that prints the inverted value, for use with
17910           // BIC and MVN instructions. It is not useful otherwise but is
17911           // implemented for compatibility.
17912           if (ARM_AM::getSOImmVal(~CVal) != -1)
17913             break;
17914         }
17915         return;
17916 
17917       case 'L':
17918         if (Subtarget->isThumb1Only()) {
17919           // This must be a constant between -7 and 7,
17920           // for 3-operand ADD/SUB immediate instructions.
17921           if (CVal >= -7 && CVal < 7)
17922             break;
17923         } else if (Subtarget->isThumb2()) {
17924           // A constant whose negation can be used as an immediate value in a
17925           // data-processing instruction. This can be used in GCC with an "n"
17926           // modifier that prints the negated value, for use with SUB
17927           // instructions. It is not useful otherwise but is implemented for
17928           // compatibility.
17929           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
17930             break;
17931         } else {
17932           // A constant whose negation can be used as an immediate value in a
17933           // data-processing instruction. This can be used in GCC with an "n"
17934           // modifier that prints the negated value, for use with SUB
17935           // instructions. It is not useful otherwise but is implemented for
17936           // compatibility.
17937           if (ARM_AM::getSOImmVal(-CVal) != -1)
17938             break;
17939         }
17940         return;
17941 
17942       case 'M':
17943         if (Subtarget->isThumb1Only()) {
17944           // This must be a multiple of 4 between 0 and 1020, for
17945           // ADD sp + immediate.
17946           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
17947             break;
17948         } else {
17949           // A power of two or a constant between 0 and 32.  This is used in
17950           // GCC for the shift amount on shifted register operands, but it is
17951           // useful in general for any shift amounts.
17952           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
17953             break;
17954         }
17955         return;
17956 
17957       case 'N':
17958         if (Subtarget->isThumb1Only()) {
17959           // This must be a constant between 0 and 31, for shift amounts.
17960           if (CVal >= 0 && CVal <= 31)
17961             break;
17962         }
17963         return;
17964 
17965       case 'O':
17966         if (Subtarget->isThumb1Only()) {
17967           // This must be a multiple of 4 between -508 and 508, for
17968           // ADD/SUB sp = sp + immediate.
17969           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
17970             break;
17971         }
17972         return;
17973     }
17974     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
17975     break;
17976   }
17977 
17978   if (Result.getNode()) {
17979     Ops.push_back(Result);
17980     return;
17981   }
17982   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17983 }
17984 
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)17985 static RTLIB::Libcall getDivRemLibcall(
17986     const SDNode *N, MVT::SimpleValueType SVT) {
17987   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
17988           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
17989          "Unhandled Opcode in getDivRemLibcall");
17990   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
17991                   N->getOpcode() == ISD::SREM;
17992   RTLIB::Libcall LC;
17993   switch (SVT) {
17994   default: llvm_unreachable("Unexpected request for libcall!");
17995   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
17996   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
17997   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
17998   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
17999   }
18000   return LC;
18001 }
18002 
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)18003 static TargetLowering::ArgListTy getDivRemArgList(
18004     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
18005   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
18006           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
18007          "Unhandled Opcode in getDivRemArgList");
18008   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
18009                   N->getOpcode() == ISD::SREM;
18010   TargetLowering::ArgListTy Args;
18011   TargetLowering::ArgListEntry Entry;
18012   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
18013     EVT ArgVT = N->getOperand(i).getValueType();
18014     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
18015     Entry.Node = N->getOperand(i);
18016     Entry.Ty = ArgTy;
18017     Entry.IsSExt = isSigned;
18018     Entry.IsZExt = !isSigned;
18019     Args.push_back(Entry);
18020   }
18021   if (Subtarget->isTargetWindows() && Args.size() >= 2)
18022     std::swap(Args[0], Args[1]);
18023   return Args;
18024 }
18025 
LowerDivRem(SDValue Op,SelectionDAG & DAG) const18026 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
18027   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
18028           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
18029           Subtarget->isTargetWindows()) &&
18030          "Register-based DivRem lowering only");
18031   unsigned Opcode = Op->getOpcode();
18032   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
18033          "Invalid opcode for Div/Rem lowering");
18034   bool isSigned = (Opcode == ISD::SDIVREM);
18035   EVT VT = Op->getValueType(0);
18036   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
18037   SDLoc dl(Op);
18038 
18039   // If the target has hardware divide, use divide + multiply + subtract:
18040   //     div = a / b
18041   //     rem = a - b * div
18042   //     return {div, rem}
18043   // This should be lowered into UDIV/SDIV + MLS later on.
18044   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
18045                                         : Subtarget->hasDivideInARMMode();
18046   if (hasDivide && Op->getValueType(0).isSimple() &&
18047       Op->getSimpleValueType(0) == MVT::i32) {
18048     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
18049     const SDValue Dividend = Op->getOperand(0);
18050     const SDValue Divisor = Op->getOperand(1);
18051     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
18052     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
18053     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
18054 
18055     SDValue Values[2] = {Div, Rem};
18056     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
18057   }
18058 
18059   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
18060                                        VT.getSimpleVT().SimpleTy);
18061   SDValue InChain = DAG.getEntryNode();
18062 
18063   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
18064                                                     DAG.getContext(),
18065                                                     Subtarget);
18066 
18067   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18068                                          getPointerTy(DAG.getDataLayout()));
18069 
18070   Type *RetTy = StructType::get(Ty, Ty);
18071 
18072   if (Subtarget->isTargetWindows())
18073     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
18074 
18075   TargetLowering::CallLoweringInfo CLI(DAG);
18076   CLI.setDebugLoc(dl).setChain(InChain)
18077     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
18078     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
18079 
18080   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
18081   return CallInfo.first;
18082 }
18083 
18084 // Lowers REM using divmod helpers
18085 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const18086 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
18087   // Build return types (div and rem)
18088   std::vector<Type*> RetTyParams;
18089   Type *RetTyElement;
18090 
18091   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
18092   default: llvm_unreachable("Unexpected request for libcall!");
18093   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
18094   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
18095   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
18096   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
18097   }
18098 
18099   RetTyParams.push_back(RetTyElement);
18100   RetTyParams.push_back(RetTyElement);
18101   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
18102   Type *RetTy = StructType::get(*DAG.getContext(), ret);
18103 
18104   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
18105                                                              SimpleTy);
18106   SDValue InChain = DAG.getEntryNode();
18107   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
18108                                                     Subtarget);
18109   bool isSigned = N->getOpcode() == ISD::SREM;
18110   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
18111                                          getPointerTy(DAG.getDataLayout()));
18112 
18113   if (Subtarget->isTargetWindows())
18114     InChain = WinDBZCheckDenominator(DAG, N, InChain);
18115 
18116   // Lower call
18117   CallLoweringInfo CLI(DAG);
18118   CLI.setChain(InChain)
18119      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
18120      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
18121   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
18122 
18123   // Return second (rem) result operand (first contains div)
18124   SDNode *ResNode = CallResult.first.getNode();
18125   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
18126   return ResNode->getOperand(1);
18127 }
18128 
18129 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const18130 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
18131   assert(Subtarget->isTargetWindows() && "unsupported target platform");
18132   SDLoc DL(Op);
18133 
18134   // Get the inputs.
18135   SDValue Chain = Op.getOperand(0);
18136   SDValue Size  = Op.getOperand(1);
18137 
18138   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
18139           "no-stack-arg-probe")) {
18140     MaybeAlign Align =
18141         cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
18142     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
18143     Chain = SP.getValue(1);
18144     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
18145     if (Align)
18146       SP =
18147           DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
18148                       DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
18149     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
18150     SDValue Ops[2] = { SP, Chain };
18151     return DAG.getMergeValues(Ops, DL);
18152   }
18153 
18154   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
18155                               DAG.getConstant(2, DL, MVT::i32));
18156 
18157   SDValue Flag;
18158   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
18159   Flag = Chain.getValue(1);
18160 
18161   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
18162   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
18163 
18164   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
18165   Chain = NewSP.getValue(1);
18166 
18167   SDValue Ops[2] = { NewSP, Chain };
18168   return DAG.getMergeValues(Ops, DL);
18169 }
18170 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const18171 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
18172   bool IsStrict = Op->isStrictFPOpcode();
18173   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
18174   const unsigned DstSz = Op.getValueType().getSizeInBits();
18175   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
18176   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
18177          "Unexpected type for custom-lowering FP_EXTEND");
18178 
18179   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
18180          "With both FP DP and 16, any FP conversion is legal!");
18181 
18182   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
18183          "With FP16, 16 to 32 conversion is legal!");
18184 
18185   // Converting from 32 -> 64 is valid if we have FP64.
18186   if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
18187     // FIXME: Remove this when we have strict fp instruction selection patterns
18188     if (IsStrict) {
18189       SDLoc Loc(Op);
18190       SDValue Result = DAG.getNode(ISD::FP_EXTEND,
18191                                    Loc, Op.getValueType(), SrcVal);
18192       return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
18193     }
18194     return Op;
18195   }
18196 
18197   // Either we are converting from 16 -> 64, without FP16 and/or
18198   // FP.double-precision or without Armv8-fp. So we must do it in two
18199   // steps.
18200   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
18201   // without FP16. So we must do a function call.
18202   SDLoc Loc(Op);
18203   RTLIB::Libcall LC;
18204   MakeLibCallOptions CallOptions;
18205   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
18206   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
18207     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
18208     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
18209     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
18210     if (Supported) {
18211       if (IsStrict) {
18212         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
18213                              {DstVT, MVT::Other}, {Chain, SrcVal});
18214         Chain = SrcVal.getValue(1);
18215       } else {
18216         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
18217       }
18218     } else {
18219       LC = RTLIB::getFPEXT(SrcVT, DstVT);
18220       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
18221              "Unexpected type for custom-lowering FP_EXTEND");
18222       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
18223                                             Loc, Chain);
18224     }
18225   }
18226 
18227   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
18228 }
18229 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const18230 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
18231   bool IsStrict = Op->isStrictFPOpcode();
18232 
18233   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
18234   EVT SrcVT = SrcVal.getValueType();
18235   EVT DstVT = Op.getValueType();
18236   const unsigned DstSz = Op.getValueType().getSizeInBits();
18237   const unsigned SrcSz = SrcVT.getSizeInBits();
18238   (void)DstSz;
18239   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
18240          "Unexpected type for custom-lowering FP_ROUND");
18241 
18242   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
18243          "With both FP DP and 16, any FP conversion is legal!");
18244 
18245   SDLoc Loc(Op);
18246 
18247   // Instruction from 32 -> 16 if hasFP16 is valid
18248   if (SrcSz == 32 && Subtarget->hasFP16())
18249     return Op;
18250 
18251   // Lib call from 32 -> 16 / 64 -> [32, 16]
18252   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
18253   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
18254          "Unexpected type for custom-lowering FP_ROUND");
18255   MakeLibCallOptions CallOptions;
18256   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
18257   SDValue Result;
18258   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
18259                                         Loc, Chain);
18260   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
18261 }
18262 
lowerABS(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const18263 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
18264                                  SelectionDAG &DAG) const {
18265   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
18266   MVT HalfT = MVT::i32;
18267   SDLoc dl(N);
18268   SDValue Hi, Lo, Tmp;
18269 
18270   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
18271       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
18272     return ;
18273 
18274   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
18275   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
18276 
18277   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
18278                    DAG.getConstant(0, dl, HalfT));
18279   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
18280                    DAG.getConstant(1, dl, HalfT));
18281 
18282   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
18283                     DAG.getConstant(OpTypeBits - 1, dl,
18284                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
18285   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
18286   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
18287                    SDValue(Lo.getNode(), 1));
18288   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
18289   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
18290 
18291   Results.push_back(Lo);
18292   Results.push_back(Hi);
18293 }
18294 
18295 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const18296 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
18297   // The ARM target isn't yet aware of offsets.
18298   return false;
18299 }
18300 
isBitFieldInvertedMask(unsigned v)18301 bool ARM::isBitFieldInvertedMask(unsigned v) {
18302   if (v == 0xffffffff)
18303     return false;
18304 
18305   // there can be 1's on either or both "outsides", all the "inside"
18306   // bits must be 0's
18307   return isShiftedMask_32(~v);
18308 }
18309 
18310 /// isFPImmLegal - Returns true if the target can instruction select the
18311 /// specified FP immediate natively. If false, the legalizer will
18312 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const18313 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
18314                                      bool ForCodeSize) const {
18315   if (!Subtarget->hasVFP3Base())
18316     return false;
18317   if (VT == MVT::f16 && Subtarget->hasFullFP16())
18318     return ARM_AM::getFP16Imm(Imm) != -1;
18319   if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
18320       ARM_AM::getFP32FP16Imm(Imm) != -1)
18321     return true;
18322   if (VT == MVT::f32)
18323     return ARM_AM::getFP32Imm(Imm) != -1;
18324   if (VT == MVT::f64 && Subtarget->hasFP64())
18325     return ARM_AM::getFP64Imm(Imm) != -1;
18326   return false;
18327 }
18328 
18329 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
18330 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
18331 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const18332 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
18333                                            const CallInst &I,
18334                                            MachineFunction &MF,
18335                                            unsigned Intrinsic) const {
18336   switch (Intrinsic) {
18337   case Intrinsic::arm_neon_vld1:
18338   case Intrinsic::arm_neon_vld2:
18339   case Intrinsic::arm_neon_vld3:
18340   case Intrinsic::arm_neon_vld4:
18341   case Intrinsic::arm_neon_vld2lane:
18342   case Intrinsic::arm_neon_vld3lane:
18343   case Intrinsic::arm_neon_vld4lane:
18344   case Intrinsic::arm_neon_vld2dup:
18345   case Intrinsic::arm_neon_vld3dup:
18346   case Intrinsic::arm_neon_vld4dup: {
18347     Info.opc = ISD::INTRINSIC_W_CHAIN;
18348     // Conservatively set memVT to the entire set of vectors loaded.
18349     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18350     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
18351     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18352     Info.ptrVal = I.getArgOperand(0);
18353     Info.offset = 0;
18354     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
18355     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
18356     // volatile loads with NEON intrinsics not supported
18357     Info.flags = MachineMemOperand::MOLoad;
18358     return true;
18359   }
18360   case Intrinsic::arm_neon_vld1x2:
18361   case Intrinsic::arm_neon_vld1x3:
18362   case Intrinsic::arm_neon_vld1x4: {
18363     Info.opc = ISD::INTRINSIC_W_CHAIN;
18364     // Conservatively set memVT to the entire set of vectors loaded.
18365     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18366     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
18367     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18368     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
18369     Info.offset = 0;
18370     Info.align.reset();
18371     // volatile loads with NEON intrinsics not supported
18372     Info.flags = MachineMemOperand::MOLoad;
18373     return true;
18374   }
18375   case Intrinsic::arm_neon_vst1:
18376   case Intrinsic::arm_neon_vst2:
18377   case Intrinsic::arm_neon_vst3:
18378   case Intrinsic::arm_neon_vst4:
18379   case Intrinsic::arm_neon_vst2lane:
18380   case Intrinsic::arm_neon_vst3lane:
18381   case Intrinsic::arm_neon_vst4lane: {
18382     Info.opc = ISD::INTRINSIC_VOID;
18383     // Conservatively set memVT to the entire set of vectors stored.
18384     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18385     unsigned NumElts = 0;
18386     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
18387       Type *ArgTy = I.getArgOperand(ArgI)->getType();
18388       if (!ArgTy->isVectorTy())
18389         break;
18390       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
18391     }
18392     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18393     Info.ptrVal = I.getArgOperand(0);
18394     Info.offset = 0;
18395     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
18396     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
18397     // volatile stores with NEON intrinsics not supported
18398     Info.flags = MachineMemOperand::MOStore;
18399     return true;
18400   }
18401   case Intrinsic::arm_neon_vst1x2:
18402   case Intrinsic::arm_neon_vst1x3:
18403   case Intrinsic::arm_neon_vst1x4: {
18404     Info.opc = ISD::INTRINSIC_VOID;
18405     // Conservatively set memVT to the entire set of vectors stored.
18406     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18407     unsigned NumElts = 0;
18408     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
18409       Type *ArgTy = I.getArgOperand(ArgI)->getType();
18410       if (!ArgTy->isVectorTy())
18411         break;
18412       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
18413     }
18414     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
18415     Info.ptrVal = I.getArgOperand(0);
18416     Info.offset = 0;
18417     Info.align.reset();
18418     // volatile stores with NEON intrinsics not supported
18419     Info.flags = MachineMemOperand::MOStore;
18420     return true;
18421   }
18422   case Intrinsic::arm_mve_vld2q:
18423   case Intrinsic::arm_mve_vld4q: {
18424     Info.opc = ISD::INTRINSIC_W_CHAIN;
18425     // Conservatively set memVT to the entire set of vectors loaded.
18426     Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
18427     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
18428     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
18429     Info.ptrVal = I.getArgOperand(0);
18430     Info.offset = 0;
18431     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
18432     // volatile loads with MVE intrinsics not supported
18433     Info.flags = MachineMemOperand::MOLoad;
18434     return true;
18435   }
18436   case Intrinsic::arm_mve_vst2q:
18437   case Intrinsic::arm_mve_vst4q: {
18438     Info.opc = ISD::INTRINSIC_VOID;
18439     // Conservatively set memVT to the entire set of vectors stored.
18440     Type *VecTy = I.getArgOperand(1)->getType();
18441     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
18442     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
18443     Info.ptrVal = I.getArgOperand(0);
18444     Info.offset = 0;
18445     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
18446     // volatile stores with MVE intrinsics not supported
18447     Info.flags = MachineMemOperand::MOStore;
18448     return true;
18449   }
18450   case Intrinsic::arm_ldaex:
18451   case Intrinsic::arm_ldrex: {
18452     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18453     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
18454     Info.opc = ISD::INTRINSIC_W_CHAIN;
18455     Info.memVT = MVT::getVT(PtrTy->getElementType());
18456     Info.ptrVal = I.getArgOperand(0);
18457     Info.offset = 0;
18458     Info.align = DL.getABITypeAlign(PtrTy->getElementType());
18459     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
18460     return true;
18461   }
18462   case Intrinsic::arm_stlex:
18463   case Intrinsic::arm_strex: {
18464     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
18465     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
18466     Info.opc = ISD::INTRINSIC_W_CHAIN;
18467     Info.memVT = MVT::getVT(PtrTy->getElementType());
18468     Info.ptrVal = I.getArgOperand(1);
18469     Info.offset = 0;
18470     Info.align = DL.getABITypeAlign(PtrTy->getElementType());
18471     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
18472     return true;
18473   }
18474   case Intrinsic::arm_stlexd:
18475   case Intrinsic::arm_strexd:
18476     Info.opc = ISD::INTRINSIC_W_CHAIN;
18477     Info.memVT = MVT::i64;
18478     Info.ptrVal = I.getArgOperand(2);
18479     Info.offset = 0;
18480     Info.align = Align(8);
18481     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
18482     return true;
18483 
18484   case Intrinsic::arm_ldaexd:
18485   case Intrinsic::arm_ldrexd:
18486     Info.opc = ISD::INTRINSIC_W_CHAIN;
18487     Info.memVT = MVT::i64;
18488     Info.ptrVal = I.getArgOperand(0);
18489     Info.offset = 0;
18490     Info.align = Align(8);
18491     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
18492     return true;
18493 
18494   default:
18495     break;
18496   }
18497 
18498   return false;
18499 }
18500 
18501 /// Returns true if it is beneficial to convert a load of a constant
18502 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const18503 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
18504                                                           Type *Ty) const {
18505   assert(Ty->isIntegerTy());
18506 
18507   unsigned Bits = Ty->getPrimitiveSizeInBits();
18508   if (Bits == 0 || Bits > 32)
18509     return false;
18510   return true;
18511 }
18512 
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const18513 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
18514                                                 unsigned Index) const {
18515   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
18516     return false;
18517 
18518   return (Index == 0 || Index == ResVT.getVectorNumElements());
18519 }
18520 
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const18521 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
18522                                         ARM_MB::MemBOpt Domain) const {
18523   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18524 
18525   // First, if the target has no DMB, see what fallback we can use.
18526   if (!Subtarget->hasDataBarrier()) {
18527     // Some ARMv6 cpus can support data barriers with an mcr instruction.
18528     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
18529     // here.
18530     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
18531       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
18532       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
18533                         Builder.getInt32(0), Builder.getInt32(7),
18534                         Builder.getInt32(10), Builder.getInt32(5)};
18535       return Builder.CreateCall(MCR, args);
18536     } else {
18537       // Instead of using barriers, atomic accesses on these subtargets use
18538       // libcalls.
18539       llvm_unreachable("makeDMB on a target so old that it has no barriers");
18540     }
18541   } else {
18542     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
18543     // Only a full system barrier exists in the M-class architectures.
18544     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
18545     Constant *CDomain = Builder.getInt32(Domain);
18546     return Builder.CreateCall(DMB, CDomain);
18547   }
18548 }
18549 
18550 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const18551 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
18552                                                  Instruction *Inst,
18553                                                  AtomicOrdering Ord) const {
18554   switch (Ord) {
18555   case AtomicOrdering::NotAtomic:
18556   case AtomicOrdering::Unordered:
18557     llvm_unreachable("Invalid fence: unordered/non-atomic");
18558   case AtomicOrdering::Monotonic:
18559   case AtomicOrdering::Acquire:
18560     return nullptr; // Nothing to do
18561   case AtomicOrdering::SequentiallyConsistent:
18562     if (!Inst->hasAtomicStore())
18563       return nullptr; // Nothing to do
18564     LLVM_FALLTHROUGH;
18565   case AtomicOrdering::Release:
18566   case AtomicOrdering::AcquireRelease:
18567     if (Subtarget->preferISHSTBarriers())
18568       return makeDMB(Builder, ARM_MB::ISHST);
18569     // FIXME: add a comment with a link to documentation justifying this.
18570     else
18571       return makeDMB(Builder, ARM_MB::ISH);
18572   }
18573   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
18574 }
18575 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const18576 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
18577                                                   Instruction *Inst,
18578                                                   AtomicOrdering Ord) const {
18579   switch (Ord) {
18580   case AtomicOrdering::NotAtomic:
18581   case AtomicOrdering::Unordered:
18582     llvm_unreachable("Invalid fence: unordered/not-atomic");
18583   case AtomicOrdering::Monotonic:
18584   case AtomicOrdering::Release:
18585     return nullptr; // Nothing to do
18586   case AtomicOrdering::Acquire:
18587   case AtomicOrdering::AcquireRelease:
18588   case AtomicOrdering::SequentiallyConsistent:
18589     return makeDMB(Builder, ARM_MB::ISH);
18590   }
18591   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
18592 }
18593 
18594 // Loads and stores less than 64-bits are already atomic; ones above that
18595 // are doomed anyway, so defer to the default libcall and blame the OS when
18596 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
18597 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const18598 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
18599   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
18600   return (Size == 64) && !Subtarget->isMClass();
18601 }
18602 
18603 // Loads and stores less than 64-bits are already atomic; ones above that
18604 // are doomed anyway, so defer to the default libcall and blame the OS when
18605 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
18606 // anything for those.
18607 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
18608 // guarantee, see DDI0406C ARM architecture reference manual,
18609 // sections A8.8.72-74 LDRD)
18610 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const18611 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
18612   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
18613   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
18614                                                   : AtomicExpansionKind::None;
18615 }
18616 
18617 // For the real atomic operations, we have ldrex/strex up to 32 bits,
18618 // and up to 64 bits on the non-M profiles
18619 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const18620 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18621   if (AI->isFloatingPointOperation())
18622     return AtomicExpansionKind::CmpXChg;
18623 
18624   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18625   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
18626   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
18627              ? AtomicExpansionKind::LLSC
18628              : AtomicExpansionKind::None;
18629 }
18630 
18631 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const18632 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18633   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
18634   // implement cmpxchg without spilling. If the address being exchanged is also
18635   // on the stack and close enough to the spill slot, this can lead to a
18636   // situation where the monitor always gets cleared and the atomic operation
18637   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
18638   bool HasAtomicCmpXchg =
18639       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
18640   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
18641     return AtomicExpansionKind::LLSC;
18642   return AtomicExpansionKind::None;
18643 }
18644 
shouldInsertFencesForAtomic(const Instruction * I) const18645 bool ARMTargetLowering::shouldInsertFencesForAtomic(
18646     const Instruction *I) const {
18647   return InsertFencesForAtomic;
18648 }
18649 
18650 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const18651 bool ARMTargetLowering::useLoadStackGuardNode() const {
18652   return Subtarget->isTargetMachO();
18653 }
18654 
insertSSPDeclarations(Module & M) const18655 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
18656   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
18657     return TargetLowering::insertSSPDeclarations(M);
18658 
18659   // MSVC CRT has a global variable holding security cookie.
18660   M.getOrInsertGlobal("__security_cookie",
18661                       Type::getInt8PtrTy(M.getContext()));
18662 
18663   // MSVC CRT has a function to validate security cookie.
18664   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
18665       "__security_check_cookie", Type::getVoidTy(M.getContext()),
18666       Type::getInt8PtrTy(M.getContext()));
18667   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
18668     F->addAttribute(1, Attribute::AttrKind::InReg);
18669 }
18670 
getSDagStackGuard(const Module & M) const18671 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
18672   // MSVC CRT has a global variable holding security cookie.
18673   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
18674     return M.getGlobalVariable("__security_cookie");
18675   return TargetLowering::getSDagStackGuard(M);
18676 }
18677 
getSSPStackGuardCheck(const Module & M) const18678 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
18679   // MSVC CRT has a function to validate security cookie.
18680   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
18681     return M.getFunction("__security_check_cookie");
18682   return TargetLowering::getSSPStackGuardCheck(M);
18683 }
18684 
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const18685 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
18686                                                   unsigned &Cost) const {
18687   // If we do not have NEON, vector types are not natively supported.
18688   if (!Subtarget->hasNEON())
18689     return false;
18690 
18691   // Floating point values and vector values map to the same register file.
18692   // Therefore, although we could do a store extract of a vector type, this is
18693   // better to leave at float as we have more freedom in the addressing mode for
18694   // those.
18695   if (VectorTy->isFPOrFPVectorTy())
18696     return false;
18697 
18698   // If the index is unknown at compile time, this is very expensive to lower
18699   // and it is not possible to combine the store with the extract.
18700   if (!isa<ConstantInt>(Idx))
18701     return false;
18702 
18703   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
18704   unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedSize();
18705   // We can do a store + vector extract on any vector that fits perfectly in a D
18706   // or Q register.
18707   if (BitWidth == 64 || BitWidth == 128) {
18708     Cost = 0;
18709     return true;
18710   }
18711   return false;
18712 }
18713 
isCheapToSpeculateCttz() const18714 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
18715   return Subtarget->hasV6T2Ops();
18716 }
18717 
isCheapToSpeculateCtlz() const18718 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
18719   return Subtarget->hasV6T2Ops();
18720 }
18721 
shouldExpandShift(SelectionDAG & DAG,SDNode * N) const18722 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
18723   return !Subtarget->hasMinSize() || Subtarget->isTargetWindows();
18724 }
18725 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const18726 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
18727                                          AtomicOrdering Ord) const {
18728   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18729   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
18730   bool IsAcquire = isAcquireOrStronger(Ord);
18731 
18732   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
18733   // intrinsic must return {i32, i32} and we have to recombine them into a
18734   // single i64 here.
18735   if (ValTy->getPrimitiveSizeInBits() == 64) {
18736     Intrinsic::ID Int =
18737         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
18738     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
18739 
18740     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
18741     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
18742 
18743     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18744     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18745     if (!Subtarget->isLittle())
18746       std::swap (Lo, Hi);
18747     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18748     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18749     return Builder.CreateOr(
18750         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
18751   }
18752 
18753   Type *Tys[] = { Addr->getType() };
18754   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
18755   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
18756 
18757   return Builder.CreateTruncOrBitCast(
18758       Builder.CreateCall(Ldrex, Addr),
18759       cast<PointerType>(Addr->getType())->getElementType());
18760 }
18761 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const18762 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
18763     IRBuilder<> &Builder) const {
18764   if (!Subtarget->hasV7Ops())
18765     return;
18766   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18767   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
18768 }
18769 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const18770 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
18771                                                Value *Addr,
18772                                                AtomicOrdering Ord) const {
18773   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18774   bool IsRelease = isReleaseOrStronger(Ord);
18775 
18776   // Since the intrinsics must have legal type, the i64 intrinsics take two
18777   // parameters: "i32, i32". We must marshal Val into the appropriate form
18778   // before the call.
18779   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
18780     Intrinsic::ID Int =
18781         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
18782     Function *Strex = Intrinsic::getDeclaration(M, Int);
18783     Type *Int32Ty = Type::getInt32Ty(M->getContext());
18784 
18785     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
18786     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
18787     if (!Subtarget->isLittle())
18788       std::swap(Lo, Hi);
18789     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
18790     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
18791   }
18792 
18793   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
18794   Type *Tys[] = { Addr->getType() };
18795   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
18796 
18797   return Builder.CreateCall(
18798       Strex, {Builder.CreateZExtOrBitCast(
18799                   Val, Strex->getFunctionType()->getParamType(0)),
18800               Addr});
18801 }
18802 
18803 
alignLoopsWithOptSize() const18804 bool ARMTargetLowering::alignLoopsWithOptSize() const {
18805   return Subtarget->isMClass();
18806 }
18807 
18808 /// A helper function for determining the number of interleaved accesses we
18809 /// will generate when lowering accesses of the given type.
18810 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const18811 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
18812                                              const DataLayout &DL) const {
18813   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
18814 }
18815 
isLegalInterleavedAccessType(unsigned Factor,FixedVectorType * VecTy,const DataLayout & DL) const18816 bool ARMTargetLowering::isLegalInterleavedAccessType(
18817     unsigned Factor, FixedVectorType *VecTy, const DataLayout &DL) const {
18818 
18819   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
18820   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
18821 
18822   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
18823     return false;
18824 
18825   // Ensure the vector doesn't have f16 elements. Even though we could do an
18826   // i16 vldN, we can't hold the f16 vectors and will end up converting via
18827   // f32.
18828   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
18829     return false;
18830   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
18831     return false;
18832 
18833   // Ensure the number of vector elements is greater than 1.
18834   if (VecTy->getNumElements() < 2)
18835     return false;
18836 
18837   // Ensure the element type is legal.
18838   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
18839     return false;
18840 
18841   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
18842   // 128 will be split into multiple interleaved accesses.
18843   if (Subtarget->hasNEON() && VecSize == 64)
18844     return true;
18845   return VecSize % 128 == 0;
18846 }
18847 
getMaxSupportedInterleaveFactor() const18848 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
18849   if (Subtarget->hasNEON())
18850     return 4;
18851   if (Subtarget->hasMVEIntegerOps())
18852     return MVEMaxSupportedInterleaveFactor;
18853   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
18854 }
18855 
18856 /// Lower an interleaved load into a vldN intrinsic.
18857 ///
18858 /// E.g. Lower an interleaved load (Factor = 2):
18859 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
18860 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
18861 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
18862 ///
18863 ///      Into:
18864 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
18865 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
18866 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const18867 bool ARMTargetLowering::lowerInterleavedLoad(
18868     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
18869     ArrayRef<unsigned> Indices, unsigned Factor) const {
18870   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
18871          "Invalid interleave factor");
18872   assert(!Shuffles.empty() && "Empty shufflevector input");
18873   assert(Shuffles.size() == Indices.size() &&
18874          "Unmatched number of shufflevectors and indices");
18875 
18876   auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
18877   Type *EltTy = VecTy->getElementType();
18878 
18879   const DataLayout &DL = LI->getModule()->getDataLayout();
18880 
18881   // Skip if we do not have NEON and skip illegal vector types. We can
18882   // "legalize" wide vector types into multiple interleaved accesses as long as
18883   // the vector types are divisible by 128.
18884   if (!isLegalInterleavedAccessType(Factor, VecTy, DL))
18885     return false;
18886 
18887   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
18888 
18889   // A pointer vector can not be the return type of the ldN intrinsics. Need to
18890   // load integer vectors first and then convert to pointer vectors.
18891   if (EltTy->isPointerTy())
18892     VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
18893 
18894   IRBuilder<> Builder(LI);
18895 
18896   // The base address of the load.
18897   Value *BaseAddr = LI->getPointerOperand();
18898 
18899   if (NumLoads > 1) {
18900     // If we're going to generate more than one load, reset the sub-vector type
18901     // to something legal.
18902     VecTy = FixedVectorType::get(VecTy->getElementType(),
18903                                  VecTy->getNumElements() / NumLoads);
18904 
18905     // We will compute the pointer operand of each load from the original base
18906     // address using GEPs. Cast the base address to a pointer to the scalar
18907     // element type.
18908     BaseAddr = Builder.CreateBitCast(
18909         BaseAddr,
18910         VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
18911   }
18912 
18913   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
18914 
18915   auto createLoadIntrinsic = [&](Value *BaseAddr) {
18916     if (Subtarget->hasNEON()) {
18917       Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
18918       Type *Tys[] = {VecTy, Int8Ptr};
18919       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
18920                                                 Intrinsic::arm_neon_vld3,
18921                                                 Intrinsic::arm_neon_vld4};
18922       Function *VldnFunc =
18923           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
18924 
18925       SmallVector<Value *, 2> Ops;
18926       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
18927       Ops.push_back(Builder.getInt32(LI->getAlignment()));
18928 
18929       return Builder.CreateCall(VldnFunc, Ops, "vldN");
18930     } else {
18931       assert((Factor == 2 || Factor == 4) &&
18932              "expected interleave factor of 2 or 4 for MVE");
18933       Intrinsic::ID LoadInts =
18934           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
18935       Type *VecEltTy =
18936           VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace());
18937       Type *Tys[] = {VecTy, VecEltTy};
18938       Function *VldnFunc =
18939           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
18940 
18941       SmallVector<Value *, 2> Ops;
18942       Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
18943       return Builder.CreateCall(VldnFunc, Ops, "vldN");
18944     }
18945   };
18946 
18947   // Holds sub-vectors extracted from the load intrinsic return values. The
18948   // sub-vectors are associated with the shufflevector instructions they will
18949   // replace.
18950   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
18951 
18952   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
18953     // If we're generating more than one load, compute the base address of
18954     // subsequent loads as an offset from the previous.
18955     if (LoadCount > 0)
18956       BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
18957                                             VecTy->getNumElements() * Factor);
18958 
18959     CallInst *VldN = createLoadIntrinsic(BaseAddr);
18960 
18961     // Replace uses of each shufflevector with the corresponding vector loaded
18962     // by ldN.
18963     for (unsigned i = 0; i < Shuffles.size(); i++) {
18964       ShuffleVectorInst *SV = Shuffles[i];
18965       unsigned Index = Indices[i];
18966 
18967       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
18968 
18969       // Convert the integer vector to pointer vector if the element is pointer.
18970       if (EltTy->isPointerTy())
18971         SubVec = Builder.CreateIntToPtr(
18972             SubVec,
18973             FixedVectorType::get(SV->getType()->getElementType(), VecTy));
18974 
18975       SubVecs[SV].push_back(SubVec);
18976     }
18977   }
18978 
18979   // Replace uses of the shufflevector instructions with the sub-vectors
18980   // returned by the load intrinsic. If a shufflevector instruction is
18981   // associated with more than one sub-vector, those sub-vectors will be
18982   // concatenated into a single wide vector.
18983   for (ShuffleVectorInst *SVI : Shuffles) {
18984     auto &SubVec = SubVecs[SVI];
18985     auto *WideVec =
18986         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
18987     SVI->replaceAllUsesWith(WideVec);
18988   }
18989 
18990   return true;
18991 }
18992 
18993 /// Lower an interleaved store into a vstN intrinsic.
18994 ///
18995 /// E.g. Lower an interleaved store (Factor = 3):
18996 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
18997 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
18998 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
18999 ///
19000 ///      Into:
19001 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
19002 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
19003 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
19004 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
19005 ///
19006 /// Note that the new shufflevectors will be removed and we'll only generate one
19007 /// vst3 instruction in CodeGen.
19008 ///
19009 /// Example for a more general valid mask (Factor 3). Lower:
19010 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
19011 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
19012 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
19013 ///
19014 ///      Into:
19015 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
19016 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
19017 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
19018 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const19019 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
19020                                               ShuffleVectorInst *SVI,
19021                                               unsigned Factor) const {
19022   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
19023          "Invalid interleave factor");
19024 
19025   auto *VecTy = cast<FixedVectorType>(SVI->getType());
19026   assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
19027 
19028   unsigned LaneLen = VecTy->getNumElements() / Factor;
19029   Type *EltTy = VecTy->getElementType();
19030   auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
19031 
19032   const DataLayout &DL = SI->getModule()->getDataLayout();
19033 
19034   // Skip if we do not have NEON and skip illegal vector types. We can
19035   // "legalize" wide vector types into multiple interleaved accesses as long as
19036   // the vector types are divisible by 128.
19037   if (!isLegalInterleavedAccessType(Factor, SubVecTy, DL))
19038     return false;
19039 
19040   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
19041 
19042   Value *Op0 = SVI->getOperand(0);
19043   Value *Op1 = SVI->getOperand(1);
19044   IRBuilder<> Builder(SI);
19045 
19046   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
19047   // vectors to integer vectors.
19048   if (EltTy->isPointerTy()) {
19049     Type *IntTy = DL.getIntPtrType(EltTy);
19050 
19051     // Convert to the corresponding integer vector.
19052     auto *IntVecTy =
19053         FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
19054     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
19055     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
19056 
19057     SubVecTy = FixedVectorType::get(IntTy, LaneLen);
19058   }
19059 
19060   // The base address of the store.
19061   Value *BaseAddr = SI->getPointerOperand();
19062 
19063   if (NumStores > 1) {
19064     // If we're going to generate more than one store, reset the lane length
19065     // and sub-vector type to something legal.
19066     LaneLen /= NumStores;
19067     SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
19068 
19069     // We will compute the pointer operand of each store from the original base
19070     // address using GEPs. Cast the base address to a pointer to the scalar
19071     // element type.
19072     BaseAddr = Builder.CreateBitCast(
19073         BaseAddr,
19074         SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
19075   }
19076 
19077   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
19078 
19079   auto Mask = SVI->getShuffleMask();
19080 
19081   auto createStoreIntrinsic = [&](Value *BaseAddr,
19082                                   SmallVectorImpl<Value *> &Shuffles) {
19083     if (Subtarget->hasNEON()) {
19084       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
19085                                                  Intrinsic::arm_neon_vst3,
19086                                                  Intrinsic::arm_neon_vst4};
19087       Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
19088       Type *Tys[] = {Int8Ptr, SubVecTy};
19089 
19090       Function *VstNFunc = Intrinsic::getDeclaration(
19091           SI->getModule(), StoreInts[Factor - 2], Tys);
19092 
19093       SmallVector<Value *, 6> Ops;
19094       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
19095       for (auto S : Shuffles)
19096         Ops.push_back(S);
19097       Ops.push_back(Builder.getInt32(SI->getAlignment()));
19098       Builder.CreateCall(VstNFunc, Ops);
19099     } else {
19100       assert((Factor == 2 || Factor == 4) &&
19101              "expected interleave factor of 2 or 4 for MVE");
19102       Intrinsic::ID StoreInts =
19103           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
19104       Type *EltPtrTy = SubVecTy->getElementType()->getPointerTo(
19105           SI->getPointerAddressSpace());
19106       Type *Tys[] = {EltPtrTy, SubVecTy};
19107       Function *VstNFunc =
19108           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
19109 
19110       SmallVector<Value *, 6> Ops;
19111       Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
19112       for (auto S : Shuffles)
19113         Ops.push_back(S);
19114       for (unsigned F = 0; F < Factor; F++) {
19115         Ops.push_back(Builder.getInt32(F));
19116         Builder.CreateCall(VstNFunc, Ops);
19117         Ops.pop_back();
19118       }
19119     }
19120   };
19121 
19122   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
19123     // If we generating more than one store, we compute the base address of
19124     // subsequent stores as an offset from the previous.
19125     if (StoreCount > 0)
19126       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
19127                                             BaseAddr, LaneLen * Factor);
19128 
19129     SmallVector<Value *, 4> Shuffles;
19130 
19131     // Split the shufflevector operands into sub vectors for the new vstN call.
19132     for (unsigned i = 0; i < Factor; i++) {
19133       unsigned IdxI = StoreCount * LaneLen * Factor + i;
19134       if (Mask[IdxI] >= 0) {
19135         Shuffles.push_back(Builder.CreateShuffleVector(
19136             Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
19137       } else {
19138         unsigned StartMask = 0;
19139         for (unsigned j = 1; j < LaneLen; j++) {
19140           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
19141           if (Mask[IdxJ * Factor + IdxI] >= 0) {
19142             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
19143             break;
19144           }
19145         }
19146         // Note: If all elements in a chunk are undefs, StartMask=0!
19147         // Note: Filling undef gaps with random elements is ok, since
19148         // those elements were being written anyway (with undefs).
19149         // In the case of all undefs we're defaulting to using elems from 0
19150         // Note: StartMask cannot be negative, it's checked in
19151         // isReInterleaveMask
19152         Shuffles.push_back(Builder.CreateShuffleVector(
19153             Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
19154       }
19155     }
19156 
19157     createStoreIntrinsic(BaseAddr, Shuffles);
19158   }
19159   return true;
19160 }
19161 
19162 enum HABaseType {
19163   HA_UNKNOWN = 0,
19164   HA_FLOAT,
19165   HA_DOUBLE,
19166   HA_VECT64,
19167   HA_VECT128
19168 };
19169 
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)19170 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
19171                                    uint64_t &Members) {
19172   if (auto *ST = dyn_cast<StructType>(Ty)) {
19173     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
19174       uint64_t SubMembers = 0;
19175       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
19176         return false;
19177       Members += SubMembers;
19178     }
19179   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
19180     uint64_t SubMembers = 0;
19181     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
19182       return false;
19183     Members += SubMembers * AT->getNumElements();
19184   } else if (Ty->isFloatTy()) {
19185     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
19186       return false;
19187     Members = 1;
19188     Base = HA_FLOAT;
19189   } else if (Ty->isDoubleTy()) {
19190     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
19191       return false;
19192     Members = 1;
19193     Base = HA_DOUBLE;
19194   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
19195     Members = 1;
19196     switch (Base) {
19197     case HA_FLOAT:
19198     case HA_DOUBLE:
19199       return false;
19200     case HA_VECT64:
19201       return VT->getPrimitiveSizeInBits().getFixedSize() == 64;
19202     case HA_VECT128:
19203       return VT->getPrimitiveSizeInBits().getFixedSize() == 128;
19204     case HA_UNKNOWN:
19205       switch (VT->getPrimitiveSizeInBits().getFixedSize()) {
19206       case 64:
19207         Base = HA_VECT64;
19208         return true;
19209       case 128:
19210         Base = HA_VECT128;
19211         return true;
19212       default:
19213         return false;
19214       }
19215     }
19216   }
19217 
19218   return (Members > 0 && Members <= 4);
19219 }
19220 
19221 /// Return the correct alignment for the current calling convention.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const19222 Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
19223                                                        DataLayout DL) const {
19224   const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
19225   if (!ArgTy->isVectorTy())
19226     return ABITypeAlign;
19227 
19228   // Avoid over-aligning vector parameters. It would require realigning the
19229   // stack and waste space for no real benefit.
19230   return std::min(ABITypeAlign, DL.getStackAlignment());
19231 }
19232 
19233 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
19234 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
19235 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const19236 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
19237     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
19238   if (getEffectiveCallingConv(CallConv, isVarArg) !=
19239       CallingConv::ARM_AAPCS_VFP)
19240     return false;
19241 
19242   HABaseType Base = HA_UNKNOWN;
19243   uint64_t Members = 0;
19244   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
19245   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
19246 
19247   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
19248   return IsHA || IsIntArray;
19249 }
19250 
getExceptionPointerRegister(const Constant * PersonalityFn) const19251 Register ARMTargetLowering::getExceptionPointerRegister(
19252     const Constant *PersonalityFn) const {
19253   // Platforms which do not use SjLj EH may return values in these registers
19254   // via the personality function.
19255   return Subtarget->useSjLjEH() ? Register() : ARM::R0;
19256 }
19257 
getExceptionSelectorRegister(const Constant * PersonalityFn) const19258 Register ARMTargetLowering::getExceptionSelectorRegister(
19259     const Constant *PersonalityFn) const {
19260   // Platforms which do not use SjLj EH may return values in these registers
19261   // via the personality function.
19262   return Subtarget->useSjLjEH() ? Register() : ARM::R1;
19263 }
19264 
initializeSplitCSR(MachineBasicBlock * Entry) const19265 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
19266   // Update IsSplitCSR in ARMFunctionInfo.
19267   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
19268   AFI->setIsSplitCSR(true);
19269 }
19270 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const19271 void ARMTargetLowering::insertCopiesSplitCSR(
19272     MachineBasicBlock *Entry,
19273     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
19274   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
19275   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
19276   if (!IStart)
19277     return;
19278 
19279   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
19280   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
19281   MachineBasicBlock::iterator MBBI = Entry->begin();
19282   for (const MCPhysReg *I = IStart; *I; ++I) {
19283     const TargetRegisterClass *RC = nullptr;
19284     if (ARM::GPRRegClass.contains(*I))
19285       RC = &ARM::GPRRegClass;
19286     else if (ARM::DPRRegClass.contains(*I))
19287       RC = &ARM::DPRRegClass;
19288     else
19289       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
19290 
19291     Register NewVR = MRI->createVirtualRegister(RC);
19292     // Create copy from CSR to a virtual register.
19293     // FIXME: this currently does not emit CFI pseudo-instructions, it works
19294     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
19295     // nounwind. If we want to generalize this later, we may need to emit
19296     // CFI pseudo-instructions.
19297     assert(Entry->getParent()->getFunction().hasFnAttribute(
19298                Attribute::NoUnwind) &&
19299            "Function should be nounwind in insertCopiesSplitCSR!");
19300     Entry->addLiveIn(*I);
19301     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
19302         .addReg(*I);
19303 
19304     // Insert the copy-back instructions right before the terminator.
19305     for (auto *Exit : Exits)
19306       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
19307               TII->get(TargetOpcode::COPY), *I)
19308           .addReg(NewVR);
19309   }
19310 }
19311 
finalizeLowering(MachineFunction & MF) const19312 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
19313   MF.getFrameInfo().computeMaxCallFrameSize(MF);
19314   TargetLoweringBase::finalizeLowering(MF);
19315 }
19316