1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114
115 #define DEBUG_TYPE "instcombine"
116
117 STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
119
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand, "Number of expansions");
125 STATISTIC(NumFactor , "Number of factorizations");
126 STATISTIC(NumReassoc , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128 "Controls which instructions are visited");
129
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140 cl::init(true));
141
142 static cl::opt<unsigned> LimitMaxIterations(
143 "instcombine-max-iterations",
144 cl::desc("Limit the maximum number of instruction combining iterations"),
145 cl::init(InstCombineDefaultMaxIterations));
146
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148 "instcombine-infinite-loop-threshold",
149 cl::desc("Number of instruction combining iterations considered an "
150 "infinite loop"),
151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155 cl::desc("Maximum array size considered when doing a combine"));
156
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165 cl::Hidden, cl::init(true));
166
167 Optional<Instruction *>
targetInstCombineIntrinsic(IntrinsicInst & II)168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169 // Handle target specific intrinsics
170 if (II.getCalledFunction()->isTargetIntrinsic()) {
171 return TTI.instCombineIntrinsic(*this, II);
172 }
173 return None;
174 }
175
targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178 bool &KnownBitsComputed) {
179 // Handle target specific intrinsics
180 if (II.getCalledFunction()->isTargetIntrinsic()) {
181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182 KnownBitsComputed);
183 }
184 return None;
185 }
186
targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189 APInt &UndefElts3,
190 std::function<void(Instruction *, unsigned, APInt, APInt &)>
191 SimplifyAndSetOp) {
192 // Handle target specific intrinsics
193 if (II.getCalledFunction()->isTargetIntrinsic()) {
194 return TTI.simplifyDemandedVectorEltsIntrinsic(
195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196 SimplifyAndSetOp);
197 }
198 return None;
199 }
200
EmitGEPOffset(User * GEP)201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202 return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
shouldChangeType(unsigned FromWidth,unsigned ToWidth) const214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215 unsigned ToWidth) const {
216 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218
219 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220 // shrink types, to prevent infinite loops.
221 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222 return true;
223
224 // If this is a legal integer from type, and the result would be an illegal
225 // type, don't do the transformation.
226 if (FromLegal && !ToLegal)
227 return false;
228
229 // Otherwise, if both are illegal, do not increase the size of the result. We
230 // do allow things like i160 -> i64, but not i64 -> i160.
231 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232 return false;
233
234 return true;
235 }
236
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
shouldChangeType(Type * From,Type * To) const242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243 // TODO: This could be extended to allow vectors. Datalayout changes might be
244 // needed to properly support that.
245 if (!From->isIntegerTy() || !To->isIntegerTy())
246 return false;
247
248 unsigned FromWidth = From->getPrimitiveSizeInBits();
249 unsigned ToWidth = To->getPrimitiveSizeInBits();
250 return shouldChangeType(FromWidth, ToWidth);
251 }
252
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
maintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260 if (!OBO || !OBO->hasNoSignedWrap())
261 return false;
262
263 // We reason about Add and Sub Only.
264 Instruction::BinaryOps Opcode = I.getOpcode();
265 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266 return false;
267
268 const APInt *BVal, *CVal;
269 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270 return false;
271
272 bool Overflow = false;
273 if (Opcode == Instruction::Add)
274 (void)BVal->sadd_ov(*CVal, Overflow);
275 else
276 (void)BVal->ssub_ov(*CVal, Overflow);
277
278 return !Overflow;
279 }
280
hasNoUnsignedWrap(BinaryOperator & I)281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283 return OBO && OBO->hasNoUnsignedWrap();
284 }
285
hasNoSignedWrap(BinaryOperator & I)286 static bool hasNoSignedWrap(BinaryOperator &I) {
287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288 return OBO && OBO->hasNoSignedWrap();
289 }
290
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296 if (!FPMO) {
297 I.clearSubclassOptionalData();
298 return;
299 }
300
301 FastMathFlags FMF = I.getFastMathFlags();
302 I.clearSubclassOptionalData();
303 I.setFastMathFlags(FMF);
304 }
305
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
simplifyAssocCastAssoc(BinaryOperator * BinOp1,InstCombinerImpl & IC)310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311 InstCombinerImpl &IC) {
312 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313 if (!Cast || !Cast->hasOneUse())
314 return false;
315
316 // TODO: Enhance logic for other casts and remove this check.
317 auto CastOpcode = Cast->getOpcode();
318 if (CastOpcode != Instruction::ZExt)
319 return false;
320
321 // TODO: Enhance logic for other BinOps and remove this check.
322 if (!BinOp1->isBitwiseLogicOp())
323 return false;
324
325 auto AssocOpcode = BinOp1->getOpcode();
326 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328 return false;
329
330 Constant *C1, *C2;
331 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332 !match(BinOp2->getOperand(1), m_Constant(C2)))
333 return false;
334
335 // TODO: This assumes a zext cast.
336 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337 // to the destination type might lose bits.
338
339 // Fold the constants together in the destination type:
340 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341 Type *DestTy = C1->getType();
342 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345 IC.replaceOperand(*BinOp1, 1, FoldedC);
346 return true;
347 }
348
349 /// This performs a few simplifications for operators that are associative or
350 /// commutative:
351 ///
352 /// Commutative operators:
353 ///
354 /// 1. Order operands such that they are listed from right (least complex) to
355 /// left (most complex). This puts constants before unary operators before
356 /// binary operators.
357 ///
358 /// Associative operators:
359 ///
360 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
361 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
362 ///
363 /// Associative and commutative operators:
364 ///
365 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
366 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
367 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
368 /// if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
370 Instruction::BinaryOps Opcode = I.getOpcode();
371 bool Changed = false;
372
373 do {
374 // Order operands such that they are listed from right (least complex) to
375 // left (most complex). This puts constants before unary operators before
376 // binary operators.
377 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
378 getComplexity(I.getOperand(1)))
379 Changed = !I.swapOperands();
380
381 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
382 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
383
384 if (I.isAssociative()) {
385 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
386 if (Op0 && Op0->getOpcode() == Opcode) {
387 Value *A = Op0->getOperand(0);
388 Value *B = Op0->getOperand(1);
389 Value *C = I.getOperand(1);
390
391 // Does "B op C" simplify?
392 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
393 // It simplifies to V. Form "A op V".
394 replaceOperand(I, 0, A);
395 replaceOperand(I, 1, V);
396 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
397 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
398
399 // Conservatively clear all optional flags since they may not be
400 // preserved by the reassociation. Reset nsw/nuw based on the above
401 // analysis.
402 ClearSubclassDataAfterReassociation(I);
403
404 // Note: this is only valid because SimplifyBinOp doesn't look at
405 // the operands to Op0.
406 if (IsNUW)
407 I.setHasNoUnsignedWrap(true);
408
409 if (IsNSW)
410 I.setHasNoSignedWrap(true);
411
412 Changed = true;
413 ++NumReassoc;
414 continue;
415 }
416 }
417
418 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
419 if (Op1 && Op1->getOpcode() == Opcode) {
420 Value *A = I.getOperand(0);
421 Value *B = Op1->getOperand(0);
422 Value *C = Op1->getOperand(1);
423
424 // Does "A op B" simplify?
425 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
426 // It simplifies to V. Form "V op C".
427 replaceOperand(I, 0, V);
428 replaceOperand(I, 1, C);
429 // Conservatively clear the optional flags, since they may not be
430 // preserved by the reassociation.
431 ClearSubclassDataAfterReassociation(I);
432 Changed = true;
433 ++NumReassoc;
434 continue;
435 }
436 }
437 }
438
439 if (I.isAssociative() && I.isCommutative()) {
440 if (simplifyAssocCastAssoc(&I, *this)) {
441 Changed = true;
442 ++NumReassoc;
443 continue;
444 }
445
446 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
447 if (Op0 && Op0->getOpcode() == Opcode) {
448 Value *A = Op0->getOperand(0);
449 Value *B = Op0->getOperand(1);
450 Value *C = I.getOperand(1);
451
452 // Does "C op A" simplify?
453 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
454 // It simplifies to V. Form "V op B".
455 replaceOperand(I, 0, V);
456 replaceOperand(I, 1, B);
457 // Conservatively clear the optional flags, since they may not be
458 // preserved by the reassociation.
459 ClearSubclassDataAfterReassociation(I);
460 Changed = true;
461 ++NumReassoc;
462 continue;
463 }
464 }
465
466 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
467 if (Op1 && Op1->getOpcode() == Opcode) {
468 Value *A = I.getOperand(0);
469 Value *B = Op1->getOperand(0);
470 Value *C = Op1->getOperand(1);
471
472 // Does "C op A" simplify?
473 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474 // It simplifies to V. Form "B op V".
475 replaceOperand(I, 0, B);
476 replaceOperand(I, 1, V);
477 // Conservatively clear the optional flags, since they may not be
478 // preserved by the reassociation.
479 ClearSubclassDataAfterReassociation(I);
480 Changed = true;
481 ++NumReassoc;
482 continue;
483 }
484 }
485
486 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
487 // if C1 and C2 are constants.
488 Value *A, *B;
489 Constant *C1, *C2;
490 if (Op0 && Op1 &&
491 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
492 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
493 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
494 bool IsNUW = hasNoUnsignedWrap(I) &&
495 hasNoUnsignedWrap(*Op0) &&
496 hasNoUnsignedWrap(*Op1);
497 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
498 BinaryOperator::CreateNUW(Opcode, A, B) :
499 BinaryOperator::Create(Opcode, A, B);
500
501 if (isa<FPMathOperator>(NewBO)) {
502 FastMathFlags Flags = I.getFastMathFlags();
503 Flags &= Op0->getFastMathFlags();
504 Flags &= Op1->getFastMathFlags();
505 NewBO->setFastMathFlags(Flags);
506 }
507 InsertNewInstWith(NewBO, I);
508 NewBO->takeName(Op1);
509 replaceOperand(I, 0, NewBO);
510 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
511 // Conservatively clear the optional flags, since they may not be
512 // preserved by the reassociation.
513 ClearSubclassDataAfterReassociation(I);
514 if (IsNUW)
515 I.setHasNoUnsignedWrap(true);
516
517 Changed = true;
518 continue;
519 }
520 }
521
522 // No further simplifications.
523 return Changed;
524 } while (true);
525 }
526
527 /// Return whether "X LOp (Y ROp Z)" is always equal to
528 /// "(X LOp Y) ROp (X LOp Z)".
leftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
530 Instruction::BinaryOps ROp) {
531 // X & (Y | Z) <--> (X & Y) | (X & Z)
532 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
533 if (LOp == Instruction::And)
534 return ROp == Instruction::Or || ROp == Instruction::Xor;
535
536 // X | (Y & Z) <--> (X | Y) & (X | Z)
537 if (LOp == Instruction::Or)
538 return ROp == Instruction::And;
539
540 // X * (Y + Z) <--> (X * Y) + (X * Z)
541 // X * (Y - Z) <--> (X * Y) - (X * Z)
542 if (LOp == Instruction::Mul)
543 return ROp == Instruction::Add || ROp == Instruction::Sub;
544
545 return false;
546 }
547
548 /// Return whether "(X LOp Y) ROp Z" is always equal to
549 /// "(X ROp Z) LOp (Y ROp Z)".
rightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
551 Instruction::BinaryOps ROp) {
552 if (Instruction::isCommutative(ROp))
553 return leftDistributesOverRight(ROp, LOp);
554
555 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
556 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
557
558 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
559 // but this requires knowing that the addition does not overflow and other
560 // such subtleties.
561 }
562
563 /// This function returns identity value for given opcode, which can be used to
564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps Opcode,Value * V)565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
566 if (isa<Constant>(V))
567 return nullptr;
568
569 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
570 }
571
572 /// This function predicates factorization using distributive laws. By default,
573 /// it just returns the 'Op' inputs. But for special-cases like
574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
576 /// allow more factorization opportunities.
577 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
579 Value *&LHS, Value *&RHS) {
580 assert(Op && "Expected a binary operator");
581 LHS = Op->getOperand(0);
582 RHS = Op->getOperand(1);
583 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
584 Constant *C;
585 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
586 // X << C --> X * (1 << C)
587 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
588 return Instruction::Mul;
589 }
590 // TODO: We can add other conversions e.g. shr => div etc.
591 }
592 return Op->getOpcode();
593 }
594
595 /// This tries to simplify binary operations by factorizing out common terms
596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
598 Instruction::BinaryOps InnerOpcode,
599 Value *A, Value *B, Value *C,
600 Value *D) {
601 assert(A && B && C && D && "All values must be provided");
602
603 Value *V = nullptr;
604 Value *SimplifiedInst = nullptr;
605 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
606 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
607
608 // Does "X op' Y" always equal "Y op' X"?
609 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
610
611 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
612 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
613 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
614 // commutative case, "(A op' B) op (C op' A)"?
615 if (A == C || (InnerCommutative && A == D)) {
616 if (A != C)
617 std::swap(C, D);
618 // Consider forming "A op' (B op D)".
619 // If "B op D" simplifies then it can be formed with no cost.
620 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
621 // If "B op D" doesn't simplify then only go on if both of the existing
622 // operations "A op' B" and "C op' D" will be zapped as no longer used.
623 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
624 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
625 if (V) {
626 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
627 }
628 }
629
630 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
631 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
632 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
633 // commutative case, "(A op' B) op (B op' D)"?
634 if (B == D || (InnerCommutative && B == C)) {
635 if (B != D)
636 std::swap(C, D);
637 // Consider forming "(A op C) op' B".
638 // If "A op C" simplifies then it can be formed with no cost.
639 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
640
641 // If "A op C" doesn't simplify then only go on if both of the existing
642 // operations "A op' B" and "C op' D" will be zapped as no longer used.
643 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
645 if (V) {
646 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
647 }
648 }
649
650 if (SimplifiedInst) {
651 ++NumFactor;
652 SimplifiedInst->takeName(&I);
653
654 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
656 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
657 bool HasNSW = false;
658 bool HasNUW = false;
659 if (isa<OverflowingBinaryOperator>(&I)) {
660 HasNSW = I.hasNoSignedWrap();
661 HasNUW = I.hasNoUnsignedWrap();
662 }
663
664 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
665 HasNSW &= LOBO->hasNoSignedWrap();
666 HasNUW &= LOBO->hasNoUnsignedWrap();
667 }
668
669 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
670 HasNSW &= ROBO->hasNoSignedWrap();
671 HasNUW &= ROBO->hasNoUnsignedWrap();
672 }
673
674 if (TopLevelOpcode == Instruction::Add &&
675 InnerOpcode == Instruction::Mul) {
676 // We can propagate 'nsw' if we know that
677 // %Y = mul nsw i16 %X, C
678 // %Z = add nsw i16 %Y, %X
679 // =>
680 // %Z = mul nsw i16 %X, C+1
681 //
682 // iff C+1 isn't INT_MIN
683 const APInt *CInt;
684 if (match(V, m_APInt(CInt))) {
685 if (!CInt->isMinSignedValue())
686 BO->setHasNoSignedWrap(HasNSW);
687 }
688
689 // nuw can be propagated with any constant or nuw value.
690 BO->setHasNoUnsignedWrap(HasNUW);
691 }
692 }
693 }
694 }
695 return SimplifiedInst;
696 }
697
698 /// This tries to simplify binary operations which some other binary operation
699 /// distributes over either by factorizing out common terms
700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
702 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
704 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
705 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
706 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
707 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
708
709 {
710 // Factorization.
711 Value *A, *B, *C, *D;
712 Instruction::BinaryOps LHSOpcode, RHSOpcode;
713 if (Op0)
714 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
715 if (Op1)
716 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
717
718 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
719 // a common term.
720 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
721 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
722 return V;
723
724 // The instruction has the form "(A op' B) op (C)". Try to factorize common
725 // term.
726 if (Op0)
727 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
728 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
729 return V;
730
731 // The instruction has the form "(B) op (C op' D)". Try to factorize common
732 // term.
733 if (Op1)
734 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
735 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
736 return V;
737 }
738
739 // Expansion.
740 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
741 // The instruction has the form "(A op' B) op C". See if expanding it out
742 // to "(A op C) op' (B op C)" results in simplifications.
743 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
744 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
745
746 // Disable the use of undef because it's not safe to distribute undef.
747 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
748 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
749 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
750
751 // Do "A op C" and "B op C" both simplify?
752 if (L && R) {
753 // They do! Return "L op' R".
754 ++NumExpand;
755 C = Builder.CreateBinOp(InnerOpcode, L, R);
756 C->takeName(&I);
757 return C;
758 }
759
760 // Does "A op C" simplify to the identity value for the inner opcode?
761 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
762 // They do! Return "B op C".
763 ++NumExpand;
764 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
765 C->takeName(&I);
766 return C;
767 }
768
769 // Does "B op C" simplify to the identity value for the inner opcode?
770 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
771 // They do! Return "A op C".
772 ++NumExpand;
773 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
774 C->takeName(&I);
775 return C;
776 }
777 }
778
779 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
780 // The instruction has the form "A op (B op' C)". See if expanding it out
781 // to "(A op B) op' (A op C)" results in simplifications.
782 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
783 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
784
785 // Disable the use of undef because it's not safe to distribute undef.
786 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
787 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
788 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
789
790 // Do "A op B" and "A op C" both simplify?
791 if (L && R) {
792 // They do! Return "L op' R".
793 ++NumExpand;
794 A = Builder.CreateBinOp(InnerOpcode, L, R);
795 A->takeName(&I);
796 return A;
797 }
798
799 // Does "A op B" simplify to the identity value for the inner opcode?
800 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
801 // They do! Return "A op C".
802 ++NumExpand;
803 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
804 A->takeName(&I);
805 return A;
806 }
807
808 // Does "A op C" simplify to the identity value for the inner opcode?
809 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
810 // They do! Return "A op B".
811 ++NumExpand;
812 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
813 A->takeName(&I);
814 return A;
815 }
816 }
817
818 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
819 }
820
SimplifySelectsFeedingBinaryOp(BinaryOperator & I,Value * LHS,Value * RHS)821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
822 Value *LHS,
823 Value *RHS) {
824 Value *A, *B, *C, *D, *E, *F;
825 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
826 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
827 if (!LHSIsSelect && !RHSIsSelect)
828 return nullptr;
829
830 FastMathFlags FMF;
831 BuilderTy::FastMathFlagGuard Guard(Builder);
832 if (isa<FPMathOperator>(&I)) {
833 FMF = I.getFastMathFlags();
834 Builder.setFastMathFlags(FMF);
835 }
836
837 Instruction::BinaryOps Opcode = I.getOpcode();
838 SimplifyQuery Q = SQ.getWithInstruction(&I);
839
840 Value *Cond, *True = nullptr, *False = nullptr;
841 if (LHSIsSelect && RHSIsSelect && A == D) {
842 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
843 Cond = A;
844 True = SimplifyBinOp(Opcode, B, E, FMF, Q);
845 False = SimplifyBinOp(Opcode, C, F, FMF, Q);
846
847 if (LHS->hasOneUse() && RHS->hasOneUse()) {
848 if (False && !True)
849 True = Builder.CreateBinOp(Opcode, B, E);
850 else if (True && !False)
851 False = Builder.CreateBinOp(Opcode, C, F);
852 }
853 } else if (LHSIsSelect && LHS->hasOneUse()) {
854 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
855 Cond = A;
856 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
857 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
858 } else if (RHSIsSelect && RHS->hasOneUse()) {
859 // X op (D ? E : F) -> D ? (X op E) : (X op F)
860 Cond = D;
861 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
862 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
863 }
864
865 if (!True || !False)
866 return nullptr;
867
868 Value *SI = Builder.CreateSelect(Cond, True, False);
869 SI->takeName(&I);
870 return SI;
871 }
872
873 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
874 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const875 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
876 Value *NegV;
877 if (match(V, m_Neg(m_Value(NegV))))
878 return NegV;
879
880 // Constants can be considered to be negated values if they can be folded.
881 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
882 return ConstantExpr::getNeg(C);
883
884 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
885 if (C->getType()->getElementType()->isIntegerTy())
886 return ConstantExpr::getNeg(C);
887
888 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
889 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
890 Constant *Elt = CV->getAggregateElement(i);
891 if (!Elt)
892 return nullptr;
893
894 if (isa<UndefValue>(Elt))
895 continue;
896
897 if (!isa<ConstantInt>(Elt))
898 return nullptr;
899 }
900 return ConstantExpr::getNeg(CV);
901 }
902
903 return nullptr;
904 }
905
foldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner::BuilderTy & Builder)906 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
907 InstCombiner::BuilderTy &Builder) {
908 if (auto *Cast = dyn_cast<CastInst>(&I))
909 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
910
911 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
912
913 // Figure out if the constant is the left or the right argument.
914 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
915 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
916
917 if (auto *SOC = dyn_cast<Constant>(SO)) {
918 if (ConstIsRHS)
919 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
920 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
921 }
922
923 Value *Op0 = SO, *Op1 = ConstOperand;
924 if (!ConstIsRHS)
925 std::swap(Op0, Op1);
926
927 auto *BO = cast<BinaryOperator>(&I);
928 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
929 SO->getName() + ".op");
930 auto *FPInst = dyn_cast<Instruction>(RI);
931 if (FPInst && isa<FPMathOperator>(FPInst))
932 FPInst->copyFastMathFlags(BO);
933 return RI;
934 }
935
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)936 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
937 SelectInst *SI) {
938 // Don't modify shared select instructions.
939 if (!SI->hasOneUse())
940 return nullptr;
941
942 Value *TV = SI->getTrueValue();
943 Value *FV = SI->getFalseValue();
944 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
945 return nullptr;
946
947 // Bool selects with constant operands can be folded to logical ops.
948 if (SI->getType()->isIntOrIntVectorTy(1))
949 return nullptr;
950
951 // If it's a bitcast involving vectors, make sure it has the same number of
952 // elements on both sides.
953 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
954 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
955 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
956
957 // Verify that either both or neither are vectors.
958 if ((SrcTy == nullptr) != (DestTy == nullptr))
959 return nullptr;
960
961 // If vectors, verify that they have the same number of elements.
962 if (SrcTy && cast<FixedVectorType>(SrcTy)->getNumElements() !=
963 cast<FixedVectorType>(DestTy)->getNumElements())
964 return nullptr;
965 }
966
967 // Test if a CmpInst instruction is used exclusively by a select as
968 // part of a minimum or maximum operation. If so, refrain from doing
969 // any other folding. This helps out other analyses which understand
970 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
971 // and CodeGen. And in this case, at least one of the comparison
972 // operands has at least one user besides the compare (the select),
973 // which would often largely negate the benefit of folding anyway.
974 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
975 if (CI->hasOneUse()) {
976 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
977
978 // FIXME: This is a hack to avoid infinite looping with min/max patterns.
979 // We have to ensure that vector constants that only differ with
980 // undef elements are treated as equivalent.
981 auto areLooselyEqual = [](Value *A, Value *B) {
982 if (A == B)
983 return true;
984
985 // Test for vector constants.
986 Constant *ConstA, *ConstB;
987 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
988 return false;
989
990 // TODO: Deal with FP constants?
991 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
992 return false;
993
994 // Compare for equality including undefs as equal.
995 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
996 const APInt *C;
997 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
998 };
999
1000 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1001 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1002 return nullptr;
1003 }
1004 }
1005
1006 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1007 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1008 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1009 }
1010
foldOperationIntoPhiValue(BinaryOperator * I,Value * InV,InstCombiner::BuilderTy & Builder)1011 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1012 InstCombiner::BuilderTy &Builder) {
1013 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1014 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1015
1016 if (auto *InC = dyn_cast<Constant>(InV)) {
1017 if (ConstIsRHS)
1018 return ConstantExpr::get(I->getOpcode(), InC, C);
1019 return ConstantExpr::get(I->getOpcode(), C, InC);
1020 }
1021
1022 Value *Op0 = InV, *Op1 = C;
1023 if (!ConstIsRHS)
1024 std::swap(Op0, Op1);
1025
1026 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1027 auto *FPInst = dyn_cast<Instruction>(RI);
1028 if (FPInst && isa<FPMathOperator>(FPInst))
1029 FPInst->copyFastMathFlags(I);
1030 return RI;
1031 }
1032
foldOpIntoPhi(Instruction & I,PHINode * PN)1033 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1034 unsigned NumPHIValues = PN->getNumIncomingValues();
1035 if (NumPHIValues == 0)
1036 return nullptr;
1037
1038 // We normally only transform phis with a single use. However, if a PHI has
1039 // multiple uses and they are all the same operation, we can fold *all* of the
1040 // uses into the PHI.
1041 if (!PN->hasOneUse()) {
1042 // Walk the use list for the instruction, comparing them to I.
1043 for (User *U : PN->users()) {
1044 Instruction *UI = cast<Instruction>(U);
1045 if (UI != &I && !I.isIdenticalTo(UI))
1046 return nullptr;
1047 }
1048 // Otherwise, we can replace *all* users with the new PHI we form.
1049 }
1050
1051 // Check to see if all of the operands of the PHI are simple constants
1052 // (constantint/constantfp/undef). If there is one non-constant value,
1053 // remember the BB it is in. If there is more than one or if *it* is a PHI,
1054 // bail out. We don't do arbitrary constant expressions here because moving
1055 // their computation can be expensive without a cost model.
1056 BasicBlock *NonConstBB = nullptr;
1057 for (unsigned i = 0; i != NumPHIValues; ++i) {
1058 Value *InVal = PN->getIncomingValue(i);
1059 // If I is a freeze instruction, count undef as a non-constant.
1060 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal) &&
1061 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1062 continue;
1063
1064 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
1065 if (NonConstBB) return nullptr; // More than one non-const value.
1066
1067 NonConstBB = PN->getIncomingBlock(i);
1068
1069 // If the InVal is an invoke at the end of the pred block, then we can't
1070 // insert a computation after it without breaking the edge.
1071 if (isa<InvokeInst>(InVal))
1072 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1073 return nullptr;
1074
1075 // If the incoming non-constant value is in I's block, we will remove one
1076 // instruction, but insert another equivalent one, leading to infinite
1077 // instcombine.
1078 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1079 return nullptr;
1080 }
1081
1082 // If there is exactly one non-constant value, we can insert a copy of the
1083 // operation in that block. However, if this is a critical edge, we would be
1084 // inserting the computation on some other paths (e.g. inside a loop). Only
1085 // do this if the pred block is unconditionally branching into the phi block.
1086 // Also, make sure that the pred block is not dead code.
1087 if (NonConstBB != nullptr) {
1088 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1089 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1090 return nullptr;
1091 }
1092
1093 // Okay, we can do the transformation: create the new PHI node.
1094 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1095 InsertNewInstBefore(NewPN, *PN);
1096 NewPN->takeName(PN);
1097
1098 // If we are going to have to insert a new computation, do so right before the
1099 // predecessor's terminator.
1100 if (NonConstBB)
1101 Builder.SetInsertPoint(NonConstBB->getTerminator());
1102
1103 // Next, add all of the operands to the PHI.
1104 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1105 // We only currently try to fold the condition of a select when it is a phi,
1106 // not the true/false values.
1107 Value *TrueV = SI->getTrueValue();
1108 Value *FalseV = SI->getFalseValue();
1109 BasicBlock *PhiTransBB = PN->getParent();
1110 for (unsigned i = 0; i != NumPHIValues; ++i) {
1111 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1112 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1113 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1114 Value *InV = nullptr;
1115 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1116 // even if currently isNullValue gives false.
1117 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1118 // For vector constants, we cannot use isNullValue to fold into
1119 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1120 // elements in the vector, we will incorrectly fold InC to
1121 // `TrueVInPred`.
1122 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1123 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1124 else {
1125 // Generate the select in the same block as PN's current incoming block.
1126 // Note: ThisBB need not be the NonConstBB because vector constants
1127 // which are constants by definition are handled here.
1128 // FIXME: This can lead to an increase in IR generation because we might
1129 // generate selects for vector constant phi operand, that could not be
1130 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1131 // non-vector phis, this transformation was always profitable because
1132 // the select would be generated exactly once in the NonConstBB.
1133 Builder.SetInsertPoint(ThisBB->getTerminator());
1134 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1135 FalseVInPred, "phi.sel");
1136 }
1137 NewPN->addIncoming(InV, ThisBB);
1138 }
1139 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1140 Constant *C = cast<Constant>(I.getOperand(1));
1141 for (unsigned i = 0; i != NumPHIValues; ++i) {
1142 Value *InV = nullptr;
1143 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1144 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1145 else
1146 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1147 C, "phi.cmp");
1148 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1149 }
1150 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1151 for (unsigned i = 0; i != NumPHIValues; ++i) {
1152 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1153 Builder);
1154 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1155 }
1156 } else if (isa<FreezeInst>(&I)) {
1157 for (unsigned i = 0; i != NumPHIValues; ++i) {
1158 Value *InV;
1159 if (NonConstBB == PN->getIncomingBlock(i))
1160 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1161 else
1162 InV = PN->getIncomingValue(i);
1163 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1164 }
1165 } else {
1166 CastInst *CI = cast<CastInst>(&I);
1167 Type *RetTy = CI->getType();
1168 for (unsigned i = 0; i != NumPHIValues; ++i) {
1169 Value *InV;
1170 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1171 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1172 else
1173 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1174 I.getType(), "phi.cast");
1175 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1176 }
1177 }
1178
1179 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1180 Instruction *User = cast<Instruction>(*UI++);
1181 if (User == &I) continue;
1182 replaceInstUsesWith(*User, NewPN);
1183 eraseInstFromFunction(*User);
1184 }
1185 return replaceInstUsesWith(I, NewPN);
1186 }
1187
foldBinOpIntoSelectOrPhi(BinaryOperator & I)1188 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1189 if (!isa<Constant>(I.getOperand(1)))
1190 return nullptr;
1191
1192 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1193 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1194 return NewSel;
1195 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1196 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1197 return NewPhi;
1198 }
1199 return nullptr;
1200 }
1201
1202 /// Given a pointer type and a constant offset, determine whether or not there
1203 /// is a sequence of GEP indices into the pointed type that will land us at the
1204 /// specified offset. If so, fill them into NewIndices and return the resultant
1205 /// element type, otherwise return null.
1206 Type *
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)1207 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1208 SmallVectorImpl<Value *> &NewIndices) {
1209 Type *Ty = PtrTy->getElementType();
1210 if (!Ty->isSized())
1211 return nullptr;
1212
1213 // Start with the index over the outer type. Note that the type size
1214 // might be zero (even if the offset isn't zero) if the indexed type
1215 // is something like [0 x {int, int}]
1216 Type *IndexTy = DL.getIndexType(PtrTy);
1217 int64_t FirstIdx = 0;
1218 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1219 FirstIdx = Offset/TySize;
1220 Offset -= FirstIdx*TySize;
1221
1222 // Handle hosts where % returns negative instead of values [0..TySize).
1223 if (Offset < 0) {
1224 --FirstIdx;
1225 Offset += TySize;
1226 assert(Offset >= 0);
1227 }
1228 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1229 }
1230
1231 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1232
1233 // Index into the types. If we fail, set OrigBase to null.
1234 while (Offset) {
1235 // Indexing into tail padding between struct/array elements.
1236 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1237 return nullptr;
1238
1239 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1240 const StructLayout *SL = DL.getStructLayout(STy);
1241 assert(Offset < (int64_t)SL->getSizeInBytes() &&
1242 "Offset must stay within the indexed type");
1243
1244 unsigned Elt = SL->getElementContainingOffset(Offset);
1245 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1246 Elt));
1247
1248 Offset -= SL->getElementOffset(Elt);
1249 Ty = STy->getElementType(Elt);
1250 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1251 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1252 assert(EltSize && "Cannot index into a zero-sized array");
1253 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1254 Offset %= EltSize;
1255 Ty = AT->getElementType();
1256 } else {
1257 // Otherwise, we can't index into the middle of this atomic type, bail.
1258 return nullptr;
1259 }
1260 }
1261
1262 return Ty;
1263 }
1264
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)1265 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1266 // If this GEP has only 0 indices, it is the same pointer as
1267 // Src. If Src is not a trivial GEP too, don't combine
1268 // the indices.
1269 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1270 !Src.hasOneUse())
1271 return false;
1272 return true;
1273 }
1274
1275 /// Return a value X such that Val = X * Scale, or null if none.
1276 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)1277 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1278 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1279 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1280 Scale.getBitWidth() && "Scale not compatible with value!");
1281
1282 // If Val is zero or Scale is one then Val = Val * Scale.
1283 if (match(Val, m_Zero()) || Scale == 1) {
1284 NoSignedWrap = true;
1285 return Val;
1286 }
1287
1288 // If Scale is zero then it does not divide Val.
1289 if (Scale.isMinValue())
1290 return nullptr;
1291
1292 // Look through chains of multiplications, searching for a constant that is
1293 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1294 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1295 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1296 // down from Val:
1297 //
1298 // Val = M1 * X || Analysis starts here and works down
1299 // M1 = M2 * Y || Doesn't descend into terms with more
1300 // M2 = Z * 4 \/ than one use
1301 //
1302 // Then to modify a term at the bottom:
1303 //
1304 // Val = M1 * X
1305 // M1 = Z * Y || Replaced M2 with Z
1306 //
1307 // Then to work back up correcting nsw flags.
1308
1309 // Op - the term we are currently analyzing. Starts at Val then drills down.
1310 // Replaced with its descaled value before exiting from the drill down loop.
1311 Value *Op = Val;
1312
1313 // Parent - initially null, but after drilling down notes where Op came from.
1314 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1315 // 0'th operand of Val.
1316 std::pair<Instruction *, unsigned> Parent;
1317
1318 // Set if the transform requires a descaling at deeper levels that doesn't
1319 // overflow.
1320 bool RequireNoSignedWrap = false;
1321
1322 // Log base 2 of the scale. Negative if not a power of 2.
1323 int32_t logScale = Scale.exactLogBase2();
1324
1325 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1326 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1327 // If Op is a constant divisible by Scale then descale to the quotient.
1328 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1329 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1330 if (!Remainder.isMinValue())
1331 // Not divisible by Scale.
1332 return nullptr;
1333 // Replace with the quotient in the parent.
1334 Op = ConstantInt::get(CI->getType(), Quotient);
1335 NoSignedWrap = true;
1336 break;
1337 }
1338
1339 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1340 if (BO->getOpcode() == Instruction::Mul) {
1341 // Multiplication.
1342 NoSignedWrap = BO->hasNoSignedWrap();
1343 if (RequireNoSignedWrap && !NoSignedWrap)
1344 return nullptr;
1345
1346 // There are three cases for multiplication: multiplication by exactly
1347 // the scale, multiplication by a constant different to the scale, and
1348 // multiplication by something else.
1349 Value *LHS = BO->getOperand(0);
1350 Value *RHS = BO->getOperand(1);
1351
1352 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1353 // Multiplication by a constant.
1354 if (CI->getValue() == Scale) {
1355 // Multiplication by exactly the scale, replace the multiplication
1356 // by its left-hand side in the parent.
1357 Op = LHS;
1358 break;
1359 }
1360
1361 // Otherwise drill down into the constant.
1362 if (!Op->hasOneUse())
1363 return nullptr;
1364
1365 Parent = std::make_pair(BO, 1);
1366 continue;
1367 }
1368
1369 // Multiplication by something else. Drill down into the left-hand side
1370 // since that's where the reassociate pass puts the good stuff.
1371 if (!Op->hasOneUse())
1372 return nullptr;
1373
1374 Parent = std::make_pair(BO, 0);
1375 continue;
1376 }
1377
1378 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1379 isa<ConstantInt>(BO->getOperand(1))) {
1380 // Multiplication by a power of 2.
1381 NoSignedWrap = BO->hasNoSignedWrap();
1382 if (RequireNoSignedWrap && !NoSignedWrap)
1383 return nullptr;
1384
1385 Value *LHS = BO->getOperand(0);
1386 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1387 getLimitedValue(Scale.getBitWidth());
1388 // Op = LHS << Amt.
1389
1390 if (Amt == logScale) {
1391 // Multiplication by exactly the scale, replace the multiplication
1392 // by its left-hand side in the parent.
1393 Op = LHS;
1394 break;
1395 }
1396 if (Amt < logScale || !Op->hasOneUse())
1397 return nullptr;
1398
1399 // Multiplication by more than the scale. Reduce the multiplying amount
1400 // by the scale in the parent.
1401 Parent = std::make_pair(BO, 1);
1402 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1403 break;
1404 }
1405 }
1406
1407 if (!Op->hasOneUse())
1408 return nullptr;
1409
1410 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1411 if (Cast->getOpcode() == Instruction::SExt) {
1412 // Op is sign-extended from a smaller type, descale in the smaller type.
1413 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1414 APInt SmallScale = Scale.trunc(SmallSize);
1415 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1416 // descale Op as (sext Y) * Scale. In order to have
1417 // sext (Y * SmallScale) = (sext Y) * Scale
1418 // some conditions need to hold however: SmallScale must sign-extend to
1419 // Scale and the multiplication Y * SmallScale should not overflow.
1420 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1421 // SmallScale does not sign-extend to Scale.
1422 return nullptr;
1423 assert(SmallScale.exactLogBase2() == logScale);
1424 // Require that Y * SmallScale must not overflow.
1425 RequireNoSignedWrap = true;
1426
1427 // Drill down through the cast.
1428 Parent = std::make_pair(Cast, 0);
1429 Scale = SmallScale;
1430 continue;
1431 }
1432
1433 if (Cast->getOpcode() == Instruction::Trunc) {
1434 // Op is truncated from a larger type, descale in the larger type.
1435 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1436 // trunc (Y * sext Scale) = (trunc Y) * Scale
1437 // always holds. However (trunc Y) * Scale may overflow even if
1438 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1439 // from this point up in the expression (see later).
1440 if (RequireNoSignedWrap)
1441 return nullptr;
1442
1443 // Drill down through the cast.
1444 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1445 Parent = std::make_pair(Cast, 0);
1446 Scale = Scale.sext(LargeSize);
1447 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1448 logScale = -1;
1449 assert(Scale.exactLogBase2() == logScale);
1450 continue;
1451 }
1452 }
1453
1454 // Unsupported expression, bail out.
1455 return nullptr;
1456 }
1457
1458 // If Op is zero then Val = Op * Scale.
1459 if (match(Op, m_Zero())) {
1460 NoSignedWrap = true;
1461 return Op;
1462 }
1463
1464 // We know that we can successfully descale, so from here on we can safely
1465 // modify the IR. Op holds the descaled version of the deepest term in the
1466 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1467 // not to overflow.
1468
1469 if (!Parent.first)
1470 // The expression only had one term.
1471 return Op;
1472
1473 // Rewrite the parent using the descaled version of its operand.
1474 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1475 assert(Op != Parent.first->getOperand(Parent.second) &&
1476 "Descaling was a no-op?");
1477 replaceOperand(*Parent.first, Parent.second, Op);
1478 Worklist.push(Parent.first);
1479
1480 // Now work back up the expression correcting nsw flags. The logic is based
1481 // on the following observation: if X * Y is known not to overflow as a signed
1482 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1483 // then X * Z will not overflow as a signed multiplication either. As we work
1484 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1485 // current level has strictly smaller absolute value than the original.
1486 Instruction *Ancestor = Parent.first;
1487 do {
1488 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1489 // If the multiplication wasn't nsw then we can't say anything about the
1490 // value of the descaled multiplication, and we have to clear nsw flags
1491 // from this point on up.
1492 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1493 NoSignedWrap &= OpNoSignedWrap;
1494 if (NoSignedWrap != OpNoSignedWrap) {
1495 BO->setHasNoSignedWrap(NoSignedWrap);
1496 Worklist.push(Ancestor);
1497 }
1498 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1499 // The fact that the descaled input to the trunc has smaller absolute
1500 // value than the original input doesn't tell us anything useful about
1501 // the absolute values of the truncations.
1502 NoSignedWrap = false;
1503 }
1504 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1505 "Failed to keep proper track of nsw flags while drilling down?");
1506
1507 if (Ancestor == Val)
1508 // Got to the top, all done!
1509 return Val;
1510
1511 // Move up one level in the expression.
1512 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1513 Ancestor = Ancestor->user_back();
1514 } while (true);
1515 }
1516
foldVectorBinop(BinaryOperator & Inst)1517 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1518 // FIXME: some of this is likely fine for scalable vectors
1519 if (!isa<FixedVectorType>(Inst.getType()))
1520 return nullptr;
1521
1522 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1523 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1524 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1525 cast<VectorType>(Inst.getType())->getElementCount());
1526 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1527 cast<VectorType>(Inst.getType())->getElementCount());
1528
1529 // If both operands of the binop are vector concatenations, then perform the
1530 // narrow binop on each pair of the source operands followed by concatenation
1531 // of the results.
1532 Value *L0, *L1, *R0, *R1;
1533 ArrayRef<int> Mask;
1534 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1535 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1536 LHS->hasOneUse() && RHS->hasOneUse() &&
1537 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1538 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1539 // This transform does not have the speculative execution constraint as
1540 // below because the shuffle is a concatenation. The new binops are
1541 // operating on exactly the same elements as the existing binop.
1542 // TODO: We could ease the mask requirement to allow different undef lanes,
1543 // but that requires an analysis of the binop-with-undef output value.
1544 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1545 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1546 BO->copyIRFlags(&Inst);
1547 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1548 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1549 BO->copyIRFlags(&Inst);
1550 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1551 }
1552
1553 // It may not be safe to reorder shuffles and things like div, urem, etc.
1554 // because we may trap when executing those ops on unknown vector elements.
1555 // See PR20059.
1556 if (!isSafeToSpeculativelyExecute(&Inst))
1557 return nullptr;
1558
1559 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1560 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1561 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1562 BO->copyIRFlags(&Inst);
1563 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1564 };
1565
1566 // If both arguments of the binary operation are shuffles that use the same
1567 // mask and shuffle within a single vector, move the shuffle after the binop.
1568 Value *V1, *V2;
1569 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1570 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1571 V1->getType() == V2->getType() &&
1572 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1573 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1574 return createBinOpShuffle(V1, V2, Mask);
1575 }
1576
1577 // If both arguments of a commutative binop are select-shuffles that use the
1578 // same mask with commuted operands, the shuffles are unnecessary.
1579 if (Inst.isCommutative() &&
1580 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1581 match(RHS,
1582 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1583 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1584 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1585 // TODO: Allow shuffles that contain undefs in the mask?
1586 // That is legal, but it reduces undef knowledge.
1587 // TODO: Allow arbitrary shuffles by shuffling after binop?
1588 // That might be legal, but we have to deal with poison.
1589 if (LShuf->isSelect() &&
1590 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1591 RShuf->isSelect() &&
1592 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1593 // Example:
1594 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1595 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1596 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1597 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1598 NewBO->copyIRFlags(&Inst);
1599 return NewBO;
1600 }
1601 }
1602
1603 // If one argument is a shuffle within one vector and the other is a constant,
1604 // try moving the shuffle after the binary operation. This canonicalization
1605 // intends to move shuffles closer to other shuffles and binops closer to
1606 // other binops, so they can be folded. It may also enable demanded elements
1607 // transforms.
1608 unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1609 Constant *C;
1610 if (match(&Inst,
1611 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1612 m_Constant(C))) && !isa<ConstantExpr>(C) &&
1613 cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1614 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1615 "Shuffle should not change scalar type");
1616
1617 // Find constant NewC that has property:
1618 // shuffle(NewC, ShMask) = C
1619 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1620 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1621 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1622 bool ConstOp1 = isa<Constant>(RHS);
1623 ArrayRef<int> ShMask = Mask;
1624 unsigned SrcVecNumElts =
1625 cast<FixedVectorType>(V1->getType())->getNumElements();
1626 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1627 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1628 bool MayChange = true;
1629 for (unsigned I = 0; I < NumElts; ++I) {
1630 Constant *CElt = C->getAggregateElement(I);
1631 if (ShMask[I] >= 0) {
1632 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1633 Constant *NewCElt = NewVecC[ShMask[I]];
1634 // Bail out if:
1635 // 1. The constant vector contains a constant expression.
1636 // 2. The shuffle needs an element of the constant vector that can't
1637 // be mapped to a new constant vector.
1638 // 3. This is a widening shuffle that copies elements of V1 into the
1639 // extended elements (extending with undef is allowed).
1640 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1641 I >= SrcVecNumElts) {
1642 MayChange = false;
1643 break;
1644 }
1645 NewVecC[ShMask[I]] = CElt;
1646 }
1647 // If this is a widening shuffle, we must be able to extend with undef
1648 // elements. If the original binop does not produce an undef in the high
1649 // lanes, then this transform is not safe.
1650 // Similarly for undef lanes due to the shuffle mask, we can only
1651 // transform binops that preserve undef.
1652 // TODO: We could shuffle those non-undef constant values into the
1653 // result by using a constant vector (rather than an undef vector)
1654 // as operand 1 of the new binop, but that might be too aggressive
1655 // for target-independent shuffle creation.
1656 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1657 Constant *MaybeUndef =
1658 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1659 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1660 if (!isa<UndefValue>(MaybeUndef)) {
1661 MayChange = false;
1662 break;
1663 }
1664 }
1665 }
1666 if (MayChange) {
1667 Constant *NewC = ConstantVector::get(NewVecC);
1668 // It may not be safe to execute a binop on a vector with undef elements
1669 // because the entire instruction can be folded to undef or create poison
1670 // that did not exist in the original code.
1671 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1672 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1673
1674 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1675 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1676 Value *NewLHS = ConstOp1 ? V1 : NewC;
1677 Value *NewRHS = ConstOp1 ? NewC : V1;
1678 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1679 }
1680 }
1681
1682 // Try to reassociate to sink a splat shuffle after a binary operation.
1683 if (Inst.isAssociative() && Inst.isCommutative()) {
1684 // Canonicalize shuffle operand as LHS.
1685 if (isa<ShuffleVectorInst>(RHS))
1686 std::swap(LHS, RHS);
1687
1688 Value *X;
1689 ArrayRef<int> MaskC;
1690 int SplatIndex;
1691 BinaryOperator *BO;
1692 if (!match(LHS,
1693 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1694 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1695 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1696 BO->getOpcode() != Opcode)
1697 return nullptr;
1698
1699 // FIXME: This may not be safe if the analysis allows undef elements. By
1700 // moving 'Y' before the splat shuffle, we are implicitly assuming
1701 // that it is not undef/poison at the splat index.
1702 Value *Y, *OtherOp;
1703 if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1704 Y = BO->getOperand(0);
1705 OtherOp = BO->getOperand(1);
1706 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1707 Y = BO->getOperand(1);
1708 OtherOp = BO->getOperand(0);
1709 } else {
1710 return nullptr;
1711 }
1712
1713 // X and Y are splatted values, so perform the binary operation on those
1714 // values followed by a splat followed by the 2nd binary operation:
1715 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1716 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1717 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1718 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1719 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1720
1721 // Intersect FMF on both new binops. Other (poison-generating) flags are
1722 // dropped to be safe.
1723 if (isa<FPMathOperator>(R)) {
1724 R->copyFastMathFlags(&Inst);
1725 R->andIRFlags(BO);
1726 }
1727 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1728 NewInstBO->copyIRFlags(R);
1729 return R;
1730 }
1731
1732 return nullptr;
1733 }
1734
1735 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1736 /// of a value. This requires a potentially expensive known bits check to make
1737 /// sure the narrow op does not overflow.
narrowMathIfNoOverflow(BinaryOperator & BO)1738 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1739 // We need at least one extended operand.
1740 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1741
1742 // If this is a sub, we swap the operands since we always want an extension
1743 // on the RHS. The LHS can be an extension or a constant.
1744 if (BO.getOpcode() == Instruction::Sub)
1745 std::swap(Op0, Op1);
1746
1747 Value *X;
1748 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1749 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1750 return nullptr;
1751
1752 // If both operands are the same extension from the same source type and we
1753 // can eliminate at least one (hasOneUse), this might work.
1754 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1755 Value *Y;
1756 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1757 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1758 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1759 // If that did not match, see if we have a suitable constant operand.
1760 // Truncating and extending must produce the same constant.
1761 Constant *WideC;
1762 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1763 return nullptr;
1764 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1765 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1766 return nullptr;
1767 Y = NarrowC;
1768 }
1769
1770 // Swap back now that we found our operands.
1771 if (BO.getOpcode() == Instruction::Sub)
1772 std::swap(X, Y);
1773
1774 // Both operands have narrow versions. Last step: the math must not overflow
1775 // in the narrow width.
1776 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1777 return nullptr;
1778
1779 // bo (ext X), (ext Y) --> ext (bo X, Y)
1780 // bo (ext X), C --> ext (bo X, C')
1781 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1782 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1783 if (IsSext)
1784 NewBinOp->setHasNoSignedWrap();
1785 else
1786 NewBinOp->setHasNoUnsignedWrap();
1787 }
1788 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1789 }
1790
isMergedGEPInBounds(GEPOperator & GEP1,GEPOperator & GEP2)1791 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1792 // At least one GEP must be inbounds.
1793 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1794 return false;
1795
1796 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1797 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1798 }
1799
1800 /// Thread a GEP operation with constant indices through the constant true/false
1801 /// arms of a select.
foldSelectGEP(GetElementPtrInst & GEP,InstCombiner::BuilderTy & Builder)1802 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1803 InstCombiner::BuilderTy &Builder) {
1804 if (!GEP.hasAllConstantIndices())
1805 return nullptr;
1806
1807 Instruction *Sel;
1808 Value *Cond;
1809 Constant *TrueC, *FalseC;
1810 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1811 !match(Sel,
1812 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1813 return nullptr;
1814
1815 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1816 // Propagate 'inbounds' and metadata from existing instructions.
1817 // Note: using IRBuilder to create the constants for efficiency.
1818 SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1819 bool IsInBounds = GEP.isInBounds();
1820 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1821 : Builder.CreateGEP(TrueC, IndexC);
1822 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1823 : Builder.CreateGEP(FalseC, IndexC);
1824 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1825 }
1826
visitGetElementPtrInst(GetElementPtrInst & GEP)1827 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1828 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1829 Type *GEPType = GEP.getType();
1830 Type *GEPEltType = GEP.getSourceElementType();
1831 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1832 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1833 return replaceInstUsesWith(GEP, V);
1834
1835 // For vector geps, use the generic demanded vector support.
1836 // Skip if GEP return type is scalable. The number of elements is unknown at
1837 // compile-time.
1838 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1839 auto VWidth = GEPFVTy->getNumElements();
1840 APInt UndefElts(VWidth, 0);
1841 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1842 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1843 UndefElts)) {
1844 if (V != &GEP)
1845 return replaceInstUsesWith(GEP, V);
1846 return &GEP;
1847 }
1848
1849 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1850 // possible (decide on canonical form for pointer broadcast), 3) exploit
1851 // undef elements to decrease demanded bits
1852 }
1853
1854 Value *PtrOp = GEP.getOperand(0);
1855
1856 // Eliminate unneeded casts for indices, and replace indices which displace
1857 // by multiples of a zero size type with zero.
1858 bool MadeChange = false;
1859
1860 // Index width may not be the same width as pointer width.
1861 // Data layout chooses the right type based on supported integer types.
1862 Type *NewScalarIndexTy =
1863 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1864
1865 gep_type_iterator GTI = gep_type_begin(GEP);
1866 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1867 ++I, ++GTI) {
1868 // Skip indices into struct types.
1869 if (GTI.isStruct())
1870 continue;
1871
1872 Type *IndexTy = (*I)->getType();
1873 Type *NewIndexType =
1874 IndexTy->isVectorTy()
1875 ? VectorType::get(NewScalarIndexTy,
1876 cast<VectorType>(IndexTy)->getElementCount())
1877 : NewScalarIndexTy;
1878
1879 // If the element type has zero size then any index over it is equivalent
1880 // to an index of zero, so replace it with zero if it is not zero already.
1881 Type *EltTy = GTI.getIndexedType();
1882 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1883 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1884 *I = Constant::getNullValue(NewIndexType);
1885 MadeChange = true;
1886 }
1887
1888 if (IndexTy != NewIndexType) {
1889 // If we are using a wider index than needed for this platform, shrink
1890 // it to what we need. If narrower, sign-extend it to what we need.
1891 // This explicit cast can make subsequent optimizations more obvious.
1892 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1893 MadeChange = true;
1894 }
1895 }
1896 if (MadeChange)
1897 return &GEP;
1898
1899 // Check to see if the inputs to the PHI node are getelementptr instructions.
1900 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1901 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1902 if (!Op1)
1903 return nullptr;
1904
1905 // Don't fold a GEP into itself through a PHI node. This can only happen
1906 // through the back-edge of a loop. Folding a GEP into itself means that
1907 // the value of the previous iteration needs to be stored in the meantime,
1908 // thus requiring an additional register variable to be live, but not
1909 // actually achieving anything (the GEP still needs to be executed once per
1910 // loop iteration).
1911 if (Op1 == &GEP)
1912 return nullptr;
1913
1914 int DI = -1;
1915
1916 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1917 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1918 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1919 return nullptr;
1920
1921 // As for Op1 above, don't try to fold a GEP into itself.
1922 if (Op2 == &GEP)
1923 return nullptr;
1924
1925 // Keep track of the type as we walk the GEP.
1926 Type *CurTy = nullptr;
1927
1928 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1929 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1930 return nullptr;
1931
1932 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1933 if (DI == -1) {
1934 // We have not seen any differences yet in the GEPs feeding the
1935 // PHI yet, so we record this one if it is allowed to be a
1936 // variable.
1937
1938 // The first two arguments can vary for any GEP, the rest have to be
1939 // static for struct slots
1940 if (J > 1) {
1941 assert(CurTy && "No current type?");
1942 if (CurTy->isStructTy())
1943 return nullptr;
1944 }
1945
1946 DI = J;
1947 } else {
1948 // The GEP is different by more than one input. While this could be
1949 // extended to support GEPs that vary by more than one variable it
1950 // doesn't make sense since it greatly increases the complexity and
1951 // would result in an R+R+R addressing mode which no backend
1952 // directly supports and would need to be broken into several
1953 // simpler instructions anyway.
1954 return nullptr;
1955 }
1956 }
1957
1958 // Sink down a layer of the type for the next iteration.
1959 if (J > 0) {
1960 if (J == 1) {
1961 CurTy = Op1->getSourceElementType();
1962 } else {
1963 CurTy =
1964 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1965 }
1966 }
1967 }
1968 }
1969
1970 // If not all GEPs are identical we'll have to create a new PHI node.
1971 // Check that the old PHI node has only one use so that it will get
1972 // removed.
1973 if (DI != -1 && !PN->hasOneUse())
1974 return nullptr;
1975
1976 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1977 if (DI == -1) {
1978 // All the GEPs feeding the PHI are identical. Clone one down into our
1979 // BB so that it can be merged with the current GEP.
1980 } else {
1981 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1982 // into the current block so it can be merged, and create a new PHI to
1983 // set that index.
1984 PHINode *NewPN;
1985 {
1986 IRBuilderBase::InsertPointGuard Guard(Builder);
1987 Builder.SetInsertPoint(PN);
1988 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1989 PN->getNumOperands());
1990 }
1991
1992 for (auto &I : PN->operands())
1993 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1994 PN->getIncomingBlock(I));
1995
1996 NewGEP->setOperand(DI, NewPN);
1997 }
1998
1999 GEP.getParent()->getInstList().insert(
2000 GEP.getParent()->getFirstInsertionPt(), NewGEP);
2001 replaceOperand(GEP, 0, NewGEP);
2002 PtrOp = NewGEP;
2003 }
2004
2005 // Combine Indices - If the source pointer to this getelementptr instruction
2006 // is a getelementptr instruction, combine the indices of the two
2007 // getelementptr instructions into a single instruction.
2008 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2009 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2010 return nullptr;
2011
2012 // Try to reassociate loop invariant GEP chains to enable LICM.
2013 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2014 Src->hasOneUse()) {
2015 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2016 Value *GO1 = GEP.getOperand(1);
2017 Value *SO1 = Src->getOperand(1);
2018 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2019 // invariant: this breaks the dependence between GEPs and allows LICM
2020 // to hoist the invariant part out of the loop.
2021 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2022 // We have to be careful here.
2023 // We have something like:
2024 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2025 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2026 // If we just swap idx & idx2 then we could inadvertantly
2027 // change %src from a vector to a scalar, or vice versa.
2028 // Cases:
2029 // 1) %base a scalar & idx a scalar & idx2 a vector
2030 // => Swapping idx & idx2 turns %src into a vector type.
2031 // 2) %base a scalar & idx a vector & idx2 a scalar
2032 // => Swapping idx & idx2 turns %src in a scalar type
2033 // 3) %base, %idx, and %idx2 are scalars
2034 // => %src & %gep are scalars
2035 // => swapping idx & idx2 is safe
2036 // 4) %base a vector
2037 // => %src is a vector
2038 // => swapping idx & idx2 is safe.
2039 auto *SO0 = Src->getOperand(0);
2040 auto *SO0Ty = SO0->getType();
2041 if (!isa<VectorType>(GEPType) || // case 3
2042 isa<VectorType>(SO0Ty)) { // case 4
2043 Src->setOperand(1, GO1);
2044 GEP.setOperand(1, SO1);
2045 return &GEP;
2046 } else {
2047 // Case 1 or 2
2048 // -- have to recreate %src & %gep
2049 // put NewSrc at same location as %src
2050 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2051 auto *NewSrc = cast<GetElementPtrInst>(
2052 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2053 NewSrc->setIsInBounds(Src->isInBounds());
2054 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2055 NewGEP->setIsInBounds(GEP.isInBounds());
2056 return NewGEP;
2057 }
2058 }
2059 }
2060 }
2061
2062 // Note that if our source is a gep chain itself then we wait for that
2063 // chain to be resolved before we perform this transformation. This
2064 // avoids us creating a TON of code in some cases.
2065 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2066 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2067 return nullptr; // Wait until our source is folded to completion.
2068
2069 SmallVector<Value*, 8> Indices;
2070
2071 // Find out whether the last index in the source GEP is a sequential idx.
2072 bool EndsWithSequential = false;
2073 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2074 I != E; ++I)
2075 EndsWithSequential = I.isSequential();
2076
2077 // Can we combine the two pointer arithmetics offsets?
2078 if (EndsWithSequential) {
2079 // Replace: gep (gep %P, long B), long A, ...
2080 // With: T = long A+B; gep %P, T, ...
2081 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2082 Value *GO1 = GEP.getOperand(1);
2083
2084 // If they aren't the same type, then the input hasn't been processed
2085 // by the loop above yet (which canonicalizes sequential index types to
2086 // intptr_t). Just avoid transforming this until the input has been
2087 // normalized.
2088 if (SO1->getType() != GO1->getType())
2089 return nullptr;
2090
2091 Value *Sum =
2092 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2093 // Only do the combine when we are sure the cost after the
2094 // merge is never more than that before the merge.
2095 if (Sum == nullptr)
2096 return nullptr;
2097
2098 // Update the GEP in place if possible.
2099 if (Src->getNumOperands() == 2) {
2100 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2101 replaceOperand(GEP, 0, Src->getOperand(0));
2102 replaceOperand(GEP, 1, Sum);
2103 return &GEP;
2104 }
2105 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2106 Indices.push_back(Sum);
2107 Indices.append(GEP.op_begin()+2, GEP.op_end());
2108 } else if (isa<Constant>(*GEP.idx_begin()) &&
2109 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2110 Src->getNumOperands() != 1) {
2111 // Otherwise we can do the fold if the first index of the GEP is a zero
2112 Indices.append(Src->op_begin()+1, Src->op_end());
2113 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2114 }
2115
2116 if (!Indices.empty())
2117 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2118 ? GetElementPtrInst::CreateInBounds(
2119 Src->getSourceElementType(), Src->getOperand(0), Indices,
2120 GEP.getName())
2121 : GetElementPtrInst::Create(Src->getSourceElementType(),
2122 Src->getOperand(0), Indices,
2123 GEP.getName());
2124 }
2125
2126 // Skip if GEP source element type is scalable. The type alloc size is unknown
2127 // at compile-time.
2128 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2129 unsigned AS = GEP.getPointerAddressSpace();
2130 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2131 DL.getIndexSizeInBits(AS)) {
2132 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2133
2134 bool Matched = false;
2135 uint64_t C;
2136 Value *V = nullptr;
2137 if (TyAllocSize == 1) {
2138 V = GEP.getOperand(1);
2139 Matched = true;
2140 } else if (match(GEP.getOperand(1),
2141 m_AShr(m_Value(V), m_ConstantInt(C)))) {
2142 if (TyAllocSize == 1ULL << C)
2143 Matched = true;
2144 } else if (match(GEP.getOperand(1),
2145 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2146 if (TyAllocSize == C)
2147 Matched = true;
2148 }
2149
2150 if (Matched) {
2151 // Canonicalize (gep i8* X, -(ptrtoint Y))
2152 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2153 // The GEP pattern is emitted by the SCEV expander for certain kinds of
2154 // pointer arithmetic.
2155 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2156 Operator *Index = cast<Operator>(V);
2157 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2158 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2159 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2160 }
2161 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2162 // to (bitcast Y)
2163 Value *Y;
2164 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2165 m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2166 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2167 }
2168 }
2169 }
2170
2171 // We do not handle pointer-vector geps here.
2172 if (GEPType->isVectorTy())
2173 return nullptr;
2174
2175 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2176 Value *StrippedPtr = PtrOp->stripPointerCasts();
2177 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2178
2179 if (StrippedPtr != PtrOp) {
2180 bool HasZeroPointerIndex = false;
2181 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2182
2183 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2184 HasZeroPointerIndex = C->isZero();
2185
2186 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2187 // into : GEP [10 x i8]* X, i32 0, ...
2188 //
2189 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2190 // into : GEP i8* X, ...
2191 //
2192 // This occurs when the program declares an array extern like "int X[];"
2193 if (HasZeroPointerIndex) {
2194 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2195 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2196 if (CATy->getElementType() == StrippedPtrEltTy) {
2197 // -> GEP i8* X, ...
2198 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2199 GetElementPtrInst *Res = GetElementPtrInst::Create(
2200 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2201 Res->setIsInBounds(GEP.isInBounds());
2202 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2203 return Res;
2204 // Insert Res, and create an addrspacecast.
2205 // e.g.,
2206 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2207 // ->
2208 // %0 = GEP i8 addrspace(1)* X, ...
2209 // addrspacecast i8 addrspace(1)* %0 to i8*
2210 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2211 }
2212
2213 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2214 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2215 if (CATy->getElementType() == XATy->getElementType()) {
2216 // -> GEP [10 x i8]* X, i32 0, ...
2217 // At this point, we know that the cast source type is a pointer
2218 // to an array of the same type as the destination pointer
2219 // array. Because the array type is never stepped over (there
2220 // is a leading zero) we can fold the cast into this GEP.
2221 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2222 GEP.setSourceElementType(XATy);
2223 return replaceOperand(GEP, 0, StrippedPtr);
2224 }
2225 // Cannot replace the base pointer directly because StrippedPtr's
2226 // address space is different. Instead, create a new GEP followed by
2227 // an addrspacecast.
2228 // e.g.,
2229 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2230 // i32 0, ...
2231 // ->
2232 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2233 // addrspacecast i8 addrspace(1)* %0 to i8*
2234 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2235 Value *NewGEP =
2236 GEP.isInBounds()
2237 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2238 Idx, GEP.getName())
2239 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2240 GEP.getName());
2241 return new AddrSpaceCastInst(NewGEP, GEPType);
2242 }
2243 }
2244 }
2245 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2246 // Skip if GEP source element type is scalable. The type alloc size is
2247 // unknown at compile-time.
2248 // Transform things like: %t = getelementptr i32*
2249 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
2250 // x i32]* %str, i32 0, i32 %V; bitcast
2251 if (StrippedPtrEltTy->isArrayTy() &&
2252 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2253 DL.getTypeAllocSize(GEPEltType)) {
2254 Type *IdxType = DL.getIndexType(GEPType);
2255 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2256 Value *NewGEP =
2257 GEP.isInBounds()
2258 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2259 GEP.getName())
2260 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2261 GEP.getName());
2262
2263 // V and GEP are both pointer types --> BitCast
2264 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2265 }
2266
2267 // Transform things like:
2268 // %V = mul i64 %N, 4
2269 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2270 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2271 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2272 // Check that changing the type amounts to dividing the index by a scale
2273 // factor.
2274 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2275 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2276 if (ResSize && SrcSize % ResSize == 0) {
2277 Value *Idx = GEP.getOperand(1);
2278 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2279 uint64_t Scale = SrcSize / ResSize;
2280
2281 // Earlier transforms ensure that the index has the right type
2282 // according to Data Layout, which considerably simplifies the
2283 // logic by eliminating implicit casts.
2284 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2285 "Index type does not match the Data Layout preferences");
2286
2287 bool NSW;
2288 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2289 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2290 // If the multiplication NewIdx * Scale may overflow then the new
2291 // GEP may not be "inbounds".
2292 Value *NewGEP =
2293 GEP.isInBounds() && NSW
2294 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2295 NewIdx, GEP.getName())
2296 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2297 GEP.getName());
2298
2299 // The NewGEP must be pointer typed, so must the old one -> BitCast
2300 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2301 GEPType);
2302 }
2303 }
2304 }
2305
2306 // Similarly, transform things like:
2307 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2308 // (where tmp = 8*tmp2) into:
2309 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2310 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2311 StrippedPtrEltTy->isArrayTy()) {
2312 // Check that changing to the array element type amounts to dividing the
2313 // index by a scale factor.
2314 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2315 uint64_t ArrayEltSize =
2316 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2317 .getFixedSize();
2318 if (ResSize && ArrayEltSize % ResSize == 0) {
2319 Value *Idx = GEP.getOperand(1);
2320 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2321 uint64_t Scale = ArrayEltSize / ResSize;
2322
2323 // Earlier transforms ensure that the index has the right type
2324 // according to the Data Layout, which considerably simplifies
2325 // the logic by eliminating implicit casts.
2326 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2327 "Index type does not match the Data Layout preferences");
2328
2329 bool NSW;
2330 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2331 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2332 // If the multiplication NewIdx * Scale may overflow then the new
2333 // GEP may not be "inbounds".
2334 Type *IndTy = DL.getIndexType(GEPType);
2335 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2336
2337 Value *NewGEP =
2338 GEP.isInBounds() && NSW
2339 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2340 Off, GEP.getName())
2341 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2342 GEP.getName());
2343 // The NewGEP must be pointer typed, so must the old one -> BitCast
2344 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2345 GEPType);
2346 }
2347 }
2348 }
2349 }
2350 }
2351
2352 // addrspacecast between types is canonicalized as a bitcast, then an
2353 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2354 // through the addrspacecast.
2355 Value *ASCStrippedPtrOp = PtrOp;
2356 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2357 // X = bitcast A addrspace(1)* to B addrspace(1)*
2358 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2359 // Z = gep Y, <...constant indices...>
2360 // Into an addrspacecasted GEP of the struct.
2361 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2362 ASCStrippedPtrOp = BC;
2363 }
2364
2365 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2366 Value *SrcOp = BCI->getOperand(0);
2367 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2368 Type *SrcEltType = SrcType->getElementType();
2369
2370 // GEP directly using the source operand if this GEP is accessing an element
2371 // of a bitcasted pointer to vector or array of the same dimensions:
2372 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2373 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2374 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2375 const DataLayout &DL) {
2376 auto *VecVTy = cast<FixedVectorType>(VecTy);
2377 return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2378 ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2379 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2380 };
2381 if (GEP.getNumOperands() == 3 &&
2382 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2383 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2384 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2385 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2386
2387 // Create a new GEP here, as using `setOperand()` followed by
2388 // `setSourceElementType()` won't actually update the type of the
2389 // existing GEP Value. Causing issues if this Value is accessed when
2390 // constructing an AddrSpaceCastInst
2391 Value *NGEP =
2392 GEP.isInBounds()
2393 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2394 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2395 NGEP->takeName(&GEP);
2396
2397 // Preserve GEP address space to satisfy users
2398 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2399 return new AddrSpaceCastInst(NGEP, GEPType);
2400
2401 return replaceInstUsesWith(GEP, NGEP);
2402 }
2403
2404 // See if we can simplify:
2405 // X = bitcast A* to B*
2406 // Y = gep X, <...constant indices...>
2407 // into a gep of the original struct. This is important for SROA and alias
2408 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2409 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2410 APInt Offset(OffsetBits, 0);
2411 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2412 // If this GEP instruction doesn't move the pointer, just replace the GEP
2413 // with a bitcast of the real input to the dest type.
2414 if (!Offset) {
2415 // If the bitcast is of an allocation, and the allocation will be
2416 // converted to match the type of the cast, don't touch this.
2417 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2418 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2419 if (Instruction *I = visitBitCast(*BCI)) {
2420 if (I != BCI) {
2421 I->takeName(BCI);
2422 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2423 replaceInstUsesWith(*BCI, I);
2424 }
2425 return &GEP;
2426 }
2427 }
2428
2429 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2430 return new AddrSpaceCastInst(SrcOp, GEPType);
2431 return new BitCastInst(SrcOp, GEPType);
2432 }
2433
2434 // Otherwise, if the offset is non-zero, we need to find out if there is a
2435 // field at Offset in 'A's type. If so, we can pull the cast through the
2436 // GEP.
2437 SmallVector<Value*, 8> NewIndices;
2438 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2439 Value *NGEP =
2440 GEP.isInBounds()
2441 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2442 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2443
2444 if (NGEP->getType() == GEPType)
2445 return replaceInstUsesWith(GEP, NGEP);
2446 NGEP->takeName(&GEP);
2447
2448 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2449 return new AddrSpaceCastInst(NGEP, GEPType);
2450 return new BitCastInst(NGEP, GEPType);
2451 }
2452 }
2453 }
2454
2455 if (!GEP.isInBounds()) {
2456 unsigned IdxWidth =
2457 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2458 APInt BasePtrOffset(IdxWidth, 0);
2459 Value *UnderlyingPtrOp =
2460 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2461 BasePtrOffset);
2462 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2463 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2464 BasePtrOffset.isNonNegative()) {
2465 APInt AllocSize(
2466 IdxWidth,
2467 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2468 if (BasePtrOffset.ule(AllocSize)) {
2469 return GetElementPtrInst::CreateInBounds(
2470 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2471 GEP.getName());
2472 }
2473 }
2474 }
2475 }
2476
2477 if (Instruction *R = foldSelectGEP(GEP, Builder))
2478 return R;
2479
2480 return nullptr;
2481 }
2482
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo * TLI,Instruction * AI)2483 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2484 Instruction *AI) {
2485 if (isa<ConstantPointerNull>(V))
2486 return true;
2487 if (auto *LI = dyn_cast<LoadInst>(V))
2488 return isa<GlobalVariable>(LI->getPointerOperand());
2489 // Two distinct allocations will never be equal.
2490 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2491 // through bitcasts of V can cause
2492 // the result statement below to be true, even when AI and V (ex:
2493 // i8* ->i32* ->i8* of AI) are the same allocations.
2494 return isAllocLikeFn(V, TLI) && V != AI;
2495 }
2496
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakTrackingVH> & Users,const TargetLibraryInfo * TLI)2497 static bool isAllocSiteRemovable(Instruction *AI,
2498 SmallVectorImpl<WeakTrackingVH> &Users,
2499 const TargetLibraryInfo *TLI) {
2500 SmallVector<Instruction*, 4> Worklist;
2501 Worklist.push_back(AI);
2502
2503 do {
2504 Instruction *PI = Worklist.pop_back_val();
2505 for (User *U : PI->users()) {
2506 Instruction *I = cast<Instruction>(U);
2507 switch (I->getOpcode()) {
2508 default:
2509 // Give up the moment we see something we can't handle.
2510 return false;
2511
2512 case Instruction::AddrSpaceCast:
2513 case Instruction::BitCast:
2514 case Instruction::GetElementPtr:
2515 Users.emplace_back(I);
2516 Worklist.push_back(I);
2517 continue;
2518
2519 case Instruction::ICmp: {
2520 ICmpInst *ICI = cast<ICmpInst>(I);
2521 // We can fold eq/ne comparisons with null to false/true, respectively.
2522 // We also fold comparisons in some conditions provided the alloc has
2523 // not escaped (see isNeverEqualToUnescapedAlloc).
2524 if (!ICI->isEquality())
2525 return false;
2526 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2527 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2528 return false;
2529 Users.emplace_back(I);
2530 continue;
2531 }
2532
2533 case Instruction::Call:
2534 // Ignore no-op and store intrinsics.
2535 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2536 switch (II->getIntrinsicID()) {
2537 default:
2538 return false;
2539
2540 case Intrinsic::memmove:
2541 case Intrinsic::memcpy:
2542 case Intrinsic::memset: {
2543 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2544 if (MI->isVolatile() || MI->getRawDest() != PI)
2545 return false;
2546 LLVM_FALLTHROUGH;
2547 }
2548 case Intrinsic::assume:
2549 case Intrinsic::invariant_start:
2550 case Intrinsic::invariant_end:
2551 case Intrinsic::lifetime_start:
2552 case Intrinsic::lifetime_end:
2553 case Intrinsic::objectsize:
2554 Users.emplace_back(I);
2555 continue;
2556 }
2557 }
2558
2559 if (isFreeCall(I, TLI)) {
2560 Users.emplace_back(I);
2561 continue;
2562 }
2563 return false;
2564
2565 case Instruction::Store: {
2566 StoreInst *SI = cast<StoreInst>(I);
2567 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2568 return false;
2569 Users.emplace_back(I);
2570 continue;
2571 }
2572 }
2573 llvm_unreachable("missing a return?");
2574 }
2575 } while (!Worklist.empty());
2576 return true;
2577 }
2578
visitAllocSite(Instruction & MI)2579 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2580 // If we have a malloc call which is only used in any amount of comparisons to
2581 // null and free calls, delete the calls and replace the comparisons with true
2582 // or false as appropriate.
2583
2584 // This is based on the principle that we can substitute our own allocation
2585 // function (which will never return null) rather than knowledge of the
2586 // specific function being called. In some sense this can change the permitted
2587 // outputs of a program (when we convert a malloc to an alloca, the fact that
2588 // the allocation is now on the stack is potentially visible, for example),
2589 // but we believe in a permissible manner.
2590 SmallVector<WeakTrackingVH, 64> Users;
2591
2592 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2593 // before each store.
2594 SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2595 std::unique_ptr<DIBuilder> DIB;
2596 if (isa<AllocaInst>(MI)) {
2597 findDbgUsers(DVIs, &MI);
2598 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2599 }
2600
2601 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2602 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2603 // Lowering all @llvm.objectsize calls first because they may
2604 // use a bitcast/GEP of the alloca we are removing.
2605 if (!Users[i])
2606 continue;
2607
2608 Instruction *I = cast<Instruction>(&*Users[i]);
2609
2610 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2611 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2612 Value *Result =
2613 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2614 replaceInstUsesWith(*I, Result);
2615 eraseInstFromFunction(*I);
2616 Users[i] = nullptr; // Skip examining in the next loop.
2617 }
2618 }
2619 }
2620 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2621 if (!Users[i])
2622 continue;
2623
2624 Instruction *I = cast<Instruction>(&*Users[i]);
2625
2626 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2627 replaceInstUsesWith(*C,
2628 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2629 C->isFalseWhenEqual()));
2630 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2631 for (auto *DVI : DVIs)
2632 if (DVI->isAddressOfVariable())
2633 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2634 } else {
2635 // Casts, GEP, or anything else: we're about to delete this instruction,
2636 // so it can not have any valid uses.
2637 replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2638 }
2639 eraseInstFromFunction(*I);
2640 }
2641
2642 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2643 // Replace invoke with a NOP intrinsic to maintain the original CFG
2644 Module *M = II->getModule();
2645 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2646 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2647 None, "", II->getParent());
2648 }
2649
2650 // Remove debug intrinsics which describe the value contained within the
2651 // alloca. In addition to removing dbg.{declare,addr} which simply point to
2652 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2653 //
2654 // ```
2655 // define void @foo(i32 %0) {
2656 // %a = alloca i32 ; Deleted.
2657 // store i32 %0, i32* %a
2658 // dbg.value(i32 %0, "arg0") ; Not deleted.
2659 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
2660 // call void @trivially_inlinable_no_op(i32* %a)
2661 // ret void
2662 // }
2663 // ```
2664 //
2665 // This may not be required if we stop describing the contents of allocas
2666 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2667 // the LowerDbgDeclare utility.
2668 //
2669 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2670 // "arg0" dbg.value may be stale after the call. However, failing to remove
2671 // the DW_OP_deref dbg.value causes large gaps in location coverage.
2672 for (auto *DVI : DVIs)
2673 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2674 DVI->eraseFromParent();
2675
2676 return eraseInstFromFunction(MI);
2677 }
2678 return nullptr;
2679 }
2680
2681 /// Move the call to free before a NULL test.
2682 ///
2683 /// Check if this free is accessed after its argument has been test
2684 /// against NULL (property 0).
2685 /// If yes, it is legal to move this call in its predecessor block.
2686 ///
2687 /// The move is performed only if the block containing the call to free
2688 /// will be removed, i.e.:
2689 /// 1. it has only one predecessor P, and P has two successors
2690 /// 2. it contains the call, noops, and an unconditional branch
2691 /// 3. its successor is the same as its predecessor's successor
2692 ///
2693 /// The profitability is out-of concern here and this function should
2694 /// be called only if the caller knows this transformation would be
2695 /// profitable (e.g., for code size).
tryToMoveFreeBeforeNullTest(CallInst & FI,const DataLayout & DL)2696 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2697 const DataLayout &DL) {
2698 Value *Op = FI.getArgOperand(0);
2699 BasicBlock *FreeInstrBB = FI.getParent();
2700 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2701
2702 // Validate part of constraint #1: Only one predecessor
2703 // FIXME: We can extend the number of predecessor, but in that case, we
2704 // would duplicate the call to free in each predecessor and it may
2705 // not be profitable even for code size.
2706 if (!PredBB)
2707 return nullptr;
2708
2709 // Validate constraint #2: Does this block contains only the call to
2710 // free, noops, and an unconditional branch?
2711 BasicBlock *SuccBB;
2712 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2713 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2714 return nullptr;
2715
2716 // If there are only 2 instructions in the block, at this point,
2717 // this is the call to free and unconditional.
2718 // If there are more than 2 instructions, check that they are noops
2719 // i.e., they won't hurt the performance of the generated code.
2720 if (FreeInstrBB->size() != 2) {
2721 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2722 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2723 continue;
2724 auto *Cast = dyn_cast<CastInst>(&Inst);
2725 if (!Cast || !Cast->isNoopCast(DL))
2726 return nullptr;
2727 }
2728 }
2729 // Validate the rest of constraint #1 by matching on the pred branch.
2730 Instruction *TI = PredBB->getTerminator();
2731 BasicBlock *TrueBB, *FalseBB;
2732 ICmpInst::Predicate Pred;
2733 if (!match(TI, m_Br(m_ICmp(Pred,
2734 m_CombineOr(m_Specific(Op),
2735 m_Specific(Op->stripPointerCasts())),
2736 m_Zero()),
2737 TrueBB, FalseBB)))
2738 return nullptr;
2739 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2740 return nullptr;
2741
2742 // Validate constraint #3: Ensure the null case just falls through.
2743 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2744 return nullptr;
2745 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2746 "Broken CFG: missing edge from predecessor to successor");
2747
2748 // At this point, we know that everything in FreeInstrBB can be moved
2749 // before TI.
2750 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2751 It != End;) {
2752 Instruction &Instr = *It++;
2753 if (&Instr == FreeInstrBBTerminator)
2754 break;
2755 Instr.moveBefore(TI);
2756 }
2757 assert(FreeInstrBB->size() == 1 &&
2758 "Only the branch instruction should remain");
2759 return &FI;
2760 }
2761
visitFree(CallInst & FI)2762 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2763 Value *Op = FI.getArgOperand(0);
2764
2765 // free undef -> unreachable.
2766 if (isa<UndefValue>(Op)) {
2767 // Leave a marker since we can't modify the CFG here.
2768 CreateNonTerminatorUnreachable(&FI);
2769 return eraseInstFromFunction(FI);
2770 }
2771
2772 // If we have 'free null' delete the instruction. This can happen in stl code
2773 // when lots of inlining happens.
2774 if (isa<ConstantPointerNull>(Op))
2775 return eraseInstFromFunction(FI);
2776
2777 // If we optimize for code size, try to move the call to free before the null
2778 // test so that simplify cfg can remove the empty block and dead code
2779 // elimination the branch. I.e., helps to turn something like:
2780 // if (foo) free(foo);
2781 // into
2782 // free(foo);
2783 //
2784 // Note that we can only do this for 'free' and not for any flavor of
2785 // 'operator delete'; there is no 'operator delete' symbol for which we are
2786 // permitted to invent a call, even if we're passing in a null pointer.
2787 if (MinimizeSize) {
2788 LibFunc Func;
2789 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2790 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2791 return I;
2792 }
2793
2794 return nullptr;
2795 }
2796
isMustTailCall(Value * V)2797 static bool isMustTailCall(Value *V) {
2798 if (auto *CI = dyn_cast<CallInst>(V))
2799 return CI->isMustTailCall();
2800 return false;
2801 }
2802
visitReturnInst(ReturnInst & RI)2803 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2804 if (RI.getNumOperands() == 0) // ret void
2805 return nullptr;
2806
2807 Value *ResultOp = RI.getOperand(0);
2808 Type *VTy = ResultOp->getType();
2809 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2810 return nullptr;
2811
2812 // Don't replace result of musttail calls.
2813 if (isMustTailCall(ResultOp))
2814 return nullptr;
2815
2816 // There might be assume intrinsics dominating this return that completely
2817 // determine the value. If so, constant fold it.
2818 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2819 if (Known.isConstant())
2820 return replaceOperand(RI, 0,
2821 Constant::getIntegerValue(VTy, Known.getConstant()));
2822
2823 return nullptr;
2824 }
2825
visitUnreachableInst(UnreachableInst & I)2826 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2827 // Try to remove the previous instruction if it must lead to unreachable.
2828 // This includes instructions like stores and "llvm.assume" that may not get
2829 // removed by simple dead code elimination.
2830 Instruction *Prev = I.getPrevNonDebugInstruction();
2831 if (Prev && !Prev->isEHPad() &&
2832 isGuaranteedToTransferExecutionToSuccessor(Prev)) {
2833 // Temporarily disable removal of volatile stores preceding unreachable,
2834 // pending a potential LangRef change permitting volatile stores to trap.
2835 // TODO: Either remove this code, or properly integrate the check into
2836 // isGuaranteedToTransferExecutionToSuccessor().
2837 if (auto *SI = dyn_cast<StoreInst>(Prev))
2838 if (SI->isVolatile())
2839 return nullptr;
2840
2841 // A value may still have uses before we process it here (for example, in
2842 // another unreachable block), so convert those to undef.
2843 replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
2844 eraseInstFromFunction(*Prev);
2845 return &I;
2846 }
2847 return nullptr;
2848 }
2849
visitUnconditionalBranchInst(BranchInst & BI)2850 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2851 assert(BI.isUnconditional() && "Only for unconditional branches.");
2852
2853 // If this store is the second-to-last instruction in the basic block
2854 // (excluding debug info and bitcasts of pointers) and if the block ends with
2855 // an unconditional branch, try to move the store to the successor block.
2856
2857 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2858 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2859 return isa<DbgInfoIntrinsic>(BBI) ||
2860 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2861 };
2862
2863 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2864 do {
2865 if (BBI != FirstInstr)
2866 --BBI;
2867 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2868
2869 return dyn_cast<StoreInst>(BBI);
2870 };
2871
2872 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2873 if (mergeStoreIntoSuccessor(*SI))
2874 return &BI;
2875
2876 return nullptr;
2877 }
2878
visitBranchInst(BranchInst & BI)2879 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2880 if (BI.isUnconditional())
2881 return visitUnconditionalBranchInst(BI);
2882
2883 // Change br (not X), label True, label False to: br X, label False, True
2884 Value *X = nullptr;
2885 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2886 !isa<Constant>(X)) {
2887 // Swap Destinations and condition...
2888 BI.swapSuccessors();
2889 return replaceOperand(BI, 0, X);
2890 }
2891
2892 // If the condition is irrelevant, remove the use so that other
2893 // transforms on the condition become more effective.
2894 if (!isa<ConstantInt>(BI.getCondition()) &&
2895 BI.getSuccessor(0) == BI.getSuccessor(1))
2896 return replaceOperand(
2897 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2898
2899 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2900 CmpInst::Predicate Pred;
2901 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2902 m_BasicBlock(), m_BasicBlock())) &&
2903 !isCanonicalPredicate(Pred)) {
2904 // Swap destinations and condition.
2905 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2906 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2907 BI.swapSuccessors();
2908 Worklist.push(Cond);
2909 return &BI;
2910 }
2911
2912 return nullptr;
2913 }
2914
visitSwitchInst(SwitchInst & SI)2915 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2916 Value *Cond = SI.getCondition();
2917 Value *Op0;
2918 ConstantInt *AddRHS;
2919 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2920 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2921 for (auto Case : SI.cases()) {
2922 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2923 assert(isa<ConstantInt>(NewCase) &&
2924 "Result of expression should be constant");
2925 Case.setValue(cast<ConstantInt>(NewCase));
2926 }
2927 return replaceOperand(SI, 0, Op0);
2928 }
2929
2930 KnownBits Known = computeKnownBits(Cond, 0, &SI);
2931 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2932 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2933
2934 // Compute the number of leading bits we can ignore.
2935 // TODO: A better way to determine this would use ComputeNumSignBits().
2936 for (auto &C : SI.cases()) {
2937 LeadingKnownZeros = std::min(
2938 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2939 LeadingKnownOnes = std::min(
2940 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2941 }
2942
2943 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2944
2945 // Shrink the condition operand if the new type is smaller than the old type.
2946 // But do not shrink to a non-standard type, because backend can't generate
2947 // good code for that yet.
2948 // TODO: We can make it aggressive again after fixing PR39569.
2949 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2950 shouldChangeType(Known.getBitWidth(), NewWidth)) {
2951 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2952 Builder.SetInsertPoint(&SI);
2953 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2954
2955 for (auto Case : SI.cases()) {
2956 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2957 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2958 }
2959 return replaceOperand(SI, 0, NewCond);
2960 }
2961
2962 return nullptr;
2963 }
2964
visitExtractValueInst(ExtractValueInst & EV)2965 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
2966 Value *Agg = EV.getAggregateOperand();
2967
2968 if (!EV.hasIndices())
2969 return replaceInstUsesWith(EV, Agg);
2970
2971 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2972 SQ.getWithInstruction(&EV)))
2973 return replaceInstUsesWith(EV, V);
2974
2975 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2976 // We're extracting from an insertvalue instruction, compare the indices
2977 const unsigned *exti, *exte, *insi, *inse;
2978 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2979 exte = EV.idx_end(), inse = IV->idx_end();
2980 exti != exte && insi != inse;
2981 ++exti, ++insi) {
2982 if (*insi != *exti)
2983 // The insert and extract both reference distinctly different elements.
2984 // This means the extract is not influenced by the insert, and we can
2985 // replace the aggregate operand of the extract with the aggregate
2986 // operand of the insert. i.e., replace
2987 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2988 // %E = extractvalue { i32, { i32 } } %I, 0
2989 // with
2990 // %E = extractvalue { i32, { i32 } } %A, 0
2991 return ExtractValueInst::Create(IV->getAggregateOperand(),
2992 EV.getIndices());
2993 }
2994 if (exti == exte && insi == inse)
2995 // Both iterators are at the end: Index lists are identical. Replace
2996 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2997 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2998 // with "i32 42"
2999 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3000 if (exti == exte) {
3001 // The extract list is a prefix of the insert list. i.e. replace
3002 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3003 // %E = extractvalue { i32, { i32 } } %I, 1
3004 // with
3005 // %X = extractvalue { i32, { i32 } } %A, 1
3006 // %E = insertvalue { i32 } %X, i32 42, 0
3007 // by switching the order of the insert and extract (though the
3008 // insertvalue should be left in, since it may have other uses).
3009 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3010 EV.getIndices());
3011 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3012 makeArrayRef(insi, inse));
3013 }
3014 if (insi == inse)
3015 // The insert list is a prefix of the extract list
3016 // We can simply remove the common indices from the extract and make it
3017 // operate on the inserted value instead of the insertvalue result.
3018 // i.e., replace
3019 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3020 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3021 // with
3022 // %E extractvalue { i32 } { i32 42 }, 0
3023 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3024 makeArrayRef(exti, exte));
3025 }
3026 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3027 // We're extracting from an overflow intrinsic, see if we're the only user,
3028 // which allows us to simplify multiple result intrinsics to simpler
3029 // things that just get one value.
3030 if (WO->hasOneUse()) {
3031 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3032 // and replace it with a traditional binary instruction.
3033 if (*EV.idx_begin() == 0) {
3034 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3035 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3036 replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
3037 eraseInstFromFunction(*WO);
3038 return BinaryOperator::Create(BinOp, LHS, RHS);
3039 }
3040
3041 // If the normal result of the add is dead, and the RHS is a constant,
3042 // we can transform this into a range comparison.
3043 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
3044 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
3045 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
3046 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
3047 ConstantExpr::getNot(CI));
3048 }
3049 }
3050 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3051 // If the (non-volatile) load only has one use, we can rewrite this to a
3052 // load from a GEP. This reduces the size of the load. If a load is used
3053 // only by extractvalue instructions then this either must have been
3054 // optimized before, or it is a struct with padding, in which case we
3055 // don't want to do the transformation as it loses padding knowledge.
3056 if (L->isSimple() && L->hasOneUse()) {
3057 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3058 SmallVector<Value*, 4> Indices;
3059 // Prefix an i32 0 since we need the first element.
3060 Indices.push_back(Builder.getInt32(0));
3061 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
3062 I != E; ++I)
3063 Indices.push_back(Builder.getInt32(*I));
3064
3065 // We need to insert these at the location of the old load, not at that of
3066 // the extractvalue.
3067 Builder.SetInsertPoint(L);
3068 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3069 L->getPointerOperand(), Indices);
3070 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3071 // Whatever aliasing information we had for the orignal load must also
3072 // hold for the smaller load, so propagate the annotations.
3073 AAMDNodes Nodes;
3074 L->getAAMetadata(Nodes);
3075 NL->setAAMetadata(Nodes);
3076 // Returning the load directly will cause the main loop to insert it in
3077 // the wrong spot, so use replaceInstUsesWith().
3078 return replaceInstUsesWith(EV, NL);
3079 }
3080 // We could simplify extracts from other values. Note that nested extracts may
3081 // already be simplified implicitly by the above: extract (extract (insert) )
3082 // will be translated into extract ( insert ( extract ) ) first and then just
3083 // the value inserted, if appropriate. Similarly for extracts from single-use
3084 // loads: extract (extract (load)) will be translated to extract (load (gep))
3085 // and if again single-use then via load (gep (gep)) to load (gep).
3086 // However, double extracts from e.g. function arguments or return values
3087 // aren't handled yet.
3088 return nullptr;
3089 }
3090
3091 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)3092 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3093 switch (Personality) {
3094 case EHPersonality::GNU_C:
3095 case EHPersonality::GNU_C_SjLj:
3096 case EHPersonality::Rust:
3097 // The GCC C EH and Rust personality only exists to support cleanups, so
3098 // it's not clear what the semantics of catch clauses are.
3099 return false;
3100 case EHPersonality::Unknown:
3101 return false;
3102 case EHPersonality::GNU_Ada:
3103 // While __gnat_all_others_value will match any Ada exception, it doesn't
3104 // match foreign exceptions (or didn't, before gcc-4.7).
3105 return false;
3106 case EHPersonality::GNU_CXX:
3107 case EHPersonality::GNU_CXX_SjLj:
3108 case EHPersonality::GNU_ObjC:
3109 case EHPersonality::MSVC_X86SEH:
3110 case EHPersonality::MSVC_TableSEH:
3111 case EHPersonality::MSVC_CXX:
3112 case EHPersonality::CoreCLR:
3113 case EHPersonality::Wasm_CXX:
3114 case EHPersonality::XL_CXX:
3115 return TypeInfo->isNullValue();
3116 }
3117 llvm_unreachable("invalid enum");
3118 }
3119
shorter_filter(const Value * LHS,const Value * RHS)3120 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3121 return
3122 cast<ArrayType>(LHS->getType())->getNumElements()
3123 <
3124 cast<ArrayType>(RHS->getType())->getNumElements();
3125 }
3126
visitLandingPadInst(LandingPadInst & LI)3127 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3128 // The logic here should be correct for any real-world personality function.
3129 // However if that turns out not to be true, the offending logic can always
3130 // be conditioned on the personality function, like the catch-all logic is.
3131 EHPersonality Personality =
3132 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3133
3134 // Simplify the list of clauses, eg by removing repeated catch clauses
3135 // (these are often created by inlining).
3136 bool MakeNewInstruction = false; // If true, recreate using the following:
3137 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3138 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3139
3140 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3141 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3142 bool isLastClause = i + 1 == e;
3143 if (LI.isCatch(i)) {
3144 // A catch clause.
3145 Constant *CatchClause = LI.getClause(i);
3146 Constant *TypeInfo = CatchClause->stripPointerCasts();
3147
3148 // If we already saw this clause, there is no point in having a second
3149 // copy of it.
3150 if (AlreadyCaught.insert(TypeInfo).second) {
3151 // This catch clause was not already seen.
3152 NewClauses.push_back(CatchClause);
3153 } else {
3154 // Repeated catch clause - drop the redundant copy.
3155 MakeNewInstruction = true;
3156 }
3157
3158 // If this is a catch-all then there is no point in keeping any following
3159 // clauses or marking the landingpad as having a cleanup.
3160 if (isCatchAll(Personality, TypeInfo)) {
3161 if (!isLastClause)
3162 MakeNewInstruction = true;
3163 CleanupFlag = false;
3164 break;
3165 }
3166 } else {
3167 // A filter clause. If any of the filter elements were already caught
3168 // then they can be dropped from the filter. It is tempting to try to
3169 // exploit the filter further by saying that any typeinfo that does not
3170 // occur in the filter can't be caught later (and thus can be dropped).
3171 // However this would be wrong, since typeinfos can match without being
3172 // equal (for example if one represents a C++ class, and the other some
3173 // class derived from it).
3174 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3175 Constant *FilterClause = LI.getClause(i);
3176 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3177 unsigned NumTypeInfos = FilterType->getNumElements();
3178
3179 // An empty filter catches everything, so there is no point in keeping any
3180 // following clauses or marking the landingpad as having a cleanup. By
3181 // dealing with this case here the following code is made a bit simpler.
3182 if (!NumTypeInfos) {
3183 NewClauses.push_back(FilterClause);
3184 if (!isLastClause)
3185 MakeNewInstruction = true;
3186 CleanupFlag = false;
3187 break;
3188 }
3189
3190 bool MakeNewFilter = false; // If true, make a new filter.
3191 SmallVector<Constant *, 16> NewFilterElts; // New elements.
3192 if (isa<ConstantAggregateZero>(FilterClause)) {
3193 // Not an empty filter - it contains at least one null typeinfo.
3194 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3195 Constant *TypeInfo =
3196 Constant::getNullValue(FilterType->getElementType());
3197 // If this typeinfo is a catch-all then the filter can never match.
3198 if (isCatchAll(Personality, TypeInfo)) {
3199 // Throw the filter away.
3200 MakeNewInstruction = true;
3201 continue;
3202 }
3203
3204 // There is no point in having multiple copies of this typeinfo, so
3205 // discard all but the first copy if there is more than one.
3206 NewFilterElts.push_back(TypeInfo);
3207 if (NumTypeInfos > 1)
3208 MakeNewFilter = true;
3209 } else {
3210 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3211 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3212 NewFilterElts.reserve(NumTypeInfos);
3213
3214 // Remove any filter elements that were already caught or that already
3215 // occurred in the filter. While there, see if any of the elements are
3216 // catch-alls. If so, the filter can be discarded.
3217 bool SawCatchAll = false;
3218 for (unsigned j = 0; j != NumTypeInfos; ++j) {
3219 Constant *Elt = Filter->getOperand(j);
3220 Constant *TypeInfo = Elt->stripPointerCasts();
3221 if (isCatchAll(Personality, TypeInfo)) {
3222 // This element is a catch-all. Bail out, noting this fact.
3223 SawCatchAll = true;
3224 break;
3225 }
3226
3227 // Even if we've seen a type in a catch clause, we don't want to
3228 // remove it from the filter. An unexpected type handler may be
3229 // set up for a call site which throws an exception of the same
3230 // type caught. In order for the exception thrown by the unexpected
3231 // handler to propagate correctly, the filter must be correctly
3232 // described for the call site.
3233 //
3234 // Example:
3235 //
3236 // void unexpected() { throw 1;}
3237 // void foo() throw (int) {
3238 // std::set_unexpected(unexpected);
3239 // try {
3240 // throw 2.0;
3241 // } catch (int i) {}
3242 // }
3243
3244 // There is no point in having multiple copies of the same typeinfo in
3245 // a filter, so only add it if we didn't already.
3246 if (SeenInFilter.insert(TypeInfo).second)
3247 NewFilterElts.push_back(cast<Constant>(Elt));
3248 }
3249 // A filter containing a catch-all cannot match anything by definition.
3250 if (SawCatchAll) {
3251 // Throw the filter away.
3252 MakeNewInstruction = true;
3253 continue;
3254 }
3255
3256 // If we dropped something from the filter, make a new one.
3257 if (NewFilterElts.size() < NumTypeInfos)
3258 MakeNewFilter = true;
3259 }
3260 if (MakeNewFilter) {
3261 FilterType = ArrayType::get(FilterType->getElementType(),
3262 NewFilterElts.size());
3263 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3264 MakeNewInstruction = true;
3265 }
3266
3267 NewClauses.push_back(FilterClause);
3268
3269 // If the new filter is empty then it will catch everything so there is
3270 // no point in keeping any following clauses or marking the landingpad
3271 // as having a cleanup. The case of the original filter being empty was
3272 // already handled above.
3273 if (MakeNewFilter && !NewFilterElts.size()) {
3274 assert(MakeNewInstruction && "New filter but not a new instruction!");
3275 CleanupFlag = false;
3276 break;
3277 }
3278 }
3279 }
3280
3281 // If several filters occur in a row then reorder them so that the shortest
3282 // filters come first (those with the smallest number of elements). This is
3283 // advantageous because shorter filters are more likely to match, speeding up
3284 // unwinding, but mostly because it increases the effectiveness of the other
3285 // filter optimizations below.
3286 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3287 unsigned j;
3288 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3289 for (j = i; j != e; ++j)
3290 if (!isa<ArrayType>(NewClauses[j]->getType()))
3291 break;
3292
3293 // Check whether the filters are already sorted by length. We need to know
3294 // if sorting them is actually going to do anything so that we only make a
3295 // new landingpad instruction if it does.
3296 for (unsigned k = i; k + 1 < j; ++k)
3297 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3298 // Not sorted, so sort the filters now. Doing an unstable sort would be
3299 // correct too but reordering filters pointlessly might confuse users.
3300 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3301 shorter_filter);
3302 MakeNewInstruction = true;
3303 break;
3304 }
3305
3306 // Look for the next batch of filters.
3307 i = j + 1;
3308 }
3309
3310 // If typeinfos matched if and only if equal, then the elements of a filter L
3311 // that occurs later than a filter F could be replaced by the intersection of
3312 // the elements of F and L. In reality two typeinfos can match without being
3313 // equal (for example if one represents a C++ class, and the other some class
3314 // derived from it) so it would be wrong to perform this transform in general.
3315 // However the transform is correct and useful if F is a subset of L. In that
3316 // case L can be replaced by F, and thus removed altogether since repeating a
3317 // filter is pointless. So here we look at all pairs of filters F and L where
3318 // L follows F in the list of clauses, and remove L if every element of F is
3319 // an element of L. This can occur when inlining C++ functions with exception
3320 // specifications.
3321 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3322 // Examine each filter in turn.
3323 Value *Filter = NewClauses[i];
3324 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3325 if (!FTy)
3326 // Not a filter - skip it.
3327 continue;
3328 unsigned FElts = FTy->getNumElements();
3329 // Examine each filter following this one. Doing this backwards means that
3330 // we don't have to worry about filters disappearing under us when removed.
3331 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3332 Value *LFilter = NewClauses[j];
3333 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3334 if (!LTy)
3335 // Not a filter - skip it.
3336 continue;
3337 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3338 // an element of LFilter, then discard LFilter.
3339 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3340 // If Filter is empty then it is a subset of LFilter.
3341 if (!FElts) {
3342 // Discard LFilter.
3343 NewClauses.erase(J);
3344 MakeNewInstruction = true;
3345 // Move on to the next filter.
3346 continue;
3347 }
3348 unsigned LElts = LTy->getNumElements();
3349 // If Filter is longer than LFilter then it cannot be a subset of it.
3350 if (FElts > LElts)
3351 // Move on to the next filter.
3352 continue;
3353 // At this point we know that LFilter has at least one element.
3354 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3355 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3356 // already know that Filter is not longer than LFilter).
3357 if (isa<ConstantAggregateZero>(Filter)) {
3358 assert(FElts <= LElts && "Should have handled this case earlier!");
3359 // Discard LFilter.
3360 NewClauses.erase(J);
3361 MakeNewInstruction = true;
3362 }
3363 // Move on to the next filter.
3364 continue;
3365 }
3366 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3367 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3368 // Since Filter is non-empty and contains only zeros, it is a subset of
3369 // LFilter iff LFilter contains a zero.
3370 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3371 for (unsigned l = 0; l != LElts; ++l)
3372 if (LArray->getOperand(l)->isNullValue()) {
3373 // LFilter contains a zero - discard it.
3374 NewClauses.erase(J);
3375 MakeNewInstruction = true;
3376 break;
3377 }
3378 // Move on to the next filter.
3379 continue;
3380 }
3381 // At this point we know that both filters are ConstantArrays. Loop over
3382 // operands to see whether every element of Filter is also an element of
3383 // LFilter. Since filters tend to be short this is probably faster than
3384 // using a method that scales nicely.
3385 ConstantArray *FArray = cast<ConstantArray>(Filter);
3386 bool AllFound = true;
3387 for (unsigned f = 0; f != FElts; ++f) {
3388 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3389 AllFound = false;
3390 for (unsigned l = 0; l != LElts; ++l) {
3391 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3392 if (LTypeInfo == FTypeInfo) {
3393 AllFound = true;
3394 break;
3395 }
3396 }
3397 if (!AllFound)
3398 break;
3399 }
3400 if (AllFound) {
3401 // Discard LFilter.
3402 NewClauses.erase(J);
3403 MakeNewInstruction = true;
3404 }
3405 // Move on to the next filter.
3406 }
3407 }
3408
3409 // If we changed any of the clauses, replace the old landingpad instruction
3410 // with a new one.
3411 if (MakeNewInstruction) {
3412 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3413 NewClauses.size());
3414 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3415 NLI->addClause(NewClauses[i]);
3416 // A landing pad with no clauses must have the cleanup flag set. It is
3417 // theoretically possible, though highly unlikely, that we eliminated all
3418 // clauses. If so, force the cleanup flag to true.
3419 if (NewClauses.empty())
3420 CleanupFlag = true;
3421 NLI->setCleanup(CleanupFlag);
3422 return NLI;
3423 }
3424
3425 // Even if none of the clauses changed, we may nonetheless have understood
3426 // that the cleanup flag is pointless. Clear it if so.
3427 if (LI.isCleanup() != CleanupFlag) {
3428 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3429 LI.setCleanup(CleanupFlag);
3430 return &LI;
3431 }
3432
3433 return nullptr;
3434 }
3435
visitFreeze(FreezeInst & I)3436 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3437 Value *Op0 = I.getOperand(0);
3438
3439 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3440 return replaceInstUsesWith(I, V);
3441
3442 // freeze (phi const, x) --> phi const, (freeze x)
3443 if (auto *PN = dyn_cast<PHINode>(Op0)) {
3444 if (Instruction *NV = foldOpIntoPhi(I, PN))
3445 return NV;
3446 }
3447
3448 if (match(Op0, m_Undef())) {
3449 // If I is freeze(undef), see its uses and fold it to the best constant.
3450 // - or: pick -1
3451 // - select's condition: pick the value that leads to choosing a constant
3452 // - other ops: pick 0
3453 Constant *BestValue = nullptr;
3454 Constant *NullValue = Constant::getNullValue(I.getType());
3455 for (const auto *U : I.users()) {
3456 Constant *C = NullValue;
3457
3458 if (match(U, m_Or(m_Value(), m_Value())))
3459 C = Constant::getAllOnesValue(I.getType());
3460 else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3461 if (SI->getCondition() == &I) {
3462 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3463 C = Constant::getIntegerValue(I.getType(), CondVal);
3464 }
3465 }
3466
3467 if (!BestValue)
3468 BestValue = C;
3469 else if (BestValue != C)
3470 BestValue = NullValue;
3471 }
3472
3473 return replaceInstUsesWith(I, BestValue);
3474 }
3475
3476 return nullptr;
3477 }
3478
3479 /// Try to move the specified instruction from its current block into the
3480 /// beginning of DestBlock, which can only happen if it's safe to move the
3481 /// instruction past all of the instructions between it and the end of its
3482 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)3483 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3484 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3485 BasicBlock *SrcBlock = I->getParent();
3486
3487 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3488 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3489 I->isTerminator())
3490 return false;
3491
3492 // Do not sink static or dynamic alloca instructions. Static allocas must
3493 // remain in the entry block, and dynamic allocas must not be sunk in between
3494 // a stacksave / stackrestore pair, which would incorrectly shorten its
3495 // lifetime.
3496 if (isa<AllocaInst>(I))
3497 return false;
3498
3499 // Do not sink into catchswitch blocks.
3500 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3501 return false;
3502
3503 // Do not sink convergent call instructions.
3504 if (auto *CI = dyn_cast<CallInst>(I)) {
3505 if (CI->isConvergent())
3506 return false;
3507 }
3508 // We can only sink load instructions if there is nothing between the load and
3509 // the end of block that could change the value.
3510 if (I->mayReadFromMemory()) {
3511 // We don't want to do any sophisticated alias analysis, so we only check
3512 // the instructions after I in I's parent block if we try to sink to its
3513 // successor block.
3514 if (DestBlock->getUniquePredecessor() != I->getParent())
3515 return false;
3516 for (BasicBlock::iterator Scan = I->getIterator(),
3517 E = I->getParent()->end();
3518 Scan != E; ++Scan)
3519 if (Scan->mayWriteToMemory())
3520 return false;
3521 }
3522
3523 I->dropDroppableUses([DestBlock](const Use *U) {
3524 if (auto *I = dyn_cast<Instruction>(U->getUser()))
3525 return I->getParent() != DestBlock;
3526 return true;
3527 });
3528 /// FIXME: We could remove droppable uses that are not dominated by
3529 /// the new position.
3530
3531 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3532 I->moveBefore(&*InsertPos);
3533 ++NumSunkInst;
3534
3535 // Also sink all related debug uses from the source basic block. Otherwise we
3536 // get debug use before the def. Attempt to salvage debug uses first, to
3537 // maximise the range variables have location for. If we cannot salvage, then
3538 // mark the location undef: we know it was supposed to receive a new location
3539 // here, but that computation has been sunk.
3540 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3541 findDbgUsers(DbgUsers, I);
3542
3543 // Update the arguments of a dbg.declare instruction, so that it
3544 // does not point into a sunk instruction.
3545 auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3546 if (!isa<DbgDeclareInst>(DII))
3547 return false;
3548
3549 if (isa<CastInst>(I))
3550 DII->setOperand(
3551 0, MetadataAsValue::get(I->getContext(),
3552 ValueAsMetadata::get(I->getOperand(0))));
3553 return true;
3554 };
3555
3556 SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3557 for (auto User : DbgUsers) {
3558 // A dbg.declare instruction should not be cloned, since there can only be
3559 // one per variable fragment. It should be left in the original place
3560 // because the sunk instruction is not an alloca (otherwise we could not be
3561 // here).
3562 if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3563 continue;
3564
3565 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3566 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3567 }
3568
3569 // Perform salvaging without the clones, then sink the clones.
3570 if (!DIIClones.empty()) {
3571 salvageDebugInfoForDbgValues(*I, DbgUsers);
3572 for (auto &DIIClone : DIIClones) {
3573 DIIClone->insertBefore(&*InsertPos);
3574 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3575 }
3576 }
3577
3578 return true;
3579 }
3580
run()3581 bool InstCombinerImpl::run() {
3582 while (!Worklist.isEmpty()) {
3583 // Walk deferred instructions in reverse order, and push them to the
3584 // worklist, which means they'll end up popped from the worklist in-order.
3585 while (Instruction *I = Worklist.popDeferred()) {
3586 // Check to see if we can DCE the instruction. We do this already here to
3587 // reduce the number of uses and thus allow other folds to trigger.
3588 // Note that eraseInstFromFunction() may push additional instructions on
3589 // the deferred worklist, so this will DCE whole instruction chains.
3590 if (isInstructionTriviallyDead(I, &TLI)) {
3591 eraseInstFromFunction(*I);
3592 ++NumDeadInst;
3593 continue;
3594 }
3595
3596 Worklist.push(I);
3597 }
3598
3599 Instruction *I = Worklist.removeOne();
3600 if (I == nullptr) continue; // skip null values.
3601
3602 // Check to see if we can DCE the instruction.
3603 if (isInstructionTriviallyDead(I, &TLI)) {
3604 eraseInstFromFunction(*I);
3605 ++NumDeadInst;
3606 continue;
3607 }
3608
3609 if (!DebugCounter::shouldExecute(VisitCounter))
3610 continue;
3611
3612 // Instruction isn't dead, see if we can constant propagate it.
3613 if (!I->use_empty() &&
3614 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3615 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3616 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3617 << '\n');
3618
3619 // Add operands to the worklist.
3620 replaceInstUsesWith(*I, C);
3621 ++NumConstProp;
3622 if (isInstructionTriviallyDead(I, &TLI))
3623 eraseInstFromFunction(*I);
3624 MadeIRChange = true;
3625 continue;
3626 }
3627 }
3628
3629 // See if we can trivially sink this instruction to its user if we can
3630 // prove that the successor is not executed more frequently than our block.
3631 if (EnableCodeSinking)
3632 if (Use *SingleUse = I->getSingleUndroppableUse()) {
3633 BasicBlock *BB = I->getParent();
3634 Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3635 BasicBlock *UserParent;
3636
3637 // Get the block the use occurs in.
3638 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3639 UserParent = PN->getIncomingBlock(*SingleUse);
3640 else
3641 UserParent = UserInst->getParent();
3642
3643 if (UserParent != BB) {
3644 // See if the user is one of our successors that has only one
3645 // predecessor, so that we don't have to split the critical edge.
3646 bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3647 // Another option where we can sink is a block that ends with a
3648 // terminator that does not pass control to other block (such as
3649 // return or unreachable). In this case:
3650 // - I dominates the User (by SSA form);
3651 // - the User will be executed at most once.
3652 // So sinking I down to User is always profitable or neutral.
3653 if (!ShouldSink) {
3654 auto *Term = UserParent->getTerminator();
3655 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3656 }
3657 if (ShouldSink) {
3658 assert(DT.dominates(BB, UserParent) &&
3659 "Dominance relation broken?");
3660 // Okay, the CFG is simple enough, try to sink this instruction.
3661 if (TryToSinkInstruction(I, UserParent)) {
3662 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3663 MadeIRChange = true;
3664 // We'll add uses of the sunk instruction below, but since sinking
3665 // can expose opportunities for it's *operands* add them to the
3666 // worklist
3667 for (Use &U : I->operands())
3668 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3669 Worklist.push(OpI);
3670 }
3671 }
3672 }
3673 }
3674
3675 // Now that we have an instruction, try combining it to simplify it.
3676 Builder.SetInsertPoint(I);
3677 Builder.SetCurrentDebugLocation(I->getDebugLoc());
3678
3679 #ifndef NDEBUG
3680 std::string OrigI;
3681 #endif
3682 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3683 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3684
3685 if (Instruction *Result = visit(*I)) {
3686 ++NumCombined;
3687 // Should we replace the old instruction with a new one?
3688 if (Result != I) {
3689 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3690 << " New = " << *Result << '\n');
3691
3692 if (I->getDebugLoc())
3693 Result->setDebugLoc(I->getDebugLoc());
3694 // Everything uses the new instruction now.
3695 I->replaceAllUsesWith(Result);
3696
3697 // Move the name to the new instruction first.
3698 Result->takeName(I);
3699
3700 // Insert the new instruction into the basic block...
3701 BasicBlock *InstParent = I->getParent();
3702 BasicBlock::iterator InsertPos = I->getIterator();
3703
3704 // Are we replace a PHI with something that isn't a PHI, or vice versa?
3705 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3706 // We need to fix up the insertion point.
3707 if (isa<PHINode>(I)) // PHI -> Non-PHI
3708 InsertPos = InstParent->getFirstInsertionPt();
3709 else // Non-PHI -> PHI
3710 InsertPos = InstParent->getFirstNonPHI()->getIterator();
3711 }
3712
3713 InstParent->getInstList().insert(InsertPos, Result);
3714
3715 // Push the new instruction and any users onto the worklist.
3716 Worklist.pushUsersToWorkList(*Result);
3717 Worklist.push(Result);
3718
3719 eraseInstFromFunction(*I);
3720 } else {
3721 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3722 << " New = " << *I << '\n');
3723
3724 // If the instruction was modified, it's possible that it is now dead.
3725 // if so, remove it.
3726 if (isInstructionTriviallyDead(I, &TLI)) {
3727 eraseInstFromFunction(*I);
3728 } else {
3729 Worklist.pushUsersToWorkList(*I);
3730 Worklist.push(I);
3731 }
3732 }
3733 MadeIRChange = true;
3734 }
3735 }
3736
3737 Worklist.zap();
3738 return MadeIRChange;
3739 }
3740
3741 /// Populate the IC worklist from a function, by walking it in depth-first
3742 /// order and adding all reachable code to the worklist.
3743 ///
3744 /// This has a couple of tricks to make the code faster and more powerful. In
3745 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3746 /// them to the worklist (this significantly speeds up instcombine on code where
3747 /// many instructions are dead or constant). Additionally, if we find a branch
3748 /// whose condition is a known constant, we only visit the reachable successors.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)3749 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3750 const TargetLibraryInfo *TLI,
3751 InstCombineWorklist &ICWorklist) {
3752 bool MadeIRChange = false;
3753 SmallPtrSet<BasicBlock *, 32> Visited;
3754 SmallVector<BasicBlock*, 256> Worklist;
3755 Worklist.push_back(&F.front());
3756
3757 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3758 DenseMap<Constant *, Constant *> FoldedConstants;
3759
3760 do {
3761 BasicBlock *BB = Worklist.pop_back_val();
3762
3763 // We have now visited this block! If we've already been here, ignore it.
3764 if (!Visited.insert(BB).second)
3765 continue;
3766
3767 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3768 Instruction *Inst = &*BBI++;
3769
3770 // ConstantProp instruction if trivially constant.
3771 if (!Inst->use_empty() &&
3772 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3773 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3774 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3775 << '\n');
3776 Inst->replaceAllUsesWith(C);
3777 ++NumConstProp;
3778 if (isInstructionTriviallyDead(Inst, TLI))
3779 Inst->eraseFromParent();
3780 MadeIRChange = true;
3781 continue;
3782 }
3783
3784 // See if we can constant fold its operands.
3785 for (Use &U : Inst->operands()) {
3786 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3787 continue;
3788
3789 auto *C = cast<Constant>(U);
3790 Constant *&FoldRes = FoldedConstants[C];
3791 if (!FoldRes)
3792 FoldRes = ConstantFoldConstant(C, DL, TLI);
3793
3794 if (FoldRes != C) {
3795 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3796 << "\n Old = " << *C
3797 << "\n New = " << *FoldRes << '\n');
3798 U = FoldRes;
3799 MadeIRChange = true;
3800 }
3801 }
3802
3803 // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3804 // consumes non-trivial amount of time and provides no value for the optimization.
3805 if (!isa<DbgInfoIntrinsic>(Inst))
3806 InstrsForInstCombineWorklist.push_back(Inst);
3807 }
3808
3809 // Recursively visit successors. If this is a branch or switch on a
3810 // constant, only visit the reachable successor.
3811 Instruction *TI = BB->getTerminator();
3812 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3813 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3814 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3815 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3816 Worklist.push_back(ReachableBB);
3817 continue;
3818 }
3819 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3820 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3821 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3822 continue;
3823 }
3824 }
3825
3826 for (BasicBlock *SuccBB : successors(TI))
3827 Worklist.push_back(SuccBB);
3828 } while (!Worklist.empty());
3829
3830 // Remove instructions inside unreachable blocks. This prevents the
3831 // instcombine code from having to deal with some bad special cases, and
3832 // reduces use counts of instructions.
3833 for (BasicBlock &BB : F) {
3834 if (Visited.count(&BB))
3835 continue;
3836
3837 unsigned NumDeadInstInBB;
3838 unsigned NumDeadDbgInstInBB;
3839 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
3840 removeAllNonTerminatorAndEHPadInstructions(&BB);
3841
3842 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
3843 NumDeadInst += NumDeadInstInBB;
3844 }
3845
3846 // Once we've found all of the instructions to add to instcombine's worklist,
3847 // add them in reverse order. This way instcombine will visit from the top
3848 // of the function down. This jives well with the way that it adds all uses
3849 // of instructions to the worklist after doing a transformation, thus avoiding
3850 // some N^2 behavior in pathological cases.
3851 ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3852 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3853 // DCE instruction if trivially dead. As we iterate in reverse program
3854 // order here, we will clean up whole chains of dead instructions.
3855 if (isInstructionTriviallyDead(Inst, TLI)) {
3856 ++NumDeadInst;
3857 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3858 salvageDebugInfo(*Inst);
3859 Inst->eraseFromParent();
3860 MadeIRChange = true;
3861 continue;
3862 }
3863
3864 ICWorklist.push(Inst);
3865 }
3866
3867 return MadeIRChange;
3868 }
3869
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,unsigned MaxIterations,LoopInfo * LI)3870 static bool combineInstructionsOverFunction(
3871 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3872 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
3873 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3874 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3875 auto &DL = F.getParent()->getDataLayout();
3876 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3877
3878 /// Builder - This is an IRBuilder that automatically inserts new
3879 /// instructions into the worklist when they are created.
3880 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3881 F.getContext(), TargetFolder(DL),
3882 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3883 Worklist.add(I);
3884 if (match(I, m_Intrinsic<Intrinsic::assume>()))
3885 AC.registerAssumption(cast<CallInst>(I));
3886 }));
3887
3888 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3889 // by instcombiner.
3890 bool MadeIRChange = false;
3891 if (ShouldLowerDbgDeclare)
3892 MadeIRChange = LowerDbgDeclare(F);
3893
3894 // Iterate while there is work to do.
3895 unsigned Iteration = 0;
3896 while (true) {
3897 ++NumWorklistIterations;
3898 ++Iteration;
3899
3900 if (Iteration > InfiniteLoopDetectionThreshold) {
3901 report_fatal_error(
3902 "Instruction Combining seems stuck in an infinite loop after " +
3903 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3904 }
3905
3906 if (Iteration > MaxIterations) {
3907 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3908 << " on " << F.getName()
3909 << " reached; stopping before reaching a fixpoint\n");
3910 break;
3911 }
3912
3913 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3914 << F.getName() << "\n");
3915
3916 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3917
3918 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
3919 ORE, BFI, PSI, DL, LI);
3920 IC.MaxArraySizeForCombine = MaxArraySize;
3921
3922 if (!IC.run())
3923 break;
3924
3925 MadeIRChange = true;
3926 }
3927
3928 return MadeIRChange;
3929 }
3930
InstCombinePass()3931 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3932
InstCombinePass(unsigned MaxIterations)3933 InstCombinePass::InstCombinePass(unsigned MaxIterations)
3934 : MaxIterations(MaxIterations) {}
3935
run(Function & F,FunctionAnalysisManager & AM)3936 PreservedAnalyses InstCombinePass::run(Function &F,
3937 FunctionAnalysisManager &AM) {
3938 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3939 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3940 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3941 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3942 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
3943
3944 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3945
3946 auto *AA = &AM.getResult<AAManager>(F);
3947 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3948 ProfileSummaryInfo *PSI =
3949 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3950 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3951 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3952
3953 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
3954 BFI, PSI, MaxIterations, LI))
3955 // No changes, all analyses are preserved.
3956 return PreservedAnalyses::all();
3957
3958 // Mark all the analyses that instcombine updates as preserved.
3959 PreservedAnalyses PA;
3960 PA.preserveSet<CFGAnalyses>();
3961 PA.preserve<AAManager>();
3962 PA.preserve<BasicAA>();
3963 PA.preserve<GlobalsAA>();
3964 return PA;
3965 }
3966
getAnalysisUsage(AnalysisUsage & AU) const3967 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3968 AU.setPreservesCFG();
3969 AU.addRequired<AAResultsWrapperPass>();
3970 AU.addRequired<AssumptionCacheTracker>();
3971 AU.addRequired<TargetLibraryInfoWrapperPass>();
3972 AU.addRequired<TargetTransformInfoWrapperPass>();
3973 AU.addRequired<DominatorTreeWrapperPass>();
3974 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3975 AU.addPreserved<DominatorTreeWrapperPass>();
3976 AU.addPreserved<AAResultsWrapperPass>();
3977 AU.addPreserved<BasicAAWrapperPass>();
3978 AU.addPreserved<GlobalsAAWrapperPass>();
3979 AU.addRequired<ProfileSummaryInfoWrapperPass>();
3980 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3981 }
3982
runOnFunction(Function & F)3983 bool InstructionCombiningPass::runOnFunction(Function &F) {
3984 if (skipFunction(F))
3985 return false;
3986
3987 // Required analyses.
3988 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3989 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3990 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3991 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3992 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3993 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3994
3995 // Optional analyses.
3996 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3997 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3998 ProfileSummaryInfo *PSI =
3999 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4000 BlockFrequencyInfo *BFI =
4001 (PSI && PSI->hasProfileSummary()) ?
4002 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4003 nullptr;
4004
4005 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4006 BFI, PSI, MaxIterations, LI);
4007 }
4008
4009 char InstructionCombiningPass::ID = 0;
4010
InstructionCombiningPass()4011 InstructionCombiningPass::InstructionCombiningPass()
4012 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4013 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4014 }
4015
InstructionCombiningPass(unsigned MaxIterations)4016 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4017 : FunctionPass(ID), MaxIterations(MaxIterations) {
4018 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4019 }
4020
4021 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4022 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4023 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4024 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4025 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4026 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4027 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4028 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4029 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4030 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4031 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4032 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4033 "Combine redundant instructions", false, false)
4034
4035 // Initialization Routines
4036 void llvm::initializeInstCombine(PassRegistry &Registry) {
4037 initializeInstructionCombiningPassPass(Registry);
4038 }
4039
LLVMInitializeInstCombine(LLVMPassRegistryRef R)4040 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4041 initializeInstructionCombiningPassPass(*unwrap(R));
4042 }
4043
createInstructionCombiningPass()4044 FunctionPass *llvm::createInstructionCombiningPass() {
4045 return new InstructionCombiningPass();
4046 }
4047
createInstructionCombiningPass(unsigned MaxIterations)4048 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4049 return new InstructionCombiningPass(MaxIterations);
4050 }
4051
LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)4052 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4053 unwrap(PM)->add(createInstructionCombiningPass());
4054 }
4055