1//==- SystemZRegisterInfo.td - SystemZ register definitions -*- tablegen -*-==// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8 9//===----------------------------------------------------------------------===// 10// Class definitions. 11//===----------------------------------------------------------------------===// 12 13class SystemZReg<string n> : Register<n> { 14 let Namespace = "SystemZ"; 15} 16 17class SystemZRegWithSubregs<string n, list<Register> subregs> 18 : RegisterWithSubRegs<n, subregs> { 19 let Namespace = "SystemZ"; 20} 21 22let Namespace = "SystemZ" in { 23def subreg_l32 : SubRegIndex<32, 0>; // Also acts as subreg_ll32. 24def subreg_h32 : SubRegIndex<32, 32>; // Also acts as subreg_lh32. 25def subreg_l64 : SubRegIndex<64, 0>; 26def subreg_h64 : SubRegIndex<64, 64>; 27def subreg_hh32 : ComposedSubRegIndex<subreg_h64, subreg_h32>; 28def subreg_hl32 : ComposedSubRegIndex<subreg_h64, subreg_l32>; 29} 30 31// Define a register class that contains values of types TYPES and an 32// associated operand called NAME. SIZE is the size and alignment 33// of the registers and REGLIST is the list of individual registers. 34multiclass SystemZRegClass<string name, list<ValueType> types, int size, 35 dag regList, bit allocatable = 1> { 36 def AsmOperand : AsmOperandClass { 37 let Name = name; 38 let ParserMethod = "parse"#name; 39 let RenderMethod = "addRegOperands"; 40 } 41 let isAllocatable = allocatable in 42 def Bit : RegisterClass<"SystemZ", types, size, regList> { 43 let Size = size; 44 } 45 def "" : RegisterOperand<!cast<RegisterClass>(name#"Bit")> { 46 let ParserMatchClass = !cast<AsmOperandClass>(name#"AsmOperand"); 47 } 48} 49 50//===----------------------------------------------------------------------===// 51// General-purpose registers 52//===----------------------------------------------------------------------===// 53 54// Lower 32 bits of one of the 16 64-bit general-purpose registers 55class GPR32<bits<16> num, string n> : SystemZReg<n> { 56 let HWEncoding = num; 57} 58 59// One of the 16 64-bit general-purpose registers. 60class GPR64<bits<16> num, string n, GPR32 low, GPR32 high> 61 : SystemZRegWithSubregs<n, [low, high]> { 62 let HWEncoding = num; 63 let SubRegIndices = [subreg_l32, subreg_h32]; 64 let CoveredBySubRegs = 1; 65} 66 67// 8 even-odd pairs of GPR64s. 68class GPR128<bits<16> num, string n, GPR64 low, GPR64 high> 69 : SystemZRegWithSubregs<n, [low, high]> { 70 let HWEncoding = num; 71 let SubRegIndices = [subreg_l64, subreg_h64]; 72 let CoveredBySubRegs = 1; 73} 74 75// General-purpose registers 76foreach I = 0-15 in { 77 def R#I#L : GPR32<I, "r"#I>; 78 def R#I#H : GPR32<I, "r"#I>; 79 def R#I#D : GPR64<I, "r"#I, !cast<GPR32>("R"#I#"L"), !cast<GPR32>("R"#I#"H")>, 80 DwarfRegNum<[I]>; 81} 82 83foreach I = [0, 2, 4, 6, 8, 10, 12, 14] in { 84 def R#I#Q : GPR128<I, "r"#I, !cast<GPR64>("R"#!add(I, 1)#"D"), 85 !cast<GPR64>("R"#I#"D")>; 86} 87 88/// Allocate the callee-saved R6-R13 backwards. That way they can be saved 89/// together with R14 and R15 in one prolog instruction. 90defm GR32 : SystemZRegClass<"GR32", [i32], 32, 91 (add (sequence "R%uL", 0, 5), 92 (sequence "R%uL", 15, 6))>; 93defm GRH32 : SystemZRegClass<"GRH32", [i32], 32, 94 (add (sequence "R%uH", 0, 5), 95 (sequence "R%uH", 15, 6))>; 96defm GR64 : SystemZRegClass<"GR64", [i64], 64, 97 (add (sequence "R%uD", 0, 5), 98 (sequence "R%uD", 15, 6))>; 99 100// Combine the low and high GR32s into a single class. This can only be 101// used for virtual registers if the high-word facility is available. 102defm GRX32 : SystemZRegClass<"GRX32", [i32], 32, 103 (add (sequence "R%uL", 0, 5), 104 (sequence "R%uH", 0, 5), 105 R15L, R15H, R14L, R14H, R13L, R13H, 106 R12L, R12H, R11L, R11H, R10L, R10H, 107 R9L, R9H, R8L, R8H, R7L, R7H, R6L, R6H)>; 108 109// The architecture doesn't really have any i128 support, so model the 110// register pairs as untyped instead. 111defm GR128 : SystemZRegClass<"GR128", [untyped], 128, 112 (add R0Q, R2Q, R4Q, R12Q, R10Q, R8Q, R6Q, R14Q)>; 113 114// Base and index registers. Everything except R0, which in an address 115// context evaluates as 0. 116defm ADDR32 : SystemZRegClass<"ADDR32", [i32], 32, (sub GR32Bit, R0L)>; 117defm ADDR64 : SystemZRegClass<"ADDR64", [i64], 64, (sub GR64Bit, R0D)>; 118 119// Not used directly, but needs to exist for ADDR32 and ADDR64 subregs 120// of a GR128. 121defm ADDR128 : SystemZRegClass<"ADDR128", [untyped], 128, (sub GR128Bit, R0Q)>; 122 123// Any type register. Used for .insn directives when we don't know what the 124// register types could be. 125defm AnyReg : SystemZRegClass<"AnyReg", 126 [i64, f64, v8i8, v4i16, v2i32, v2f32], 64, 127 (add (sequence "R%uD", 0, 15), 128 (sequence "F%uD", 0, 15), 129 (sequence "V%u", 0, 15)), 0/*allocatable*/>; 130 131//===----------------------------------------------------------------------===// 132// Floating-point registers 133//===----------------------------------------------------------------------===// 134 135// Maps FPR register numbers to their DWARF encoding. 136class DwarfMapping<int id> { int Id = id; } 137 138def F0Dwarf : DwarfMapping<16>; 139def F2Dwarf : DwarfMapping<17>; 140def F4Dwarf : DwarfMapping<18>; 141def F6Dwarf : DwarfMapping<19>; 142 143def F1Dwarf : DwarfMapping<20>; 144def F3Dwarf : DwarfMapping<21>; 145def F5Dwarf : DwarfMapping<22>; 146def F7Dwarf : DwarfMapping<23>; 147 148def F8Dwarf : DwarfMapping<24>; 149def F10Dwarf : DwarfMapping<25>; 150def F12Dwarf : DwarfMapping<26>; 151def F14Dwarf : DwarfMapping<27>; 152 153def F9Dwarf : DwarfMapping<28>; 154def F11Dwarf : DwarfMapping<29>; 155def F13Dwarf : DwarfMapping<30>; 156def F15Dwarf : DwarfMapping<31>; 157 158def F16Dwarf : DwarfMapping<68>; 159def F18Dwarf : DwarfMapping<69>; 160def F20Dwarf : DwarfMapping<70>; 161def F22Dwarf : DwarfMapping<71>; 162 163def F17Dwarf : DwarfMapping<72>; 164def F19Dwarf : DwarfMapping<73>; 165def F21Dwarf : DwarfMapping<74>; 166def F23Dwarf : DwarfMapping<75>; 167 168def F24Dwarf : DwarfMapping<76>; 169def F26Dwarf : DwarfMapping<77>; 170def F28Dwarf : DwarfMapping<78>; 171def F30Dwarf : DwarfMapping<79>; 172 173def F25Dwarf : DwarfMapping<80>; 174def F27Dwarf : DwarfMapping<81>; 175def F29Dwarf : DwarfMapping<82>; 176def F31Dwarf : DwarfMapping<83>; 177 178// Upper 32 bits of one of the floating-point registers 179class FPR32<bits<16> num, string n> : SystemZReg<n> { 180 let HWEncoding = num; 181} 182 183// One of the floating-point registers. 184class FPR64<bits<16> num, string n, FPR32 high> 185 : SystemZRegWithSubregs<n, [high]> { 186 let HWEncoding = num; 187 let SubRegIndices = [subreg_h32]; 188} 189 190// 8 pairs of FPR64s, with a one-register gap inbetween. 191class FPR128<bits<16> num, string n, FPR64 low, FPR64 high> 192 : SystemZRegWithSubregs<n, [low, high]> { 193 let HWEncoding = num; 194 let SubRegIndices = [subreg_l64, subreg_h64]; 195 let CoveredBySubRegs = 1; 196} 197 198// Floating-point registers. Registers 16-31 require the vector facility. 199foreach I = 0-15 in { 200 def F#I#S : FPR32<I, "f"#I>; 201 def F#I#D : FPR64<I, "f"#I, !cast<FPR32>("F"#I#"S")>, 202 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 203} 204foreach I = 16-31 in { 205 def F#I#S : FPR32<I, "v"#I>; 206 def F#I#D : FPR64<I, "v"#I, !cast<FPR32>("F"#I#"S")>, 207 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 208} 209 210foreach I = [0, 1, 4, 5, 8, 9, 12, 13] in { 211 def F#I#Q : FPR128<I, "f"#I, !cast<FPR64>("F"#!add(I, 2)#"D"), 212 !cast<FPR64>("F"#I#"D")>; 213} 214 215// There's no store-multiple instruction for FPRs, so we're not fussy 216// about the order in which call-saved registers are allocated. 217defm FP32 : SystemZRegClass<"FP32", [f32], 32, (sequence "F%uS", 0, 15)>; 218defm FP64 : SystemZRegClass<"FP64", [f64], 64, (sequence "F%uD", 0, 15)>; 219defm FP128 : SystemZRegClass<"FP128", [f128], 128, 220 (add F0Q, F1Q, F4Q, F5Q, F8Q, F9Q, F12Q, F13Q)>; 221 222//===----------------------------------------------------------------------===// 223// Vector registers 224//===----------------------------------------------------------------------===// 225 226// A full 128-bit vector register, with an FPR64 as its high part. 227class VR128<bits<16> num, string n, FPR64 high> 228 : SystemZRegWithSubregs<n, [high]> { 229 let HWEncoding = num; 230 let SubRegIndices = [subreg_h64]; 231} 232 233// Full vector registers. 234foreach I = 0-31 in { 235 def V#I : VR128<I, "v"#I, !cast<FPR64>("F"#I#"D")>, 236 DwarfRegNum<[!cast<DwarfMapping>("F"#I#"Dwarf").Id]>; 237} 238 239// Class used to store 32-bit values in the first element of a vector 240// register. f32 scalars are used for the WLEDB and WLDEB instructions. 241defm VR32 : SystemZRegClass<"VR32", [f32, v4i8, v2i16], 32, 242 (add (sequence "F%uS", 0, 7), 243 (sequence "F%uS", 16, 31), 244 (sequence "F%uS", 8, 15))>; 245 246// Class used to store 64-bit values in the upper half of a vector register. 247// The vector facility also includes scalar f64 instructions that operate 248// on the full vector register set. 249defm VR64 : SystemZRegClass<"VR64", [f64, v8i8, v4i16, v2i32, v2f32], 64, 250 (add (sequence "F%uD", 0, 7), 251 (sequence "F%uD", 16, 31), 252 (sequence "F%uD", 8, 15))>; 253 254// The subset of vector registers that can be used for floating-point 255// operations too. 256defm VF128 : SystemZRegClass<"VF128", 257 [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, 258 (sequence "V%u", 0, 15)>; 259 260// All vector registers. 261defm VR128 : SystemZRegClass<"VR128", 262 [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, f128], 263 128, (add (sequence "V%u", 0, 7), 264 (sequence "V%u", 16, 31), 265 (sequence "V%u", 8, 15))>; 266 267// Attaches a ValueType to a register operand, to make the instruction 268// definitions easier. 269class TypedReg<ValueType vtin, RegisterOperand opin> { 270 ValueType vt = vtin; 271 RegisterOperand op = opin; 272} 273 274def v32f : TypedReg<i32, VR32>; 275def v32sb : TypedReg<f32, VR32>; 276def v64g : TypedReg<i64, VR64>; 277def v64db : TypedReg<f64, VR64>; 278def v128b : TypedReg<v16i8, VR128>; 279def v128h : TypedReg<v8i16, VR128>; 280def v128f : TypedReg<v4i32, VR128>; 281def v128g : TypedReg<v2i64, VR128>; 282def v128q : TypedReg<v16i8, VR128>; 283def v128sb : TypedReg<v4f32, VR128>; 284def v128db : TypedReg<v2f64, VR128>; 285def v128xb : TypedReg<f128, VR128>; 286def v128any : TypedReg<untyped, VR128>; 287 288//===----------------------------------------------------------------------===// 289// Other registers 290//===----------------------------------------------------------------------===// 291 292// The 2-bit condition code field of the PSW. Every register named in an 293// inline asm needs a class associated with it. 294def CC : SystemZReg<"cc">; 295let isAllocatable = 0, CopyCost = -1 in 296 def CCR : RegisterClass<"SystemZ", [i32], 32, (add CC)>; 297 298// The floating-point control register. 299// Note: We only model the current rounding modes and the IEEE masks. 300// IEEE flags and DXC are not modeled here. 301def FPC : SystemZReg<"fpc">; 302let isAllocatable = 0 in 303 def FPCRegs : RegisterClass<"SystemZ", [i32], 32, (add FPC)>; 304 305// Access registers. 306class ACR32<bits<16> num, string n> : SystemZReg<n> { 307 let HWEncoding = num; 308} 309foreach I = 0-15 in { 310 def A#I : ACR32<I, "a"#I>, DwarfRegNum<[!add(I, 48)]>; 311} 312defm AR32 : SystemZRegClass<"AR32", [i32], 32, 313 (add (sequence "A%u", 0, 15)), 0>; 314 315// Control registers. 316class CREG64<bits<16> num, string n> : SystemZReg<n> { 317 let HWEncoding = num; 318} 319foreach I = 0-15 in { 320 def C#I : CREG64<I, "c"#I>, DwarfRegNum<[!add(I, 32)]>; 321} 322defm CR64 : SystemZRegClass<"CR64", [i64], 64, 323 (add (sequence "C%u", 0, 15)), 0>; 324 325