1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44
45 using namespace llvm;
46 using namespace PatternMatch;
47
48 #define DEBUG_TYPE "instcombine"
49
createMinMax(InstCombiner::BuilderTy & Builder,SelectPatternFlavor SPF,Value * A,Value * B)50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51 SelectPatternFlavor SPF, Value *A, Value *B) {
52 CmpInst::Predicate Pred = getMinMaxPred(SPF);
53 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
foldSelectBinOpIdentity(SelectInst & Sel,const TargetLibraryInfo & TLI,InstCombinerImpl & IC)59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
60 const TargetLibraryInfo &TLI,
61 InstCombinerImpl &IC) {
62 // The select condition must be an equality compare with a constant operand.
63 Value *X;
64 Constant *C;
65 CmpInst::Predicate Pred;
66 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
67 return nullptr;
68
69 bool IsEq;
70 if (ICmpInst::isEquality(Pred))
71 IsEq = Pred == ICmpInst::ICMP_EQ;
72 else if (Pred == FCmpInst::FCMP_OEQ)
73 IsEq = true;
74 else if (Pred == FCmpInst::FCMP_UNE)
75 IsEq = false;
76 else
77 return nullptr;
78
79 // A select operand must be a binop.
80 BinaryOperator *BO;
81 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
82 return nullptr;
83
84 // The compare constant must be the identity constant for that binop.
85 // If this a floating-point compare with 0.0, any zero constant will do.
86 Type *Ty = BO->getType();
87 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
88 if (IdC != C) {
89 if (!IdC || !CmpInst::isFPPredicate(Pred))
90 return nullptr;
91 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
92 return nullptr;
93 }
94
95 // Last, match the compare variable operand with a binop operand.
96 Value *Y;
97 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
98 return nullptr;
99 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
100 return nullptr;
101
102 // +0.0 compares equal to -0.0, and so it does not behave as required for this
103 // transform. Bail out if we can not exclude that possibility.
104 if (isa<FPMathOperator>(BO))
105 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
106 return nullptr;
107
108 // BO = binop Y, X
109 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
110 // =>
111 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
112 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
113 }
114
115 /// This folds:
116 /// select (icmp eq (and X, C1)), TC, FC
117 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
118 /// To something like:
119 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
120 /// Or:
121 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
122 /// With some variations depending if FC is larger than TC, or the shift
123 /// isn't needed, or the bit widths don't match.
foldSelectICmpAnd(SelectInst & Sel,ICmpInst * Cmp,InstCombiner::BuilderTy & Builder)124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
125 InstCombiner::BuilderTy &Builder) {
126 const APInt *SelTC, *SelFC;
127 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
128 !match(Sel.getFalseValue(), m_APInt(SelFC)))
129 return nullptr;
130
131 // If this is a vector select, we need a vector compare.
132 Type *SelType = Sel.getType();
133 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
134 return nullptr;
135
136 Value *V;
137 APInt AndMask;
138 bool CreateAnd = false;
139 ICmpInst::Predicate Pred = Cmp->getPredicate();
140 if (ICmpInst::isEquality(Pred)) {
141 if (!match(Cmp->getOperand(1), m_Zero()))
142 return nullptr;
143
144 V = Cmp->getOperand(0);
145 const APInt *AndRHS;
146 if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
147 return nullptr;
148
149 AndMask = *AndRHS;
150 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
151 Pred, V, AndMask)) {
152 assert(ICmpInst::isEquality(Pred) && "Not equality test?");
153 if (!AndMask.isPowerOf2())
154 return nullptr;
155
156 CreateAnd = true;
157 } else {
158 return nullptr;
159 }
160
161 // In general, when both constants are non-zero, we would need an offset to
162 // replace the select. This would require more instructions than we started
163 // with. But there's one special-case that we handle here because it can
164 // simplify/reduce the instructions.
165 APInt TC = *SelTC;
166 APInt FC = *SelFC;
167 if (!TC.isNullValue() && !FC.isNullValue()) {
168 // If the select constants differ by exactly one bit and that's the same
169 // bit that is masked and checked by the select condition, the select can
170 // be replaced by bitwise logic to set/clear one bit of the constant result.
171 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
172 return nullptr;
173 if (CreateAnd) {
174 // If we have to create an 'and', then we must kill the cmp to not
175 // increase the instruction count.
176 if (!Cmp->hasOneUse())
177 return nullptr;
178 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
179 }
180 bool ExtraBitInTC = TC.ugt(FC);
181 if (Pred == ICmpInst::ICMP_EQ) {
182 // If the masked bit in V is clear, clear or set the bit in the result:
183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
185 Constant *C = ConstantInt::get(SelType, TC);
186 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
187 }
188 if (Pred == ICmpInst::ICMP_NE) {
189 // If the masked bit in V is set, set or clear the bit in the result:
190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
192 Constant *C = ConstantInt::get(SelType, FC);
193 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
194 }
195 llvm_unreachable("Only expecting equality predicates");
196 }
197
198 // Make sure one of the select arms is a power-of-2.
199 if (!TC.isPowerOf2() && !FC.isPowerOf2())
200 return nullptr;
201
202 // Determine which shift is needed to transform result of the 'and' into the
203 // desired result.
204 const APInt &ValC = !TC.isNullValue() ? TC : FC;
205 unsigned ValZeros = ValC.logBase2();
206 unsigned AndZeros = AndMask.logBase2();
207
208 // Insert the 'and' instruction on the input to the truncate.
209 if (CreateAnd)
210 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
211
212 // If types don't match, we can still convert the select by introducing a zext
213 // or a trunc of the 'and'.
214 if (ValZeros > AndZeros) {
215 V = Builder.CreateZExtOrTrunc(V, SelType);
216 V = Builder.CreateShl(V, ValZeros - AndZeros);
217 } else if (ValZeros < AndZeros) {
218 V = Builder.CreateLShr(V, AndZeros - ValZeros);
219 V = Builder.CreateZExtOrTrunc(V, SelType);
220 } else {
221 V = Builder.CreateZExtOrTrunc(V, SelType);
222 }
223
224 // Okay, now we know that everything is set up, we just don't know whether we
225 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
226 bool ShouldNotVal = !TC.isNullValue();
227 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
228 if (ShouldNotVal)
229 V = Builder.CreateXor(V, ValC);
230
231 return V;
232 }
233
234 /// We want to turn code that looks like this:
235 /// %C = or %A, %B
236 /// %D = select %cond, %C, %A
237 /// into:
238 /// %C = select %cond, %B, 0
239 /// %D = or %A, %C
240 ///
241 /// Assuming that the specified instruction is an operand to the select, return
242 /// a bitmask indicating which operands of this instruction are foldable if they
243 /// equal the other incoming value of the select.
getSelectFoldableOperands(BinaryOperator * I)244 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
245 switch (I->getOpcode()) {
246 case Instruction::Add:
247 case Instruction::Mul:
248 case Instruction::And:
249 case Instruction::Or:
250 case Instruction::Xor:
251 return 3; // Can fold through either operand.
252 case Instruction::Sub: // Can only fold on the amount subtracted.
253 case Instruction::Shl: // Can only fold on the shift amount.
254 case Instruction::LShr:
255 case Instruction::AShr:
256 return 1;
257 default:
258 return 0; // Cannot fold
259 }
260 }
261
262 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
foldSelectOpOp(SelectInst & SI,Instruction * TI,Instruction * FI)263 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
264 Instruction *FI) {
265 // Don't break up min/max patterns. The hasOneUse checks below prevent that
266 // for most cases, but vector min/max with bitcasts can be transformed. If the
267 // one-use restrictions are eased for other patterns, we still don't want to
268 // obfuscate min/max.
269 if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
270 match(&SI, m_SMax(m_Value(), m_Value())) ||
271 match(&SI, m_UMin(m_Value(), m_Value())) ||
272 match(&SI, m_UMax(m_Value(), m_Value()))))
273 return nullptr;
274
275 // If this is a cast from the same type, merge.
276 Value *Cond = SI.getCondition();
277 Type *CondTy = Cond->getType();
278 if (TI->getNumOperands() == 1 && TI->isCast()) {
279 Type *FIOpndTy = FI->getOperand(0)->getType();
280 if (TI->getOperand(0)->getType() != FIOpndTy)
281 return nullptr;
282
283 // The select condition may be a vector. We may only change the operand
284 // type if the vector width remains the same (and matches the condition).
285 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
286 if (!FIOpndTy->isVectorTy())
287 return nullptr;
288 if (cast<FixedVectorType>(CondVTy)->getNumElements() !=
289 cast<FixedVectorType>(FIOpndTy)->getNumElements())
290 return nullptr;
291
292 // TODO: If the backend knew how to deal with casts better, we could
293 // remove this limitation. For now, there's too much potential to create
294 // worse codegen by promoting the select ahead of size-altering casts
295 // (PR28160).
296 //
297 // Note that ValueTracking's matchSelectPattern() looks through casts
298 // without checking 'hasOneUse' when it matches min/max patterns, so this
299 // transform may end up happening anyway.
300 if (TI->getOpcode() != Instruction::BitCast &&
301 (!TI->hasOneUse() || !FI->hasOneUse()))
302 return nullptr;
303 } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
304 // TODO: The one-use restrictions for a scalar select could be eased if
305 // the fold of a select in visitLoadInst() was enhanced to match a pattern
306 // that includes a cast.
307 return nullptr;
308 }
309
310 // Fold this by inserting a select from the input values.
311 Value *NewSI =
312 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
313 SI.getName() + ".v", &SI);
314 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
315 TI->getType());
316 }
317
318 // Cond ? -X : -Y --> -(Cond ? X : Y)
319 Value *X, *Y;
320 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
321 (TI->hasOneUse() || FI->hasOneUse())) {
322 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
323 return UnaryOperator::CreateFNegFMF(NewSel, TI);
324 }
325
326 // Only handle binary operators (including two-operand getelementptr) with
327 // one-use here. As with the cast case above, it may be possible to relax the
328 // one-use constraint, but that needs be examined carefully since it may not
329 // reduce the total number of instructions.
330 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
331 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
332 !TI->hasOneUse() || !FI->hasOneUse())
333 return nullptr;
334
335 // Figure out if the operations have any operands in common.
336 Value *MatchOp, *OtherOpT, *OtherOpF;
337 bool MatchIsOpZero;
338 if (TI->getOperand(0) == FI->getOperand(0)) {
339 MatchOp = TI->getOperand(0);
340 OtherOpT = TI->getOperand(1);
341 OtherOpF = FI->getOperand(1);
342 MatchIsOpZero = true;
343 } else if (TI->getOperand(1) == FI->getOperand(1)) {
344 MatchOp = TI->getOperand(1);
345 OtherOpT = TI->getOperand(0);
346 OtherOpF = FI->getOperand(0);
347 MatchIsOpZero = false;
348 } else if (!TI->isCommutative()) {
349 return nullptr;
350 } else if (TI->getOperand(0) == FI->getOperand(1)) {
351 MatchOp = TI->getOperand(0);
352 OtherOpT = TI->getOperand(1);
353 OtherOpF = FI->getOperand(0);
354 MatchIsOpZero = true;
355 } else if (TI->getOperand(1) == FI->getOperand(0)) {
356 MatchOp = TI->getOperand(1);
357 OtherOpT = TI->getOperand(0);
358 OtherOpF = FI->getOperand(1);
359 MatchIsOpZero = true;
360 } else {
361 return nullptr;
362 }
363
364 // If the select condition is a vector, the operands of the original select's
365 // operands also must be vectors. This may not be the case for getelementptr
366 // for example.
367 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
368 !OtherOpF->getType()->isVectorTy()))
369 return nullptr;
370
371 // If we reach here, they do have operations in common.
372 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
373 SI.getName() + ".v", &SI);
374 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
375 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
376 if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
377 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
378 NewBO->copyIRFlags(TI);
379 NewBO->andIRFlags(FI);
380 return NewBO;
381 }
382 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
383 auto *FGEP = cast<GetElementPtrInst>(FI);
384 Type *ElementType = TGEP->getResultElementType();
385 return TGEP->isInBounds() && FGEP->isInBounds()
386 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
387 : GetElementPtrInst::Create(ElementType, Op0, {Op1});
388 }
389 llvm_unreachable("Expected BinaryOperator or GEP");
390 return nullptr;
391 }
392
isSelect01(const APInt & C1I,const APInt & C2I)393 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
394 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
395 return false;
396 return C1I.isOneValue() || C1I.isAllOnesValue() ||
397 C2I.isOneValue() || C2I.isAllOnesValue();
398 }
399
400 /// Try to fold the select into one of the operands to allow further
401 /// optimization.
foldSelectIntoOp(SelectInst & SI,Value * TrueVal,Value * FalseVal)402 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
403 Value *FalseVal) {
404 // See the comment above GetSelectFoldableOperands for a description of the
405 // transformation we are doing here.
406 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
407 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
408 if (unsigned SFO = getSelectFoldableOperands(TVI)) {
409 unsigned OpToFold = 0;
410 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
411 OpToFold = 1;
412 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
413 OpToFold = 2;
414 }
415
416 if (OpToFold) {
417 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
418 TVI->getType(), true);
419 Value *OOp = TVI->getOperand(2-OpToFold);
420 // Avoid creating select between 2 constants unless it's selecting
421 // between 0, 1 and -1.
422 const APInt *OOpC;
423 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
424 if (!isa<Constant>(OOp) ||
425 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
426 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
427 NewSel->takeName(TVI);
428 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
429 FalseVal, NewSel);
430 BO->copyIRFlags(TVI);
431 return BO;
432 }
433 }
434 }
435 }
436 }
437
438 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
439 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
440 if (unsigned SFO = getSelectFoldableOperands(FVI)) {
441 unsigned OpToFold = 0;
442 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
443 OpToFold = 1;
444 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
445 OpToFold = 2;
446 }
447
448 if (OpToFold) {
449 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
450 FVI->getType(), true);
451 Value *OOp = FVI->getOperand(2-OpToFold);
452 // Avoid creating select between 2 constants unless it's selecting
453 // between 0, 1 and -1.
454 const APInt *OOpC;
455 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
456 if (!isa<Constant>(OOp) ||
457 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
458 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
459 NewSel->takeName(FVI);
460 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
461 TrueVal, NewSel);
462 BO->copyIRFlags(FVI);
463 return BO;
464 }
465 }
466 }
467 }
468 }
469
470 return nullptr;
471 }
472
473 /// We want to turn:
474 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
475 /// into:
476 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
477 /// Note:
478 /// Z may be 0 if lshr is missing.
479 /// Worst-case scenario is that we will replace 5 instructions with 5 different
480 /// instructions, but we got rid of select.
foldSelectICmpAndAnd(Type * SelType,const ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)481 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
482 Value *TVal, Value *FVal,
483 InstCombiner::BuilderTy &Builder) {
484 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
485 Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
486 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
487 return nullptr;
488
489 // The TrueVal has general form of: and %B, 1
490 Value *B;
491 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
492 return nullptr;
493
494 // Where %B may be optionally shifted: lshr %X, %Z.
495 Value *X, *Z;
496 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
497 if (!HasShift)
498 X = B;
499
500 Value *Y;
501 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
502 return nullptr;
503
504 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
505 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
506 Constant *One = ConstantInt::get(SelType, 1);
507 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
508 Value *FullMask = Builder.CreateOr(Y, MaskB);
509 Value *MaskedX = Builder.CreateAnd(X, FullMask);
510 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
511 return new ZExtInst(ICmpNeZero, SelType);
512 }
513
514 /// We want to turn:
515 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
516 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
517 /// into:
518 /// ashr (X, Y)
foldSelectICmpLshrAshr(const ICmpInst * IC,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)519 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
520 Value *FalseVal,
521 InstCombiner::BuilderTy &Builder) {
522 ICmpInst::Predicate Pred = IC->getPredicate();
523 Value *CmpLHS = IC->getOperand(0);
524 Value *CmpRHS = IC->getOperand(1);
525 if (!CmpRHS->getType()->isIntOrIntVectorTy())
526 return nullptr;
527
528 Value *X, *Y;
529 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
530 if ((Pred != ICmpInst::ICMP_SGT ||
531 !match(CmpRHS,
532 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
533 (Pred != ICmpInst::ICMP_SLT ||
534 !match(CmpRHS,
535 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
536 return nullptr;
537
538 // Canonicalize so that ashr is in FalseVal.
539 if (Pred == ICmpInst::ICMP_SLT)
540 std::swap(TrueVal, FalseVal);
541
542 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
543 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
544 match(CmpLHS, m_Specific(X))) {
545 const auto *Ashr = cast<Instruction>(FalseVal);
546 // if lshr is not exact and ashr is, this new ashr must not be exact.
547 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
548 return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
549 }
550
551 return nullptr;
552 }
553
554 /// We want to turn:
555 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
556 /// into:
557 /// (or (shl (and X, C1), C3), Y)
558 /// iff:
559 /// C1 and C2 are both powers of 2
560 /// where:
561 /// C3 = Log(C2) - Log(C1)
562 ///
563 /// This transform handles cases where:
564 /// 1. The icmp predicate is inverted
565 /// 2. The select operands are reversed
566 /// 3. The magnitude of C2 and C1 are flipped
foldSelectICmpAndOr(const ICmpInst * IC,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)567 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
568 Value *FalseVal,
569 InstCombiner::BuilderTy &Builder) {
570 // Only handle integer compares. Also, if this is a vector select, we need a
571 // vector compare.
572 if (!TrueVal->getType()->isIntOrIntVectorTy() ||
573 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
574 return nullptr;
575
576 Value *CmpLHS = IC->getOperand(0);
577 Value *CmpRHS = IC->getOperand(1);
578
579 Value *V;
580 unsigned C1Log;
581 bool IsEqualZero;
582 bool NeedAnd = false;
583 if (IC->isEquality()) {
584 if (!match(CmpRHS, m_Zero()))
585 return nullptr;
586
587 const APInt *C1;
588 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
589 return nullptr;
590
591 V = CmpLHS;
592 C1Log = C1->logBase2();
593 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
594 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
595 IC->getPredicate() == ICmpInst::ICMP_SGT) {
596 // We also need to recognize (icmp slt (trunc (X)), 0) and
597 // (icmp sgt (trunc (X)), -1).
598 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
599 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
600 (!IsEqualZero && !match(CmpRHS, m_Zero())))
601 return nullptr;
602
603 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
604 return nullptr;
605
606 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
607 NeedAnd = true;
608 } else {
609 return nullptr;
610 }
611
612 const APInt *C2;
613 bool OrOnTrueVal = false;
614 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
615 if (!OrOnFalseVal)
616 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
617
618 if (!OrOnFalseVal && !OrOnTrueVal)
619 return nullptr;
620
621 Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
622
623 unsigned C2Log = C2->logBase2();
624
625 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
626 bool NeedShift = C1Log != C2Log;
627 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
628 V->getType()->getScalarSizeInBits();
629
630 // Make sure we don't create more instructions than we save.
631 Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
632 if ((NeedShift + NeedXor + NeedZExtTrunc) >
633 (IC->hasOneUse() + Or->hasOneUse()))
634 return nullptr;
635
636 if (NeedAnd) {
637 // Insert the AND instruction on the input to the truncate.
638 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
639 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
640 }
641
642 if (C2Log > C1Log) {
643 V = Builder.CreateZExtOrTrunc(V, Y->getType());
644 V = Builder.CreateShl(V, C2Log - C1Log);
645 } else if (C1Log > C2Log) {
646 V = Builder.CreateLShr(V, C1Log - C2Log);
647 V = Builder.CreateZExtOrTrunc(V, Y->getType());
648 } else
649 V = Builder.CreateZExtOrTrunc(V, Y->getType());
650
651 if (NeedXor)
652 V = Builder.CreateXor(V, *C2);
653
654 return Builder.CreateOr(V, Y);
655 }
656
657 /// Canonicalize a set or clear of a masked set of constant bits to
658 /// select-of-constants form.
foldSetClearBits(SelectInst & Sel,InstCombiner::BuilderTy & Builder)659 static Instruction *foldSetClearBits(SelectInst &Sel,
660 InstCombiner::BuilderTy &Builder) {
661 Value *Cond = Sel.getCondition();
662 Value *T = Sel.getTrueValue();
663 Value *F = Sel.getFalseValue();
664 Type *Ty = Sel.getType();
665 Value *X;
666 const APInt *NotC, *C;
667
668 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
669 if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
670 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
671 Constant *Zero = ConstantInt::getNullValue(Ty);
672 Constant *OrC = ConstantInt::get(Ty, *C);
673 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
674 return BinaryOperator::CreateOr(T, NewSel);
675 }
676
677 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
678 if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
679 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
680 Constant *Zero = ConstantInt::getNullValue(Ty);
681 Constant *OrC = ConstantInt::get(Ty, *C);
682 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
683 return BinaryOperator::CreateOr(F, NewSel);
684 }
685
686 return nullptr;
687 }
688
689 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
690 /// There are 8 commuted/swapped variants of this pattern.
691 /// TODO: Also support a - UMIN(a,b) patterns.
canonicalizeSaturatedSubtract(const ICmpInst * ICI,const Value * TrueVal,const Value * FalseVal,InstCombiner::BuilderTy & Builder)692 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
693 const Value *TrueVal,
694 const Value *FalseVal,
695 InstCombiner::BuilderTy &Builder) {
696 ICmpInst::Predicate Pred = ICI->getPredicate();
697 if (!ICmpInst::isUnsigned(Pred))
698 return nullptr;
699
700 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
701 if (match(TrueVal, m_Zero())) {
702 Pred = ICmpInst::getInversePredicate(Pred);
703 std::swap(TrueVal, FalseVal);
704 }
705 if (!match(FalseVal, m_Zero()))
706 return nullptr;
707
708 Value *A = ICI->getOperand(0);
709 Value *B = ICI->getOperand(1);
710 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
711 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
712 std::swap(A, B);
713 Pred = ICmpInst::getSwappedPredicate(Pred);
714 }
715
716 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
717 "Unexpected isUnsigned predicate!");
718
719 // Ensure the sub is of the form:
720 // (a > b) ? a - b : 0 -> usub.sat(a, b)
721 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
722 // Checking for both a-b and a+(-b) as a constant.
723 bool IsNegative = false;
724 const APInt *C;
725 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
726 (match(A, m_APInt(C)) &&
727 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
728 IsNegative = true;
729 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
730 !(match(B, m_APInt(C)) &&
731 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
732 return nullptr;
733
734 // If we are adding a negate and the sub and icmp are used anywhere else, we
735 // would end up with more instructions.
736 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
737 return nullptr;
738
739 // (a > b) ? a - b : 0 -> usub.sat(a, b)
740 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
741 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
742 if (IsNegative)
743 Result = Builder.CreateNeg(Result);
744 return Result;
745 }
746
canonicalizeSaturatedAdd(ICmpInst * Cmp,Value * TVal,Value * FVal,InstCombiner::BuilderTy & Builder)747 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
748 InstCombiner::BuilderTy &Builder) {
749 if (!Cmp->hasOneUse())
750 return nullptr;
751
752 // Match unsigned saturated add with constant.
753 Value *Cmp0 = Cmp->getOperand(0);
754 Value *Cmp1 = Cmp->getOperand(1);
755 ICmpInst::Predicate Pred = Cmp->getPredicate();
756 Value *X;
757 const APInt *C, *CmpC;
758 if (Pred == ICmpInst::ICMP_ULT &&
759 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
760 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
761 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
762 return Builder.CreateBinaryIntrinsic(
763 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
764 }
765
766 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767 // There are 8 commuted variants.
768 // Canonicalize -1 (saturated result) to true value of the select.
769 if (match(FVal, m_AllOnes())) {
770 std::swap(TVal, FVal);
771 Pred = CmpInst::getInversePredicate(Pred);
772 }
773 if (!match(TVal, m_AllOnes()))
774 return nullptr;
775
776 // Canonicalize predicate to less-than or less-or-equal-than.
777 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
778 std::swap(Cmp0, Cmp1);
779 Pred = CmpInst::getSwappedPredicate(Pred);
780 }
781 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
782 return nullptr;
783
784 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
785 // Strictness of the comparison is irrelevant.
786 Value *Y;
787 if (match(Cmp0, m_Not(m_Value(X))) &&
788 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
789 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
790 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
791 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
792 }
793 // The 'not' op may be included in the sum but not the compare.
794 // Strictness of the comparison is irrelevant.
795 X = Cmp0;
796 Y = Cmp1;
797 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
798 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
799 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
800 BinaryOperator *BO = cast<BinaryOperator>(FVal);
801 return Builder.CreateBinaryIntrinsic(
802 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
803 }
804 // The overflow may be detected via the add wrapping round.
805 // This is only valid for strict comparison!
806 if (Pred == ICmpInst::ICMP_ULT &&
807 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
808 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
809 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
810 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
811 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
812 }
813
814 return nullptr;
815 }
816
817 /// Fold the following code sequence:
818 /// \code
819 /// int a = ctlz(x & -x);
820 // x ? 31 - a : a;
821 /// \code
822 ///
823 /// into:
824 /// cttz(x)
foldSelectCtlzToCttz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)825 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
826 Value *FalseVal,
827 InstCombiner::BuilderTy &Builder) {
828 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
829 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
830 return nullptr;
831
832 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
833 std::swap(TrueVal, FalseVal);
834
835 if (!match(FalseVal,
836 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
837 return nullptr;
838
839 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
840 return nullptr;
841
842 Value *X = ICI->getOperand(0);
843 auto *II = cast<IntrinsicInst>(TrueVal);
844 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
845 return nullptr;
846
847 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
848 II->getType());
849 return CallInst::Create(F, {X, II->getArgOperand(1)});
850 }
851
852 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
853 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
854 ///
855 /// For example, we can fold the following code sequence:
856 /// \code
857 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
858 /// %1 = icmp ne i32 %x, 0
859 /// %2 = select i1 %1, i32 %0, i32 32
860 /// \code
861 ///
862 /// into:
863 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
foldSelectCttzCtlz(ICmpInst * ICI,Value * TrueVal,Value * FalseVal,InstCombiner::BuilderTy & Builder)864 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
865 InstCombiner::BuilderTy &Builder) {
866 ICmpInst::Predicate Pred = ICI->getPredicate();
867 Value *CmpLHS = ICI->getOperand(0);
868 Value *CmpRHS = ICI->getOperand(1);
869
870 // Check if the condition value compares a value for equality against zero.
871 if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
872 return nullptr;
873
874 Value *SelectArg = FalseVal;
875 Value *ValueOnZero = TrueVal;
876 if (Pred == ICmpInst::ICMP_NE)
877 std::swap(SelectArg, ValueOnZero);
878
879 // Skip zero extend/truncate.
880 Value *Count = nullptr;
881 if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
882 !match(SelectArg, m_Trunc(m_Value(Count))))
883 Count = SelectArg;
884
885 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
886 // input to the cttz/ctlz is used as LHS for the compare instruction.
887 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
888 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
889 return nullptr;
890
891 IntrinsicInst *II = cast<IntrinsicInst>(Count);
892
893 // Check if the value propagated on zero is a constant number equal to the
894 // sizeof in bits of 'Count'.
895 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
896 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
897 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
898 // true to false on this flag, so we can replace it for all users.
899 II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
900 return SelectArg;
901 }
902
903 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
904 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
905 // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
906 if (II->hasOneUse() && SelectArg->hasOneUse() &&
907 !match(II->getArgOperand(1), m_One()))
908 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
909
910 return nullptr;
911 }
912
913 /// Return true if we find and adjust an icmp+select pattern where the compare
914 /// is with a constant that can be incremented or decremented to match the
915 /// minimum or maximum idiom.
adjustMinMax(SelectInst & Sel,ICmpInst & Cmp)916 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
917 ICmpInst::Predicate Pred = Cmp.getPredicate();
918 Value *CmpLHS = Cmp.getOperand(0);
919 Value *CmpRHS = Cmp.getOperand(1);
920 Value *TrueVal = Sel.getTrueValue();
921 Value *FalseVal = Sel.getFalseValue();
922
923 // We may move or edit the compare, so make sure the select is the only user.
924 const APInt *CmpC;
925 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
926 return false;
927
928 // These transforms only work for selects of integers or vector selects of
929 // integer vectors.
930 Type *SelTy = Sel.getType();
931 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
932 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
933 return false;
934
935 Constant *AdjustedRHS;
936 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
937 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
938 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
939 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
940 else
941 return false;
942
943 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
944 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
945 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
946 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
947 ; // Nothing to do here. Values match without any sign/zero extension.
948 }
949 // Types do not match. Instead of calculating this with mixed types, promote
950 // all to the larger type. This enables scalar evolution to analyze this
951 // expression.
952 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
953 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
954
955 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
956 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
957 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
958 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
959 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
960 CmpLHS = TrueVal;
961 AdjustedRHS = SextRHS;
962 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
963 SextRHS == TrueVal) {
964 CmpLHS = FalseVal;
965 AdjustedRHS = SextRHS;
966 } else if (Cmp.isUnsigned()) {
967 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
968 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
969 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
970 // zext + signed compare cannot be changed:
971 // 0xff <s 0x00, but 0x00ff >s 0x0000
972 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
973 CmpLHS = TrueVal;
974 AdjustedRHS = ZextRHS;
975 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
976 ZextRHS == TrueVal) {
977 CmpLHS = FalseVal;
978 AdjustedRHS = ZextRHS;
979 } else {
980 return false;
981 }
982 } else {
983 return false;
984 }
985 } else {
986 return false;
987 }
988
989 Pred = ICmpInst::getSwappedPredicate(Pred);
990 CmpRHS = AdjustedRHS;
991 std::swap(FalseVal, TrueVal);
992 Cmp.setPredicate(Pred);
993 Cmp.setOperand(0, CmpLHS);
994 Cmp.setOperand(1, CmpRHS);
995 Sel.setOperand(1, TrueVal);
996 Sel.setOperand(2, FalseVal);
997 Sel.swapProfMetadata();
998
999 // Move the compare instruction right before the select instruction. Otherwise
1000 // the sext/zext value may be defined after the compare instruction uses it.
1001 Cmp.moveBefore(&Sel);
1002
1003 return true;
1004 }
1005
1006 /// If this is an integer min/max (icmp + select) with a constant operand,
1007 /// create the canonical icmp for the min/max operation and canonicalize the
1008 /// constant to the 'false' operand of the select:
1009 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1010 /// Note: if C1 != C2, this will change the icmp constant to the existing
1011 /// constant operand of the select.
canonicalizeMinMaxWithConstant(SelectInst & Sel,ICmpInst & Cmp,InstCombinerImpl & IC)1012 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1013 ICmpInst &Cmp,
1014 InstCombinerImpl &IC) {
1015 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1016 return nullptr;
1017
1018 // Canonicalize the compare predicate based on whether we have min or max.
1019 Value *LHS, *RHS;
1020 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1021 if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1022 return nullptr;
1023
1024 // Is this already canonical?
1025 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1026 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1027 Cmp.getPredicate() == CanonicalPred)
1028 return nullptr;
1029
1030 // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1031 // as this may cause an infinite combine loop. Let the sub be folded first.
1032 if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1033 match(RHS, m_Sub(m_Value(), m_Zero())))
1034 return nullptr;
1035
1036 // Create the canonical compare and plug it into the select.
1037 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1038
1039 // If the select operands did not change, we're done.
1040 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1041 return &Sel;
1042
1043 // If we are swapping the select operands, swap the metadata too.
1044 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1045 "Unexpected results from matchSelectPattern");
1046 Sel.swapValues();
1047 Sel.swapProfMetadata();
1048 return &Sel;
1049 }
1050
1051 /// There are many select variants for each of ABS/NABS.
1052 /// In matchSelectPattern(), there are different compare constants, compare
1053 /// predicates/operands and select operands.
1054 /// In isKnownNegation(), there are different formats of negated operands.
1055 /// Canonicalize all these variants to 1 pattern.
1056 /// This makes CSE more likely.
canonicalizeAbsNabs(SelectInst & Sel,ICmpInst & Cmp,InstCombinerImpl & IC)1057 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1058 InstCombinerImpl &IC) {
1059 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1060 return nullptr;
1061
1062 // Choose a sign-bit check for the compare (likely simpler for codegen).
1063 // ABS: (X <s 0) ? -X : X
1064 // NABS: (X <s 0) ? X : -X
1065 Value *LHS, *RHS;
1066 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1067 if (SPF != SelectPatternFlavor::SPF_ABS &&
1068 SPF != SelectPatternFlavor::SPF_NABS)
1069 return nullptr;
1070
1071 Value *TVal = Sel.getTrueValue();
1072 Value *FVal = Sel.getFalseValue();
1073 assert(isKnownNegation(TVal, FVal) &&
1074 "Unexpected result from matchSelectPattern");
1075
1076 // The compare may use the negated abs()/nabs() operand, or it may use
1077 // negation in non-canonical form such as: sub A, B.
1078 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1079 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1080
1081 bool CmpCanonicalized = !CmpUsesNegatedOp &&
1082 match(Cmp.getOperand(1), m_ZeroInt()) &&
1083 Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1084 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1085
1086 // Is this already canonical?
1087 if (CmpCanonicalized && RHSCanonicalized)
1088 return nullptr;
1089
1090 // If RHS is not canonical but is used by other instructions, don't
1091 // canonicalize it and potentially increase the instruction count.
1092 if (!RHSCanonicalized)
1093 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1094 return nullptr;
1095
1096 // Create the canonical compare: icmp slt LHS 0.
1097 if (!CmpCanonicalized) {
1098 Cmp.setPredicate(ICmpInst::ICMP_SLT);
1099 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1100 if (CmpUsesNegatedOp)
1101 Cmp.setOperand(0, LHS);
1102 }
1103
1104 // Create the canonical RHS: RHS = sub (0, LHS).
1105 if (!RHSCanonicalized) {
1106 assert(RHS->hasOneUse() && "RHS use number is not right");
1107 RHS = IC.Builder.CreateNeg(LHS);
1108 if (TVal == LHS) {
1109 // Replace false value.
1110 IC.replaceOperand(Sel, 2, RHS);
1111 FVal = RHS;
1112 } else {
1113 // Replace true value.
1114 IC.replaceOperand(Sel, 1, RHS);
1115 TVal = RHS;
1116 }
1117 }
1118
1119 // If the select operands do not change, we're done.
1120 if (SPF == SelectPatternFlavor::SPF_NABS) {
1121 if (TVal == LHS)
1122 return &Sel;
1123 assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1124 } else {
1125 if (FVal == LHS)
1126 return &Sel;
1127 assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1128 }
1129
1130 // We are swapping the select operands, so swap the metadata too.
1131 Sel.swapValues();
1132 Sel.swapProfMetadata();
1133 return &Sel;
1134 }
1135
1136 /// If we have a select with an equality comparison, then we know the value in
1137 /// one of the arms of the select. See if substituting this value into an arm
1138 /// and simplifying the result yields the same value as the other arm.
1139 ///
1140 /// To make this transform safe, we must drop poison-generating flags
1141 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1142 /// that poison from propagating. If the existing binop already had no
1143 /// poison-generating flags, then this transform can be done by instsimplify.
1144 ///
1145 /// Consider:
1146 /// %cmp = icmp eq i32 %x, 2147483647
1147 /// %add = add nsw i32 %x, 1
1148 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1149 ///
1150 /// We can't replace %sel with %add unless we strip away the flags.
1151 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
foldSelectValueEquivalence(SelectInst & Sel,ICmpInst & Cmp)1152 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1153 ICmpInst &Cmp) {
1154 if (!Cmp.isEquality())
1155 return nullptr;
1156
1157 // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1158 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1159 bool Swapped = false;
1160 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1161 std::swap(TrueVal, FalseVal);
1162 Swapped = true;
1163 }
1164
1165 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1166 // Make sure Y cannot be undef though, as we might pick different values for
1167 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1168 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1169 // replacement cycle.
1170 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1171 if (TrueVal != CmpLHS &&
1172 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT))
1173 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1174 /* AllowRefinement */ true))
1175 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1176 if (TrueVal != CmpRHS &&
1177 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1178 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1179 /* AllowRefinement */ true))
1180 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1181
1182 auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1183 if (!FalseInst)
1184 return nullptr;
1185
1186 // InstSimplify already performed this fold if it was possible subject to
1187 // current poison-generating flags. Try the transform again with
1188 // poison-generating flags temporarily dropped.
1189 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1190 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1191 WasNUW = OBO->hasNoUnsignedWrap();
1192 WasNSW = OBO->hasNoSignedWrap();
1193 FalseInst->setHasNoUnsignedWrap(false);
1194 FalseInst->setHasNoSignedWrap(false);
1195 }
1196 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1197 WasExact = PEO->isExact();
1198 FalseInst->setIsExact(false);
1199 }
1200 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1201 WasInBounds = GEP->isInBounds();
1202 GEP->setIsInBounds(false);
1203 }
1204
1205 // Try each equivalence substitution possibility.
1206 // We have an 'EQ' comparison, so the select's false value will propagate.
1207 // Example:
1208 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1209 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1210 /* AllowRefinement */ false) == TrueVal ||
1211 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1212 /* AllowRefinement */ false) == TrueVal) {
1213 return replaceInstUsesWith(Sel, FalseVal);
1214 }
1215
1216 // Restore poison-generating flags if the transform did not apply.
1217 if (WasNUW)
1218 FalseInst->setHasNoUnsignedWrap();
1219 if (WasNSW)
1220 FalseInst->setHasNoSignedWrap();
1221 if (WasExact)
1222 FalseInst->setIsExact();
1223 if (WasInBounds)
1224 cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1225
1226 return nullptr;
1227 }
1228
1229 // See if this is a pattern like:
1230 // %old_cmp1 = icmp slt i32 %x, C2
1231 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1232 // %old_x_offseted = add i32 %x, C1
1233 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1234 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1235 // This can be rewritten as more canonical pattern:
1236 // %new_cmp1 = icmp slt i32 %x, -C1
1237 // %new_cmp2 = icmp sge i32 %x, C0-C1
1238 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1239 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1240 // Iff -C1 s<= C2 s<= C0-C1
1241 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1242 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
canonicalizeClampLike(SelectInst & Sel0,ICmpInst & Cmp0,InstCombiner::BuilderTy & Builder)1243 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1244 InstCombiner::BuilderTy &Builder) {
1245 Value *X = Sel0.getTrueValue();
1246 Value *Sel1 = Sel0.getFalseValue();
1247
1248 // First match the condition of the outermost select.
1249 // Said condition must be one-use.
1250 if (!Cmp0.hasOneUse())
1251 return nullptr;
1252 Value *Cmp00 = Cmp0.getOperand(0);
1253 Constant *C0;
1254 if (!match(Cmp0.getOperand(1),
1255 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1256 return nullptr;
1257 // Canonicalize Cmp0 into the form we expect.
1258 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1259 switch (Cmp0.getPredicate()) {
1260 case ICmpInst::Predicate::ICMP_ULT:
1261 break; // Great!
1262 case ICmpInst::Predicate::ICMP_ULE:
1263 // We'd have to increment C0 by one, and for that it must not have all-ones
1264 // element, but then it would have been canonicalized to 'ult' before
1265 // we get here. So we can't do anything useful with 'ule'.
1266 return nullptr;
1267 case ICmpInst::Predicate::ICMP_UGT:
1268 // We want to canonicalize it to 'ult', so we'll need to increment C0,
1269 // which again means it must not have any all-ones elements.
1270 if (!match(C0,
1271 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1272 APInt::getAllOnesValue(
1273 C0->getType()->getScalarSizeInBits()))))
1274 return nullptr; // Can't do, have all-ones element[s].
1275 C0 = InstCombiner::AddOne(C0);
1276 std::swap(X, Sel1);
1277 break;
1278 case ICmpInst::Predicate::ICMP_UGE:
1279 // The only way we'd get this predicate if this `icmp` has extra uses,
1280 // but then we won't be able to do this fold.
1281 return nullptr;
1282 default:
1283 return nullptr; // Unknown predicate.
1284 }
1285
1286 // Now that we've canonicalized the ICmp, we know the X we expect;
1287 // the select in other hand should be one-use.
1288 if (!Sel1->hasOneUse())
1289 return nullptr;
1290
1291 // We now can finish matching the condition of the outermost select:
1292 // it should either be the X itself, or an addition of some constant to X.
1293 Constant *C1;
1294 if (Cmp00 == X)
1295 C1 = ConstantInt::getNullValue(Sel0.getType());
1296 else if (!match(Cmp00,
1297 m_Add(m_Specific(X),
1298 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1299 return nullptr;
1300
1301 Value *Cmp1;
1302 ICmpInst::Predicate Pred1;
1303 Constant *C2;
1304 Value *ReplacementLow, *ReplacementHigh;
1305 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1306 m_Value(ReplacementHigh))) ||
1307 !match(Cmp1,
1308 m_ICmp(Pred1, m_Specific(X),
1309 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1310 return nullptr;
1311
1312 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1313 return nullptr; // Not enough one-use instructions for the fold.
1314 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1315 // two comparisons we'll need to build.
1316
1317 // Canonicalize Cmp1 into the form we expect.
1318 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1319 switch (Pred1) {
1320 case ICmpInst::Predicate::ICMP_SLT:
1321 break;
1322 case ICmpInst::Predicate::ICMP_SLE:
1323 // We'd have to increment C2 by one, and for that it must not have signed
1324 // max element, but then it would have been canonicalized to 'slt' before
1325 // we get here. So we can't do anything useful with 'sle'.
1326 return nullptr;
1327 case ICmpInst::Predicate::ICMP_SGT:
1328 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1329 // which again means it must not have any signed max elements.
1330 if (!match(C2,
1331 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1332 APInt::getSignedMaxValue(
1333 C2->getType()->getScalarSizeInBits()))))
1334 return nullptr; // Can't do, have signed max element[s].
1335 C2 = InstCombiner::AddOne(C2);
1336 LLVM_FALLTHROUGH;
1337 case ICmpInst::Predicate::ICMP_SGE:
1338 // Also non-canonical, but here we don't need to change C2,
1339 // so we don't have any restrictions on C2, so we can just handle it.
1340 std::swap(ReplacementLow, ReplacementHigh);
1341 break;
1342 default:
1343 return nullptr; // Unknown predicate.
1344 }
1345
1346 // The thresholds of this clamp-like pattern.
1347 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1348 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1349
1350 // The fold has a precondition 1: C2 s>= ThresholdLow
1351 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1352 ThresholdLowIncl);
1353 if (!match(Precond1, m_One()))
1354 return nullptr;
1355 // The fold has a precondition 2: C2 s<= ThresholdHigh
1356 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1357 ThresholdHighExcl);
1358 if (!match(Precond2, m_One()))
1359 return nullptr;
1360
1361 // All good, finally emit the new pattern.
1362 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1363 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1364 Value *MaybeReplacedLow =
1365 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1366 Instruction *MaybeReplacedHigh =
1367 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1368
1369 return MaybeReplacedHigh;
1370 }
1371
1372 // If we have
1373 // %cmp = icmp [canonical predicate] i32 %x, C0
1374 // %r = select i1 %cmp, i32 %y, i32 C1
1375 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1376 // will have if we flip the strictness of the predicate (i.e. without changing
1377 // the result) is identical to the C1 in select. If it matches we can change
1378 // original comparison to one with swapped predicate, reuse the constant,
1379 // and swap the hands of select.
1380 static Instruction *
tryToReuseConstantFromSelectInComparison(SelectInst & Sel,ICmpInst & Cmp,InstCombinerImpl & IC)1381 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1382 InstCombinerImpl &IC) {
1383 ICmpInst::Predicate Pred;
1384 Value *X;
1385 Constant *C0;
1386 if (!match(&Cmp, m_OneUse(m_ICmp(
1387 Pred, m_Value(X),
1388 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1389 return nullptr;
1390
1391 // If comparison predicate is non-relational, we won't be able to do anything.
1392 if (ICmpInst::isEquality(Pred))
1393 return nullptr;
1394
1395 // If comparison predicate is non-canonical, then we certainly won't be able
1396 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1397 if (!InstCombiner::isCanonicalPredicate(Pred))
1398 return nullptr;
1399
1400 // If the [input] type of comparison and select type are different, lets abort
1401 // for now. We could try to compare constants with trunc/[zs]ext though.
1402 if (C0->getType() != Sel.getType())
1403 return nullptr;
1404
1405 // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1406
1407 Value *SelVal0, *SelVal1; // We do not care which one is from where.
1408 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1409 // At least one of these values we are selecting between must be a constant
1410 // else we'll never succeed.
1411 if (!match(SelVal0, m_AnyIntegralConstant()) &&
1412 !match(SelVal1, m_AnyIntegralConstant()))
1413 return nullptr;
1414
1415 // Does this constant C match any of the `select` values?
1416 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1417 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1418 };
1419
1420 // If C0 *already* matches true/false value of select, we are done.
1421 if (MatchesSelectValue(C0))
1422 return nullptr;
1423
1424 // Check the constant we'd have with flipped-strictness predicate.
1425 auto FlippedStrictness =
1426 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1427 if (!FlippedStrictness)
1428 return nullptr;
1429
1430 // If said constant doesn't match either, then there is no hope,
1431 if (!MatchesSelectValue(FlippedStrictness->second))
1432 return nullptr;
1433
1434 // It matched! Lets insert the new comparison just before select.
1435 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1436 IC.Builder.SetInsertPoint(&Sel);
1437
1438 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1439 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1440 Cmp.getName() + ".inv");
1441 IC.replaceOperand(Sel, 0, NewCmp);
1442 Sel.swapValues();
1443 Sel.swapProfMetadata();
1444
1445 return &Sel;
1446 }
1447
1448 /// Visit a SelectInst that has an ICmpInst as its first operand.
foldSelectInstWithICmp(SelectInst & SI,ICmpInst * ICI)1449 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1450 ICmpInst *ICI) {
1451 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1452 return NewSel;
1453
1454 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1455 return NewSel;
1456
1457 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1458 return NewAbs;
1459
1460 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1461 return NewAbs;
1462
1463 if (Instruction *NewSel =
1464 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1465 return NewSel;
1466
1467 bool Changed = adjustMinMax(SI, *ICI);
1468
1469 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1470 return replaceInstUsesWith(SI, V);
1471
1472 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1473 Value *TrueVal = SI.getTrueValue();
1474 Value *FalseVal = SI.getFalseValue();
1475 ICmpInst::Predicate Pred = ICI->getPredicate();
1476 Value *CmpLHS = ICI->getOperand(0);
1477 Value *CmpRHS = ICI->getOperand(1);
1478 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1479 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1480 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1481 SI.setOperand(1, CmpRHS);
1482 Changed = true;
1483 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1484 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1485 SI.setOperand(2, CmpRHS);
1486 Changed = true;
1487 }
1488 }
1489
1490 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1491 // decomposeBitTestICmp() might help.
1492 {
1493 unsigned BitWidth =
1494 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1495 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1496 Value *X;
1497 const APInt *Y, *C;
1498 bool TrueWhenUnset;
1499 bool IsBitTest = false;
1500 if (ICmpInst::isEquality(Pred) &&
1501 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1502 match(CmpRHS, m_Zero())) {
1503 IsBitTest = true;
1504 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1505 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1506 X = CmpLHS;
1507 Y = &MinSignedValue;
1508 IsBitTest = true;
1509 TrueWhenUnset = false;
1510 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1511 X = CmpLHS;
1512 Y = &MinSignedValue;
1513 IsBitTest = true;
1514 TrueWhenUnset = true;
1515 }
1516 if (IsBitTest) {
1517 Value *V = nullptr;
1518 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1519 if (TrueWhenUnset && TrueVal == X &&
1520 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1521 V = Builder.CreateAnd(X, ~(*Y));
1522 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1523 else if (!TrueWhenUnset && FalseVal == X &&
1524 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1525 V = Builder.CreateAnd(X, ~(*Y));
1526 // (X & Y) == 0 ? X ^ Y : X --> X | Y
1527 else if (TrueWhenUnset && FalseVal == X &&
1528 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1529 V = Builder.CreateOr(X, *Y);
1530 // (X & Y) != 0 ? X : X ^ Y --> X | Y
1531 else if (!TrueWhenUnset && TrueVal == X &&
1532 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1533 V = Builder.CreateOr(X, *Y);
1534
1535 if (V)
1536 return replaceInstUsesWith(SI, V);
1537 }
1538 }
1539
1540 if (Instruction *V =
1541 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1542 return V;
1543
1544 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1545 return V;
1546
1547 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1548 return replaceInstUsesWith(SI, V);
1549
1550 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1551 return replaceInstUsesWith(SI, V);
1552
1553 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1554 return replaceInstUsesWith(SI, V);
1555
1556 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1557 return replaceInstUsesWith(SI, V);
1558
1559 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1560 return replaceInstUsesWith(SI, V);
1561
1562 return Changed ? &SI : nullptr;
1563 }
1564
1565 /// SI is a select whose condition is a PHI node (but the two may be in
1566 /// different blocks). See if the true/false values (V) are live in all of the
1567 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1568 ///
1569 /// X = phi [ C1, BB1], [C2, BB2]
1570 /// Y = add
1571 /// Z = select X, Y, 0
1572 ///
1573 /// because Y is not live in BB1/BB2.
canSelectOperandBeMappingIntoPredBlock(const Value * V,const SelectInst & SI)1574 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1575 const SelectInst &SI) {
1576 // If the value is a non-instruction value like a constant or argument, it
1577 // can always be mapped.
1578 const Instruction *I = dyn_cast<Instruction>(V);
1579 if (!I) return true;
1580
1581 // If V is a PHI node defined in the same block as the condition PHI, we can
1582 // map the arguments.
1583 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1584
1585 if (const PHINode *VP = dyn_cast<PHINode>(I))
1586 if (VP->getParent() == CondPHI->getParent())
1587 return true;
1588
1589 // Otherwise, if the PHI and select are defined in the same block and if V is
1590 // defined in a different block, then we can transform it.
1591 if (SI.getParent() == CondPHI->getParent() &&
1592 I->getParent() != CondPHI->getParent())
1593 return true;
1594
1595 // Otherwise we have a 'hard' case and we can't tell without doing more
1596 // detailed dominator based analysis, punt.
1597 return false;
1598 }
1599
1600 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1601 /// SPF2(SPF1(A, B), C)
foldSPFofSPF(Instruction * Inner,SelectPatternFlavor SPF1,Value * A,Value * B,Instruction & Outer,SelectPatternFlavor SPF2,Value * C)1602 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1603 SelectPatternFlavor SPF1, Value *A,
1604 Value *B, Instruction &Outer,
1605 SelectPatternFlavor SPF2,
1606 Value *C) {
1607 if (Outer.getType() != Inner->getType())
1608 return nullptr;
1609
1610 if (C == A || C == B) {
1611 // MAX(MAX(A, B), B) -> MAX(A, B)
1612 // MIN(MIN(a, b), a) -> MIN(a, b)
1613 // TODO: This could be done in instsimplify.
1614 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1615 return replaceInstUsesWith(Outer, Inner);
1616
1617 // MAX(MIN(a, b), a) -> a
1618 // MIN(MAX(a, b), a) -> a
1619 // TODO: This could be done in instsimplify.
1620 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1621 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1622 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1623 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1624 return replaceInstUsesWith(Outer, C);
1625 }
1626
1627 if (SPF1 == SPF2) {
1628 const APInt *CB, *CC;
1629 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1630 // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1631 // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1632 // TODO: This could be done in instsimplify.
1633 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1634 (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1635 (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1636 (SPF1 == SPF_SMAX && CB->sge(*CC)))
1637 return replaceInstUsesWith(Outer, Inner);
1638
1639 // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1640 // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1641 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1642 (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1643 (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1644 (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1645 Outer.replaceUsesOfWith(Inner, A);
1646 return &Outer;
1647 }
1648 }
1649 }
1650
1651 // max(max(A, B), min(A, B)) --> max(A, B)
1652 // min(min(A, B), max(A, B)) --> min(A, B)
1653 // TODO: This could be done in instsimplify.
1654 if (SPF1 == SPF2 &&
1655 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1656 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1657 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1658 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1659 return replaceInstUsesWith(Outer, Inner);
1660
1661 // ABS(ABS(X)) -> ABS(X)
1662 // NABS(NABS(X)) -> NABS(X)
1663 // TODO: This could be done in instsimplify.
1664 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1665 return replaceInstUsesWith(Outer, Inner);
1666 }
1667
1668 // ABS(NABS(X)) -> ABS(X)
1669 // NABS(ABS(X)) -> NABS(X)
1670 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1671 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1672 SelectInst *SI = cast<SelectInst>(Inner);
1673 Value *NewSI =
1674 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1675 SI->getTrueValue(), SI->getName(), SI);
1676 return replaceInstUsesWith(Outer, NewSI);
1677 }
1678
1679 auto IsFreeOrProfitableToInvert =
1680 [&](Value *V, Value *&NotV, bool &ElidesXor) {
1681 if (match(V, m_Not(m_Value(NotV)))) {
1682 // If V has at most 2 uses then we can get rid of the xor operation
1683 // entirely.
1684 ElidesXor |= !V->hasNUsesOrMore(3);
1685 return true;
1686 }
1687
1688 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1689 NotV = nullptr;
1690 return true;
1691 }
1692
1693 return false;
1694 };
1695
1696 Value *NotA, *NotB, *NotC;
1697 bool ElidesXor = false;
1698
1699 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1700 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1701 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1702 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1703 //
1704 // This transform is performance neutral if we can elide at least one xor from
1705 // the set of three operands, since we'll be tacking on an xor at the very
1706 // end.
1707 if (SelectPatternResult::isMinOrMax(SPF1) &&
1708 SelectPatternResult::isMinOrMax(SPF2) &&
1709 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1710 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1711 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1712 if (!NotA)
1713 NotA = Builder.CreateNot(A);
1714 if (!NotB)
1715 NotB = Builder.CreateNot(B);
1716 if (!NotC)
1717 NotC = Builder.CreateNot(C);
1718
1719 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1720 NotB);
1721 Value *NewOuter = Builder.CreateNot(
1722 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1723 return replaceInstUsesWith(Outer, NewOuter);
1724 }
1725
1726 return nullptr;
1727 }
1728
1729 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1730 /// This is even legal for FP.
foldAddSubSelect(SelectInst & SI,InstCombiner::BuilderTy & Builder)1731 static Instruction *foldAddSubSelect(SelectInst &SI,
1732 InstCombiner::BuilderTy &Builder) {
1733 Value *CondVal = SI.getCondition();
1734 Value *TrueVal = SI.getTrueValue();
1735 Value *FalseVal = SI.getFalseValue();
1736 auto *TI = dyn_cast<Instruction>(TrueVal);
1737 auto *FI = dyn_cast<Instruction>(FalseVal);
1738 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1739 return nullptr;
1740
1741 Instruction *AddOp = nullptr, *SubOp = nullptr;
1742 if ((TI->getOpcode() == Instruction::Sub &&
1743 FI->getOpcode() == Instruction::Add) ||
1744 (TI->getOpcode() == Instruction::FSub &&
1745 FI->getOpcode() == Instruction::FAdd)) {
1746 AddOp = FI;
1747 SubOp = TI;
1748 } else if ((FI->getOpcode() == Instruction::Sub &&
1749 TI->getOpcode() == Instruction::Add) ||
1750 (FI->getOpcode() == Instruction::FSub &&
1751 TI->getOpcode() == Instruction::FAdd)) {
1752 AddOp = TI;
1753 SubOp = FI;
1754 }
1755
1756 if (AddOp) {
1757 Value *OtherAddOp = nullptr;
1758 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1759 OtherAddOp = AddOp->getOperand(1);
1760 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1761 OtherAddOp = AddOp->getOperand(0);
1762 }
1763
1764 if (OtherAddOp) {
1765 // So at this point we know we have (Y -> OtherAddOp):
1766 // select C, (add X, Y), (sub X, Z)
1767 Value *NegVal; // Compute -Z
1768 if (SI.getType()->isFPOrFPVectorTy()) {
1769 NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1770 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1771 FastMathFlags Flags = AddOp->getFastMathFlags();
1772 Flags &= SubOp->getFastMathFlags();
1773 NegInst->setFastMathFlags(Flags);
1774 }
1775 } else {
1776 NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1777 }
1778
1779 Value *NewTrueOp = OtherAddOp;
1780 Value *NewFalseOp = NegVal;
1781 if (AddOp != TI)
1782 std::swap(NewTrueOp, NewFalseOp);
1783 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1784 SI.getName() + ".p", &SI);
1785
1786 if (SI.getType()->isFPOrFPVectorTy()) {
1787 Instruction *RI =
1788 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1789
1790 FastMathFlags Flags = AddOp->getFastMathFlags();
1791 Flags &= SubOp->getFastMathFlags();
1792 RI->setFastMathFlags(Flags);
1793 return RI;
1794 } else
1795 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1796 }
1797 }
1798 return nullptr;
1799 }
1800
1801 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1802 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1803 /// Along with a number of patterns similar to:
1804 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1805 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1806 static Instruction *
foldOverflowingAddSubSelect(SelectInst & SI,InstCombiner::BuilderTy & Builder)1807 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1808 Value *CondVal = SI.getCondition();
1809 Value *TrueVal = SI.getTrueValue();
1810 Value *FalseVal = SI.getFalseValue();
1811
1812 WithOverflowInst *II;
1813 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1814 !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1815 return nullptr;
1816
1817 Value *X = II->getLHS();
1818 Value *Y = II->getRHS();
1819
1820 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1821 Type *Ty = Limit->getType();
1822
1823 ICmpInst::Predicate Pred;
1824 Value *TrueVal, *FalseVal, *Op;
1825 const APInt *C;
1826 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1827 m_Value(TrueVal), m_Value(FalseVal))))
1828 return false;
1829
1830 auto IsZeroOrOne = [](const APInt &C) {
1831 return C.isNullValue() || C.isOneValue();
1832 };
1833 auto IsMinMax = [&](Value *Min, Value *Max) {
1834 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1835 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1836 return match(Min, m_SpecificInt(MinVal)) &&
1837 match(Max, m_SpecificInt(MaxVal));
1838 };
1839
1840 if (Op != X && Op != Y)
1841 return false;
1842
1843 if (IsAdd) {
1844 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1845 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1846 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1847 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1848 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1849 IsMinMax(TrueVal, FalseVal))
1850 return true;
1851 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1852 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1853 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1854 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1855 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1856 IsMinMax(FalseVal, TrueVal))
1857 return true;
1858 } else {
1859 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1860 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1861 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1862 IsMinMax(TrueVal, FalseVal))
1863 return true;
1864 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1865 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1866 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1867 IsMinMax(FalseVal, TrueVal))
1868 return true;
1869 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1870 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1871 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1872 IsMinMax(FalseVal, TrueVal))
1873 return true;
1874 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1875 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1876 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1877 IsMinMax(TrueVal, FalseVal))
1878 return true;
1879 }
1880
1881 return false;
1882 };
1883
1884 Intrinsic::ID NewIntrinsicID;
1885 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1886 match(TrueVal, m_AllOnes()))
1887 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1888 NewIntrinsicID = Intrinsic::uadd_sat;
1889 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1890 match(TrueVal, m_Zero()))
1891 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1892 NewIntrinsicID = Intrinsic::usub_sat;
1893 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1894 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1895 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1896 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1897 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1898 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1899 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1900 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1901 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1902 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1903 NewIntrinsicID = Intrinsic::sadd_sat;
1904 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1905 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1906 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1907 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1908 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1909 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1910 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1911 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1912 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1913 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1914 NewIntrinsicID = Intrinsic::ssub_sat;
1915 else
1916 return nullptr;
1917
1918 Function *F =
1919 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1920 return CallInst::Create(F, {X, Y});
1921 }
1922
foldSelectExtConst(SelectInst & Sel)1923 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1924 Constant *C;
1925 if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1926 !match(Sel.getFalseValue(), m_Constant(C)))
1927 return nullptr;
1928
1929 Instruction *ExtInst;
1930 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1931 !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1932 return nullptr;
1933
1934 auto ExtOpcode = ExtInst->getOpcode();
1935 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1936 return nullptr;
1937
1938 // If we are extending from a boolean type or if we can create a select that
1939 // has the same size operands as its condition, try to narrow the select.
1940 Value *X = ExtInst->getOperand(0);
1941 Type *SmallType = X->getType();
1942 Value *Cond = Sel.getCondition();
1943 auto *Cmp = dyn_cast<CmpInst>(Cond);
1944 if (!SmallType->isIntOrIntVectorTy(1) &&
1945 (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1946 return nullptr;
1947
1948 // If the constant is the same after truncation to the smaller type and
1949 // extension to the original type, we can narrow the select.
1950 Type *SelType = Sel.getType();
1951 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1952 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1953 if (ExtC == C && ExtInst->hasOneUse()) {
1954 Value *TruncCVal = cast<Value>(TruncC);
1955 if (ExtInst == Sel.getFalseValue())
1956 std::swap(X, TruncCVal);
1957
1958 // select Cond, (ext X), C --> ext(select Cond, X, C')
1959 // select Cond, C, (ext X) --> ext(select Cond, C', X)
1960 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1961 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1962 }
1963
1964 // If one arm of the select is the extend of the condition, replace that arm
1965 // with the extension of the appropriate known bool value.
1966 if (Cond == X) {
1967 if (ExtInst == Sel.getTrueValue()) {
1968 // select X, (sext X), C --> select X, -1, C
1969 // select X, (zext X), C --> select X, 1, C
1970 Constant *One = ConstantInt::getTrue(SmallType);
1971 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1972 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1973 } else {
1974 // select X, C, (sext X) --> select X, C, 0
1975 // select X, C, (zext X) --> select X, C, 0
1976 Constant *Zero = ConstantInt::getNullValue(SelType);
1977 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1978 }
1979 }
1980
1981 return nullptr;
1982 }
1983
1984 /// Try to transform a vector select with a constant condition vector into a
1985 /// shuffle for easier combining with other shuffles and insert/extract.
canonicalizeSelectToShuffle(SelectInst & SI)1986 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1987 Value *CondVal = SI.getCondition();
1988 Constant *CondC;
1989 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1990 return nullptr;
1991
1992 unsigned NumElts =
1993 cast<FixedVectorType>(CondVal->getType())->getNumElements();
1994 SmallVector<int, 16> Mask;
1995 Mask.reserve(NumElts);
1996 for (unsigned i = 0; i != NumElts; ++i) {
1997 Constant *Elt = CondC->getAggregateElement(i);
1998 if (!Elt)
1999 return nullptr;
2000
2001 if (Elt->isOneValue()) {
2002 // If the select condition element is true, choose from the 1st vector.
2003 Mask.push_back(i);
2004 } else if (Elt->isNullValue()) {
2005 // If the select condition element is false, choose from the 2nd vector.
2006 Mask.push_back(i + NumElts);
2007 } else if (isa<UndefValue>(Elt)) {
2008 // Undef in a select condition (choose one of the operands) does not mean
2009 // the same thing as undef in a shuffle mask (any value is acceptable), so
2010 // give up.
2011 return nullptr;
2012 } else {
2013 // Bail out on a constant expression.
2014 return nullptr;
2015 }
2016 }
2017
2018 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2019 }
2020
2021 /// If we have a select of vectors with a scalar condition, try to convert that
2022 /// to a vector select by splatting the condition. A splat may get folded with
2023 /// other operations in IR and having all operands of a select be vector types
2024 /// is likely better for vector codegen.
canonicalizeScalarSelectOfVecs(SelectInst & Sel,InstCombinerImpl & IC)2025 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2026 InstCombinerImpl &IC) {
2027 auto *Ty = dyn_cast<VectorType>(Sel.getType());
2028 if (!Ty)
2029 return nullptr;
2030
2031 // We can replace a single-use extract with constant index.
2032 Value *Cond = Sel.getCondition();
2033 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2034 return nullptr;
2035
2036 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2037 // Splatting the extracted condition reduces code (we could directly create a
2038 // splat shuffle of the source vector to eliminate the intermediate step).
2039 return IC.replaceOperand(
2040 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2041 }
2042
2043 /// Reuse bitcasted operands between a compare and select:
2044 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2045 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
foldSelectCmpBitcasts(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2046 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2047 InstCombiner::BuilderTy &Builder) {
2048 Value *Cond = Sel.getCondition();
2049 Value *TVal = Sel.getTrueValue();
2050 Value *FVal = Sel.getFalseValue();
2051
2052 CmpInst::Predicate Pred;
2053 Value *A, *B;
2054 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2055 return nullptr;
2056
2057 // The select condition is a compare instruction. If the select's true/false
2058 // values are already the same as the compare operands, there's nothing to do.
2059 if (TVal == A || TVal == B || FVal == A || FVal == B)
2060 return nullptr;
2061
2062 Value *C, *D;
2063 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2064 return nullptr;
2065
2066 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2067 Value *TSrc, *FSrc;
2068 if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2069 !match(FVal, m_BitCast(m_Value(FSrc))))
2070 return nullptr;
2071
2072 // If the select true/false values are *different bitcasts* of the same source
2073 // operands, make the select operands the same as the compare operands and
2074 // cast the result. This is the canonical select form for min/max.
2075 Value *NewSel;
2076 if (TSrc == C && FSrc == D) {
2077 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2078 // bitcast (select (cmp A, B), A, B)
2079 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2080 } else if (TSrc == D && FSrc == C) {
2081 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2082 // bitcast (select (cmp A, B), B, A)
2083 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2084 } else {
2085 return nullptr;
2086 }
2087 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2088 }
2089
2090 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2091 /// instructions.
2092 ///
2093 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2094 /// selects between the returned value of the cmpxchg instruction its compare
2095 /// operand, the result of the select will always be equal to its false value.
2096 /// For example:
2097 ///
2098 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2099 /// %1 = extractvalue { i64, i1 } %0, 1
2100 /// %2 = extractvalue { i64, i1 } %0, 0
2101 /// %3 = select i1 %1, i64 %compare, i64 %2
2102 /// ret i64 %3
2103 ///
2104 /// The returned value of the cmpxchg instruction (%2) is the original value
2105 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2106 /// must have been equal to %compare. Thus, the result of the select is always
2107 /// equal to %2, and the code can be simplified to:
2108 ///
2109 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2110 /// %1 = extractvalue { i64, i1 } %0, 0
2111 /// ret i64 %1
2112 ///
foldSelectCmpXchg(SelectInst & SI)2113 static Value *foldSelectCmpXchg(SelectInst &SI) {
2114 // A helper that determines if V is an extractvalue instruction whose
2115 // aggregate operand is a cmpxchg instruction and whose single index is equal
2116 // to I. If such conditions are true, the helper returns the cmpxchg
2117 // instruction; otherwise, a nullptr is returned.
2118 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2119 auto *Extract = dyn_cast<ExtractValueInst>(V);
2120 if (!Extract)
2121 return nullptr;
2122 if (Extract->getIndices()[0] != I)
2123 return nullptr;
2124 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2125 };
2126
2127 // If the select has a single user, and this user is a select instruction that
2128 // we can simplify, skip the cmpxchg simplification for now.
2129 if (SI.hasOneUse())
2130 if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2131 if (Select->getCondition() == SI.getCondition())
2132 if (Select->getFalseValue() == SI.getTrueValue() ||
2133 Select->getTrueValue() == SI.getFalseValue())
2134 return nullptr;
2135
2136 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2137 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2138 if (!CmpXchg)
2139 return nullptr;
2140
2141 // Check the true value case: The true value of the select is the returned
2142 // value of the same cmpxchg used by the condition, and the false value is the
2143 // cmpxchg instruction's compare operand.
2144 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2145 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2146 return SI.getFalseValue();
2147
2148 // Check the false value case: The false value of the select is the returned
2149 // value of the same cmpxchg used by the condition, and the true value is the
2150 // cmpxchg instruction's compare operand.
2151 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2152 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2153 return SI.getFalseValue();
2154
2155 return nullptr;
2156 }
2157
moveAddAfterMinMax(SelectPatternFlavor SPF,Value * X,Value * Y,InstCombiner::BuilderTy & Builder)2158 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2159 Value *Y,
2160 InstCombiner::BuilderTy &Builder) {
2161 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2162 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2163 SPF == SelectPatternFlavor::SPF_UMAX;
2164 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2165 // the constant value check to an assert.
2166 Value *A;
2167 const APInt *C1, *C2;
2168 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2169 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2170 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2171 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2172 Value *NewMinMax = createMinMax(Builder, SPF, A,
2173 ConstantInt::get(X->getType(), *C2 - *C1));
2174 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2175 ConstantInt::get(X->getType(), *C1));
2176 }
2177
2178 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2179 match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2180 bool Overflow;
2181 APInt Diff = C2->ssub_ov(*C1, Overflow);
2182 if (!Overflow) {
2183 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2184 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2185 Value *NewMinMax = createMinMax(Builder, SPF, A,
2186 ConstantInt::get(X->getType(), Diff));
2187 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2188 ConstantInt::get(X->getType(), *C1));
2189 }
2190 }
2191
2192 return nullptr;
2193 }
2194
2195 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
matchSAddSubSat(SelectInst & MinMax1)2196 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) {
2197 Type *Ty = MinMax1.getType();
2198
2199 // We are looking for a tree of:
2200 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2201 // Where the min and max could be reversed
2202 Instruction *MinMax2;
2203 BinaryOperator *AddSub;
2204 const APInt *MinValue, *MaxValue;
2205 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2206 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2207 return nullptr;
2208 } else if (match(&MinMax1,
2209 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2210 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2211 return nullptr;
2212 } else
2213 return nullptr;
2214
2215 // Check that the constants clamp a saturate, and that the new type would be
2216 // sensible to convert to.
2217 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2218 return nullptr;
2219 // In what bitwidth can this be treated as saturating arithmetics?
2220 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2221 // FIXME: This isn't quite right for vectors, but using the scalar type is a
2222 // good first approximation for what should be done there.
2223 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2224 return nullptr;
2225
2226 // Also make sure that the number of uses is as expected. The "3"s are for the
2227 // the two items of min/max (the compare and the select).
2228 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2229 return nullptr;
2230
2231 // Create the new type (which can be a vector type)
2232 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2233 // Match the two extends from the add/sub
2234 Value *A, *B;
2235 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2236 return nullptr;
2237 // And check the incoming values are of a type smaller than or equal to the
2238 // size of the saturation. Otherwise the higher bits can cause different
2239 // results.
2240 if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2241 B->getType()->getScalarSizeInBits() > NewBitWidth)
2242 return nullptr;
2243
2244 Intrinsic::ID IntrinsicID;
2245 if (AddSub->getOpcode() == Instruction::Add)
2246 IntrinsicID = Intrinsic::sadd_sat;
2247 else if (AddSub->getOpcode() == Instruction::Sub)
2248 IntrinsicID = Intrinsic::ssub_sat;
2249 else
2250 return nullptr;
2251
2252 // Finally create and return the sat intrinsic, truncated to the new type
2253 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2254 Value *AT = Builder.CreateSExt(A, NewTy);
2255 Value *BT = Builder.CreateSExt(B, NewTy);
2256 Value *Sat = Builder.CreateCall(F, {AT, BT});
2257 return CastInst::Create(Instruction::SExt, Sat, Ty);
2258 }
2259
2260 /// Reduce a sequence of min/max with a common operand.
factorizeMinMaxTree(SelectPatternFlavor SPF,Value * LHS,Value * RHS,InstCombiner::BuilderTy & Builder)2261 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2262 Value *RHS,
2263 InstCombiner::BuilderTy &Builder) {
2264 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2265 // TODO: Allow FP min/max with nnan/nsz.
2266 if (!LHS->getType()->isIntOrIntVectorTy())
2267 return nullptr;
2268
2269 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2270 Value *A, *B, *C, *D;
2271 SelectPatternResult L = matchSelectPattern(LHS, A, B);
2272 SelectPatternResult R = matchSelectPattern(RHS, C, D);
2273 if (SPF != L.Flavor || L.Flavor != R.Flavor)
2274 return nullptr;
2275
2276 // Look for a common operand. The use checks are different than usual because
2277 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2278 // the select.
2279 Value *MinMaxOp = nullptr;
2280 Value *ThirdOp = nullptr;
2281 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2282 // If the LHS is only used in this chain and the RHS is used outside of it,
2283 // reuse the RHS min/max because that will eliminate the LHS.
2284 if (D == A || C == A) {
2285 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2286 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2287 MinMaxOp = RHS;
2288 ThirdOp = B;
2289 } else if (D == B || C == B) {
2290 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2291 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2292 MinMaxOp = RHS;
2293 ThirdOp = A;
2294 }
2295 } else if (!RHS->hasNUsesOrMore(3)) {
2296 // Reuse the LHS. This will eliminate the RHS.
2297 if (D == A || D == B) {
2298 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2299 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2300 MinMaxOp = LHS;
2301 ThirdOp = C;
2302 } else if (C == A || C == B) {
2303 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2304 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2305 MinMaxOp = LHS;
2306 ThirdOp = D;
2307 }
2308 }
2309 if (!MinMaxOp || !ThirdOp)
2310 return nullptr;
2311
2312 CmpInst::Predicate P = getMinMaxPred(SPF);
2313 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2314 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2315 }
2316
2317 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2318 /// into a funnel shift intrinsic. Example:
2319 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2320 /// --> call llvm.fshl.i32(a, a, b)
2321 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2322 /// --> call llvm.fshl.i32(a, b, c)
2323 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2324 /// --> call llvm.fshr.i32(a, b, c)
foldSelectFunnelShift(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2325 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2326 InstCombiner::BuilderTy &Builder) {
2327 // This must be a power-of-2 type for a bitmasking transform to be valid.
2328 unsigned Width = Sel.getType()->getScalarSizeInBits();
2329 if (!isPowerOf2_32(Width))
2330 return nullptr;
2331
2332 BinaryOperator *Or0, *Or1;
2333 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2334 return nullptr;
2335
2336 Value *SV0, *SV1, *SA0, *SA1;
2337 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2338 m_ZExtOrSelf(m_Value(SA0))))) ||
2339 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2340 m_ZExtOrSelf(m_Value(SA1))))) ||
2341 Or0->getOpcode() == Or1->getOpcode())
2342 return nullptr;
2343
2344 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2345 if (Or0->getOpcode() == BinaryOperator::LShr) {
2346 std::swap(Or0, Or1);
2347 std::swap(SV0, SV1);
2348 std::swap(SA0, SA1);
2349 }
2350 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2351 Or1->getOpcode() == BinaryOperator::LShr &&
2352 "Illegal or(shift,shift) pair");
2353
2354 // Check the shift amounts to see if they are an opposite pair.
2355 Value *ShAmt;
2356 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2357 ShAmt = SA0;
2358 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2359 ShAmt = SA1;
2360 else
2361 return nullptr;
2362
2363 // We should now have this pattern:
2364 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2365 // The false value of the select must be a funnel-shift of the true value:
2366 // IsFShl -> TVal must be SV0 else TVal must be SV1.
2367 bool IsFshl = (ShAmt == SA0);
2368 Value *TVal = Sel.getTrueValue();
2369 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2370 return nullptr;
2371
2372 // Finally, see if the select is filtering out a shift-by-zero.
2373 Value *Cond = Sel.getCondition();
2374 ICmpInst::Predicate Pred;
2375 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2376 Pred != ICmpInst::ICMP_EQ)
2377 return nullptr;
2378
2379 // If this is not a rotate then the select was blocking poison from the
2380 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2381 if (SV0 != SV1) {
2382 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2383 SV1 = Builder.CreateFreeze(SV1);
2384 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2385 SV0 = Builder.CreateFreeze(SV0);
2386 }
2387
2388 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2389 // Convert to funnel shift intrinsic.
2390 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2391 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2392 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2393 return IntrinsicInst::Create(F, { SV0, SV1, ShAmt });
2394 }
2395
foldSelectToCopysign(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2396 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2397 InstCombiner::BuilderTy &Builder) {
2398 Value *Cond = Sel.getCondition();
2399 Value *TVal = Sel.getTrueValue();
2400 Value *FVal = Sel.getFalseValue();
2401 Type *SelType = Sel.getType();
2402
2403 // Match select ?, TC, FC where the constants are equal but negated.
2404 // TODO: Generalize to handle a negated variable operand?
2405 const APFloat *TC, *FC;
2406 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2407 !abs(*TC).bitwiseIsEqual(abs(*FC)))
2408 return nullptr;
2409
2410 assert(TC != FC && "Expected equal select arms to simplify");
2411
2412 Value *X;
2413 const APInt *C;
2414 bool IsTrueIfSignSet;
2415 ICmpInst::Predicate Pred;
2416 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2417 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2418 X->getType() != SelType)
2419 return nullptr;
2420
2421 // If needed, negate the value that will be the sign argument of the copysign:
2422 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
2423 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
2424 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
2425 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
2426 if (IsTrueIfSignSet ^ TC->isNegative())
2427 X = Builder.CreateFNegFMF(X, &Sel);
2428
2429 // Canonicalize the magnitude argument as the positive constant since we do
2430 // not care about its sign.
2431 Value *MagArg = TC->isNegative() ? FVal : TVal;
2432 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2433 Sel.getType());
2434 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
2435 CopySign->setFastMathFlags(Sel.getFastMathFlags());
2436 return CopySign;
2437 }
2438
foldVectorSelect(SelectInst & Sel)2439 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2440 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2441 if (!VecTy)
2442 return nullptr;
2443
2444 unsigned NumElts = VecTy->getNumElements();
2445 APInt UndefElts(NumElts, 0);
2446 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts));
2447 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2448 if (V != &Sel)
2449 return replaceInstUsesWith(Sel, V);
2450 return &Sel;
2451 }
2452
2453 // A select of a "select shuffle" with a common operand can be rearranged
2454 // to select followed by "select shuffle". Because of poison, this only works
2455 // in the case of a shuffle with no undefined mask elements.
2456 Value *Cond = Sel.getCondition();
2457 Value *TVal = Sel.getTrueValue();
2458 Value *FVal = Sel.getFalseValue();
2459 Value *X, *Y;
2460 ArrayRef<int> Mask;
2461 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2462 !is_contained(Mask, UndefMaskElem) &&
2463 cast<ShuffleVectorInst>(TVal)->isSelect()) {
2464 if (X == FVal) {
2465 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2466 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2467 return new ShuffleVectorInst(X, NewSel, Mask);
2468 }
2469 if (Y == FVal) {
2470 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2471 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2472 return new ShuffleVectorInst(NewSel, Y, Mask);
2473 }
2474 }
2475 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2476 !is_contained(Mask, UndefMaskElem) &&
2477 cast<ShuffleVectorInst>(FVal)->isSelect()) {
2478 if (X == TVal) {
2479 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2480 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2481 return new ShuffleVectorInst(X, NewSel, Mask);
2482 }
2483 if (Y == TVal) {
2484 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2485 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2486 return new ShuffleVectorInst(NewSel, Y, Mask);
2487 }
2488 }
2489
2490 return nullptr;
2491 }
2492
foldSelectToPhiImpl(SelectInst & Sel,BasicBlock * BB,const DominatorTree & DT,InstCombiner::BuilderTy & Builder)2493 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2494 const DominatorTree &DT,
2495 InstCombiner::BuilderTy &Builder) {
2496 // Find the block's immediate dominator that ends with a conditional branch
2497 // that matches select's condition (maybe inverted).
2498 auto *IDomNode = DT[BB]->getIDom();
2499 if (!IDomNode)
2500 return nullptr;
2501 BasicBlock *IDom = IDomNode->getBlock();
2502
2503 Value *Cond = Sel.getCondition();
2504 Value *IfTrue, *IfFalse;
2505 BasicBlock *TrueSucc, *FalseSucc;
2506 if (match(IDom->getTerminator(),
2507 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2508 m_BasicBlock(FalseSucc)))) {
2509 IfTrue = Sel.getTrueValue();
2510 IfFalse = Sel.getFalseValue();
2511 } else if (match(IDom->getTerminator(),
2512 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2513 m_BasicBlock(FalseSucc)))) {
2514 IfTrue = Sel.getFalseValue();
2515 IfFalse = Sel.getTrueValue();
2516 } else
2517 return nullptr;
2518
2519 // Make sure the branches are actually different.
2520 if (TrueSucc == FalseSucc)
2521 return nullptr;
2522
2523 // We want to replace select %cond, %a, %b with a phi that takes value %a
2524 // for all incoming edges that are dominated by condition `%cond == true`,
2525 // and value %b for edges dominated by condition `%cond == false`. If %a
2526 // or %b are also phis from the same basic block, we can go further and take
2527 // their incoming values from the corresponding blocks.
2528 BasicBlockEdge TrueEdge(IDom, TrueSucc);
2529 BasicBlockEdge FalseEdge(IDom, FalseSucc);
2530 DenseMap<BasicBlock *, Value *> Inputs;
2531 for (auto *Pred : predecessors(BB)) {
2532 // Check implication.
2533 BasicBlockEdge Incoming(Pred, BB);
2534 if (DT.dominates(TrueEdge, Incoming))
2535 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2536 else if (DT.dominates(FalseEdge, Incoming))
2537 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2538 else
2539 return nullptr;
2540 // Check availability.
2541 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2542 if (!DT.dominates(Insn, Pred->getTerminator()))
2543 return nullptr;
2544 }
2545
2546 Builder.SetInsertPoint(&*BB->begin());
2547 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2548 for (auto *Pred : predecessors(BB))
2549 PN->addIncoming(Inputs[Pred], Pred);
2550 PN->takeName(&Sel);
2551 return PN;
2552 }
2553
foldSelectToPhi(SelectInst & Sel,const DominatorTree & DT,InstCombiner::BuilderTy & Builder)2554 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2555 InstCombiner::BuilderTy &Builder) {
2556 // Try to replace this select with Phi in one of these blocks.
2557 SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2558 CandidateBlocks.insert(Sel.getParent());
2559 for (Value *V : Sel.operands())
2560 if (auto *I = dyn_cast<Instruction>(V))
2561 CandidateBlocks.insert(I->getParent());
2562
2563 for (BasicBlock *BB : CandidateBlocks)
2564 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2565 return PN;
2566 return nullptr;
2567 }
2568
foldSelectWithFrozenICmp(SelectInst & Sel,InstCombiner::BuilderTy & Builder)2569 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2570 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2571 if (!FI)
2572 return nullptr;
2573
2574 Value *Cond = FI->getOperand(0);
2575 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2576
2577 // select (freeze(x == y)), x, y --> y
2578 // select (freeze(x != y)), x, y --> x
2579 // The freeze should be only used by this select. Otherwise, remaining uses of
2580 // the freeze can observe a contradictory value.
2581 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
2582 // a = select c, x, y ;
2583 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
2584 // ; to y, this can happen.
2585 CmpInst::Predicate Pred;
2586 if (FI->hasOneUse() &&
2587 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2588 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2589 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2590 }
2591
2592 return nullptr;
2593 }
2594
visitSelectInst(SelectInst & SI)2595 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2596 Value *CondVal = SI.getCondition();
2597 Value *TrueVal = SI.getTrueValue();
2598 Value *FalseVal = SI.getFalseValue();
2599 Type *SelType = SI.getType();
2600
2601 // FIXME: Remove this workaround when freeze related patches are done.
2602 // For select with undef operand which feeds into an equality comparison,
2603 // don't simplify it so loop unswitch can know the equality comparison
2604 // may have an undef operand. This is a workaround for PR31652 caused by
2605 // descrepancy about branch on undef between LoopUnswitch and GVN.
2606 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2607 if (llvm::any_of(SI.users(), [&](User *U) {
2608 ICmpInst *CI = dyn_cast<ICmpInst>(U);
2609 if (CI && CI->isEquality())
2610 return true;
2611 return false;
2612 })) {
2613 return nullptr;
2614 }
2615 }
2616
2617 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2618 SQ.getWithInstruction(&SI)))
2619 return replaceInstUsesWith(SI, V);
2620
2621 if (Instruction *I = canonicalizeSelectToShuffle(SI))
2622 return I;
2623
2624 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2625 return I;
2626
2627 CmpInst::Predicate Pred;
2628
2629 if (SelType->isIntOrIntVectorTy(1) &&
2630 TrueVal->getType() == CondVal->getType()) {
2631 if (match(TrueVal, m_One())) {
2632 // Change: A = select B, true, C --> A = or B, C
2633 return BinaryOperator::CreateOr(CondVal, FalseVal);
2634 }
2635 if (match(TrueVal, m_Zero())) {
2636 // Change: A = select B, false, C --> A = and !B, C
2637 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2638 return BinaryOperator::CreateAnd(NotCond, FalseVal);
2639 }
2640 if (match(FalseVal, m_Zero())) {
2641 // Change: A = select B, C, false --> A = and B, C
2642 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2643 }
2644 if (match(FalseVal, m_One())) {
2645 // Change: A = select B, C, true --> A = or !B, C
2646 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2647 return BinaryOperator::CreateOr(NotCond, TrueVal);
2648 }
2649
2650 // select a, a, b -> a | b
2651 // select a, b, a -> a & b
2652 if (CondVal == TrueVal)
2653 return BinaryOperator::CreateOr(CondVal, FalseVal);
2654 if (CondVal == FalseVal)
2655 return BinaryOperator::CreateAnd(CondVal, TrueVal);
2656
2657 // select a, ~a, b -> (~a) & b
2658 // select a, b, ~a -> (~a) | b
2659 if (match(TrueVal, m_Not(m_Specific(CondVal))))
2660 return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2661 if (match(FalseVal, m_Not(m_Specific(CondVal))))
2662 return BinaryOperator::CreateOr(TrueVal, FalseVal);
2663 }
2664
2665 // Selecting between two integer or vector splat integer constants?
2666 //
2667 // Note that we don't handle a scalar select of vectors:
2668 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2669 // because that may need 3 instructions to splat the condition value:
2670 // extend, insertelement, shufflevector.
2671 if (SelType->isIntOrIntVectorTy() &&
2672 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2673 // select C, 1, 0 -> zext C to int
2674 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2675 return new ZExtInst(CondVal, SelType);
2676
2677 // select C, -1, 0 -> sext C to int
2678 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2679 return new SExtInst(CondVal, SelType);
2680
2681 // select C, 0, 1 -> zext !C to int
2682 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2683 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2684 return new ZExtInst(NotCond, SelType);
2685 }
2686
2687 // select C, 0, -1 -> sext !C to int
2688 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2689 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2690 return new SExtInst(NotCond, SelType);
2691 }
2692 }
2693
2694 // See if we are selecting two values based on a comparison of the two values.
2695 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2696 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2697 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2698 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2699 // Canonicalize to use ordered comparisons by swapping the select
2700 // operands.
2701 //
2702 // e.g.
2703 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2704 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2705 FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2706 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2707 // FIXME: The FMF should propagate from the select, not the fcmp.
2708 Builder.setFastMathFlags(FCI->getFastMathFlags());
2709 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2710 FCI->getName() + ".inv");
2711 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2712 return replaceInstUsesWith(SI, NewSel);
2713 }
2714
2715 // NOTE: if we wanted to, this is where to detect MIN/MAX
2716 }
2717 }
2718
2719 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2720 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2721 // also require nnan because we do not want to unintentionally change the
2722 // sign of a NaN value.
2723 // FIXME: These folds should test/propagate FMF from the select, not the
2724 // fsub or fneg.
2725 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2726 Instruction *FSub;
2727 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2728 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2729 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2730 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2731 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2732 return replaceInstUsesWith(SI, Fabs);
2733 }
2734 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
2735 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2736 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2737 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2738 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2739 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2740 return replaceInstUsesWith(SI, Fabs);
2741 }
2742 // With nnan and nsz:
2743 // (X < +/-0.0) ? -X : X --> fabs(X)
2744 // (X <= +/-0.0) ? -X : X --> fabs(X)
2745 Instruction *FNeg;
2746 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2747 match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2748 match(TrueVal, m_Instruction(FNeg)) &&
2749 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2750 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2751 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2752 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2753 return replaceInstUsesWith(SI, Fabs);
2754 }
2755 // With nnan and nsz:
2756 // (X > +/-0.0) ? X : -X --> fabs(X)
2757 // (X >= +/-0.0) ? X : -X --> fabs(X)
2758 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2759 match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2760 match(FalseVal, m_Instruction(FNeg)) &&
2761 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2762 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2763 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2764 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2765 return replaceInstUsesWith(SI, Fabs);
2766 }
2767
2768 // See if we are selecting two values based on a comparison of the two values.
2769 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2770 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2771 return Result;
2772
2773 if (Instruction *Add = foldAddSubSelect(SI, Builder))
2774 return Add;
2775 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2776 return Add;
2777 if (Instruction *Or = foldSetClearBits(SI, Builder))
2778 return Or;
2779
2780 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2781 auto *TI = dyn_cast<Instruction>(TrueVal);
2782 auto *FI = dyn_cast<Instruction>(FalseVal);
2783 if (TI && FI && TI->getOpcode() == FI->getOpcode())
2784 if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2785 return IV;
2786
2787 if (Instruction *I = foldSelectExtConst(SI))
2788 return I;
2789
2790 // See if we can fold the select into one of our operands.
2791 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2792 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2793 return FoldI;
2794
2795 Value *LHS, *RHS;
2796 Instruction::CastOps CastOp;
2797 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2798 auto SPF = SPR.Flavor;
2799 if (SPF) {
2800 Value *LHS2, *RHS2;
2801 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2802 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2803 RHS2, SI, SPF, RHS))
2804 return R;
2805 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2806 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2807 RHS2, SI, SPF, LHS))
2808 return R;
2809 // TODO.
2810 // ABS(-X) -> ABS(X)
2811 }
2812
2813 if (SelectPatternResult::isMinOrMax(SPF)) {
2814 // Canonicalize so that
2815 // - type casts are outside select patterns.
2816 // - float clamp is transformed to min/max pattern
2817
2818 bool IsCastNeeded = LHS->getType() != SelType;
2819 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2820 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2821 if (IsCastNeeded ||
2822 (LHS->getType()->isFPOrFPVectorTy() &&
2823 ((CmpLHS != LHS && CmpLHS != RHS) ||
2824 (CmpRHS != LHS && CmpRHS != RHS)))) {
2825 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2826
2827 Value *Cmp;
2828 if (CmpInst::isIntPredicate(MinMaxPred)) {
2829 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2830 } else {
2831 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2832 auto FMF =
2833 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2834 Builder.setFastMathFlags(FMF);
2835 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2836 }
2837
2838 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2839 if (!IsCastNeeded)
2840 return replaceInstUsesWith(SI, NewSI);
2841
2842 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2843 return replaceInstUsesWith(SI, NewCast);
2844 }
2845
2846 // MAX(~a, ~b) -> ~MIN(a, b)
2847 // MAX(~a, C) -> ~MIN(a, ~C)
2848 // MIN(~a, ~b) -> ~MAX(a, b)
2849 // MIN(~a, C) -> ~MAX(a, ~C)
2850 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2851 Value *A;
2852 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2853 !isFreeToInvert(A, A->hasOneUse()) &&
2854 // Passing false to only consider m_Not and constants.
2855 isFreeToInvert(Y, false)) {
2856 Value *B = Builder.CreateNot(Y);
2857 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2858 A, B);
2859 // Copy the profile metadata.
2860 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2861 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2862 // Swap the metadata if the operands are swapped.
2863 if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2864 cast<SelectInst>(NewMinMax)->swapProfMetadata();
2865 }
2866
2867 return BinaryOperator::CreateNot(NewMinMax);
2868 }
2869
2870 return nullptr;
2871 };
2872
2873 if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2874 return I;
2875 if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2876 return I;
2877
2878 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2879 return I;
2880
2881 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2882 return I;
2883 if (Instruction *I = matchSAddSubSat(SI))
2884 return I;
2885 }
2886 }
2887
2888 // Canonicalize select of FP values where NaN and -0.0 are not valid as
2889 // minnum/maxnum intrinsics.
2890 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2891 Value *X, *Y;
2892 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2893 return replaceInstUsesWith(
2894 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2895
2896 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2897 return replaceInstUsesWith(
2898 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2899 }
2900
2901 // See if we can fold the select into a phi node if the condition is a select.
2902 if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2903 // The true/false values have to be live in the PHI predecessor's blocks.
2904 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2905 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2906 if (Instruction *NV = foldOpIntoPhi(SI, PN))
2907 return NV;
2908
2909 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2910 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2911 // select(C, select(C, a, b), c) -> select(C, a, c)
2912 if (TrueSI->getCondition() == CondVal) {
2913 if (SI.getTrueValue() == TrueSI->getTrueValue())
2914 return nullptr;
2915 return replaceOperand(SI, 1, TrueSI->getTrueValue());
2916 }
2917 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2918 // We choose this as normal form to enable folding on the And and
2919 // shortening paths for the values (this helps getUnderlyingObjects() for
2920 // example).
2921 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2922 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2923 replaceOperand(SI, 0, And);
2924 replaceOperand(SI, 1, TrueSI->getTrueValue());
2925 return &SI;
2926 }
2927 }
2928 }
2929 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2930 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2931 // select(C, a, select(C, b, c)) -> select(C, a, c)
2932 if (FalseSI->getCondition() == CondVal) {
2933 if (SI.getFalseValue() == FalseSI->getFalseValue())
2934 return nullptr;
2935 return replaceOperand(SI, 2, FalseSI->getFalseValue());
2936 }
2937 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2938 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2939 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2940 replaceOperand(SI, 0, Or);
2941 replaceOperand(SI, 2, FalseSI->getFalseValue());
2942 return &SI;
2943 }
2944 }
2945 }
2946
2947 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2948 // The select might be preventing a division by 0.
2949 switch (BO->getOpcode()) {
2950 default:
2951 return true;
2952 case Instruction::SRem:
2953 case Instruction::URem:
2954 case Instruction::SDiv:
2955 case Instruction::UDiv:
2956 return false;
2957 }
2958 };
2959
2960 // Try to simplify a binop sandwiched between 2 selects with the same
2961 // condition.
2962 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2963 BinaryOperator *TrueBO;
2964 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2965 canMergeSelectThroughBinop(TrueBO)) {
2966 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2967 if (TrueBOSI->getCondition() == CondVal) {
2968 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
2969 Worklist.push(TrueBO);
2970 return &SI;
2971 }
2972 }
2973 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2974 if (TrueBOSI->getCondition() == CondVal) {
2975 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
2976 Worklist.push(TrueBO);
2977 return &SI;
2978 }
2979 }
2980 }
2981
2982 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2983 BinaryOperator *FalseBO;
2984 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2985 canMergeSelectThroughBinop(FalseBO)) {
2986 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2987 if (FalseBOSI->getCondition() == CondVal) {
2988 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
2989 Worklist.push(FalseBO);
2990 return &SI;
2991 }
2992 }
2993 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2994 if (FalseBOSI->getCondition() == CondVal) {
2995 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
2996 Worklist.push(FalseBO);
2997 return &SI;
2998 }
2999 }
3000 }
3001
3002 Value *NotCond;
3003 if (match(CondVal, m_Not(m_Value(NotCond)))) {
3004 replaceOperand(SI, 0, NotCond);
3005 SI.swapValues();
3006 SI.swapProfMetadata();
3007 return &SI;
3008 }
3009
3010 if (Instruction *I = foldVectorSelect(SI))
3011 return I;
3012
3013 // If we can compute the condition, there's no need for a select.
3014 // Like the above fold, we are attempting to reduce compile-time cost by
3015 // putting this fold here with limitations rather than in InstSimplify.
3016 // The motivation for this call into value tracking is to take advantage of
3017 // the assumption cache, so make sure that is populated.
3018 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3019 KnownBits Known(1);
3020 computeKnownBits(CondVal, Known, 0, &SI);
3021 if (Known.One.isOneValue())
3022 return replaceInstUsesWith(SI, TrueVal);
3023 if (Known.Zero.isOneValue())
3024 return replaceInstUsesWith(SI, FalseVal);
3025 }
3026
3027 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3028 return BitCastSel;
3029
3030 // Simplify selects that test the returned flag of cmpxchg instructions.
3031 if (Value *V = foldSelectCmpXchg(SI))
3032 return replaceInstUsesWith(SI, V);
3033
3034 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3035 return Select;
3036
3037 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3038 return Funnel;
3039
3040 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3041 return Copysign;
3042
3043 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3044 return replaceInstUsesWith(SI, PN);
3045
3046 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3047 return replaceInstUsesWith(SI, Fr);
3048
3049 return nullptr;
3050 }
3051