1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34
35 #define DEBUG_TYPE "dag-patterns"
36
isIntegerOrPtr(MVT VT)37 static inline bool isIntegerOrPtr(MVT VT) {
38 return VT.isInteger() || VT == MVT::iPTR;
39 }
isFloatingPoint(MVT VT)40 static inline bool isFloatingPoint(MVT VT) {
41 return VT.isFloatingPoint();
42 }
isVector(MVT VT)43 static inline bool isVector(MVT VT) {
44 return VT.isVector();
45 }
isScalar(MVT VT)46 static inline bool isScalar(MVT VT) {
47 return !VT.isVector();
48 }
49
50 template <typename Predicate>
berase_if(MachineValueTypeSet & S,Predicate P)51 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52 bool Erased = false;
53 // It is ok to iterate over MachineValueTypeSet and remove elements from it
54 // at the same time.
55 for (MVT T : S) {
56 if (!P(T))
57 continue;
58 Erased = true;
59 S.erase(T);
60 }
61 return Erased;
62 }
63
64 // --- TypeSetByHwMode
65
66 // This is a parameterized type-set class. For each mode there is a list
67 // of types that are currently possible for a given tree node. Type
68 // inference will apply to each mode separately.
69
TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList)70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71 for (const ValueTypeByHwMode &VVT : VTList) {
72 insert(VVT);
73 AddrSpaces.push_back(VVT.PtrAddrSpace);
74 }
75 }
76
isValueTypeByHwMode(bool AllowEmpty) const77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78 for (const auto &I : *this) {
79 if (I.second.size() > 1)
80 return false;
81 if (!AllowEmpty && I.second.empty())
82 return false;
83 }
84 return true;
85 }
86
getValueTypeByHwMode() const87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88 assert(isValueTypeByHwMode(true) &&
89 "The type set has multiple types for at least one HW mode");
90 ValueTypeByHwMode VVT;
91 auto ASI = AddrSpaces.begin();
92
93 for (const auto &I : *this) {
94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95 VVT.getOrCreateTypeForMode(I.first, T);
96 if (ASI != AddrSpaces.end())
97 VVT.PtrAddrSpace = *ASI++;
98 }
99 return VVT;
100 }
101
isPossible() const102 bool TypeSetByHwMode::isPossible() const {
103 for (const auto &I : *this)
104 if (!I.second.empty())
105 return true;
106 return false;
107 }
108
insert(const ValueTypeByHwMode & VVT)109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110 bool Changed = false;
111 bool ContainsDefault = false;
112 MVT DT = MVT::Other;
113
114 SmallDenseSet<unsigned, 4> Modes;
115 for (const auto &P : VVT) {
116 unsigned M = P.first;
117 Modes.insert(M);
118 // Make sure there exists a set for each specific mode from VVT.
119 Changed |= getOrCreate(M).insert(P.second).second;
120 // Cache VVT's default mode.
121 if (DefaultMode == M) {
122 ContainsDefault = true;
123 DT = P.second;
124 }
125 }
126
127 // If VVT has a default mode, add the corresponding type to all
128 // modes in "this" that do not exist in VVT.
129 if (ContainsDefault)
130 for (auto &I : *this)
131 if (!Modes.count(I.first))
132 Changed |= I.second.insert(DT).second;
133
134 return Changed;
135 }
136
137 // Constrain the type set to be the intersection with VTS.
constrain(const TypeSetByHwMode & VTS)138 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
139 bool Changed = false;
140 if (hasDefault()) {
141 for (const auto &I : VTS) {
142 unsigned M = I.first;
143 if (M == DefaultMode || hasMode(M))
144 continue;
145 Map.insert({M, Map.at(DefaultMode)});
146 Changed = true;
147 }
148 }
149
150 for (auto &I : *this) {
151 unsigned M = I.first;
152 SetType &S = I.second;
153 if (VTS.hasMode(M) || VTS.hasDefault()) {
154 Changed |= intersect(I.second, VTS.get(M));
155 } else if (!S.empty()) {
156 S.clear();
157 Changed = true;
158 }
159 }
160 return Changed;
161 }
162
163 template <typename Predicate>
constrain(Predicate P)164 bool TypeSetByHwMode::constrain(Predicate P) {
165 bool Changed = false;
166 for (auto &I : *this)
167 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
168 return Changed;
169 }
170
171 template <typename Predicate>
assign_if(const TypeSetByHwMode & VTS,Predicate P)172 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
173 assert(empty());
174 for (const auto &I : VTS) {
175 SetType &S = getOrCreate(I.first);
176 for (auto J : I.second)
177 if (P(J))
178 S.insert(J);
179 }
180 return !empty();
181 }
182
writeToStream(raw_ostream & OS) const183 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
184 SmallVector<unsigned, 4> Modes;
185 Modes.reserve(Map.size());
186
187 for (const auto &I : *this)
188 Modes.push_back(I.first);
189 if (Modes.empty()) {
190 OS << "{}";
191 return;
192 }
193 array_pod_sort(Modes.begin(), Modes.end());
194
195 OS << '{';
196 for (unsigned M : Modes) {
197 OS << ' ' << getModeName(M) << ':';
198 writeToStream(get(M), OS);
199 }
200 OS << " }";
201 }
202
writeToStream(const SetType & S,raw_ostream & OS)203 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
204 SmallVector<MVT, 4> Types(S.begin(), S.end());
205 array_pod_sort(Types.begin(), Types.end());
206
207 OS << '[';
208 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
209 OS << ValueTypeByHwMode::getMVTName(Types[i]);
210 if (i != e-1)
211 OS << ' ';
212 }
213 OS << ']';
214 }
215
operator ==(const TypeSetByHwMode & VTS) const216 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
217 // The isSimple call is much quicker than hasDefault - check this first.
218 bool IsSimple = isSimple();
219 bool VTSIsSimple = VTS.isSimple();
220 if (IsSimple && VTSIsSimple)
221 return *begin() == *VTS.begin();
222
223 // Speedup: We have a default if the set is simple.
224 bool HaveDefault = IsSimple || hasDefault();
225 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
226 if (HaveDefault != VTSHaveDefault)
227 return false;
228
229 SmallDenseSet<unsigned, 4> Modes;
230 for (auto &I : *this)
231 Modes.insert(I.first);
232 for (const auto &I : VTS)
233 Modes.insert(I.first);
234
235 if (HaveDefault) {
236 // Both sets have default mode.
237 for (unsigned M : Modes) {
238 if (get(M) != VTS.get(M))
239 return false;
240 }
241 } else {
242 // Neither set has default mode.
243 for (unsigned M : Modes) {
244 // If there is no default mode, an empty set is equivalent to not having
245 // the corresponding mode.
246 bool NoModeThis = !hasMode(M) || get(M).empty();
247 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
248 if (NoModeThis != NoModeVTS)
249 return false;
250 if (!NoModeThis)
251 if (get(M) != VTS.get(M))
252 return false;
253 }
254 }
255
256 return true;
257 }
258
259 namespace llvm {
operator <<(raw_ostream & OS,const TypeSetByHwMode & T)260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
261 T.writeToStream(OS);
262 return OS;
263 }
264 }
265
266 LLVM_DUMP_METHOD
dump() const267 void TypeSetByHwMode::dump() const {
268 dbgs() << *this << '\n';
269 }
270
intersect(SetType & Out,const SetType & In)271 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
272 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
273 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274
275 if (OutP == InP)
276 return berase_if(Out, Int);
277
278 // Compute the intersection of scalars separately to account for only
279 // one set containing iPTR.
280 // The intersection of iPTR with a set of integer scalar types that does not
281 // include iPTR will result in the most specific scalar type:
282 // - iPTR is more specific than any set with two elements or more
283 // - iPTR is less specific than any single integer scalar type.
284 // For example
285 // { iPTR } * { i32 } -> { i32 }
286 // { iPTR } * { i32 i64 } -> { iPTR }
287 // and
288 // { iPTR i32 } * { i32 } -> { i32 }
289 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
290 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291
292 // Compute the difference between the two sets in such a way that the
293 // iPTR is in the set that is being subtracted. This is to see if there
294 // are any extra scalars in the set without iPTR that are not in the
295 // set containing iPTR. Then the iPTR could be considered a "wildcard"
296 // matching these scalars. If there is only one such scalar, it would
297 // replace the iPTR, if there are more, the iPTR would be retained.
298 SetType Diff;
299 if (InP) {
300 Diff = Out;
301 berase_if(Diff, [&In](MVT T) { return In.count(T); });
302 // Pre-remove these elements and rely only on InP/OutP to determine
303 // whether a change has been made.
304 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
305 } else {
306 Diff = In;
307 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
308 Out.erase(MVT::iPTR);
309 }
310
311 // The actual intersection.
312 bool Changed = berase_if(Out, Int);
313 unsigned NumD = Diff.size();
314 if (NumD == 0)
315 return Changed;
316
317 if (NumD == 1) {
318 Out.insert(*Diff.begin());
319 // This is a change only if Out was the one with iPTR (which is now
320 // being replaced).
321 Changed |= OutP;
322 } else {
323 // Multiple elements from Out are now replaced with iPTR.
324 Out.insert(MVT::iPTR);
325 Changed |= !OutP;
326 }
327 return Changed;
328 }
329
validate() const330 bool TypeSetByHwMode::validate() const {
331 #ifndef NDEBUG
332 if (empty())
333 return true;
334 bool AllEmpty = true;
335 for (const auto &I : *this)
336 AllEmpty &= I.second.empty();
337 return !AllEmpty;
338 #endif
339 return true;
340 }
341
342 // --- TypeInfer
343
MergeInTypeInfo(TypeSetByHwMode & Out,const TypeSetByHwMode & In)344 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
345 const TypeSetByHwMode &In) {
346 ValidateOnExit _1(Out, *this);
347 In.validate();
348 if (In.empty() || Out == In || TP.hasError())
349 return false;
350 if (Out.empty()) {
351 Out = In;
352 return true;
353 }
354
355 bool Changed = Out.constrain(In);
356 if (Changed && Out.empty())
357 TP.error("Type contradiction");
358
359 return Changed;
360 }
361
forceArbitrary(TypeSetByHwMode & Out)362 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
363 ValidateOnExit _1(Out, *this);
364 if (TP.hasError())
365 return false;
366 assert(!Out.empty() && "cannot pick from an empty set");
367
368 bool Changed = false;
369 for (auto &I : Out) {
370 TypeSetByHwMode::SetType &S = I.second;
371 if (S.size() <= 1)
372 continue;
373 MVT T = *S.begin(); // Pick the first element.
374 S.clear();
375 S.insert(T);
376 Changed = true;
377 }
378 return Changed;
379 }
380
EnforceInteger(TypeSetByHwMode & Out)381 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
382 ValidateOnExit _1(Out, *this);
383 if (TP.hasError())
384 return false;
385 if (!Out.empty())
386 return Out.constrain(isIntegerOrPtr);
387
388 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
389 }
390
EnforceFloatingPoint(TypeSetByHwMode & Out)391 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
392 ValidateOnExit _1(Out, *this);
393 if (TP.hasError())
394 return false;
395 if (!Out.empty())
396 return Out.constrain(isFloatingPoint);
397
398 return Out.assign_if(getLegalTypes(), isFloatingPoint);
399 }
400
EnforceScalar(TypeSetByHwMode & Out)401 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
402 ValidateOnExit _1(Out, *this);
403 if (TP.hasError())
404 return false;
405 if (!Out.empty())
406 return Out.constrain(isScalar);
407
408 return Out.assign_if(getLegalTypes(), isScalar);
409 }
410
EnforceVector(TypeSetByHwMode & Out)411 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
412 ValidateOnExit _1(Out, *this);
413 if (TP.hasError())
414 return false;
415 if (!Out.empty())
416 return Out.constrain(isVector);
417
418 return Out.assign_if(getLegalTypes(), isVector);
419 }
420
EnforceAny(TypeSetByHwMode & Out)421 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
422 ValidateOnExit _1(Out, *this);
423 if (TP.hasError() || !Out.empty())
424 return false;
425
426 Out = getLegalTypes();
427 return true;
428 }
429
430 template <typename Iter, typename Pred, typename Less>
min_if(Iter B,Iter E,Pred P,Less L)431 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
432 if (B == E)
433 return E;
434 Iter Min = E;
435 for (Iter I = B; I != E; ++I) {
436 if (!P(*I))
437 continue;
438 if (Min == E || L(*I, *Min))
439 Min = I;
440 }
441 return Min;
442 }
443
444 template <typename Iter, typename Pred, typename Less>
max_if(Iter B,Iter E,Pred P,Less L)445 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
446 if (B == E)
447 return E;
448 Iter Max = E;
449 for (Iter I = B; I != E; ++I) {
450 if (!P(*I))
451 continue;
452 if (Max == E || L(*Max, *I))
453 Max = I;
454 }
455 return Max;
456 }
457
458 /// Make sure that for each type in Small, there exists a larger type in Big.
EnforceSmallerThan(TypeSetByHwMode & Small,TypeSetByHwMode & Big)459 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
460 TypeSetByHwMode &Big) {
461 ValidateOnExit _1(Small, *this), _2(Big, *this);
462 if (TP.hasError())
463 return false;
464 bool Changed = false;
465
466 if (Small.empty())
467 Changed |= EnforceAny(Small);
468 if (Big.empty())
469 Changed |= EnforceAny(Big);
470
471 assert(Small.hasDefault() && Big.hasDefault());
472
473 std::vector<unsigned> Modes = union_modes(Small, Big);
474
475 // 1. Only allow integer or floating point types and make sure that
476 // both sides are both integer or both floating point.
477 // 2. Make sure that either both sides have vector types, or neither
478 // of them does.
479 for (unsigned M : Modes) {
480 TypeSetByHwMode::SetType &S = Small.get(M);
481 TypeSetByHwMode::SetType &B = Big.get(M);
482
483 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
484 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
485 Changed |= berase_if(S, NotInt);
486 Changed |= berase_if(B, NotInt);
487 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
488 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
489 Changed |= berase_if(S, NotFP);
490 Changed |= berase_if(B, NotFP);
491 } else if (S.empty() || B.empty()) {
492 Changed = !S.empty() || !B.empty();
493 S.clear();
494 B.clear();
495 } else {
496 TP.error("Incompatible types");
497 return Changed;
498 }
499
500 if (none_of(S, isVector) || none_of(B, isVector)) {
501 Changed |= berase_if(S, isVector);
502 Changed |= berase_if(B, isVector);
503 }
504 }
505
506 auto LT = [](MVT A, MVT B) -> bool {
507 // Always treat non-scalable MVTs as smaller than scalable MVTs for the
508 // purposes of ordering.
509 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
510 A.getSizeInBits().getKnownMinSize());
511 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
512 B.getSizeInBits().getKnownMinSize());
513 return ASize < BSize;
514 };
515 auto SameKindLE = [](MVT A, MVT B) -> bool {
516 // This function is used when removing elements: when a vector is compared
517 // to a non-vector or a scalable vector to any non-scalable MVT, it should
518 // return false (to avoid removal).
519 if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
520 std::make_tuple(B.isVector(), B.isScalableVector()))
521 return false;
522
523 return std::make_tuple(A.getScalarSizeInBits(),
524 A.getSizeInBits().getKnownMinSize()) <=
525 std::make_tuple(B.getScalarSizeInBits(),
526 B.getSizeInBits().getKnownMinSize());
527 };
528
529 for (unsigned M : Modes) {
530 TypeSetByHwMode::SetType &S = Small.get(M);
531 TypeSetByHwMode::SetType &B = Big.get(M);
532 // MinS = min scalar in Small, remove all scalars from Big that are
533 // smaller-or-equal than MinS.
534 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
535 if (MinS != S.end())
536 Changed |= berase_if(B, std::bind(SameKindLE,
537 std::placeholders::_1, *MinS));
538
539 // MaxS = max scalar in Big, remove all scalars from Small that are
540 // larger than MaxS.
541 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
542 if (MaxS != B.end())
543 Changed |= berase_if(S, std::bind(SameKindLE,
544 *MaxS, std::placeholders::_1));
545
546 // MinV = min vector in Small, remove all vectors from Big that are
547 // smaller-or-equal than MinV.
548 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
549 if (MinV != S.end())
550 Changed |= berase_if(B, std::bind(SameKindLE,
551 std::placeholders::_1, *MinV));
552
553 // MaxV = max vector in Big, remove all vectors from Small that are
554 // larger than MaxV.
555 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
556 if (MaxV != B.end())
557 Changed |= berase_if(S, std::bind(SameKindLE,
558 *MaxV, std::placeholders::_1));
559 }
560
561 return Changed;
562 }
563
564 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
565 /// for each type U in Elem, U is a scalar type.
566 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
567 /// type T in Vec, such that U is the element type of T.
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Elem)568 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
569 TypeSetByHwMode &Elem) {
570 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
571 if (TP.hasError())
572 return false;
573 bool Changed = false;
574
575 if (Vec.empty())
576 Changed |= EnforceVector(Vec);
577 if (Elem.empty())
578 Changed |= EnforceScalar(Elem);
579
580 for (unsigned M : union_modes(Vec, Elem)) {
581 TypeSetByHwMode::SetType &V = Vec.get(M);
582 TypeSetByHwMode::SetType &E = Elem.get(M);
583
584 Changed |= berase_if(V, isScalar); // Scalar = !vector
585 Changed |= berase_if(E, isVector); // Vector = !scalar
586 assert(!V.empty() && !E.empty());
587
588 SmallSet<MVT,4> VT, ST;
589 // Collect element types from the "vector" set.
590 for (MVT T : V)
591 VT.insert(T.getVectorElementType());
592 // Collect scalar types from the "element" set.
593 for (MVT T : E)
594 ST.insert(T);
595
596 // Remove from V all (vector) types whose element type is not in S.
597 Changed |= berase_if(V, [&ST](MVT T) -> bool {
598 return !ST.count(T.getVectorElementType());
599 });
600 // Remove from E all (scalar) types, for which there is no corresponding
601 // type in V.
602 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
603 }
604
605 return Changed;
606 }
607
EnforceVectorEltTypeIs(TypeSetByHwMode & Vec,const ValueTypeByHwMode & VVT)608 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
609 const ValueTypeByHwMode &VVT) {
610 TypeSetByHwMode Tmp(VVT);
611 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
612 return EnforceVectorEltTypeIs(Vec, Tmp);
613 }
614
615 /// Ensure that for each type T in Sub, T is a vector type, and there
616 /// exists a type U in Vec such that U is a vector type with the same
617 /// element type as T and at least as many elements as T.
EnforceVectorSubVectorTypeIs(TypeSetByHwMode & Vec,TypeSetByHwMode & Sub)618 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
619 TypeSetByHwMode &Sub) {
620 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
621 if (TP.hasError())
622 return false;
623
624 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
625 auto IsSubVec = [](MVT B, MVT P) -> bool {
626 if (!B.isVector() || !P.isVector())
627 return false;
628 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
629 // but until there are obvious use-cases for this, keep the
630 // types separate.
631 if (B.isScalableVector() != P.isScalableVector())
632 return false;
633 if (B.getVectorElementType() != P.getVectorElementType())
634 return false;
635 return B.getVectorNumElements() < P.getVectorNumElements();
636 };
637
638 /// Return true if S has no element (vector type) that T is a sub-vector of,
639 /// i.e. has the same element type as T and more elements.
640 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
641 for (auto I : S)
642 if (IsSubVec(T, I))
643 return false;
644 return true;
645 };
646
647 /// Return true if S has no element (vector type) that T is a super-vector
648 /// of, i.e. has the same element type as T and fewer elements.
649 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
650 for (auto I : S)
651 if (IsSubVec(I, T))
652 return false;
653 return true;
654 };
655
656 bool Changed = false;
657
658 if (Vec.empty())
659 Changed |= EnforceVector(Vec);
660 if (Sub.empty())
661 Changed |= EnforceVector(Sub);
662
663 for (unsigned M : union_modes(Vec, Sub)) {
664 TypeSetByHwMode::SetType &S = Sub.get(M);
665 TypeSetByHwMode::SetType &V = Vec.get(M);
666
667 Changed |= berase_if(S, isScalar);
668
669 // Erase all types from S that are not sub-vectors of a type in V.
670 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
671
672 // Erase all types from V that are not super-vectors of a type in S.
673 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
674 }
675
676 return Changed;
677 }
678
679 /// 1. Ensure that V has a scalar type iff W has a scalar type.
680 /// 2. Ensure that for each vector type T in V, there exists a vector
681 /// type U in W, such that T and U have the same number of elements.
682 /// 3. Ensure that for each vector type U in W, there exists a vector
683 /// type T in V, such that T and U have the same number of elements
684 /// (reverse of 2).
EnforceSameNumElts(TypeSetByHwMode & V,TypeSetByHwMode & W)685 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
686 ValidateOnExit _1(V, *this), _2(W, *this);
687 if (TP.hasError())
688 return false;
689
690 bool Changed = false;
691 if (V.empty())
692 Changed |= EnforceAny(V);
693 if (W.empty())
694 Changed |= EnforceAny(W);
695
696 // An actual vector type cannot have 0 elements, so we can treat scalars
697 // as zero-length vectors. This way both vectors and scalars can be
698 // processed identically.
699 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
700 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
701 };
702
703 for (unsigned M : union_modes(V, W)) {
704 TypeSetByHwMode::SetType &VS = V.get(M);
705 TypeSetByHwMode::SetType &WS = W.get(M);
706
707 SmallSet<unsigned,2> VN, WN;
708 for (MVT T : VS)
709 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
710 for (MVT T : WS)
711 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
712
713 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
714 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
715 }
716 return Changed;
717 }
718
719 /// 1. Ensure that for each type T in A, there exists a type U in B,
720 /// such that T and U have equal size in bits.
721 /// 2. Ensure that for each type U in B, there exists a type T in A
722 /// such that T and U have equal size in bits (reverse of 1).
EnforceSameSize(TypeSetByHwMode & A,TypeSetByHwMode & B)723 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
724 ValidateOnExit _1(A, *this), _2(B, *this);
725 if (TP.hasError())
726 return false;
727 bool Changed = false;
728 if (A.empty())
729 Changed |= EnforceAny(A);
730 if (B.empty())
731 Changed |= EnforceAny(B);
732
733 auto NoSize = [](const SmallSet<TypeSize, 2> &Sizes, MVT T) -> bool {
734 return !Sizes.count(T.getSizeInBits());
735 };
736
737 for (unsigned M : union_modes(A, B)) {
738 TypeSetByHwMode::SetType &AS = A.get(M);
739 TypeSetByHwMode::SetType &BS = B.get(M);
740 SmallSet<TypeSize, 2> AN, BN;
741
742 for (MVT T : AS)
743 AN.insert(T.getSizeInBits());
744 for (MVT T : BS)
745 BN.insert(T.getSizeInBits());
746
747 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
748 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
749 }
750
751 return Changed;
752 }
753
expandOverloads(TypeSetByHwMode & VTS)754 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
755 ValidateOnExit _1(VTS, *this);
756 const TypeSetByHwMode &Legal = getLegalTypes();
757 assert(Legal.isDefaultOnly() && "Default-mode only expected");
758 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
759
760 for (auto &I : VTS)
761 expandOverloads(I.second, LegalTypes);
762 }
763
expandOverloads(TypeSetByHwMode::SetType & Out,const TypeSetByHwMode::SetType & Legal)764 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
765 const TypeSetByHwMode::SetType &Legal) {
766 std::set<MVT> Ovs;
767 for (MVT T : Out) {
768 if (!T.isOverloaded())
769 continue;
770
771 Ovs.insert(T);
772 // MachineValueTypeSet allows iteration and erasing.
773 Out.erase(T);
774 }
775
776 for (MVT Ov : Ovs) {
777 switch (Ov.SimpleTy) {
778 case MVT::iPTRAny:
779 Out.insert(MVT::iPTR);
780 return;
781 case MVT::iAny:
782 for (MVT T : MVT::integer_valuetypes())
783 if (Legal.count(T))
784 Out.insert(T);
785 for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
786 if (Legal.count(T))
787 Out.insert(T);
788 for (MVT T : MVT::integer_scalable_vector_valuetypes())
789 if (Legal.count(T))
790 Out.insert(T);
791 return;
792 case MVT::fAny:
793 for (MVT T : MVT::fp_valuetypes())
794 if (Legal.count(T))
795 Out.insert(T);
796 for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
797 if (Legal.count(T))
798 Out.insert(T);
799 for (MVT T : MVT::fp_scalable_vector_valuetypes())
800 if (Legal.count(T))
801 Out.insert(T);
802 return;
803 case MVT::vAny:
804 for (MVT T : MVT::vector_valuetypes())
805 if (Legal.count(T))
806 Out.insert(T);
807 return;
808 case MVT::Any:
809 for (MVT T : MVT::all_valuetypes())
810 if (Legal.count(T))
811 Out.insert(T);
812 return;
813 default:
814 break;
815 }
816 }
817 }
818
getLegalTypes()819 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
820 if (!LegalTypesCached) {
821 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
822 // Stuff all types from all modes into the default mode.
823 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes();
824 for (const auto &I : LTS)
825 LegalTypes.insert(I.second);
826 LegalTypesCached = true;
827 }
828 assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
829 return LegalCache;
830 }
831
832 #ifndef NDEBUG
~ValidateOnExit()833 TypeInfer::ValidateOnExit::~ValidateOnExit() {
834 if (Infer.Validate && !VTS.validate()) {
835 dbgs() << "Type set is empty for each HW mode:\n"
836 "possible type contradiction in the pattern below "
837 "(use -print-records with llvm-tblgen to see all "
838 "expanded records).\n";
839 Infer.TP.dump();
840 llvm_unreachable(nullptr);
841 }
842 }
843 #endif
844
845
846 //===----------------------------------------------------------------------===//
847 // ScopedName Implementation
848 //===----------------------------------------------------------------------===//
849
operator ==(const ScopedName & o) const850 bool ScopedName::operator==(const ScopedName &o) const {
851 return Scope == o.Scope && Identifier == o.Identifier;
852 }
853
operator !=(const ScopedName & o) const854 bool ScopedName::operator!=(const ScopedName &o) const {
855 return !(*this == o);
856 }
857
858
859 //===----------------------------------------------------------------------===//
860 // TreePredicateFn Implementation
861 //===----------------------------------------------------------------------===//
862
863 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)864 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
865 assert(
866 (!hasPredCode() || !hasImmCode()) &&
867 ".td file corrupt: can't have a node predicate *and* an imm predicate");
868 }
869
hasPredCode() const870 bool TreePredicateFn::hasPredCode() const {
871 return isLoad() || isStore() || isAtomic() ||
872 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
873 }
874
getPredCode() const875 std::string TreePredicateFn::getPredCode() const {
876 std::string Code = "";
877
878 if (!isLoad() && !isStore() && !isAtomic()) {
879 Record *MemoryVT = getMemoryVT();
880
881 if (MemoryVT)
882 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883 "MemoryVT requires IsLoad or IsStore");
884 }
885
886 if (!isLoad() && !isStore()) {
887 if (isUnindexed())
888 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
889 "IsUnindexed requires IsLoad or IsStore");
890
891 Record *ScalarMemoryVT = getScalarMemoryVT();
892
893 if (ScalarMemoryVT)
894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895 "ScalarMemoryVT requires IsLoad or IsStore");
896 }
897
898 if (isLoad() + isStore() + isAtomic() > 1)
899 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
900 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
901
902 if (isLoad()) {
903 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
904 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
905 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
906 getMinAlignment() < 1)
907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908 "IsLoad cannot be used by itself");
909 } else {
910 if (isNonExtLoad())
911 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
912 "IsNonExtLoad requires IsLoad");
913 if (isAnyExtLoad())
914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915 "IsAnyExtLoad requires IsLoad");
916 if (isSignExtLoad())
917 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918 "IsSignExtLoad requires IsLoad");
919 if (isZeroExtLoad())
920 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
921 "IsZeroExtLoad requires IsLoad");
922 }
923
924 if (isStore()) {
925 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
926 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
927 getAddressSpaces() == nullptr && getMinAlignment() < 1)
928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929 "IsStore cannot be used by itself");
930 } else {
931 if (isNonTruncStore())
932 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
933 "IsNonTruncStore requires IsStore");
934 if (isTruncStore())
935 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
936 "IsTruncStore requires IsStore");
937 }
938
939 if (isAtomic()) {
940 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
941 getAddressSpaces() == nullptr &&
942 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
943 !isAtomicOrderingAcquireRelease() &&
944 !isAtomicOrderingSequentiallyConsistent() &&
945 !isAtomicOrderingAcquireOrStronger() &&
946 !isAtomicOrderingReleaseOrStronger() &&
947 !isAtomicOrderingWeakerThanAcquire() &&
948 !isAtomicOrderingWeakerThanRelease())
949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950 "IsAtomic cannot be used by itself");
951 } else {
952 if (isAtomicOrderingMonotonic())
953 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
954 "IsAtomicOrderingMonotonic requires IsAtomic");
955 if (isAtomicOrderingAcquire())
956 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
957 "IsAtomicOrderingAcquire requires IsAtomic");
958 if (isAtomicOrderingRelease())
959 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
960 "IsAtomicOrderingRelease requires IsAtomic");
961 if (isAtomicOrderingAcquireRelease())
962 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
963 "IsAtomicOrderingAcquireRelease requires IsAtomic");
964 if (isAtomicOrderingSequentiallyConsistent())
965 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
966 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
967 if (isAtomicOrderingAcquireOrStronger())
968 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
969 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
970 if (isAtomicOrderingReleaseOrStronger())
971 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
972 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
973 if (isAtomicOrderingWeakerThanAcquire())
974 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
975 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
976 }
977
978 if (isLoad() || isStore() || isAtomic()) {
979 if (ListInit *AddressSpaces = getAddressSpaces()) {
980 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
981 " if (";
982
983 bool First = true;
984 for (Init *Val : AddressSpaces->getValues()) {
985 if (First)
986 First = false;
987 else
988 Code += " && ";
989
990 IntInit *IntVal = dyn_cast<IntInit>(Val);
991 if (!IntVal) {
992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993 "AddressSpaces element must be integer");
994 }
995
996 Code += "AddrSpace != " + utostr(IntVal->getValue());
997 }
998
999 Code += ")\nreturn false;\n";
1000 }
1001
1002 int64_t MinAlign = getMinAlignment();
1003 if (MinAlign > 0) {
1004 Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1005 Code += utostr(MinAlign);
1006 Code += "))\nreturn false;\n";
1007 }
1008
1009 Record *MemoryVT = getMemoryVT();
1010
1011 if (MemoryVT)
1012 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1013 MemoryVT->getName() + ") return false;\n")
1014 .str();
1015 }
1016
1017 if (isAtomic() && isAtomicOrderingMonotonic())
1018 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1019 "AtomicOrdering::Monotonic) return false;\n";
1020 if (isAtomic() && isAtomicOrderingAcquire())
1021 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1022 "AtomicOrdering::Acquire) return false;\n";
1023 if (isAtomic() && isAtomicOrderingRelease())
1024 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1025 "AtomicOrdering::Release) return false;\n";
1026 if (isAtomic() && isAtomicOrderingAcquireRelease())
1027 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1028 "AtomicOrdering::AcquireRelease) return false;\n";
1029 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1030 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1031 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1032
1033 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1034 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1035 "return false;\n";
1036 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1037 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1038 "return false;\n";
1039
1040 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1041 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1042 "return false;\n";
1043 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1044 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1045 "return false;\n";
1046
1047 if (isLoad() || isStore()) {
1048 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1049
1050 if (isUnindexed())
1051 Code += ("if (cast<" + SDNodeName +
1052 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1053 "return false;\n")
1054 .str();
1055
1056 if (isLoad()) {
1057 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1058 isZeroExtLoad()) > 1)
1059 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1060 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1061 "IsZeroExtLoad are mutually exclusive");
1062 if (isNonExtLoad())
1063 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1064 "ISD::NON_EXTLOAD) return false;\n";
1065 if (isAnyExtLoad())
1066 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1067 "return false;\n";
1068 if (isSignExtLoad())
1069 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1070 "return false;\n";
1071 if (isZeroExtLoad())
1072 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1073 "return false;\n";
1074 } else {
1075 if ((isNonTruncStore() + isTruncStore()) > 1)
1076 PrintFatalError(
1077 getOrigPatFragRecord()->getRecord()->getLoc(),
1078 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1079 if (isNonTruncStore())
1080 Code +=
1081 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1082 if (isTruncStore())
1083 Code +=
1084 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1085 }
1086
1087 Record *ScalarMemoryVT = getScalarMemoryVT();
1088
1089 if (ScalarMemoryVT)
1090 Code += ("if (cast<" + SDNodeName +
1091 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1092 ScalarMemoryVT->getName() + ") return false;\n")
1093 .str();
1094 }
1095
1096 std::string PredicateCode =
1097 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1098
1099 Code += PredicateCode;
1100
1101 if (PredicateCode.empty() && !Code.empty())
1102 Code += "return true;\n";
1103
1104 return Code;
1105 }
1106
hasImmCode() const1107 bool TreePredicateFn::hasImmCode() const {
1108 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1109 }
1110
getImmCode() const1111 std::string TreePredicateFn::getImmCode() const {
1112 return std::string(
1113 PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1114 }
1115
immCodeUsesAPInt() const1116 bool TreePredicateFn::immCodeUsesAPInt() const {
1117 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1118 }
1119
immCodeUsesAPFloat() const1120 bool TreePredicateFn::immCodeUsesAPFloat() const {
1121 bool Unset;
1122 // The return value will be false when IsAPFloat is unset.
1123 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1124 Unset);
1125 }
1126
isPredefinedPredicateEqualTo(StringRef Field,bool Value) const1127 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1128 bool Value) const {
1129 bool Unset;
1130 bool Result =
1131 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1132 if (Unset)
1133 return false;
1134 return Result == Value;
1135 }
usesOperands() const1136 bool TreePredicateFn::usesOperands() const {
1137 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1138 }
isLoad() const1139 bool TreePredicateFn::isLoad() const {
1140 return isPredefinedPredicateEqualTo("IsLoad", true);
1141 }
isStore() const1142 bool TreePredicateFn::isStore() const {
1143 return isPredefinedPredicateEqualTo("IsStore", true);
1144 }
isAtomic() const1145 bool TreePredicateFn::isAtomic() const {
1146 return isPredefinedPredicateEqualTo("IsAtomic", true);
1147 }
isUnindexed() const1148 bool TreePredicateFn::isUnindexed() const {
1149 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1150 }
isNonExtLoad() const1151 bool TreePredicateFn::isNonExtLoad() const {
1152 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1153 }
isAnyExtLoad() const1154 bool TreePredicateFn::isAnyExtLoad() const {
1155 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1156 }
isSignExtLoad() const1157 bool TreePredicateFn::isSignExtLoad() const {
1158 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1159 }
isZeroExtLoad() const1160 bool TreePredicateFn::isZeroExtLoad() const {
1161 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1162 }
isNonTruncStore() const1163 bool TreePredicateFn::isNonTruncStore() const {
1164 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1165 }
isTruncStore() const1166 bool TreePredicateFn::isTruncStore() const {
1167 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1168 }
isAtomicOrderingMonotonic() const1169 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1170 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1171 }
isAtomicOrderingAcquire() const1172 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1173 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1174 }
isAtomicOrderingRelease() const1175 bool TreePredicateFn::isAtomicOrderingRelease() const {
1176 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1177 }
isAtomicOrderingAcquireRelease() const1178 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1179 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1180 }
isAtomicOrderingSequentiallyConsistent() const1181 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1182 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1183 true);
1184 }
isAtomicOrderingAcquireOrStronger() const1185 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1186 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1187 }
isAtomicOrderingWeakerThanAcquire() const1188 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1189 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1190 }
isAtomicOrderingReleaseOrStronger() const1191 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1192 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1193 }
isAtomicOrderingWeakerThanRelease() const1194 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1195 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1196 }
getMemoryVT() const1197 Record *TreePredicateFn::getMemoryVT() const {
1198 Record *R = getOrigPatFragRecord()->getRecord();
1199 if (R->isValueUnset("MemoryVT"))
1200 return nullptr;
1201 return R->getValueAsDef("MemoryVT");
1202 }
1203
getAddressSpaces() const1204 ListInit *TreePredicateFn::getAddressSpaces() const {
1205 Record *R = getOrigPatFragRecord()->getRecord();
1206 if (R->isValueUnset("AddressSpaces"))
1207 return nullptr;
1208 return R->getValueAsListInit("AddressSpaces");
1209 }
1210
getMinAlignment() const1211 int64_t TreePredicateFn::getMinAlignment() const {
1212 Record *R = getOrigPatFragRecord()->getRecord();
1213 if (R->isValueUnset("MinAlignment"))
1214 return 0;
1215 return R->getValueAsInt("MinAlignment");
1216 }
1217
getScalarMemoryVT() const1218 Record *TreePredicateFn::getScalarMemoryVT() const {
1219 Record *R = getOrigPatFragRecord()->getRecord();
1220 if (R->isValueUnset("ScalarMemoryVT"))
1221 return nullptr;
1222 return R->getValueAsDef("ScalarMemoryVT");
1223 }
hasGISelPredicateCode() const1224 bool TreePredicateFn::hasGISelPredicateCode() const {
1225 return !PatFragRec->getRecord()
1226 ->getValueAsString("GISelPredicateCode")
1227 .empty();
1228 }
getGISelPredicateCode() const1229 std::string TreePredicateFn::getGISelPredicateCode() const {
1230 return std::string(
1231 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1232 }
1233
getImmType() const1234 StringRef TreePredicateFn::getImmType() const {
1235 if (immCodeUsesAPInt())
1236 return "const APInt &";
1237 if (immCodeUsesAPFloat())
1238 return "const APFloat &";
1239 return "int64_t";
1240 }
1241
getImmTypeIdentifier() const1242 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1243 if (immCodeUsesAPInt())
1244 return "APInt";
1245 else if (immCodeUsesAPFloat())
1246 return "APFloat";
1247 return "I64";
1248 }
1249
1250 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const1251 bool TreePredicateFn::isAlwaysTrue() const {
1252 return !hasPredCode() && !hasImmCode();
1253 }
1254
1255 /// Return the name to use in the generated code to reference this, this is
1256 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const1257 std::string TreePredicateFn::getFnName() const {
1258 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1259 }
1260
1261 /// getCodeToRunOnSDNode - Return the code for the function body that
1262 /// evaluates this predicate. The argument is expected to be in "Node",
1263 /// not N. This handles casting and conversion to a concrete node type as
1264 /// appropriate.
getCodeToRunOnSDNode() const1265 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1266 // Handle immediate predicates first.
1267 std::string ImmCode = getImmCode();
1268 if (!ImmCode.empty()) {
1269 if (isLoad())
1270 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1271 "IsLoad cannot be used with ImmLeaf or its subclasses");
1272 if (isStore())
1273 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1274 "IsStore cannot be used with ImmLeaf or its subclasses");
1275 if (isUnindexed())
1276 PrintFatalError(
1277 getOrigPatFragRecord()->getRecord()->getLoc(),
1278 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1279 if (isNonExtLoad())
1280 PrintFatalError(
1281 getOrigPatFragRecord()->getRecord()->getLoc(),
1282 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1283 if (isAnyExtLoad())
1284 PrintFatalError(
1285 getOrigPatFragRecord()->getRecord()->getLoc(),
1286 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1287 if (isSignExtLoad())
1288 PrintFatalError(
1289 getOrigPatFragRecord()->getRecord()->getLoc(),
1290 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1291 if (isZeroExtLoad())
1292 PrintFatalError(
1293 getOrigPatFragRecord()->getRecord()->getLoc(),
1294 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1295 if (isNonTruncStore())
1296 PrintFatalError(
1297 getOrigPatFragRecord()->getRecord()->getLoc(),
1298 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1299 if (isTruncStore())
1300 PrintFatalError(
1301 getOrigPatFragRecord()->getRecord()->getLoc(),
1302 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1303 if (getMemoryVT())
1304 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1305 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1306 if (getScalarMemoryVT())
1307 PrintFatalError(
1308 getOrigPatFragRecord()->getRecord()->getLoc(),
1309 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1310
1311 std::string Result = (" " + getImmType() + " Imm = ").str();
1312 if (immCodeUsesAPFloat())
1313 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1314 else if (immCodeUsesAPInt())
1315 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1316 else
1317 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1318 return Result + ImmCode;
1319 }
1320
1321 // Handle arbitrary node predicates.
1322 assert(hasPredCode() && "Don't have any predicate code!");
1323
1324 // If this is using PatFrags, there are multiple trees to search. They should
1325 // all have the same class. FIXME: Is there a way to find a common
1326 // superclass?
1327 StringRef ClassName;
1328 for (const auto &Tree : PatFragRec->getTrees()) {
1329 StringRef TreeClassName;
1330 if (Tree->isLeaf())
1331 TreeClassName = "SDNode";
1332 else {
1333 Record *Op = Tree->getOperator();
1334 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1335 TreeClassName = Info.getSDClassName();
1336 }
1337
1338 if (ClassName.empty())
1339 ClassName = TreeClassName;
1340 else if (ClassName != TreeClassName) {
1341 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1342 "PatFrags trees do not have consistent class");
1343 }
1344 }
1345
1346 std::string Result;
1347 if (ClassName == "SDNode")
1348 Result = " SDNode *N = Node;\n";
1349 else
1350 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1351
1352 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1353 }
1354
1355 //===----------------------------------------------------------------------===//
1356 // PatternToMatch implementation
1357 //
1358
isImmAllOnesAllZerosMatch(const TreePatternNode * P)1359 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1360 if (!P->isLeaf())
1361 return false;
1362 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1363 if (!DI)
1364 return false;
1365
1366 Record *R = DI->getDef();
1367 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1368 }
1369
1370 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1371 /// patterns before small ones. This is used to determine the size of a
1372 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)1373 static unsigned getPatternSize(const TreePatternNode *P,
1374 const CodeGenDAGPatterns &CGP) {
1375 unsigned Size = 3; // The node itself.
1376 // If the root node is a ConstantSDNode, increases its size.
1377 // e.g. (set R32:$dst, 0).
1378 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1379 Size += 2;
1380
1381 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1382 Size += AM->getComplexity();
1383 // We don't want to count any children twice, so return early.
1384 return Size;
1385 }
1386
1387 // If this node has some predicate function that must match, it adds to the
1388 // complexity of this node.
1389 if (!P->getPredicateCalls().empty())
1390 ++Size;
1391
1392 // Count children in the count if they are also nodes.
1393 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1394 const TreePatternNode *Child = P->getChild(i);
1395 if (!Child->isLeaf() && Child->getNumTypes()) {
1396 const TypeSetByHwMode &T0 = Child->getExtType(0);
1397 // At this point, all variable type sets should be simple, i.e. only
1398 // have a default mode.
1399 if (T0.getMachineValueType() != MVT::Other) {
1400 Size += getPatternSize(Child, CGP);
1401 continue;
1402 }
1403 }
1404 if (Child->isLeaf()) {
1405 if (isa<IntInit>(Child->getLeafValue()))
1406 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1407 else if (Child->getComplexPatternInfo(CGP))
1408 Size += getPatternSize(Child, CGP);
1409 else if (isImmAllOnesAllZerosMatch(Child))
1410 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1411 else if (!Child->getPredicateCalls().empty())
1412 ++Size;
1413 }
1414 }
1415
1416 return Size;
1417 }
1418
1419 /// Compute the complexity metric for the input pattern. This roughly
1420 /// corresponds to the number of nodes that are covered.
1421 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const1422 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1423 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1424 }
1425
1426 /// getPredicateCheck - Return a single string containing all of this
1427 /// pattern's predicates concatenated with "&&" operators.
1428 ///
getPredicateCheck() const1429 std::string PatternToMatch::getPredicateCheck() const {
1430 SmallVector<const Predicate*,4> PredList;
1431 for (const Predicate &P : Predicates) {
1432 if (!P.getCondString().empty())
1433 PredList.push_back(&P);
1434 }
1435 llvm::sort(PredList, deref<std::less<>>());
1436
1437 std::string Check;
1438 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1439 if (i != 0)
1440 Check += " && ";
1441 Check += '(' + PredList[i]->getCondString() + ')';
1442 }
1443 return Check;
1444 }
1445
1446 //===----------------------------------------------------------------------===//
1447 // SDTypeConstraint implementation
1448 //
1449
SDTypeConstraint(Record * R,const CodeGenHwModes & CGH)1450 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1451 OperandNo = R->getValueAsInt("OperandNum");
1452
1453 if (R->isSubClassOf("SDTCisVT")) {
1454 ConstraintType = SDTCisVT;
1455 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1456 for (const auto &P : VVT)
1457 if (P.second == MVT::isVoid)
1458 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1459 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1460 ConstraintType = SDTCisPtrTy;
1461 } else if (R->isSubClassOf("SDTCisInt")) {
1462 ConstraintType = SDTCisInt;
1463 } else if (R->isSubClassOf("SDTCisFP")) {
1464 ConstraintType = SDTCisFP;
1465 } else if (R->isSubClassOf("SDTCisVec")) {
1466 ConstraintType = SDTCisVec;
1467 } else if (R->isSubClassOf("SDTCisSameAs")) {
1468 ConstraintType = SDTCisSameAs;
1469 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1470 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1471 ConstraintType = SDTCisVTSmallerThanOp;
1472 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1473 R->getValueAsInt("OtherOperandNum");
1474 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1475 ConstraintType = SDTCisOpSmallerThanOp;
1476 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1477 R->getValueAsInt("BigOperandNum");
1478 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1479 ConstraintType = SDTCisEltOfVec;
1480 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1481 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1482 ConstraintType = SDTCisSubVecOfVec;
1483 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1484 R->getValueAsInt("OtherOpNum");
1485 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1486 ConstraintType = SDTCVecEltisVT;
1487 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1488 for (const auto &P : VVT) {
1489 MVT T = P.second;
1490 if (T.isVector())
1491 PrintFatalError(R->getLoc(),
1492 "Cannot use vector type as SDTCVecEltisVT");
1493 if (!T.isInteger() && !T.isFloatingPoint())
1494 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1495 "as SDTCVecEltisVT");
1496 }
1497 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1498 ConstraintType = SDTCisSameNumEltsAs;
1499 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1500 R->getValueAsInt("OtherOperandNum");
1501 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1502 ConstraintType = SDTCisSameSizeAs;
1503 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1504 R->getValueAsInt("OtherOperandNum");
1505 } else {
1506 PrintFatalError(R->getLoc(),
1507 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1508 }
1509 }
1510
1511 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1512 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)1513 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1514 const SDNodeInfo &NodeInfo,
1515 unsigned &ResNo) {
1516 unsigned NumResults = NodeInfo.getNumResults();
1517 if (OpNo < NumResults) {
1518 ResNo = OpNo;
1519 return N;
1520 }
1521
1522 OpNo -= NumResults;
1523
1524 if (OpNo >= N->getNumChildren()) {
1525 std::string S;
1526 raw_string_ostream OS(S);
1527 OS << "Invalid operand number in type constraint "
1528 << (OpNo+NumResults) << " ";
1529 N->print(OS);
1530 PrintFatalError(OS.str());
1531 }
1532
1533 return N->getChild(OpNo);
1534 }
1535
1536 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1537 /// constraint to the nodes operands. This returns true if it makes a
1538 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const1539 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1540 const SDNodeInfo &NodeInfo,
1541 TreePattern &TP) const {
1542 if (TP.hasError())
1543 return false;
1544
1545 unsigned ResNo = 0; // The result number being referenced.
1546 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1547 TypeInfer &TI = TP.getInfer();
1548
1549 switch (ConstraintType) {
1550 case SDTCisVT:
1551 // Operand must be a particular type.
1552 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1553 case SDTCisPtrTy:
1554 // Operand must be same as target pointer type.
1555 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1556 case SDTCisInt:
1557 // Require it to be one of the legal integer VTs.
1558 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1559 case SDTCisFP:
1560 // Require it to be one of the legal fp VTs.
1561 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1562 case SDTCisVec:
1563 // Require it to be one of the legal vector VTs.
1564 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1565 case SDTCisSameAs: {
1566 unsigned OResNo = 0;
1567 TreePatternNode *OtherNode =
1568 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1569 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1570 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1571 }
1572 case SDTCisVTSmallerThanOp: {
1573 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1574 // have an integer type that is smaller than the VT.
1575 if (!NodeToApply->isLeaf() ||
1576 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1577 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1578 ->isSubClassOf("ValueType")) {
1579 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1580 return false;
1581 }
1582 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1583 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1584 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1585 TypeSetByHwMode TypeListTmp(VVT);
1586
1587 unsigned OResNo = 0;
1588 TreePatternNode *OtherNode =
1589 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1590 OResNo);
1591
1592 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1593 }
1594 case SDTCisOpSmallerThanOp: {
1595 unsigned BResNo = 0;
1596 TreePatternNode *BigOperand =
1597 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1598 BResNo);
1599 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1600 BigOperand->getExtType(BResNo));
1601 }
1602 case SDTCisEltOfVec: {
1603 unsigned VResNo = 0;
1604 TreePatternNode *VecOperand =
1605 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1606 VResNo);
1607 // Filter vector types out of VecOperand that don't have the right element
1608 // type.
1609 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1610 NodeToApply->getExtType(ResNo));
1611 }
1612 case SDTCisSubVecOfVec: {
1613 unsigned VResNo = 0;
1614 TreePatternNode *BigVecOperand =
1615 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1616 VResNo);
1617
1618 // Filter vector types out of BigVecOperand that don't have the
1619 // right subvector type.
1620 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1621 NodeToApply->getExtType(ResNo));
1622 }
1623 case SDTCVecEltisVT: {
1624 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1625 }
1626 case SDTCisSameNumEltsAs: {
1627 unsigned OResNo = 0;
1628 TreePatternNode *OtherNode =
1629 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1630 N, NodeInfo, OResNo);
1631 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1632 NodeToApply->getExtType(ResNo));
1633 }
1634 case SDTCisSameSizeAs: {
1635 unsigned OResNo = 0;
1636 TreePatternNode *OtherNode =
1637 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1638 N, NodeInfo, OResNo);
1639 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1640 NodeToApply->getExtType(ResNo));
1641 }
1642 }
1643 llvm_unreachable("Invalid ConstraintType!");
1644 }
1645
1646 // Update the node type to match an instruction operand or result as specified
1647 // in the ins or outs lists on the instruction definition. Return true if the
1648 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1649 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1650 Record *Operand,
1651 TreePattern &TP) {
1652 // The 'unknown' operand indicates that types should be inferred from the
1653 // context.
1654 if (Operand->isSubClassOf("unknown_class"))
1655 return false;
1656
1657 // The Operand class specifies a type directly.
1658 if (Operand->isSubClassOf("Operand")) {
1659 Record *R = Operand->getValueAsDef("Type");
1660 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1661 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1662 }
1663
1664 // PointerLikeRegClass has a type that is determined at runtime.
1665 if (Operand->isSubClassOf("PointerLikeRegClass"))
1666 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1667
1668 // Both RegisterClass and RegisterOperand operands derive their types from a
1669 // register class def.
1670 Record *RC = nullptr;
1671 if (Operand->isSubClassOf("RegisterClass"))
1672 RC = Operand;
1673 else if (Operand->isSubClassOf("RegisterOperand"))
1674 RC = Operand->getValueAsDef("RegClass");
1675
1676 assert(RC && "Unknown operand type");
1677 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1678 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1679 }
1680
ContainsUnresolvedType(TreePattern & TP) const1681 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1682 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1683 if (!TP.getInfer().isConcrete(Types[i], true))
1684 return true;
1685 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1686 if (getChild(i)->ContainsUnresolvedType(TP))
1687 return true;
1688 return false;
1689 }
1690
hasProperTypeByHwMode() const1691 bool TreePatternNode::hasProperTypeByHwMode() const {
1692 for (const TypeSetByHwMode &S : Types)
1693 if (!S.isDefaultOnly())
1694 return true;
1695 for (const TreePatternNodePtr &C : Children)
1696 if (C->hasProperTypeByHwMode())
1697 return true;
1698 return false;
1699 }
1700
hasPossibleType() const1701 bool TreePatternNode::hasPossibleType() const {
1702 for (const TypeSetByHwMode &S : Types)
1703 if (!S.isPossible())
1704 return false;
1705 for (const TreePatternNodePtr &C : Children)
1706 if (!C->hasPossibleType())
1707 return false;
1708 return true;
1709 }
1710
setDefaultMode(unsigned Mode)1711 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1712 for (TypeSetByHwMode &S : Types) {
1713 S.makeSimple(Mode);
1714 // Check if the selected mode had a type conflict.
1715 if (S.get(DefaultMode).empty())
1716 return false;
1717 }
1718 for (const TreePatternNodePtr &C : Children)
1719 if (!C->setDefaultMode(Mode))
1720 return false;
1721 return true;
1722 }
1723
1724 //===----------------------------------------------------------------------===//
1725 // SDNodeInfo implementation
1726 //
SDNodeInfo(Record * R,const CodeGenHwModes & CGH)1727 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1728 EnumName = R->getValueAsString("Opcode");
1729 SDClassName = R->getValueAsString("SDClass");
1730 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1731 NumResults = TypeProfile->getValueAsInt("NumResults");
1732 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1733
1734 // Parse the properties.
1735 Properties = parseSDPatternOperatorProperties(R);
1736
1737 // Parse the type constraints.
1738 std::vector<Record*> ConstraintList =
1739 TypeProfile->getValueAsListOfDefs("Constraints");
1740 for (Record *R : ConstraintList)
1741 TypeConstraints.emplace_back(R, CGH);
1742 }
1743
1744 /// getKnownType - If the type constraints on this node imply a fixed type
1745 /// (e.g. all stores return void, etc), then return it as an
1746 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1747 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1748 unsigned NumResults = getNumResults();
1749 assert(NumResults <= 1 &&
1750 "We only work with nodes with zero or one result so far!");
1751 assert(ResNo == 0 && "Only handles single result nodes so far");
1752
1753 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1754 // Make sure that this applies to the correct node result.
1755 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1756 continue;
1757
1758 switch (Constraint.ConstraintType) {
1759 default: break;
1760 case SDTypeConstraint::SDTCisVT:
1761 if (Constraint.VVT.isSimple())
1762 return Constraint.VVT.getSimple().SimpleTy;
1763 break;
1764 case SDTypeConstraint::SDTCisPtrTy:
1765 return MVT::iPTR;
1766 }
1767 }
1768 return MVT::Other;
1769 }
1770
1771 //===----------------------------------------------------------------------===//
1772 // TreePatternNode implementation
1773 //
1774
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1775 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1776 if (Operator->getName() == "set" ||
1777 Operator->getName() == "implicit")
1778 return 0; // All return nothing.
1779
1780 if (Operator->isSubClassOf("Intrinsic"))
1781 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1782
1783 if (Operator->isSubClassOf("SDNode"))
1784 return CDP.getSDNodeInfo(Operator).getNumResults();
1785
1786 if (Operator->isSubClassOf("PatFrags")) {
1787 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1788 // the forward reference case where one pattern fragment references another
1789 // before it is processed.
1790 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1791 // The number of results of a fragment with alternative records is the
1792 // maximum number of results across all alternatives.
1793 unsigned NumResults = 0;
1794 for (auto T : PFRec->getTrees())
1795 NumResults = std::max(NumResults, T->getNumTypes());
1796 return NumResults;
1797 }
1798
1799 ListInit *LI = Operator->getValueAsListInit("Fragments");
1800 assert(LI && "Invalid Fragment");
1801 unsigned NumResults = 0;
1802 for (Init *I : LI->getValues()) {
1803 Record *Op = nullptr;
1804 if (DagInit *Dag = dyn_cast<DagInit>(I))
1805 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1806 Op = DI->getDef();
1807 assert(Op && "Invalid Fragment");
1808 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1809 }
1810 return NumResults;
1811 }
1812
1813 if (Operator->isSubClassOf("Instruction")) {
1814 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1815
1816 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1817
1818 // Subtract any defaulted outputs.
1819 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1820 Record *OperandNode = InstInfo.Operands[i].Rec;
1821
1822 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1823 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1824 --NumDefsToAdd;
1825 }
1826
1827 // Add on one implicit def if it has a resolvable type.
1828 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1829 ++NumDefsToAdd;
1830 return NumDefsToAdd;
1831 }
1832
1833 if (Operator->isSubClassOf("SDNodeXForm"))
1834 return 1; // FIXME: Generalize SDNodeXForm
1835
1836 if (Operator->isSubClassOf("ValueType"))
1837 return 1; // A type-cast of one result.
1838
1839 if (Operator->isSubClassOf("ComplexPattern"))
1840 return 1;
1841
1842 errs() << *Operator;
1843 PrintFatalError("Unhandled node in GetNumNodeResults");
1844 }
1845
print(raw_ostream & OS) const1846 void TreePatternNode::print(raw_ostream &OS) const {
1847 if (isLeaf())
1848 OS << *getLeafValue();
1849 else
1850 OS << '(' << getOperator()->getName();
1851
1852 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1853 OS << ':';
1854 getExtType(i).writeToStream(OS);
1855 }
1856
1857 if (!isLeaf()) {
1858 if (getNumChildren() != 0) {
1859 OS << " ";
1860 getChild(0)->print(OS);
1861 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1862 OS << ", ";
1863 getChild(i)->print(OS);
1864 }
1865 }
1866 OS << ")";
1867 }
1868
1869 for (const TreePredicateCall &Pred : PredicateCalls) {
1870 OS << "<<P:";
1871 if (Pred.Scope)
1872 OS << Pred.Scope << ":";
1873 OS << Pred.Fn.getFnName() << ">>";
1874 }
1875 if (TransformFn)
1876 OS << "<<X:" << TransformFn->getName() << ">>";
1877 if (!getName().empty())
1878 OS << ":$" << getName();
1879
1880 for (const ScopedName &Name : NamesAsPredicateArg)
1881 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1882 }
dump() const1883 void TreePatternNode::dump() const {
1884 print(errs());
1885 }
1886
1887 /// isIsomorphicTo - Return true if this node is recursively
1888 /// isomorphic to the specified node. For this comparison, the node's
1889 /// entire state is considered. The assigned name is ignored, since
1890 /// nodes with differing names are considered isomorphic. However, if
1891 /// the assigned name is present in the dependent variable set, then
1892 /// the assigned name is considered significant and the node is
1893 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1894 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1895 const MultipleUseVarSet &DepVars) const {
1896 if (N == this) return true;
1897 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1898 getPredicateCalls() != N->getPredicateCalls() ||
1899 getTransformFn() != N->getTransformFn())
1900 return false;
1901
1902 if (isLeaf()) {
1903 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1904 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1905 return ((DI->getDef() == NDI->getDef())
1906 && (DepVars.find(getName()) == DepVars.end()
1907 || getName() == N->getName()));
1908 }
1909 }
1910 return getLeafValue() == N->getLeafValue();
1911 }
1912
1913 if (N->getOperator() != getOperator() ||
1914 N->getNumChildren() != getNumChildren()) return false;
1915 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1916 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1917 return false;
1918 return true;
1919 }
1920
1921 /// clone - Make a copy of this tree and all of its children.
1922 ///
clone() const1923 TreePatternNodePtr TreePatternNode::clone() const {
1924 TreePatternNodePtr New;
1925 if (isLeaf()) {
1926 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1927 } else {
1928 std::vector<TreePatternNodePtr> CChildren;
1929 CChildren.reserve(Children.size());
1930 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1931 CChildren.push_back(getChild(i)->clone());
1932 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1933 getNumTypes());
1934 }
1935 New->setName(getName());
1936 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1937 New->Types = Types;
1938 New->setPredicateCalls(getPredicateCalls());
1939 New->setTransformFn(getTransformFn());
1940 return New;
1941 }
1942
1943 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1944 void TreePatternNode::RemoveAllTypes() {
1945 // Reset to unknown type.
1946 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1947 if (isLeaf()) return;
1948 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1949 getChild(i)->RemoveAllTypes();
1950 }
1951
1952
1953 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1954 /// with actual values specified by ArgMap.
SubstituteFormalArguments(std::map<std::string,TreePatternNodePtr> & ArgMap)1955 void TreePatternNode::SubstituteFormalArguments(
1956 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1957 if (isLeaf()) return;
1958
1959 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1960 TreePatternNode *Child = getChild(i);
1961 if (Child->isLeaf()) {
1962 Init *Val = Child->getLeafValue();
1963 // Note that, when substituting into an output pattern, Val might be an
1964 // UnsetInit.
1965 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1966 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1967 // We found a use of a formal argument, replace it with its value.
1968 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1969 assert(NewChild && "Couldn't find formal argument!");
1970 assert((Child->getPredicateCalls().empty() ||
1971 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1972 "Non-empty child predicate clobbered!");
1973 setChild(i, std::move(NewChild));
1974 }
1975 } else {
1976 getChild(i)->SubstituteFormalArguments(ArgMap);
1977 }
1978 }
1979 }
1980
1981
1982 /// InlinePatternFragments - If this pattern refers to any pattern
1983 /// fragments, return the set of inlined versions (this can be more than
1984 /// one if a PatFrags record has multiple alternatives).
InlinePatternFragments(TreePatternNodePtr T,TreePattern & TP,std::vector<TreePatternNodePtr> & OutAlternatives)1985 void TreePatternNode::InlinePatternFragments(
1986 TreePatternNodePtr T, TreePattern &TP,
1987 std::vector<TreePatternNodePtr> &OutAlternatives) {
1988
1989 if (TP.hasError())
1990 return;
1991
1992 if (isLeaf()) {
1993 OutAlternatives.push_back(T); // nothing to do.
1994 return;
1995 }
1996
1997 Record *Op = getOperator();
1998
1999 if (!Op->isSubClassOf("PatFrags")) {
2000 if (getNumChildren() == 0) {
2001 OutAlternatives.push_back(T);
2002 return;
2003 }
2004
2005 // Recursively inline children nodes.
2006 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2007 ChildAlternatives.resize(getNumChildren());
2008 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2009 TreePatternNodePtr Child = getChildShared(i);
2010 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2011 // If there are no alternatives for any child, there are no
2012 // alternatives for this expression as whole.
2013 if (ChildAlternatives[i].empty())
2014 return;
2015
2016 for (auto NewChild : ChildAlternatives[i])
2017 assert((Child->getPredicateCalls().empty() ||
2018 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2019 "Non-empty child predicate clobbered!");
2020 }
2021
2022 // The end result is an all-pairs construction of the resultant pattern.
2023 std::vector<unsigned> Idxs;
2024 Idxs.resize(ChildAlternatives.size());
2025 bool NotDone;
2026 do {
2027 // Create the variant and add it to the output list.
2028 std::vector<TreePatternNodePtr> NewChildren;
2029 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2030 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2031 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2032 getOperator(), std::move(NewChildren), getNumTypes());
2033
2034 // Copy over properties.
2035 R->setName(getName());
2036 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2037 R->setPredicateCalls(getPredicateCalls());
2038 R->setTransformFn(getTransformFn());
2039 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2040 R->setType(i, getExtType(i));
2041 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2042 R->setResultIndex(i, getResultIndex(i));
2043
2044 // Register alternative.
2045 OutAlternatives.push_back(R);
2046
2047 // Increment indices to the next permutation by incrementing the
2048 // indices from last index backward, e.g., generate the sequence
2049 // [0, 0], [0, 1], [1, 0], [1, 1].
2050 int IdxsIdx;
2051 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2052 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2053 Idxs[IdxsIdx] = 0;
2054 else
2055 break;
2056 }
2057 NotDone = (IdxsIdx >= 0);
2058 } while (NotDone);
2059
2060 return;
2061 }
2062
2063 // Otherwise, we found a reference to a fragment. First, look up its
2064 // TreePattern record.
2065 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2066
2067 // Verify that we are passing the right number of operands.
2068 if (Frag->getNumArgs() != Children.size()) {
2069 TP.error("'" + Op->getName() + "' fragment requires " +
2070 Twine(Frag->getNumArgs()) + " operands!");
2071 return;
2072 }
2073
2074 TreePredicateFn PredFn(Frag);
2075 unsigned Scope = 0;
2076 if (TreePredicateFn(Frag).usesOperands())
2077 Scope = TP.getDAGPatterns().allocateScope();
2078
2079 // Compute the map of formal to actual arguments.
2080 std::map<std::string, TreePatternNodePtr> ArgMap;
2081 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2082 TreePatternNodePtr Child = getChildShared(i);
2083 if (Scope != 0) {
2084 Child = Child->clone();
2085 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2086 }
2087 ArgMap[Frag->getArgName(i)] = Child;
2088 }
2089
2090 // Loop over all fragment alternatives.
2091 for (auto Alternative : Frag->getTrees()) {
2092 TreePatternNodePtr FragTree = Alternative->clone();
2093
2094 if (!PredFn.isAlwaysTrue())
2095 FragTree->addPredicateCall(PredFn, Scope);
2096
2097 // Resolve formal arguments to their actual value.
2098 if (Frag->getNumArgs())
2099 FragTree->SubstituteFormalArguments(ArgMap);
2100
2101 // Transfer types. Note that the resolved alternative may have fewer
2102 // (but not more) results than the PatFrags node.
2103 FragTree->setName(getName());
2104 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2105 FragTree->UpdateNodeType(i, getExtType(i), TP);
2106
2107 // Transfer in the old predicates.
2108 for (const TreePredicateCall &Pred : getPredicateCalls())
2109 FragTree->addPredicateCall(Pred);
2110
2111 // The fragment we inlined could have recursive inlining that is needed. See
2112 // if there are any pattern fragments in it and inline them as needed.
2113 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2114 }
2115 }
2116
2117 /// getImplicitType - Check to see if the specified record has an implicit
2118 /// type which should be applied to it. This will infer the type of register
2119 /// references from the register file information, for example.
2120 ///
2121 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2122 /// the F8RC register class argument in:
2123 ///
2124 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
2125 ///
2126 /// When Unnamed is false, return the type of a named DAG operand such as the
2127 /// GPR:$src operand above.
2128 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)2129 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2130 bool NotRegisters,
2131 bool Unnamed,
2132 TreePattern &TP) {
2133 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2134
2135 // Check to see if this is a register operand.
2136 if (R->isSubClassOf("RegisterOperand")) {
2137 assert(ResNo == 0 && "Regoperand ref only has one result!");
2138 if (NotRegisters)
2139 return TypeSetByHwMode(); // Unknown.
2140 Record *RegClass = R->getValueAsDef("RegClass");
2141 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2142 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2143 }
2144
2145 // Check to see if this is a register or a register class.
2146 if (R->isSubClassOf("RegisterClass")) {
2147 assert(ResNo == 0 && "Regclass ref only has one result!");
2148 // An unnamed register class represents itself as an i32 immediate, for
2149 // example on a COPY_TO_REGCLASS instruction.
2150 if (Unnamed)
2151 return TypeSetByHwMode(MVT::i32);
2152
2153 // In a named operand, the register class provides the possible set of
2154 // types.
2155 if (NotRegisters)
2156 return TypeSetByHwMode(); // Unknown.
2157 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2158 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2159 }
2160
2161 if (R->isSubClassOf("PatFrags")) {
2162 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2163 // Pattern fragment types will be resolved when they are inlined.
2164 return TypeSetByHwMode(); // Unknown.
2165 }
2166
2167 if (R->isSubClassOf("Register")) {
2168 assert(ResNo == 0 && "Registers only produce one result!");
2169 if (NotRegisters)
2170 return TypeSetByHwMode(); // Unknown.
2171 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2172 return TypeSetByHwMode(T.getRegisterVTs(R));
2173 }
2174
2175 if (R->isSubClassOf("SubRegIndex")) {
2176 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2177 return TypeSetByHwMode(MVT::i32);
2178 }
2179
2180 if (R->isSubClassOf("ValueType")) {
2181 assert(ResNo == 0 && "This node only has one result!");
2182 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2183 //
2184 // (sext_inreg GPR:$src, i16)
2185 // ~~~
2186 if (Unnamed)
2187 return TypeSetByHwMode(MVT::Other);
2188 // With a name, the ValueType simply provides the type of the named
2189 // variable.
2190 //
2191 // (sext_inreg i32:$src, i16)
2192 // ~~~~~~~~
2193 if (NotRegisters)
2194 return TypeSetByHwMode(); // Unknown.
2195 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2196 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2197 }
2198
2199 if (R->isSubClassOf("CondCode")) {
2200 assert(ResNo == 0 && "This node only has one result!");
2201 // Using a CondCodeSDNode.
2202 return TypeSetByHwMode(MVT::Other);
2203 }
2204
2205 if (R->isSubClassOf("ComplexPattern")) {
2206 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2207 if (NotRegisters)
2208 return TypeSetByHwMode(); // Unknown.
2209 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2210 }
2211 if (R->isSubClassOf("PointerLikeRegClass")) {
2212 assert(ResNo == 0 && "Regclass can only have one result!");
2213 TypeSetByHwMode VTS(MVT::iPTR);
2214 TP.getInfer().expandOverloads(VTS);
2215 return VTS;
2216 }
2217
2218 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2219 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2220 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2221 // Placeholder.
2222 return TypeSetByHwMode(); // Unknown.
2223 }
2224
2225 if (R->isSubClassOf("Operand")) {
2226 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2227 Record *T = R->getValueAsDef("Type");
2228 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2229 }
2230
2231 TP.error("Unknown node flavor used in pattern: " + R->getName());
2232 return TypeSetByHwMode(MVT::Other);
2233 }
2234
2235
2236 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2237 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2238 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const2239 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2240 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2241 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2242 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2243 return nullptr;
2244
2245 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2246 return &CDP.getIntrinsicInfo(IID);
2247 }
2248
2249 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2250 /// return the ComplexPattern information, otherwise return null.
2251 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const2252 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2253 Record *Rec;
2254 if (isLeaf()) {
2255 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2256 if (!DI)
2257 return nullptr;
2258 Rec = DI->getDef();
2259 } else
2260 Rec = getOperator();
2261
2262 if (!Rec->isSubClassOf("ComplexPattern"))
2263 return nullptr;
2264 return &CGP.getComplexPattern(Rec);
2265 }
2266
getNumMIResults(const CodeGenDAGPatterns & CGP) const2267 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2268 // A ComplexPattern specifically declares how many results it fills in.
2269 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2270 return CP->getNumOperands();
2271
2272 // If MIOperandInfo is specified, that gives the count.
2273 if (isLeaf()) {
2274 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2275 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2276 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2277 if (MIOps->getNumArgs())
2278 return MIOps->getNumArgs();
2279 }
2280 }
2281
2282 // Otherwise there is just one result.
2283 return 1;
2284 }
2285
2286 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2287 bool TreePatternNode::NodeHasProperty(SDNP Property,
2288 const CodeGenDAGPatterns &CGP) const {
2289 if (isLeaf()) {
2290 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2291 return CP->hasProperty(Property);
2292
2293 return false;
2294 }
2295
2296 if (Property != SDNPHasChain) {
2297 // The chain proprety is already present on the different intrinsic node
2298 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2299 // on the intrinsic. Anything else is specific to the individual intrinsic.
2300 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2301 return Int->hasProperty(Property);
2302 }
2303
2304 if (!Operator->isSubClassOf("SDPatternOperator"))
2305 return false;
2306
2307 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2308 }
2309
2310
2311
2312
2313 /// TreeHasProperty - Return true if any node in this tree has the specified
2314 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const2315 bool TreePatternNode::TreeHasProperty(SDNP Property,
2316 const CodeGenDAGPatterns &CGP) const {
2317 if (NodeHasProperty(Property, CGP))
2318 return true;
2319 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2320 if (getChild(i)->TreeHasProperty(Property, CGP))
2321 return true;
2322 return false;
2323 }
2324
2325 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2326 /// commutative intrinsic.
2327 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const2328 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2329 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2330 return Int->isCommutative;
2331 return false;
2332 }
2333
isOperandClass(const TreePatternNode * N,StringRef Class)2334 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2335 if (!N->isLeaf())
2336 return N->getOperator()->isSubClassOf(Class);
2337
2338 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2339 if (DI && DI->getDef()->isSubClassOf(Class))
2340 return true;
2341
2342 return false;
2343 }
2344
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)2345 static void emitTooManyOperandsError(TreePattern &TP,
2346 StringRef InstName,
2347 unsigned Expected,
2348 unsigned Actual) {
2349 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2350 " operands but expected only " + Twine(Expected) + "!");
2351 }
2352
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)2353 static void emitTooFewOperandsError(TreePattern &TP,
2354 StringRef InstName,
2355 unsigned Actual) {
2356 TP.error("Instruction '" + InstName +
2357 "' expects more than the provided " + Twine(Actual) + " operands!");
2358 }
2359
2360 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2361 /// this node and its children in the tree. This returns true if it makes a
2362 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)2363 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2364 if (TP.hasError())
2365 return false;
2366
2367 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2368 if (isLeaf()) {
2369 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2370 // If it's a regclass or something else known, include the type.
2371 bool MadeChange = false;
2372 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2373 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2374 NotRegisters,
2375 !hasName(), TP), TP);
2376 return MadeChange;
2377 }
2378
2379 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2380 assert(Types.size() == 1 && "Invalid IntInit");
2381
2382 // Int inits are always integers. :)
2383 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2384
2385 if (!TP.getInfer().isConcrete(Types[0], false))
2386 return MadeChange;
2387
2388 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2389 for (auto &P : VVT) {
2390 MVT::SimpleValueType VT = P.second.SimpleTy;
2391 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2392 continue;
2393 unsigned Size = MVT(VT).getFixedSizeInBits();
2394 // Make sure that the value is representable for this type.
2395 if (Size >= 32)
2396 continue;
2397 // Check that the value doesn't use more bits than we have. It must
2398 // either be a sign- or zero-extended equivalent of the original.
2399 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2400 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2401 SignBitAndAbove == 1)
2402 continue;
2403
2404 TP.error("Integer value '" + Twine(II->getValue()) +
2405 "' is out of range for type '" + getEnumName(VT) + "'!");
2406 break;
2407 }
2408 return MadeChange;
2409 }
2410
2411 return false;
2412 }
2413
2414 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2415 bool MadeChange = false;
2416
2417 // Apply the result type to the node.
2418 unsigned NumRetVTs = Int->IS.RetVTs.size();
2419 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2420
2421 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2422 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2423
2424 if (getNumChildren() != NumParamVTs + 1) {
2425 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2426 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2427 return false;
2428 }
2429
2430 // Apply type info to the intrinsic ID.
2431 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2432
2433 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2434 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2435
2436 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2437 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2438 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2439 }
2440 return MadeChange;
2441 }
2442
2443 if (getOperator()->isSubClassOf("SDNode")) {
2444 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2445
2446 // Check that the number of operands is sane. Negative operands -> varargs.
2447 if (NI.getNumOperands() >= 0 &&
2448 getNumChildren() != (unsigned)NI.getNumOperands()) {
2449 TP.error(getOperator()->getName() + " node requires exactly " +
2450 Twine(NI.getNumOperands()) + " operands!");
2451 return false;
2452 }
2453
2454 bool MadeChange = false;
2455 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2456 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2457 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2458 return MadeChange;
2459 }
2460
2461 if (getOperator()->isSubClassOf("Instruction")) {
2462 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2463 CodeGenInstruction &InstInfo =
2464 CDP.getTargetInfo().getInstruction(getOperator());
2465
2466 bool MadeChange = false;
2467
2468 // Apply the result types to the node, these come from the things in the
2469 // (outs) list of the instruction.
2470 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2471 Inst.getNumResults());
2472 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2473 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2474
2475 // If the instruction has implicit defs, we apply the first one as a result.
2476 // FIXME: This sucks, it should apply all implicit defs.
2477 if (!InstInfo.ImplicitDefs.empty()) {
2478 unsigned ResNo = NumResultsToAdd;
2479
2480 // FIXME: Generalize to multiple possible types and multiple possible
2481 // ImplicitDefs.
2482 MVT::SimpleValueType VT =
2483 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2484
2485 if (VT != MVT::Other)
2486 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2487 }
2488
2489 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2490 // be the same.
2491 if (getOperator()->getName() == "INSERT_SUBREG") {
2492 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2493 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2494 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2495 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2496 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2497 // variadic.
2498
2499 unsigned NChild = getNumChildren();
2500 if (NChild < 3) {
2501 TP.error("REG_SEQUENCE requires at least 3 operands!");
2502 return false;
2503 }
2504
2505 if (NChild % 2 == 0) {
2506 TP.error("REG_SEQUENCE requires an odd number of operands!");
2507 return false;
2508 }
2509
2510 if (!isOperandClass(getChild(0), "RegisterClass")) {
2511 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2512 return false;
2513 }
2514
2515 for (unsigned I = 1; I < NChild; I += 2) {
2516 TreePatternNode *SubIdxChild = getChild(I + 1);
2517 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2518 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2519 Twine(I + 1) + "!");
2520 return false;
2521 }
2522 }
2523 }
2524
2525 unsigned NumResults = Inst.getNumResults();
2526 unsigned NumFixedOperands = InstInfo.Operands.size();
2527
2528 // If one or more operands with a default value appear at the end of the
2529 // formal operand list for an instruction, we allow them to be overridden
2530 // by optional operands provided in the pattern.
2531 //
2532 // But if an operand B without a default appears at any point after an
2533 // operand A with a default, then we don't allow A to be overridden,
2534 // because there would be no way to specify whether the next operand in
2535 // the pattern was intended to override A or skip it.
2536 unsigned NonOverridableOperands = NumFixedOperands;
2537 while (NonOverridableOperands > NumResults &&
2538 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2539 --NonOverridableOperands;
2540
2541 unsigned ChildNo = 0;
2542 assert(NumResults <= NumFixedOperands);
2543 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2544 Record *OperandNode = InstInfo.Operands[i].Rec;
2545
2546 // If the operand has a default value, do we use it? We must use the
2547 // default if we've run out of children of the pattern DAG to consume,
2548 // or if the operand is followed by a non-defaulted one.
2549 if (CDP.operandHasDefault(OperandNode) &&
2550 (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2551 continue;
2552
2553 // If we have run out of child nodes and there _isn't_ a default
2554 // value we can use for the next operand, give an error.
2555 if (ChildNo >= getNumChildren()) {
2556 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2557 return false;
2558 }
2559
2560 TreePatternNode *Child = getChild(ChildNo++);
2561 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2562
2563 // If the operand has sub-operands, they may be provided by distinct
2564 // child patterns, so attempt to match each sub-operand separately.
2565 if (OperandNode->isSubClassOf("Operand")) {
2566 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2567 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2568 // But don't do that if the whole operand is being provided by
2569 // a single ComplexPattern-related Operand.
2570
2571 if (Child->getNumMIResults(CDP) < NumArgs) {
2572 // Match first sub-operand against the child we already have.
2573 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2574 MadeChange |=
2575 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2576
2577 // And the remaining sub-operands against subsequent children.
2578 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2579 if (ChildNo >= getNumChildren()) {
2580 emitTooFewOperandsError(TP, getOperator()->getName(),
2581 getNumChildren());
2582 return false;
2583 }
2584 Child = getChild(ChildNo++);
2585
2586 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2587 MadeChange |=
2588 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2589 }
2590 continue;
2591 }
2592 }
2593 }
2594
2595 // If we didn't match by pieces above, attempt to match the whole
2596 // operand now.
2597 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2598 }
2599
2600 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2601 emitTooManyOperandsError(TP, getOperator()->getName(),
2602 ChildNo, getNumChildren());
2603 return false;
2604 }
2605
2606 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2607 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2608 return MadeChange;
2609 }
2610
2611 if (getOperator()->isSubClassOf("ComplexPattern")) {
2612 bool MadeChange = false;
2613
2614 for (unsigned i = 0; i < getNumChildren(); ++i)
2615 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2616
2617 return MadeChange;
2618 }
2619
2620 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2621
2622 // Node transforms always take one operand.
2623 if (getNumChildren() != 1) {
2624 TP.error("Node transform '" + getOperator()->getName() +
2625 "' requires one operand!");
2626 return false;
2627 }
2628
2629 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2630 return MadeChange;
2631 }
2632
2633 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2634 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)2635 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2636 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2637 return true;
2638 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2639 return true;
2640 return false;
2641 }
2642
2643
2644 /// canPatternMatch - If it is impossible for this pattern to match on this
2645 /// target, fill in Reason and return false. Otherwise, return true. This is
2646 /// used as a sanity check for .td files (to prevent people from writing stuff
2647 /// that can never possibly work), and to prevent the pattern permuter from
2648 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2649 bool TreePatternNode::canPatternMatch(std::string &Reason,
2650 const CodeGenDAGPatterns &CDP) {
2651 if (isLeaf()) return true;
2652
2653 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2654 if (!getChild(i)->canPatternMatch(Reason, CDP))
2655 return false;
2656
2657 // If this is an intrinsic, handle cases that would make it not match. For
2658 // example, if an operand is required to be an immediate.
2659 if (getOperator()->isSubClassOf("Intrinsic")) {
2660 // TODO:
2661 return true;
2662 }
2663
2664 if (getOperator()->isSubClassOf("ComplexPattern"))
2665 return true;
2666
2667 // If this node is a commutative operator, check that the LHS isn't an
2668 // immediate.
2669 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2670 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2671 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2672 // Scan all of the operands of the node and make sure that only the last one
2673 // is a constant node, unless the RHS also is.
2674 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2675 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2676 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2677 if (OnlyOnRHSOfCommutative(getChild(i))) {
2678 Reason="Immediate value must be on the RHS of commutative operators!";
2679 return false;
2680 }
2681 }
2682 }
2683
2684 return true;
2685 }
2686
2687 //===----------------------------------------------------------------------===//
2688 // TreePattern implementation
2689 //
2690
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2691 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2692 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2693 isInputPattern(isInput), HasError(false),
2694 Infer(*this) {
2695 for (Init *I : RawPat->getValues())
2696 Trees.push_back(ParseTreePattern(I, ""));
2697 }
2698
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2699 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2700 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2701 isInputPattern(isInput), HasError(false),
2702 Infer(*this) {
2703 Trees.push_back(ParseTreePattern(Pat, ""));
2704 }
2705
TreePattern(Record * TheRec,TreePatternNodePtr Pat,bool isInput,CodeGenDAGPatterns & cdp)2706 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2707 CodeGenDAGPatterns &cdp)
2708 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2709 Infer(*this) {
2710 Trees.push_back(Pat);
2711 }
2712
error(const Twine & Msg)2713 void TreePattern::error(const Twine &Msg) {
2714 if (HasError)
2715 return;
2716 dump();
2717 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2718 HasError = true;
2719 }
2720
ComputeNamedNodes()2721 void TreePattern::ComputeNamedNodes() {
2722 for (TreePatternNodePtr &Tree : Trees)
2723 ComputeNamedNodes(Tree.get());
2724 }
2725
ComputeNamedNodes(TreePatternNode * N)2726 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2727 if (!N->getName().empty())
2728 NamedNodes[N->getName()].push_back(N);
2729
2730 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2731 ComputeNamedNodes(N->getChild(i));
2732 }
2733
ParseTreePattern(Init * TheInit,StringRef OpName)2734 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2735 StringRef OpName) {
2736 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2737 Record *R = DI->getDef();
2738
2739 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2740 // TreePatternNode of its own. For example:
2741 /// (foo GPR, imm) -> (foo GPR, (imm))
2742 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2743 return ParseTreePattern(
2744 DagInit::get(DI, nullptr,
2745 std::vector<std::pair<Init*, StringInit*> >()),
2746 OpName);
2747
2748 // Input argument?
2749 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2750 if (R->getName() == "node" && !OpName.empty()) {
2751 if (OpName.empty())
2752 error("'node' argument requires a name to match with operand list");
2753 Args.push_back(std::string(OpName));
2754 }
2755
2756 Res->setName(OpName);
2757 return Res;
2758 }
2759
2760 // ?:$name or just $name.
2761 if (isa<UnsetInit>(TheInit)) {
2762 if (OpName.empty())
2763 error("'?' argument requires a name to match with operand list");
2764 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2765 Args.push_back(std::string(OpName));
2766 Res->setName(OpName);
2767 return Res;
2768 }
2769
2770 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2771 if (!OpName.empty())
2772 error("Constant int or bit argument should not have a name!");
2773 if (isa<BitInit>(TheInit))
2774 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2775 return std::make_shared<TreePatternNode>(TheInit, 1);
2776 }
2777
2778 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2779 // Turn this into an IntInit.
2780 Init *II = BI->convertInitializerTo(IntRecTy::get());
2781 if (!II || !isa<IntInit>(II))
2782 error("Bits value must be constants!");
2783 return ParseTreePattern(II, OpName);
2784 }
2785
2786 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2787 if (!Dag) {
2788 TheInit->print(errs());
2789 error("Pattern has unexpected init kind!");
2790 }
2791 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2792 if (!OpDef) error("Pattern has unexpected operator type!");
2793 Record *Operator = OpDef->getDef();
2794
2795 if (Operator->isSubClassOf("ValueType")) {
2796 // If the operator is a ValueType, then this must be "type cast" of a leaf
2797 // node.
2798 if (Dag->getNumArgs() != 1)
2799 error("Type cast only takes one operand!");
2800
2801 TreePatternNodePtr New =
2802 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2803
2804 // Apply the type cast.
2805 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2806 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2807 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2808
2809 if (!OpName.empty())
2810 error("ValueType cast should not have a name!");
2811 return New;
2812 }
2813
2814 // Verify that this is something that makes sense for an operator.
2815 if (!Operator->isSubClassOf("PatFrags") &&
2816 !Operator->isSubClassOf("SDNode") &&
2817 !Operator->isSubClassOf("Instruction") &&
2818 !Operator->isSubClassOf("SDNodeXForm") &&
2819 !Operator->isSubClassOf("Intrinsic") &&
2820 !Operator->isSubClassOf("ComplexPattern") &&
2821 Operator->getName() != "set" &&
2822 Operator->getName() != "implicit")
2823 error("Unrecognized node '" + Operator->getName() + "'!");
2824
2825 // Check to see if this is something that is illegal in an input pattern.
2826 if (isInputPattern) {
2827 if (Operator->isSubClassOf("Instruction") ||
2828 Operator->isSubClassOf("SDNodeXForm"))
2829 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2830 } else {
2831 if (Operator->isSubClassOf("Intrinsic"))
2832 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2833
2834 if (Operator->isSubClassOf("SDNode") &&
2835 Operator->getName() != "imm" &&
2836 Operator->getName() != "timm" &&
2837 Operator->getName() != "fpimm" &&
2838 Operator->getName() != "tglobaltlsaddr" &&
2839 Operator->getName() != "tconstpool" &&
2840 Operator->getName() != "tjumptable" &&
2841 Operator->getName() != "tframeindex" &&
2842 Operator->getName() != "texternalsym" &&
2843 Operator->getName() != "tblockaddress" &&
2844 Operator->getName() != "tglobaladdr" &&
2845 Operator->getName() != "bb" &&
2846 Operator->getName() != "vt" &&
2847 Operator->getName() != "mcsym")
2848 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2849 }
2850
2851 std::vector<TreePatternNodePtr> Children;
2852
2853 // Parse all the operands.
2854 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2855 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2856
2857 // Get the actual number of results before Operator is converted to an intrinsic
2858 // node (which is hard-coded to have either zero or one result).
2859 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2860
2861 // If the operator is an intrinsic, then this is just syntactic sugar for
2862 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2863 // convert the intrinsic name to a number.
2864 if (Operator->isSubClassOf("Intrinsic")) {
2865 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2866 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2867
2868 // If this intrinsic returns void, it must have side-effects and thus a
2869 // chain.
2870 if (Int.IS.RetVTs.empty())
2871 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2872 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2873 // Has side-effects, requires chain.
2874 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2875 else // Otherwise, no chain.
2876 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2877
2878 Children.insert(Children.begin(),
2879 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2880 }
2881
2882 if (Operator->isSubClassOf("ComplexPattern")) {
2883 for (unsigned i = 0; i < Children.size(); ++i) {
2884 TreePatternNodePtr Child = Children[i];
2885
2886 if (Child->getName().empty())
2887 error("All arguments to a ComplexPattern must be named");
2888
2889 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2890 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2891 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2892 auto OperandId = std::make_pair(Operator, i);
2893 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2894 if (PrevOp != ComplexPatternOperands.end()) {
2895 if (PrevOp->getValue() != OperandId)
2896 error("All ComplexPattern operands must appear consistently: "
2897 "in the same order in just one ComplexPattern instance.");
2898 } else
2899 ComplexPatternOperands[Child->getName()] = OperandId;
2900 }
2901 }
2902
2903 TreePatternNodePtr Result =
2904 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2905 NumResults);
2906 Result->setName(OpName);
2907
2908 if (Dag->getName()) {
2909 assert(Result->getName().empty());
2910 Result->setName(Dag->getNameStr());
2911 }
2912 return Result;
2913 }
2914
2915 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2916 /// will never match in favor of something obvious that will. This is here
2917 /// strictly as a convenience to target authors because it allows them to write
2918 /// more type generic things and have useless type casts fold away.
2919 ///
2920 /// This returns true if any change is made.
SimplifyTree(TreePatternNodePtr & N)2921 static bool SimplifyTree(TreePatternNodePtr &N) {
2922 if (N->isLeaf())
2923 return false;
2924
2925 // If we have a bitconvert with a resolved type and if the source and
2926 // destination types are the same, then the bitconvert is useless, remove it.
2927 //
2928 // We make an exception if the types are completely empty. This can come up
2929 // when the pattern being simplified is in the Fragments list of a PatFrags,
2930 // so that the operand is just an untyped "node". In that situation we leave
2931 // bitconverts unsimplified, and simplify them later once the fragment is
2932 // expanded into its true context.
2933 if (N->getOperator()->getName() == "bitconvert" &&
2934 N->getExtType(0).isValueTypeByHwMode(false) &&
2935 !N->getExtType(0).empty() &&
2936 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2937 N->getName().empty()) {
2938 N = N->getChildShared(0);
2939 SimplifyTree(N);
2940 return true;
2941 }
2942
2943 // Walk all children.
2944 bool MadeChange = false;
2945 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2946 TreePatternNodePtr Child = N->getChildShared(i);
2947 MadeChange |= SimplifyTree(Child);
2948 N->setChild(i, std::move(Child));
2949 }
2950 return MadeChange;
2951 }
2952
2953
2954
2955 /// InferAllTypes - Infer/propagate as many types throughout the expression
2956 /// patterns as possible. Return true if all types are inferred, false
2957 /// otherwise. Flags an error if a type contradiction is found.
2958 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2959 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2960 if (NamedNodes.empty())
2961 ComputeNamedNodes();
2962
2963 bool MadeChange = true;
2964 while (MadeChange) {
2965 MadeChange = false;
2966 for (TreePatternNodePtr &Tree : Trees) {
2967 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2968 MadeChange |= SimplifyTree(Tree);
2969 }
2970
2971 // If there are constraints on our named nodes, apply them.
2972 for (auto &Entry : NamedNodes) {
2973 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2974
2975 // If we have input named node types, propagate their types to the named
2976 // values here.
2977 if (InNamedTypes) {
2978 if (!InNamedTypes->count(Entry.getKey())) {
2979 error("Node '" + std::string(Entry.getKey()) +
2980 "' in output pattern but not input pattern");
2981 return true;
2982 }
2983
2984 const SmallVectorImpl<TreePatternNode*> &InNodes =
2985 InNamedTypes->find(Entry.getKey())->second;
2986
2987 // The input types should be fully resolved by now.
2988 for (TreePatternNode *Node : Nodes) {
2989 // If this node is a register class, and it is the root of the pattern
2990 // then we're mapping something onto an input register. We allow
2991 // changing the type of the input register in this case. This allows
2992 // us to match things like:
2993 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2994 if (Node == Trees[0].get() && Node->isLeaf()) {
2995 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2996 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2997 DI->getDef()->isSubClassOf("RegisterOperand")))
2998 continue;
2999 }
3000
3001 assert(Node->getNumTypes() == 1 &&
3002 InNodes[0]->getNumTypes() == 1 &&
3003 "FIXME: cannot name multiple result nodes yet");
3004 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3005 *this);
3006 }
3007 }
3008
3009 // If there are multiple nodes with the same name, they must all have the
3010 // same type.
3011 if (Entry.second.size() > 1) {
3012 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3013 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3014 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3015 "FIXME: cannot name multiple result nodes yet");
3016
3017 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3018 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3019 }
3020 }
3021 }
3022 }
3023
3024 bool HasUnresolvedTypes = false;
3025 for (const TreePatternNodePtr &Tree : Trees)
3026 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3027 return !HasUnresolvedTypes;
3028 }
3029
print(raw_ostream & OS) const3030 void TreePattern::print(raw_ostream &OS) const {
3031 OS << getRecord()->getName();
3032 if (!Args.empty()) {
3033 OS << "(" << Args[0];
3034 for (unsigned i = 1, e = Args.size(); i != e; ++i)
3035 OS << ", " << Args[i];
3036 OS << ")";
3037 }
3038 OS << ": ";
3039
3040 if (Trees.size() > 1)
3041 OS << "[\n";
3042 for (const TreePatternNodePtr &Tree : Trees) {
3043 OS << "\t";
3044 Tree->print(OS);
3045 OS << "\n";
3046 }
3047
3048 if (Trees.size() > 1)
3049 OS << "]\n";
3050 }
3051
dump() const3052 void TreePattern::dump() const { print(errs()); }
3053
3054 //===----------------------------------------------------------------------===//
3055 // CodeGenDAGPatterns implementation
3056 //
3057
CodeGenDAGPatterns(RecordKeeper & R,PatternRewriterFn PatternRewriter)3058 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3059 PatternRewriterFn PatternRewriter)
3060 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3061 PatternRewriter(PatternRewriter) {
3062
3063 Intrinsics = CodeGenIntrinsicTable(Records);
3064 ParseNodeInfo();
3065 ParseNodeTransforms();
3066 ParseComplexPatterns();
3067 ParsePatternFragments();
3068 ParseDefaultOperands();
3069 ParseInstructions();
3070 ParsePatternFragments(/*OutFrags*/true);
3071 ParsePatterns();
3072
3073 // Break patterns with parameterized types into a series of patterns,
3074 // where each one has a fixed type and is predicated on the conditions
3075 // of the associated HW mode.
3076 ExpandHwModeBasedTypes();
3077
3078 // Generate variants. For example, commutative patterns can match
3079 // multiple ways. Add them to PatternsToMatch as well.
3080 GenerateVariants();
3081
3082 // Infer instruction flags. For example, we can detect loads,
3083 // stores, and side effects in many cases by examining an
3084 // instruction's pattern.
3085 InferInstructionFlags();
3086
3087 // Verify that instruction flags match the patterns.
3088 VerifyInstructionFlags();
3089 }
3090
getSDNodeNamed(const std::string & Name) const3091 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3092 Record *N = Records.getDef(Name);
3093 if (!N || !N->isSubClassOf("SDNode"))
3094 PrintFatalError("Error getting SDNode '" + Name + "'!");
3095
3096 return N;
3097 }
3098
3099 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()3100 void CodeGenDAGPatterns::ParseNodeInfo() {
3101 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3102 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3103
3104 while (!Nodes.empty()) {
3105 Record *R = Nodes.back();
3106 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3107 Nodes.pop_back();
3108 }
3109
3110 // Get the builtin intrinsic nodes.
3111 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3112 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3113 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3114 }
3115
3116 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3117 /// map, and emit them to the file as functions.
ParseNodeTransforms()3118 void CodeGenDAGPatterns::ParseNodeTransforms() {
3119 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3120 while (!Xforms.empty()) {
3121 Record *XFormNode = Xforms.back();
3122 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3123 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3124 SDNodeXForms.insert(
3125 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3126
3127 Xforms.pop_back();
3128 }
3129 }
3130
ParseComplexPatterns()3131 void CodeGenDAGPatterns::ParseComplexPatterns() {
3132 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3133 while (!AMs.empty()) {
3134 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3135 AMs.pop_back();
3136 }
3137 }
3138
3139
3140 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3141 /// file, building up the PatternFragments map. After we've collected them all,
3142 /// inline fragments together as necessary, so that there are no references left
3143 /// inside a pattern fragment to a pattern fragment.
3144 ///
ParsePatternFragments(bool OutFrags)3145 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3146 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3147
3148 // First step, parse all of the fragments.
3149 for (Record *Frag : Fragments) {
3150 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3151 continue;
3152
3153 ListInit *LI = Frag->getValueAsListInit("Fragments");
3154 TreePattern *P =
3155 (PatternFragments[Frag] = std::make_unique<TreePattern>(
3156 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3157 *this)).get();
3158
3159 // Validate the argument list, converting it to set, to discard duplicates.
3160 std::vector<std::string> &Args = P->getArgList();
3161 // Copy the args so we can take StringRefs to them.
3162 auto ArgsCopy = Args;
3163 SmallDenseSet<StringRef, 4> OperandsSet;
3164 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3165
3166 if (OperandsSet.count(""))
3167 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3168
3169 // Parse the operands list.
3170 DagInit *OpsList = Frag->getValueAsDag("Operands");
3171 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3172 // Special cases: ops == outs == ins. Different names are used to
3173 // improve readability.
3174 if (!OpsOp ||
3175 (OpsOp->getDef()->getName() != "ops" &&
3176 OpsOp->getDef()->getName() != "outs" &&
3177 OpsOp->getDef()->getName() != "ins"))
3178 P->error("Operands list should start with '(ops ... '!");
3179
3180 // Copy over the arguments.
3181 Args.clear();
3182 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3183 if (!isa<DefInit>(OpsList->getArg(j)) ||
3184 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3185 P->error("Operands list should all be 'node' values.");
3186 if (!OpsList->getArgName(j))
3187 P->error("Operands list should have names for each operand!");
3188 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3189 if (!OperandsSet.count(ArgNameStr))
3190 P->error("'" + ArgNameStr +
3191 "' does not occur in pattern or was multiply specified!");
3192 OperandsSet.erase(ArgNameStr);
3193 Args.push_back(std::string(ArgNameStr));
3194 }
3195
3196 if (!OperandsSet.empty())
3197 P->error("Operands list does not contain an entry for operand '" +
3198 *OperandsSet.begin() + "'!");
3199
3200 // If there is a node transformation corresponding to this, keep track of
3201 // it.
3202 Record *Transform = Frag->getValueAsDef("OperandTransform");
3203 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3204 for (auto T : P->getTrees())
3205 T->setTransformFn(Transform);
3206 }
3207
3208 // Now that we've parsed all of the tree fragments, do a closure on them so
3209 // that there are not references to PatFrags left inside of them.
3210 for (Record *Frag : Fragments) {
3211 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3212 continue;
3213
3214 TreePattern &ThePat = *PatternFragments[Frag];
3215 ThePat.InlinePatternFragments();
3216
3217 // Infer as many types as possible. Don't worry about it if we don't infer
3218 // all of them, some may depend on the inputs of the pattern. Also, don't
3219 // validate type sets; validation may cause spurious failures e.g. if a
3220 // fragment needs floating-point types but the current target does not have
3221 // any (this is only an error if that fragment is ever used!).
3222 {
3223 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3224 ThePat.InferAllTypes();
3225 ThePat.resetError();
3226 }
3227
3228 // If debugging, print out the pattern fragment result.
3229 LLVM_DEBUG(ThePat.dump());
3230 }
3231 }
3232
ParseDefaultOperands()3233 void CodeGenDAGPatterns::ParseDefaultOperands() {
3234 std::vector<Record*> DefaultOps;
3235 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3236
3237 // Find some SDNode.
3238 assert(!SDNodes.empty() && "No SDNodes parsed?");
3239 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3240
3241 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3242 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3243
3244 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3245 // SomeSDnode so that we can parse this.
3246 std::vector<std::pair<Init*, StringInit*> > Ops;
3247 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3248 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3249 DefaultInfo->getArgName(op)));
3250 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3251
3252 // Create a TreePattern to parse this.
3253 TreePattern P(DefaultOps[i], DI, false, *this);
3254 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3255
3256 // Copy the operands over into a DAGDefaultOperand.
3257 DAGDefaultOperand DefaultOpInfo;
3258
3259 const TreePatternNodePtr &T = P.getTree(0);
3260 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3261 TreePatternNodePtr TPN = T->getChildShared(op);
3262 while (TPN->ApplyTypeConstraints(P, false))
3263 /* Resolve all types */;
3264
3265 if (TPN->ContainsUnresolvedType(P)) {
3266 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3267 DefaultOps[i]->getName() +
3268 "' doesn't have a concrete type!");
3269 }
3270 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3271 }
3272
3273 // Insert it into the DefaultOperands map so we can find it later.
3274 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3275 }
3276 }
3277
3278 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3279 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs)3280 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3281 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3282 // No name -> not interesting.
3283 if (Pat->getName().empty()) {
3284 if (Pat->isLeaf()) {
3285 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3286 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3287 DI->getDef()->isSubClassOf("RegisterOperand")))
3288 I.error("Input " + DI->getDef()->getName() + " must be named!");
3289 }
3290 return false;
3291 }
3292
3293 Record *Rec;
3294 if (Pat->isLeaf()) {
3295 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3296 if (!DI)
3297 I.error("Input $" + Pat->getName() + " must be an identifier!");
3298 Rec = DI->getDef();
3299 } else {
3300 Rec = Pat->getOperator();
3301 }
3302
3303 // SRCVALUE nodes are ignored.
3304 if (Rec->getName() == "srcvalue")
3305 return false;
3306
3307 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3308 if (!Slot) {
3309 Slot = Pat;
3310 return true;
3311 }
3312 Record *SlotRec;
3313 if (Slot->isLeaf()) {
3314 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3315 } else {
3316 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3317 SlotRec = Slot->getOperator();
3318 }
3319
3320 // Ensure that the inputs agree if we've already seen this input.
3321 if (Rec != SlotRec)
3322 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3323 // Ensure that the types can agree as well.
3324 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3325 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3326 if (Slot->getExtTypes() != Pat->getExtTypes())
3327 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3328 return true;
3329 }
3330
3331 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3332 /// part of "I", the instruction), computing the set of inputs and outputs of
3333 /// the pattern. Report errors if we see anything naughty.
FindPatternInputsAndOutputs(TreePattern & I,TreePatternNodePtr Pat,std::map<std::string,TreePatternNodePtr> & InstInputs,MapVector<std::string,TreePatternNodePtr,std::map<std::string,unsigned>> & InstResults,std::vector<Record * > & InstImpResults)3334 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3335 TreePattern &I, TreePatternNodePtr Pat,
3336 std::map<std::string, TreePatternNodePtr> &InstInputs,
3337 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3338 &InstResults,
3339 std::vector<Record *> &InstImpResults) {
3340
3341 // The instruction pattern still has unresolved fragments. For *named*
3342 // nodes we must resolve those here. This may not result in multiple
3343 // alternatives.
3344 if (!Pat->getName().empty()) {
3345 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3346 SrcPattern.InlinePatternFragments();
3347 SrcPattern.InferAllTypes();
3348 Pat = SrcPattern.getOnlyTree();
3349 }
3350
3351 if (Pat->isLeaf()) {
3352 bool isUse = HandleUse(I, Pat, InstInputs);
3353 if (!isUse && Pat->getTransformFn())
3354 I.error("Cannot specify a transform function for a non-input value!");
3355 return;
3356 }
3357
3358 if (Pat->getOperator()->getName() == "implicit") {
3359 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3360 TreePatternNode *Dest = Pat->getChild(i);
3361 if (!Dest->isLeaf())
3362 I.error("implicitly defined value should be a register!");
3363
3364 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3365 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3366 I.error("implicitly defined value should be a register!");
3367 InstImpResults.push_back(Val->getDef());
3368 }
3369 return;
3370 }
3371
3372 if (Pat->getOperator()->getName() != "set") {
3373 // If this is not a set, verify that the children nodes are not void typed,
3374 // and recurse.
3375 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3376 if (Pat->getChild(i)->getNumTypes() == 0)
3377 I.error("Cannot have void nodes inside of patterns!");
3378 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3379 InstResults, InstImpResults);
3380 }
3381
3382 // If this is a non-leaf node with no children, treat it basically as if
3383 // it were a leaf. This handles nodes like (imm).
3384 bool isUse = HandleUse(I, Pat, InstInputs);
3385
3386 if (!isUse && Pat->getTransformFn())
3387 I.error("Cannot specify a transform function for a non-input value!");
3388 return;
3389 }
3390
3391 // Otherwise, this is a set, validate and collect instruction results.
3392 if (Pat->getNumChildren() == 0)
3393 I.error("set requires operands!");
3394
3395 if (Pat->getTransformFn())
3396 I.error("Cannot specify a transform function on a set node!");
3397
3398 // Check the set destinations.
3399 unsigned NumDests = Pat->getNumChildren()-1;
3400 for (unsigned i = 0; i != NumDests; ++i) {
3401 TreePatternNodePtr Dest = Pat->getChildShared(i);
3402 // For set destinations we also must resolve fragments here.
3403 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3404 DestPattern.InlinePatternFragments();
3405 DestPattern.InferAllTypes();
3406 Dest = DestPattern.getOnlyTree();
3407
3408 if (!Dest->isLeaf())
3409 I.error("set destination should be a register!");
3410
3411 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3412 if (!Val) {
3413 I.error("set destination should be a register!");
3414 continue;
3415 }
3416
3417 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3418 Val->getDef()->isSubClassOf("ValueType") ||
3419 Val->getDef()->isSubClassOf("RegisterOperand") ||
3420 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3421 if (Dest->getName().empty())
3422 I.error("set destination must have a name!");
3423 if (InstResults.count(Dest->getName()))
3424 I.error("cannot set '" + Dest->getName() + "' multiple times");
3425 InstResults[Dest->getName()] = Dest;
3426 } else if (Val->getDef()->isSubClassOf("Register")) {
3427 InstImpResults.push_back(Val->getDef());
3428 } else {
3429 I.error("set destination should be a register!");
3430 }
3431 }
3432
3433 // Verify and collect info from the computation.
3434 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3435 InstResults, InstImpResults);
3436 }
3437
3438 //===----------------------------------------------------------------------===//
3439 // Instruction Analysis
3440 //===----------------------------------------------------------------------===//
3441
3442 class InstAnalyzer {
3443 const CodeGenDAGPatterns &CDP;
3444 public:
3445 bool hasSideEffects;
3446 bool mayStore;
3447 bool mayLoad;
3448 bool isBitcast;
3449 bool isVariadic;
3450 bool hasChain;
3451
InstAnalyzer(const CodeGenDAGPatterns & cdp)3452 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3453 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3454 isBitcast(false), isVariadic(false), hasChain(false) {}
3455
Analyze(const PatternToMatch & Pat)3456 void Analyze(const PatternToMatch &Pat) {
3457 const TreePatternNode *N = Pat.getSrcPattern();
3458 AnalyzeNode(N);
3459 // These properties are detected only on the root node.
3460 isBitcast = IsNodeBitcast(N);
3461 }
3462
3463 private:
IsNodeBitcast(const TreePatternNode * N) const3464 bool IsNodeBitcast(const TreePatternNode *N) const {
3465 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3466 return false;
3467
3468 if (N->isLeaf())
3469 return false;
3470 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3471 return false;
3472
3473 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3474 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3475 return false;
3476 return OpInfo.getEnumName() == "ISD::BITCAST";
3477 }
3478
3479 public:
AnalyzeNode(const TreePatternNode * N)3480 void AnalyzeNode(const TreePatternNode *N) {
3481 if (N->isLeaf()) {
3482 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3483 Record *LeafRec = DI->getDef();
3484 // Handle ComplexPattern leaves.
3485 if (LeafRec->isSubClassOf("ComplexPattern")) {
3486 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3487 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3488 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3489 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3490 }
3491 }
3492 return;
3493 }
3494
3495 // Analyze children.
3496 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3497 AnalyzeNode(N->getChild(i));
3498
3499 // Notice properties of the node.
3500 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3501 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3502 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3503 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3504 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3505
3506 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3507 // If this is an intrinsic, analyze it.
3508 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3509 mayLoad = true;// These may load memory.
3510
3511 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3512 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3513
3514 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3515 IntInfo->hasSideEffects)
3516 // ReadWriteMem intrinsics can have other strange effects.
3517 hasSideEffects = true;
3518 }
3519 }
3520
3521 };
3522
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)3523 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3524 const InstAnalyzer &PatInfo,
3525 Record *PatDef) {
3526 bool Error = false;
3527
3528 // Remember where InstInfo got its flags.
3529 if (InstInfo.hasUndefFlags())
3530 InstInfo.InferredFrom = PatDef;
3531
3532 // Check explicitly set flags for consistency.
3533 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3534 !InstInfo.hasSideEffects_Unset) {
3535 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3536 // the pattern has no side effects. That could be useful for div/rem
3537 // instructions that may trap.
3538 if (!InstInfo.hasSideEffects) {
3539 Error = true;
3540 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3541 Twine(InstInfo.hasSideEffects));
3542 }
3543 }
3544
3545 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3546 Error = true;
3547 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3548 Twine(InstInfo.mayStore));
3549 }
3550
3551 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3552 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3553 // Some targets translate immediates to loads.
3554 if (!InstInfo.mayLoad) {
3555 Error = true;
3556 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3557 Twine(InstInfo.mayLoad));
3558 }
3559 }
3560
3561 // Transfer inferred flags.
3562 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3563 InstInfo.mayStore |= PatInfo.mayStore;
3564 InstInfo.mayLoad |= PatInfo.mayLoad;
3565
3566 // These flags are silently added without any verification.
3567 // FIXME: To match historical behavior of TableGen, for now add those flags
3568 // only when we're inferring from the primary instruction pattern.
3569 if (PatDef->isSubClassOf("Instruction")) {
3570 InstInfo.isBitcast |= PatInfo.isBitcast;
3571 InstInfo.hasChain |= PatInfo.hasChain;
3572 InstInfo.hasChain_Inferred = true;
3573 }
3574
3575 // Don't infer isVariadic. This flag means something different on SDNodes and
3576 // instructions. For example, a CALL SDNode is variadic because it has the
3577 // call arguments as operands, but a CALL instruction is not variadic - it
3578 // has argument registers as implicit, not explicit uses.
3579
3580 return Error;
3581 }
3582
3583 /// hasNullFragReference - Return true if the DAG has any reference to the
3584 /// null_frag operator.
hasNullFragReference(DagInit * DI)3585 static bool hasNullFragReference(DagInit *DI) {
3586 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3587 if (!OpDef) return false;
3588 Record *Operator = OpDef->getDef();
3589
3590 // If this is the null fragment, return true.
3591 if (Operator->getName() == "null_frag") return true;
3592 // If any of the arguments reference the null fragment, return true.
3593 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3594 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3595 if (Arg->getDef()->getName() == "null_frag")
3596 return true;
3597 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3598 if (Arg && hasNullFragReference(Arg))
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /// hasNullFragReference - Return true if any DAG in the list references
3606 /// the null_frag operator.
hasNullFragReference(ListInit * LI)3607 static bool hasNullFragReference(ListInit *LI) {
3608 for (Init *I : LI->getValues()) {
3609 DagInit *DI = dyn_cast<DagInit>(I);
3610 assert(DI && "non-dag in an instruction Pattern list?!");
3611 if (hasNullFragReference(DI))
3612 return true;
3613 }
3614 return false;
3615 }
3616
3617 /// Get all the instructions in a tree.
3618 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)3619 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3620 if (Tree->isLeaf())
3621 return;
3622 if (Tree->getOperator()->isSubClassOf("Instruction"))
3623 Instrs.push_back(Tree->getOperator());
3624 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3625 getInstructionsInTree(Tree->getChild(i), Instrs);
3626 }
3627
3628 /// Check the class of a pattern leaf node against the instruction operand it
3629 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)3630 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3631 Record *Leaf) {
3632 if (OI.Rec == Leaf)
3633 return true;
3634
3635 // Allow direct value types to be used in instruction set patterns.
3636 // The type will be checked later.
3637 if (Leaf->isSubClassOf("ValueType"))
3638 return true;
3639
3640 // Patterns can also be ComplexPattern instances.
3641 if (Leaf->isSubClassOf("ComplexPattern"))
3642 return true;
3643
3644 return false;
3645 }
3646
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)3647 void CodeGenDAGPatterns::parseInstructionPattern(
3648 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3649
3650 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3651
3652 // Parse the instruction.
3653 TreePattern I(CGI.TheDef, Pat, true, *this);
3654
3655 // InstInputs - Keep track of all of the inputs of the instruction, along
3656 // with the record they are declared as.
3657 std::map<std::string, TreePatternNodePtr> InstInputs;
3658
3659 // InstResults - Keep track of all the virtual registers that are 'set'
3660 // in the instruction, including what reg class they are.
3661 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3662 InstResults;
3663
3664 std::vector<Record*> InstImpResults;
3665
3666 // Verify that the top-level forms in the instruction are of void type, and
3667 // fill in the InstResults map.
3668 SmallString<32> TypesString;
3669 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3670 TypesString.clear();
3671 TreePatternNodePtr Pat = I.getTree(j);
3672 if (Pat->getNumTypes() != 0) {
3673 raw_svector_ostream OS(TypesString);
3674 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3675 if (k > 0)
3676 OS << ", ";
3677 Pat->getExtType(k).writeToStream(OS);
3678 }
3679 I.error("Top-level forms in instruction pattern should have"
3680 " void types, has types " +
3681 OS.str());
3682 }
3683
3684 // Find inputs and outputs, and verify the structure of the uses/defs.
3685 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3686 InstImpResults);
3687 }
3688
3689 // Now that we have inputs and outputs of the pattern, inspect the operands
3690 // list for the instruction. This determines the order that operands are
3691 // added to the machine instruction the node corresponds to.
3692 unsigned NumResults = InstResults.size();
3693
3694 // Parse the operands list from the (ops) list, validating it.
3695 assert(I.getArgList().empty() && "Args list should still be empty here!");
3696
3697 // Check that all of the results occur first in the list.
3698 std::vector<Record*> Results;
3699 std::vector<unsigned> ResultIndices;
3700 SmallVector<TreePatternNodePtr, 2> ResNodes;
3701 for (unsigned i = 0; i != NumResults; ++i) {
3702 if (i == CGI.Operands.size()) {
3703 const std::string &OpName =
3704 std::find_if(InstResults.begin(), InstResults.end(),
3705 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3706 return P.second;
3707 })
3708 ->first;
3709
3710 I.error("'" + OpName + "' set but does not appear in operand list!");
3711 }
3712
3713 const std::string &OpName = CGI.Operands[i].Name;
3714
3715 // Check that it exists in InstResults.
3716 auto InstResultIter = InstResults.find(OpName);
3717 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3718 I.error("Operand $" + OpName + " does not exist in operand list!");
3719
3720 TreePatternNodePtr RNode = InstResultIter->second;
3721 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3722 ResNodes.push_back(std::move(RNode));
3723 if (!R)
3724 I.error("Operand $" + OpName + " should be a set destination: all "
3725 "outputs must occur before inputs in operand list!");
3726
3727 if (!checkOperandClass(CGI.Operands[i], R))
3728 I.error("Operand $" + OpName + " class mismatch!");
3729
3730 // Remember the return type.
3731 Results.push_back(CGI.Operands[i].Rec);
3732
3733 // Remember the result index.
3734 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3735
3736 // Okay, this one checks out.
3737 InstResultIter->second = nullptr;
3738 }
3739
3740 // Loop over the inputs next.
3741 std::vector<TreePatternNodePtr> ResultNodeOperands;
3742 std::vector<Record*> Operands;
3743 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3744 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3745 const std::string &OpName = Op.Name;
3746 if (OpName.empty())
3747 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3748
3749 if (!InstInputs.count(OpName)) {
3750 // If this is an operand with a DefaultOps set filled in, we can ignore
3751 // this. When we codegen it, we will do so as always executed.
3752 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3753 // Does it have a non-empty DefaultOps field? If so, ignore this
3754 // operand.
3755 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3756 continue;
3757 }
3758 I.error("Operand $" + OpName +
3759 " does not appear in the instruction pattern");
3760 }
3761 TreePatternNodePtr InVal = InstInputs[OpName];
3762 InstInputs.erase(OpName); // It occurred, remove from map.
3763
3764 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3765 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3766 if (!checkOperandClass(Op, InRec))
3767 I.error("Operand $" + OpName + "'s register class disagrees"
3768 " between the operand and pattern");
3769 }
3770 Operands.push_back(Op.Rec);
3771
3772 // Construct the result for the dest-pattern operand list.
3773 TreePatternNodePtr OpNode = InVal->clone();
3774
3775 // No predicate is useful on the result.
3776 OpNode->clearPredicateCalls();
3777
3778 // Promote the xform function to be an explicit node if set.
3779 if (Record *Xform = OpNode->getTransformFn()) {
3780 OpNode->setTransformFn(nullptr);
3781 std::vector<TreePatternNodePtr> Children;
3782 Children.push_back(OpNode);
3783 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3784 OpNode->getNumTypes());
3785 }
3786
3787 ResultNodeOperands.push_back(std::move(OpNode));
3788 }
3789
3790 if (!InstInputs.empty())
3791 I.error("Input operand $" + InstInputs.begin()->first +
3792 " occurs in pattern but not in operands list!");
3793
3794 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3795 I.getRecord(), std::move(ResultNodeOperands),
3796 GetNumNodeResults(I.getRecord(), *this));
3797 // Copy fully inferred output node types to instruction result pattern.
3798 for (unsigned i = 0; i != NumResults; ++i) {
3799 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3800 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3801 ResultPattern->setResultIndex(i, ResultIndices[i]);
3802 }
3803
3804 // FIXME: Assume only the first tree is the pattern. The others are clobber
3805 // nodes.
3806 TreePatternNodePtr Pattern = I.getTree(0);
3807 TreePatternNodePtr SrcPattern;
3808 if (Pattern->getOperator()->getName() == "set") {
3809 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3810 } else{
3811 // Not a set (store or something?)
3812 SrcPattern = Pattern;
3813 }
3814
3815 // Create and insert the instruction.
3816 // FIXME: InstImpResults should not be part of DAGInstruction.
3817 Record *R = I.getRecord();
3818 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3819 std::forward_as_tuple(Results, Operands, InstImpResults,
3820 SrcPattern, ResultPattern));
3821
3822 LLVM_DEBUG(I.dump());
3823 }
3824
3825 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3826 /// any fragments involved. This populates the Instructions list with fully
3827 /// resolved instructions.
ParseInstructions()3828 void CodeGenDAGPatterns::ParseInstructions() {
3829 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3830
3831 for (Record *Instr : Instrs) {
3832 ListInit *LI = nullptr;
3833
3834 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3835 LI = Instr->getValueAsListInit("Pattern");
3836
3837 // If there is no pattern, only collect minimal information about the
3838 // instruction for its operand list. We have to assume that there is one
3839 // result, as we have no detailed info. A pattern which references the
3840 // null_frag operator is as-if no pattern were specified. Normally this
3841 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3842 // null_frag.
3843 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3844 std::vector<Record*> Results;
3845 std::vector<Record*> Operands;
3846
3847 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3848
3849 if (InstInfo.Operands.size() != 0) {
3850 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3851 Results.push_back(InstInfo.Operands[j].Rec);
3852
3853 // The rest are inputs.
3854 for (unsigned j = InstInfo.Operands.NumDefs,
3855 e = InstInfo.Operands.size(); j < e; ++j)
3856 Operands.push_back(InstInfo.Operands[j].Rec);
3857 }
3858
3859 // Create and insert the instruction.
3860 std::vector<Record*> ImpResults;
3861 Instructions.insert(std::make_pair(Instr,
3862 DAGInstruction(Results, Operands, ImpResults)));
3863 continue; // no pattern.
3864 }
3865
3866 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3867 parseInstructionPattern(CGI, LI, Instructions);
3868 }
3869
3870 // If we can, convert the instructions to be patterns that are matched!
3871 for (auto &Entry : Instructions) {
3872 Record *Instr = Entry.first;
3873 DAGInstruction &TheInst = Entry.second;
3874 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3875 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3876
3877 if (SrcPattern && ResultPattern) {
3878 TreePattern Pattern(Instr, SrcPattern, true, *this);
3879 TreePattern Result(Instr, ResultPattern, false, *this);
3880 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3881 }
3882 }
3883 }
3884
3885 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3886
FindNames(TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3887 static void FindNames(TreePatternNode *P,
3888 std::map<std::string, NameRecord> &Names,
3889 TreePattern *PatternTop) {
3890 if (!P->getName().empty()) {
3891 NameRecord &Rec = Names[P->getName()];
3892 // If this is the first instance of the name, remember the node.
3893 if (Rec.second++ == 0)
3894 Rec.first = P;
3895 else if (Rec.first->getExtTypes() != P->getExtTypes())
3896 PatternTop->error("repetition of value: $" + P->getName() +
3897 " where different uses have different types!");
3898 }
3899
3900 if (!P->isLeaf()) {
3901 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3902 FindNames(P->getChild(i), Names, PatternTop);
3903 }
3904 }
3905
makePredList(ListInit * L)3906 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3907 std::vector<Predicate> Preds;
3908 for (Init *I : L->getValues()) {
3909 if (DefInit *Pred = dyn_cast<DefInit>(I))
3910 Preds.push_back(Pred->getDef());
3911 else
3912 llvm_unreachable("Non-def on the list");
3913 }
3914
3915 // Sort so that different orders get canonicalized to the same string.
3916 llvm::sort(Preds);
3917 return Preds;
3918 }
3919
AddPatternToMatch(TreePattern * Pattern,PatternToMatch && PTM)3920 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3921 PatternToMatch &&PTM) {
3922 // Do some sanity checking on the pattern we're about to match.
3923 std::string Reason;
3924 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3925 PrintWarning(Pattern->getRecord()->getLoc(),
3926 Twine("Pattern can never match: ") + Reason);
3927 return;
3928 }
3929
3930 // If the source pattern's root is a complex pattern, that complex pattern
3931 // must specify the nodes it can potentially match.
3932 if (const ComplexPattern *CP =
3933 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3934 if (CP->getRootNodes().empty())
3935 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3936 " could match");
3937
3938
3939 // Find all of the named values in the input and output, ensure they have the
3940 // same type.
3941 std::map<std::string, NameRecord> SrcNames, DstNames;
3942 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3943 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3944
3945 // Scan all of the named values in the destination pattern, rejecting them if
3946 // they don't exist in the input pattern.
3947 for (const auto &Entry : DstNames) {
3948 if (SrcNames[Entry.first].first == nullptr)
3949 Pattern->error("Pattern has input without matching name in output: $" +
3950 Entry.first);
3951 }
3952
3953 // Scan all of the named values in the source pattern, rejecting them if the
3954 // name isn't used in the dest, and isn't used to tie two values together.
3955 for (const auto &Entry : SrcNames)
3956 if (DstNames[Entry.first].first == nullptr &&
3957 SrcNames[Entry.first].second == 1)
3958 Pattern->error("Pattern has dead named input: $" + Entry.first);
3959
3960 PatternsToMatch.push_back(PTM);
3961 }
3962
InferInstructionFlags()3963 void CodeGenDAGPatterns::InferInstructionFlags() {
3964 ArrayRef<const CodeGenInstruction*> Instructions =
3965 Target.getInstructionsByEnumValue();
3966
3967 unsigned Errors = 0;
3968
3969 // Try to infer flags from all patterns in PatternToMatch. These include
3970 // both the primary instruction patterns (which always come first) and
3971 // patterns defined outside the instruction.
3972 for (const PatternToMatch &PTM : ptms()) {
3973 // We can only infer from single-instruction patterns, otherwise we won't
3974 // know which instruction should get the flags.
3975 SmallVector<Record*, 8> PatInstrs;
3976 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3977 if (PatInstrs.size() != 1)
3978 continue;
3979
3980 // Get the single instruction.
3981 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3982
3983 // Only infer properties from the first pattern. We'll verify the others.
3984 if (InstInfo.InferredFrom)
3985 continue;
3986
3987 InstAnalyzer PatInfo(*this);
3988 PatInfo.Analyze(PTM);
3989 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3990 }
3991
3992 if (Errors)
3993 PrintFatalError("pattern conflicts");
3994
3995 // If requested by the target, guess any undefined properties.
3996 if (Target.guessInstructionProperties()) {
3997 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3998 CodeGenInstruction *InstInfo =
3999 const_cast<CodeGenInstruction *>(Instructions[i]);
4000 if (InstInfo->InferredFrom)
4001 continue;
4002 // The mayLoad and mayStore flags default to false.
4003 // Conservatively assume hasSideEffects if it wasn't explicit.
4004 if (InstInfo->hasSideEffects_Unset)
4005 InstInfo->hasSideEffects = true;
4006 }
4007 return;
4008 }
4009
4010 // Complain about any flags that are still undefined.
4011 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4012 CodeGenInstruction *InstInfo =
4013 const_cast<CodeGenInstruction *>(Instructions[i]);
4014 if (InstInfo->InferredFrom)
4015 continue;
4016 if (InstInfo->hasSideEffects_Unset)
4017 PrintError(InstInfo->TheDef->getLoc(),
4018 "Can't infer hasSideEffects from patterns");
4019 if (InstInfo->mayStore_Unset)
4020 PrintError(InstInfo->TheDef->getLoc(),
4021 "Can't infer mayStore from patterns");
4022 if (InstInfo->mayLoad_Unset)
4023 PrintError(InstInfo->TheDef->getLoc(),
4024 "Can't infer mayLoad from patterns");
4025 }
4026 }
4027
4028
4029 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()4030 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4031 unsigned Errors = 0;
4032 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
4033 const PatternToMatch &PTM = *I;
4034 SmallVector<Record*, 8> Instrs;
4035 getInstructionsInTree(PTM.getDstPattern(), Instrs);
4036 if (Instrs.empty())
4037 continue;
4038
4039 // Count the number of instructions with each flag set.
4040 unsigned NumSideEffects = 0;
4041 unsigned NumStores = 0;
4042 unsigned NumLoads = 0;
4043 for (const Record *Instr : Instrs) {
4044 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4045 NumSideEffects += InstInfo.hasSideEffects;
4046 NumStores += InstInfo.mayStore;
4047 NumLoads += InstInfo.mayLoad;
4048 }
4049
4050 // Analyze the source pattern.
4051 InstAnalyzer PatInfo(*this);
4052 PatInfo.Analyze(PTM);
4053
4054 // Collect error messages.
4055 SmallVector<std::string, 4> Msgs;
4056
4057 // Check for missing flags in the output.
4058 // Permit extra flags for now at least.
4059 if (PatInfo.hasSideEffects && !NumSideEffects)
4060 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4061
4062 // Don't verify store flags on instructions with side effects. At least for
4063 // intrinsics, side effects implies mayStore.
4064 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4065 Msgs.push_back("pattern may store, but mayStore isn't set");
4066
4067 // Similarly, mayStore implies mayLoad on intrinsics.
4068 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4069 Msgs.push_back("pattern may load, but mayLoad isn't set");
4070
4071 // Print error messages.
4072 if (Msgs.empty())
4073 continue;
4074 ++Errors;
4075
4076 for (const std::string &Msg : Msgs)
4077 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4078 (Instrs.size() == 1 ?
4079 "instruction" : "output instructions"));
4080 // Provide the location of the relevant instruction definitions.
4081 for (const Record *Instr : Instrs) {
4082 if (Instr != PTM.getSrcRecord())
4083 PrintError(Instr->getLoc(), "defined here");
4084 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4085 if (InstInfo.InferredFrom &&
4086 InstInfo.InferredFrom != InstInfo.TheDef &&
4087 InstInfo.InferredFrom != PTM.getSrcRecord())
4088 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4089 }
4090 }
4091 if (Errors)
4092 PrintFatalError("Errors in DAG patterns");
4093 }
4094
4095 /// Given a pattern result with an unresolved type, see if we can find one
4096 /// instruction with an unresolved result type. Force this result type to an
4097 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)4098 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4099 if (N->isLeaf())
4100 return false;
4101
4102 // Analyze children.
4103 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4104 if (ForceArbitraryInstResultType(N->getChild(i), TP))
4105 return true;
4106
4107 if (!N->getOperator()->isSubClassOf("Instruction"))
4108 return false;
4109
4110 // If this type is already concrete or completely unknown we can't do
4111 // anything.
4112 TypeInfer &TI = TP.getInfer();
4113 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4114 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4115 continue;
4116
4117 // Otherwise, force its type to an arbitrary choice.
4118 if (TI.forceArbitrary(N->getExtType(i)))
4119 return true;
4120 }
4121
4122 return false;
4123 }
4124
4125 // Promote xform function to be an explicit node wherever set.
PromoteXForms(TreePatternNodePtr N)4126 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4127 if (Record *Xform = N->getTransformFn()) {
4128 N->setTransformFn(nullptr);
4129 std::vector<TreePatternNodePtr> Children;
4130 Children.push_back(PromoteXForms(N));
4131 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4132 N->getNumTypes());
4133 }
4134
4135 if (!N->isLeaf())
4136 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4137 TreePatternNodePtr Child = N->getChildShared(i);
4138 N->setChild(i, PromoteXForms(Child));
4139 }
4140 return N;
4141 }
4142
ParseOnePattern(Record * TheDef,TreePattern & Pattern,TreePattern & Result,const std::vector<Record * > & InstImpResults)4143 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4144 TreePattern &Pattern, TreePattern &Result,
4145 const std::vector<Record *> &InstImpResults) {
4146
4147 // Inline pattern fragments and expand multiple alternatives.
4148 Pattern.InlinePatternFragments();
4149 Result.InlinePatternFragments();
4150
4151 if (Result.getNumTrees() != 1)
4152 Result.error("Cannot use multi-alternative fragments in result pattern!");
4153
4154 // Infer types.
4155 bool IterateInference;
4156 bool InferredAllPatternTypes, InferredAllResultTypes;
4157 do {
4158 // Infer as many types as possible. If we cannot infer all of them, we
4159 // can never do anything with this pattern: report it to the user.
4160 InferredAllPatternTypes =
4161 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4162
4163 // Infer as many types as possible. If we cannot infer all of them, we
4164 // can never do anything with this pattern: report it to the user.
4165 InferredAllResultTypes =
4166 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4167
4168 IterateInference = false;
4169
4170 // Apply the type of the result to the source pattern. This helps us
4171 // resolve cases where the input type is known to be a pointer type (which
4172 // is considered resolved), but the result knows it needs to be 32- or
4173 // 64-bits. Infer the other way for good measure.
4174 for (auto T : Pattern.getTrees())
4175 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4176 T->getNumTypes());
4177 i != e; ++i) {
4178 IterateInference |= T->UpdateNodeType(
4179 i, Result.getOnlyTree()->getExtType(i), Result);
4180 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4181 i, T->getExtType(i), Result);
4182 }
4183
4184 // If our iteration has converged and the input pattern's types are fully
4185 // resolved but the result pattern is not fully resolved, we may have a
4186 // situation where we have two instructions in the result pattern and
4187 // the instructions require a common register class, but don't care about
4188 // what actual MVT is used. This is actually a bug in our modelling:
4189 // output patterns should have register classes, not MVTs.
4190 //
4191 // In any case, to handle this, we just go through and disambiguate some
4192 // arbitrary types to the result pattern's nodes.
4193 if (!IterateInference && InferredAllPatternTypes &&
4194 !InferredAllResultTypes)
4195 IterateInference =
4196 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4197 } while (IterateInference);
4198
4199 // Verify that we inferred enough types that we can do something with the
4200 // pattern and result. If these fire the user has to add type casts.
4201 if (!InferredAllPatternTypes)
4202 Pattern.error("Could not infer all types in pattern!");
4203 if (!InferredAllResultTypes) {
4204 Pattern.dump();
4205 Result.error("Could not infer all types in pattern result!");
4206 }
4207
4208 // Promote xform function to be an explicit node wherever set.
4209 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4210
4211 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4212 Temp.InferAllTypes();
4213
4214 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4215 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4216
4217 if (PatternRewriter)
4218 PatternRewriter(&Pattern);
4219
4220 // A pattern may end up with an "impossible" type, i.e. a situation
4221 // where all types have been eliminated for some node in this pattern.
4222 // This could occur for intrinsics that only make sense for a specific
4223 // value type, and use a specific register class. If, for some mode,
4224 // that register class does not accept that type, the type inference
4225 // will lead to a contradiction, which is not an error however, but
4226 // a sign that this pattern will simply never match.
4227 if (Temp.getOnlyTree()->hasPossibleType())
4228 for (auto T : Pattern.getTrees())
4229 if (T->hasPossibleType())
4230 AddPatternToMatch(&Pattern,
4231 PatternToMatch(TheDef, makePredList(Preds),
4232 T, Temp.getOnlyTree(),
4233 InstImpResults, Complexity,
4234 TheDef->getID()));
4235 }
4236
ParsePatterns()4237 void CodeGenDAGPatterns::ParsePatterns() {
4238 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4239
4240 for (Record *CurPattern : Patterns) {
4241 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4242
4243 // If the pattern references the null_frag, there's nothing to do.
4244 if (hasNullFragReference(Tree))
4245 continue;
4246
4247 TreePattern Pattern(CurPattern, Tree, true, *this);
4248
4249 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4250 if (LI->empty()) continue; // no pattern.
4251
4252 // Parse the instruction.
4253 TreePattern Result(CurPattern, LI, false, *this);
4254
4255 if (Result.getNumTrees() != 1)
4256 Result.error("Cannot handle instructions producing instructions "
4257 "with temporaries yet!");
4258
4259 // Validate that the input pattern is correct.
4260 std::map<std::string, TreePatternNodePtr> InstInputs;
4261 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4262 InstResults;
4263 std::vector<Record*> InstImpResults;
4264 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4265 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4266 InstResults, InstImpResults);
4267
4268 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4269 }
4270 }
4271
collectModes(std::set<unsigned> & Modes,const TreePatternNode * N)4272 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4273 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4274 for (const auto &I : VTS)
4275 Modes.insert(I.first);
4276
4277 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4278 collectModes(Modes, N->getChild(i));
4279 }
4280
ExpandHwModeBasedTypes()4281 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4282 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4283 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4284 std::vector<PatternToMatch> Copy = PatternsToMatch;
4285 PatternsToMatch.clear();
4286
4287 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4288 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4289 TreePatternNodePtr NewDst = P.DstPattern->clone();
4290 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4291 return;
4292 }
4293
4294 std::vector<Predicate> Preds = P.Predicates;
4295 const std::vector<Predicate> &MC = ModeChecks[Mode];
4296 Preds.insert(Preds.end(), MC.begin(), MC.end());
4297 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4298 std::move(NewDst), P.getDstRegs(),
4299 P.getAddedComplexity(), Record::getNewUID(),
4300 Mode);
4301 };
4302
4303 for (PatternToMatch &P : Copy) {
4304 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4305 if (P.SrcPattern->hasProperTypeByHwMode())
4306 SrcP = P.SrcPattern;
4307 if (P.DstPattern->hasProperTypeByHwMode())
4308 DstP = P.DstPattern;
4309 if (!SrcP && !DstP) {
4310 PatternsToMatch.push_back(P);
4311 continue;
4312 }
4313
4314 std::set<unsigned> Modes;
4315 if (SrcP)
4316 collectModes(Modes, SrcP.get());
4317 if (DstP)
4318 collectModes(Modes, DstP.get());
4319
4320 // The predicate for the default mode needs to be constructed for each
4321 // pattern separately.
4322 // Since not all modes must be present in each pattern, if a mode m is
4323 // absent, then there is no point in constructing a check for m. If such
4324 // a check was created, it would be equivalent to checking the default
4325 // mode, except not all modes' predicates would be a part of the checking
4326 // code. The subsequently generated check for the default mode would then
4327 // have the exact same patterns, but a different predicate code. To avoid
4328 // duplicated patterns with different predicate checks, construct the
4329 // default check as a negation of all predicates that are actually present
4330 // in the source/destination patterns.
4331 std::vector<Predicate> DefaultPred;
4332
4333 for (unsigned M : Modes) {
4334 if (M == DefaultMode)
4335 continue;
4336 if (ModeChecks.find(M) != ModeChecks.end())
4337 continue;
4338
4339 // Fill the map entry for this mode.
4340 const HwMode &HM = CGH.getMode(M);
4341 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4342
4343 // Add negations of the HM's predicates to the default predicate.
4344 DefaultPred.emplace_back(Predicate(HM.Features, false));
4345 }
4346
4347 for (unsigned M : Modes) {
4348 if (M == DefaultMode)
4349 continue;
4350 AppendPattern(P, M);
4351 }
4352
4353 bool HasDefault = Modes.count(DefaultMode);
4354 if (HasDefault)
4355 AppendPattern(P, DefaultMode);
4356 }
4357 }
4358
4359 /// Dependent variable map for CodeGenDAGPattern variant generation
4360 typedef StringMap<int> DepVarMap;
4361
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)4362 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4363 if (N->isLeaf()) {
4364 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4365 DepMap[N->getName()]++;
4366 } else {
4367 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4368 FindDepVarsOf(N->getChild(i), DepMap);
4369 }
4370 }
4371
4372 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)4373 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4374 DepVarMap depcounts;
4375 FindDepVarsOf(N, depcounts);
4376 for (const auto &Pair : depcounts) {
4377 if (Pair.getValue() > 1)
4378 DepVars.insert(Pair.getKey());
4379 }
4380 }
4381
4382 #ifndef NDEBUG
4383 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)4384 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4385 if (DepVars.empty()) {
4386 LLVM_DEBUG(errs() << "<empty set>");
4387 } else {
4388 LLVM_DEBUG(errs() << "[ ");
4389 for (const auto &DepVar : DepVars) {
4390 LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4391 }
4392 LLVM_DEBUG(errs() << "]");
4393 }
4394 }
4395 #endif
4396
4397
4398 /// CombineChildVariants - Given a bunch of permutations of each child of the
4399 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<std::vector<TreePatternNodePtr>> & ChildVariants,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4400 static void CombineChildVariants(
4401 TreePatternNodePtr Orig,
4402 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4403 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4404 const MultipleUseVarSet &DepVars) {
4405 // Make sure that each operand has at least one variant to choose from.
4406 for (const auto &Variants : ChildVariants)
4407 if (Variants.empty())
4408 return;
4409
4410 // The end result is an all-pairs construction of the resultant pattern.
4411 std::vector<unsigned> Idxs;
4412 Idxs.resize(ChildVariants.size());
4413 bool NotDone;
4414 do {
4415 #ifndef NDEBUG
4416 LLVM_DEBUG(if (!Idxs.empty()) {
4417 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4418 for (unsigned Idx : Idxs) {
4419 errs() << Idx << " ";
4420 }
4421 errs() << "]\n";
4422 });
4423 #endif
4424 // Create the variant and add it to the output list.
4425 std::vector<TreePatternNodePtr> NewChildren;
4426 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4427 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4428 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4429 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4430
4431 // Copy over properties.
4432 R->setName(Orig->getName());
4433 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4434 R->setPredicateCalls(Orig->getPredicateCalls());
4435 R->setTransformFn(Orig->getTransformFn());
4436 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4437 R->setType(i, Orig->getExtType(i));
4438
4439 // If this pattern cannot match, do not include it as a variant.
4440 std::string ErrString;
4441 // Scan to see if this pattern has already been emitted. We can get
4442 // duplication due to things like commuting:
4443 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4444 // which are the same pattern. Ignore the dups.
4445 if (R->canPatternMatch(ErrString, CDP) &&
4446 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4447 return R->isIsomorphicTo(Variant.get(), DepVars);
4448 }))
4449 OutVariants.push_back(R);
4450
4451 // Increment indices to the next permutation by incrementing the
4452 // indices from last index backward, e.g., generate the sequence
4453 // [0, 0], [0, 1], [1, 0], [1, 1].
4454 int IdxsIdx;
4455 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4456 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4457 Idxs[IdxsIdx] = 0;
4458 else
4459 break;
4460 }
4461 NotDone = (IdxsIdx >= 0);
4462 } while (NotDone);
4463 }
4464
4465 /// CombineChildVariants - A helper function for binary operators.
4466 ///
CombineChildVariants(TreePatternNodePtr Orig,const std::vector<TreePatternNodePtr> & LHS,const std::vector<TreePatternNodePtr> & RHS,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4467 static void CombineChildVariants(TreePatternNodePtr Orig,
4468 const std::vector<TreePatternNodePtr> &LHS,
4469 const std::vector<TreePatternNodePtr> &RHS,
4470 std::vector<TreePatternNodePtr> &OutVariants,
4471 CodeGenDAGPatterns &CDP,
4472 const MultipleUseVarSet &DepVars) {
4473 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4474 ChildVariants.push_back(LHS);
4475 ChildVariants.push_back(RHS);
4476 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4477 }
4478
4479 static void
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & Children)4480 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4481 std::vector<TreePatternNodePtr> &Children) {
4482 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4483 Record *Operator = N->getOperator();
4484
4485 // Only permit raw nodes.
4486 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4487 N->getTransformFn()) {
4488 Children.push_back(N);
4489 return;
4490 }
4491
4492 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4493 Children.push_back(N->getChildShared(0));
4494 else
4495 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4496
4497 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4498 Children.push_back(N->getChildShared(1));
4499 else
4500 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4501 }
4502
4503 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4504 /// the (potentially recursive) pattern by using algebraic laws.
4505 ///
GenerateVariantsOf(TreePatternNodePtr N,std::vector<TreePatternNodePtr> & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)4506 static void GenerateVariantsOf(TreePatternNodePtr N,
4507 std::vector<TreePatternNodePtr> &OutVariants,
4508 CodeGenDAGPatterns &CDP,
4509 const MultipleUseVarSet &DepVars) {
4510 // We cannot permute leaves or ComplexPattern uses.
4511 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4512 OutVariants.push_back(N);
4513 return;
4514 }
4515
4516 // Look up interesting info about the node.
4517 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4518
4519 // If this node is associative, re-associate.
4520 if (NodeInfo.hasProperty(SDNPAssociative)) {
4521 // Re-associate by pulling together all of the linked operators
4522 std::vector<TreePatternNodePtr> MaximalChildren;
4523 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4524
4525 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4526 // permutations.
4527 if (MaximalChildren.size() == 3) {
4528 // Find the variants of all of our maximal children.
4529 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4530 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4531 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4532 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4533
4534 // There are only two ways we can permute the tree:
4535 // (A op B) op C and A op (B op C)
4536 // Within these forms, we can also permute A/B/C.
4537
4538 // Generate legal pair permutations of A/B/C.
4539 std::vector<TreePatternNodePtr> ABVariants;
4540 std::vector<TreePatternNodePtr> BAVariants;
4541 std::vector<TreePatternNodePtr> ACVariants;
4542 std::vector<TreePatternNodePtr> CAVariants;
4543 std::vector<TreePatternNodePtr> BCVariants;
4544 std::vector<TreePatternNodePtr> CBVariants;
4545 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4546 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4547 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4548 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4549 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4550 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4551
4552 // Combine those into the result: (x op x) op x
4553 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4554 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4555 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4556 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4557 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4558 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4559
4560 // Combine those into the result: x op (x op x)
4561 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4562 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4563 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4564 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4565 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4566 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4567 return;
4568 }
4569 }
4570
4571 // Compute permutations of all children.
4572 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4573 ChildVariants.resize(N->getNumChildren());
4574 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4575 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4576
4577 // Build all permutations based on how the children were formed.
4578 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4579
4580 // If this node is commutative, consider the commuted order.
4581 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4582 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4583 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4584 "Commutative but doesn't have 2 children!");
4585 // Don't count children which are actually register references.
4586 unsigned NC = 0;
4587 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4588 TreePatternNode *Child = N->getChild(i);
4589 if (Child->isLeaf())
4590 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4591 Record *RR = DI->getDef();
4592 if (RR->isSubClassOf("Register"))
4593 continue;
4594 }
4595 NC++;
4596 }
4597 // Consider the commuted order.
4598 if (isCommIntrinsic) {
4599 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4600 // operands are the commutative operands, and there might be more operands
4601 // after those.
4602 assert(NC >= 3 &&
4603 "Commutative intrinsic should have at least 3 children!");
4604 std::vector<std::vector<TreePatternNodePtr>> Variants;
4605 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4606 Variants.push_back(std::move(ChildVariants[2]));
4607 Variants.push_back(std::move(ChildVariants[1]));
4608 for (unsigned i = 3; i != NC; ++i)
4609 Variants.push_back(std::move(ChildVariants[i]));
4610 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4611 } else if (NC == N->getNumChildren()) {
4612 std::vector<std::vector<TreePatternNodePtr>> Variants;
4613 Variants.push_back(std::move(ChildVariants[1]));
4614 Variants.push_back(std::move(ChildVariants[0]));
4615 for (unsigned i = 2; i != NC; ++i)
4616 Variants.push_back(std::move(ChildVariants[i]));
4617 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4618 }
4619 }
4620 }
4621
4622
4623 // GenerateVariants - Generate variants. For example, commutative patterns can
4624 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()4625 void CodeGenDAGPatterns::GenerateVariants() {
4626 LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4627
4628 // Loop over all of the patterns we've collected, checking to see if we can
4629 // generate variants of the instruction, through the exploitation of
4630 // identities. This permits the target to provide aggressive matching without
4631 // the .td file having to contain tons of variants of instructions.
4632 //
4633 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4634 // intentionally do not reconsider these. Any variants of added patterns have
4635 // already been added.
4636 //
4637 const unsigned NumOriginalPatterns = PatternsToMatch.size();
4638 BitVector MatchedPatterns(NumOriginalPatterns);
4639 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4640 BitVector(NumOriginalPatterns));
4641
4642 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4643 DepsAndVariants;
4644 std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4645
4646 // Collect patterns with more than one variant.
4647 for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4648 MultipleUseVarSet DepVars;
4649 std::vector<TreePatternNodePtr> Variants;
4650 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4651 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4652 LLVM_DEBUG(DumpDepVars(DepVars));
4653 LLVM_DEBUG(errs() << "\n");
4654 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4655 *this, DepVars);
4656
4657 assert(!Variants.empty() && "Must create at least original variant!");
4658 if (Variants.size() == 1) // No additional variants for this pattern.
4659 continue;
4660
4661 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4662 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4663
4664 PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4665
4666 // Cache matching predicates.
4667 if (MatchedPatterns[i])
4668 continue;
4669
4670 const std::vector<Predicate> &Predicates =
4671 PatternsToMatch[i].getPredicates();
4672
4673 BitVector &Matches = MatchedPredicates[i];
4674 MatchedPatterns.set(i);
4675 Matches.set(i);
4676
4677 // Don't test patterns that have already been cached - it won't match.
4678 for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4679 if (!MatchedPatterns[p])
4680 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4681
4682 // Copy this to all the matching patterns.
4683 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4684 if (p != (int)i) {
4685 MatchedPatterns.set(p);
4686 MatchedPredicates[p] = Matches;
4687 }
4688 }
4689
4690 for (auto it : PatternsWithVariants) {
4691 unsigned i = it.first;
4692 const MultipleUseVarSet &DepVars = it.second.first;
4693 const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4694
4695 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4696 TreePatternNodePtr Variant = Variants[v];
4697 BitVector &Matches = MatchedPredicates[i];
4698
4699 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
4700 errs() << "\n");
4701
4702 // Scan to see if an instruction or explicit pattern already matches this.
4703 bool AlreadyExists = false;
4704 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4705 // Skip if the top level predicates do not match.
4706 if (!Matches[p])
4707 continue;
4708 // Check to see if this variant already exists.
4709 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4710 DepVars)) {
4711 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4712 AlreadyExists = true;
4713 break;
4714 }
4715 }
4716 // If we already have it, ignore the variant.
4717 if (AlreadyExists) continue;
4718
4719 // Otherwise, add it to the list of patterns we have.
4720 PatternsToMatch.push_back(PatternToMatch(
4721 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4722 Variant, PatternsToMatch[i].getDstPatternShared(),
4723 PatternsToMatch[i].getDstRegs(),
4724 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4725 MatchedPredicates.push_back(Matches);
4726
4727 // Add a new match the same as this pattern.
4728 for (auto &P : MatchedPredicates)
4729 P.push_back(P[i]);
4730 }
4731
4732 LLVM_DEBUG(errs() << "\n");
4733 }
4734 }
4735