• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*  $OpenBSD: sntrup4591761.c,v 1.3 2019/01/30 19:51:15 markus Exp $ */
2 
3 /*
4  * Public Domain, Authors:
5  * - Daniel J. Bernstein
6  * - Chitchanok Chuengsatiansup
7  * - Tanja Lange
8  * - Christine van Vredendaal
9  */
10 
11 #include "includes.h"
12 
13 #include <string.h>
14 #include "crypto_api.h"
15 
16 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/int32_sort.h */
17 #ifndef int32_sort_h
18 #define int32_sort_h
19 
20 
21 static void int32_sort(crypto_int32 *,int);
22 
23 #endif
24 
25 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/int32_sort.c */
26 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
27 
28 
minmax(crypto_int32 * x,crypto_int32 * y)29 static void minmax(crypto_int32 *x,crypto_int32 *y)
30 {
31   crypto_uint32 xi = *x;
32   crypto_uint32 yi = *y;
33   crypto_uint32 xy = xi ^ yi;
34   crypto_uint32 c = yi - xi;
35   c ^= xy & (c ^ yi);
36   c >>= 31;
37   c = -c;
38   c &= xy;
39   *x = xi ^ c;
40   *y = yi ^ c;
41 }
42 
int32_sort(crypto_int32 * x,int n)43 static void int32_sort(crypto_int32 *x,int n)
44 {
45   int top,p,q,i;
46 
47   if (n < 2) return;
48   top = 1;
49   while (top < n - top) top += top;
50 
51   for (p = top;p > 0;p >>= 1) {
52     for (i = 0;i < n - p;++i)
53       if (!(i & p))
54         minmax(x + i,x + i + p);
55     for (q = top;q > p;q >>= 1)
56       for (i = 0;i < n - q;++i)
57         if (!(i & p))
58           minmax(x + i + p,x + i + q);
59   }
60 }
61 
62 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/small.h */
63 #ifndef small_h
64 #define small_h
65 
66 
67 typedef crypto_int8 small;
68 
69 static void small_encode(unsigned char *,const small *);
70 
71 static void small_decode(small *,const unsigned char *);
72 
73 
74 static void small_random(small *);
75 
76 static void small_random_weightw(small *);
77 
78 #endif
79 
80 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/mod3.h */
81 #ifndef mod3_h
82 #define mod3_h
83 
84 
85 /* -1 if x is nonzero, 0 otherwise */
mod3_nonzero_mask(small x)86 static inline int mod3_nonzero_mask(small x)
87 {
88   return -x*x;
89 }
90 
91 /* input between -100000 and 100000 */
92 /* output between -1 and 1 */
mod3_freeze(crypto_int32 a)93 static inline small mod3_freeze(crypto_int32 a)
94 {
95   a -= 3 * ((10923 * a) >> 15);
96   a -= 3 * ((89478485 * a + 134217728) >> 28);
97   return a;
98 }
99 
mod3_minusproduct(small a,small b,small c)100 static inline small mod3_minusproduct(small a,small b,small c)
101 {
102   crypto_int32 A = a;
103   crypto_int32 B = b;
104   crypto_int32 C = c;
105   return mod3_freeze(A - B * C);
106 }
107 
mod3_plusproduct(small a,small b,small c)108 static inline small mod3_plusproduct(small a,small b,small c)
109 {
110   crypto_int32 A = a;
111   crypto_int32 B = b;
112   crypto_int32 C = c;
113   return mod3_freeze(A + B * C);
114 }
115 
mod3_product(small a,small b)116 static inline small mod3_product(small a,small b)
117 {
118   return a * b;
119 }
120 
mod3_sum(small a,small b)121 static inline small mod3_sum(small a,small b)
122 {
123   crypto_int32 A = a;
124   crypto_int32 B = b;
125   return mod3_freeze(A + B);
126 }
127 
mod3_reciprocal(small a1)128 static inline small mod3_reciprocal(small a1)
129 {
130   return a1;
131 }
132 
mod3_quotient(small num,small den)133 static inline small mod3_quotient(small num,small den)
134 {
135   return mod3_product(num,mod3_reciprocal(den));
136 }
137 
138 #endif
139 
140 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/modq.h */
141 #ifndef modq_h
142 #define modq_h
143 
144 
145 typedef crypto_int16 modq;
146 
147 /* -1 if x is nonzero, 0 otherwise */
modq_nonzero_mask(modq x)148 static inline int modq_nonzero_mask(modq x)
149 {
150   crypto_int32 r = (crypto_uint16) x;
151   r = -r;
152   r >>= 30;
153   return r;
154 }
155 
156 /* input between -9000000 and 9000000 */
157 /* output between -2295 and 2295 */
modq_freeze(crypto_int32 a)158 static inline modq modq_freeze(crypto_int32 a)
159 {
160   a -= 4591 * ((228 * a) >> 20);
161   a -= 4591 * ((58470 * a + 134217728) >> 28);
162   return a;
163 }
164 
modq_minusproduct(modq a,modq b,modq c)165 static inline modq modq_minusproduct(modq a,modq b,modq c)
166 {
167   crypto_int32 A = a;
168   crypto_int32 B = b;
169   crypto_int32 C = c;
170   return modq_freeze(A - B * C);
171 }
172 
modq_plusproduct(modq a,modq b,modq c)173 static inline modq modq_plusproduct(modq a,modq b,modq c)
174 {
175   crypto_int32 A = a;
176   crypto_int32 B = b;
177   crypto_int32 C = c;
178   return modq_freeze(A + B * C);
179 }
180 
modq_product(modq a,modq b)181 static inline modq modq_product(modq a,modq b)
182 {
183   crypto_int32 A = a;
184   crypto_int32 B = b;
185   return modq_freeze(A * B);
186 }
187 
modq_square(modq a)188 static inline modq modq_square(modq a)
189 {
190   crypto_int32 A = a;
191   return modq_freeze(A * A);
192 }
193 
modq_sum(modq a,modq b)194 static inline modq modq_sum(modq a,modq b)
195 {
196   crypto_int32 A = a;
197   crypto_int32 B = b;
198   return modq_freeze(A + B);
199 }
200 
modq_reciprocal(modq a1)201 static inline modq modq_reciprocal(modq a1)
202 {
203   modq a2 = modq_square(a1);
204   modq a3 = modq_product(a2,a1);
205   modq a4 = modq_square(a2);
206   modq a8 = modq_square(a4);
207   modq a16 = modq_square(a8);
208   modq a32 = modq_square(a16);
209   modq a35 = modq_product(a32,a3);
210   modq a70 = modq_square(a35);
211   modq a140 = modq_square(a70);
212   modq a143 = modq_product(a140,a3);
213   modq a286 = modq_square(a143);
214   modq a572 = modq_square(a286);
215   modq a1144 = modq_square(a572);
216   modq a1147 = modq_product(a1144,a3);
217   modq a2294 = modq_square(a1147);
218   modq a4588 = modq_square(a2294);
219   modq a4589 = modq_product(a4588,a1);
220   return a4589;
221 }
222 
modq_quotient(modq num,modq den)223 static inline modq modq_quotient(modq num,modq den)
224 {
225   return modq_product(num,modq_reciprocal(den));
226 }
227 
228 #endif
229 
230 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/params.h */
231 #ifndef params_h
232 #define params_h
233 
234 #define q 4591
235 /* XXX: also built into modq in various ways */
236 
237 #define qshift 2295
238 #define p 761
239 #define w 286
240 
241 #define rq_encode_len 1218
242 #define small_encode_len 191
243 
244 #endif
245 
246 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/r3.h */
247 #ifndef r3_h
248 #define r3_h
249 
250 
251 static void r3_mult(small *,const small *,const small *);
252 
253 extern int r3_recip(small *,const small *);
254 
255 #endif
256 
257 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/rq.h */
258 #ifndef rq_h
259 #define rq_h
260 
261 
262 static void rq_encode(unsigned char *,const modq *);
263 
264 static void rq_decode(modq *,const unsigned char *);
265 
266 static void rq_encoderounded(unsigned char *,const modq *);
267 
268 static void rq_decoderounded(modq *,const unsigned char *);
269 
270 static void rq_round3(modq *,const modq *);
271 
272 static void rq_mult(modq *,const modq *,const small *);
273 
274 int rq_recip3(modq *,const small *);
275 
276 #endif
277 
278 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/swap.h */
279 #ifndef swap_h
280 #define swap_h
281 
282 static void swap(void *,void *,int,int);
283 
284 #endif
285 
286 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/dec.c */
287 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
288 
289 #ifdef KAT
290 #endif
291 
292 
crypto_kem_sntrup4591761_dec(unsigned char * k,const unsigned char * cstr,const unsigned char * sk)293 int crypto_kem_sntrup4591761_dec(
294   unsigned char *k,
295   const unsigned char *cstr,
296   const unsigned char *sk
297 )
298 {
299   small f[p];
300   modq h[p];
301   small grecip[p];
302   modq c[p];
303   modq t[p];
304   small t3[p];
305   small r[p];
306   modq hr[p];
307   unsigned char rstr[small_encode_len];
308   unsigned char hash[64];
309   int i;
310   int result = 0;
311   int weight;
312 
313   small_decode(f,sk);
314   small_decode(grecip,sk + small_encode_len);
315   rq_decode(h,sk + 2 * small_encode_len);
316 
317   rq_decoderounded(c,cstr + 32);
318 
319   rq_mult(t,c,f);
320   for (i = 0;i < p;++i) t3[i] = mod3_freeze(modq_freeze(3*t[i]));
321 
322   r3_mult(r,t3,grecip);
323 
324 #ifdef KAT
325   {
326     int j;
327     printf("decrypt r:");
328     for (j = 0;j < p;++j)
329       if (r[j] == 1) printf(" +%d",j);
330       else if (r[j] == -1) printf(" -%d",j);
331     printf("\n");
332   }
333 #endif
334 
335   weight = 0;
336   for (i = 0;i < p;++i) weight += (1 & r[i]);
337   weight -= w;
338   result |= modq_nonzero_mask(weight); /* XXX: puts limit on p */
339 
340   rq_mult(hr,h,r);
341   rq_round3(hr,hr);
342   for (i = 0;i < p;++i) result |= modq_nonzero_mask(hr[i] - c[i]);
343 
344   small_encode(rstr,r);
345   crypto_hash_sha512(hash,rstr,sizeof rstr);
346   result |= crypto_verify_32(hash,cstr);
347 
348   for (i = 0;i < 32;++i) k[i] = (hash[32 + i] & ~result);
349   return result;
350 }
351 
352 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/enc.c */
353 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
354 
355 #ifdef KAT
356 #endif
357 
358 
crypto_kem_sntrup4591761_enc(unsigned char * cstr,unsigned char * k,const unsigned char * pk)359 int crypto_kem_sntrup4591761_enc(
360   unsigned char *cstr,
361   unsigned char *k,
362   const unsigned char *pk
363 )
364 {
365   small r[p];
366   modq h[p];
367   modq c[p];
368   unsigned char rstr[small_encode_len];
369   unsigned char hash[64];
370 
371   small_random_weightw(r);
372 
373 #ifdef KAT
374   {
375     int i;
376     printf("encrypt r:");
377     for (i = 0;i < p;++i)
378       if (r[i] == 1) printf(" +%d",i);
379       else if (r[i] == -1) printf(" -%d",i);
380     printf("\n");
381   }
382 #endif
383 
384   small_encode(rstr,r);
385   crypto_hash_sha512(hash,rstr,sizeof rstr);
386 
387   rq_decode(h,pk);
388   rq_mult(c,h,r);
389   rq_round3(c,c);
390 
391   memcpy(k,hash + 32,32);
392   memcpy(cstr,hash,32);
393   rq_encoderounded(cstr + 32,c);
394 
395   return 0;
396 }
397 
398 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/keypair.c */
399 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
400 
401 
402 #if crypto_kem_sntrup4591761_PUBLICKEYBYTES != rq_encode_len
403 #error "crypto_kem_sntrup4591761_PUBLICKEYBYTES must match rq_encode_len"
404 #endif
405 #if crypto_kem_sntrup4591761_SECRETKEYBYTES != rq_encode_len + 2 * small_encode_len
406 #error "crypto_kem_sntrup4591761_SECRETKEYBYTES must match rq_encode_len + 2 * small_encode_len"
407 #endif
408 
crypto_kem_sntrup4591761_keypair(unsigned char * pk,unsigned char * sk)409 int crypto_kem_sntrup4591761_keypair(unsigned char *pk,unsigned char *sk)
410 {
411   small g[p];
412   small grecip[p];
413   small f[p];
414   modq f3recip[p];
415   modq h[p];
416 
417   do
418     small_random(g);
419   while (r3_recip(grecip,g) != 0);
420 
421   small_random_weightw(f);
422   rq_recip3(f3recip,f);
423 
424   rq_mult(h,f3recip,g);
425 
426   rq_encode(pk,h);
427   small_encode(sk,f);
428   small_encode(sk + small_encode_len,grecip);
429   memcpy(sk + 2 * small_encode_len,pk,rq_encode_len);
430 
431   return 0;
432 }
433 
434 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/r3_mult.c */
435 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
436 
437 
r3_mult(small * h,const small * f,const small * g)438 static void r3_mult(small *h,const small *f,const small *g)
439 {
440   small fg[p + p - 1];
441   small result;
442   int i, j;
443 
444   for (i = 0;i < p;++i) {
445     result = 0;
446     for (j = 0;j <= i;++j)
447       result = mod3_plusproduct(result,f[j],g[i - j]);
448     fg[i] = result;
449   }
450   for (i = p;i < p + p - 1;++i) {
451     result = 0;
452     for (j = i - p + 1;j < p;++j)
453       result = mod3_plusproduct(result,f[j],g[i - j]);
454     fg[i] = result;
455   }
456 
457   for (i = p + p - 2;i >= p;--i) {
458     fg[i - p] = mod3_sum(fg[i - p],fg[i]);
459     fg[i - p + 1] = mod3_sum(fg[i - p + 1],fg[i]);
460   }
461 
462   for (i = 0;i < p;++i)
463     h[i] = fg[i];
464 }
465 
466 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/r3_recip.c */
467 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
468 
469 
470 /* caller must ensure that x-y does not overflow */
smaller_mask_r3_recip(int x,int y)471 static int smaller_mask_r3_recip(int x,int y)
472 {
473   return (x - y) >> 31;
474 }
475 
vectormod3_product(small * z,int len,const small * x,const small c)476 static void vectormod3_product(small *z,int len,const small *x,const small c)
477 {
478   int i;
479   for (i = 0;i < len;++i) z[i] = mod3_product(x[i],c);
480 }
481 
vectormod3_minusproduct(small * z,int len,const small * x,const small * y,const small c)482 static void vectormod3_minusproduct(small *z,int len,const small *x,const small *y,const small c)
483 {
484   int i;
485   for (i = 0;i < len;++i) z[i] = mod3_minusproduct(x[i],y[i],c);
486 }
487 
vectormod3_shift(small * z,int len)488 static void vectormod3_shift(small *z,int len)
489 {
490   int i;
491   for (i = len - 1;i > 0;--i) z[i] = z[i - 1];
492   z[0] = 0;
493 }
494 
495 /*
496 r = s^(-1) mod m, returning 0, if s is invertible mod m
497 or returning -1 if s is not invertible mod m
498 r,s are polys of degree <p
499 m is x^p-x-1
500 */
r3_recip(small * r,const small * s)501 int r3_recip(small *r,const small *s)
502 {
503   const int loops = 2*p + 1;
504   int loop;
505   small f[p + 1];
506   small g[p + 1];
507   small u[2*p + 2];
508   small v[2*p + 2];
509   small c;
510   int i;
511   int d = p;
512   int e = p;
513   int swapmask;
514 
515   for (i = 2;i < p;++i) f[i] = 0;
516   f[0] = -1;
517   f[1] = -1;
518   f[p] = 1;
519   /* generalization: can initialize f to any polynomial m */
520   /* requirements: m has degree exactly p, nonzero constant coefficient */
521 
522   for (i = 0;i < p;++i) g[i] = s[i];
523   g[p] = 0;
524 
525   for (i = 0;i <= loops;++i) u[i] = 0;
526 
527   v[0] = 1;
528   for (i = 1;i <= loops;++i) v[i] = 0;
529 
530   loop = 0;
531   for (;;) {
532     /* e == -1 or d + e + loop <= 2*p */
533 
534     /* f has degree p: i.e., f[p]!=0 */
535     /* f[i]==0 for i < p-d */
536 
537     /* g has degree <=p (so it fits in p+1 coefficients) */
538     /* g[i]==0 for i < p-e */
539 
540     /* u has degree <=loop (so it fits in loop+1 coefficients) */
541     /* u[i]==0 for i < p-d */
542     /* if invertible: u[i]==0 for i < loop-p (so can look at just p+1 coefficients) */
543 
544     /* v has degree <=loop (so it fits in loop+1 coefficients) */
545     /* v[i]==0 for i < p-e */
546     /* v[i]==0 for i < loop-p (so can look at just p+1 coefficients) */
547 
548     if (loop >= loops) break;
549 
550     c = mod3_quotient(g[p],f[p]);
551 
552     vectormod3_minusproduct(g,p + 1,g,f,c);
553     vectormod3_shift(g,p + 1);
554 
555 #ifdef SIMPLER
556     vectormod3_minusproduct(v,loops + 1,v,u,c);
557     vectormod3_shift(v,loops + 1);
558 #else
559     if (loop < p) {
560       vectormod3_minusproduct(v,loop + 1,v,u,c);
561       vectormod3_shift(v,loop + 2);
562     } else {
563       vectormod3_minusproduct(v + loop - p,p + 1,v + loop - p,u + loop - p,c);
564       vectormod3_shift(v + loop - p,p + 2);
565     }
566 #endif
567 
568     e -= 1;
569 
570     ++loop;
571 
572     swapmask = smaller_mask_r3_recip(e,d) & mod3_nonzero_mask(g[p]);
573     swap(&e,&d,sizeof e,swapmask);
574     swap(f,g,(p + 1) * sizeof(small),swapmask);
575 
576 #ifdef SIMPLER
577     swap(u,v,(loops + 1) * sizeof(small),swapmask);
578 #else
579     if (loop < p) {
580       swap(u,v,(loop + 1) * sizeof(small),swapmask);
581     } else {
582       swap(u + loop - p,v + loop - p,(p + 1) * sizeof(small),swapmask);
583     }
584 #endif
585   }
586 
587   c = mod3_reciprocal(f[p]);
588   vectormod3_product(r,p,u + p,c);
589   return smaller_mask_r3_recip(0,d);
590 }
591 
592 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/randomsmall.c */
593 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
594 
595 
small_random(small * g)596 static void small_random(small *g)
597 {
598   int i;
599 
600   for (i = 0;i < p;++i) {
601     crypto_uint32 r = small_random32();
602     g[i] = (small) (((1073741823 & r) * 3) >> 30) - 1;
603   }
604 }
605 
606 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/randomweightw.c */
607 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
608 
609 
small_random_weightw(small * f)610 static void small_random_weightw(small *f)
611 {
612   crypto_int32 r[p];
613   int i;
614 
615   for (i = 0;i < p;++i) r[i] = small_random32();
616   for (i = 0;i < w;++i) r[i] &= -2;
617   for (i = w;i < p;++i) r[i] = (r[i] & -3) | 1;
618   int32_sort(r,p);
619   for (i = 0;i < p;++i) f[i] = ((small) (r[i] & 3)) - 1;
620 }
621 
622 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/rq.c */
623 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
624 
625 
rq_encode(unsigned char * c,const modq * f)626 static void rq_encode(unsigned char *c,const modq *f)
627 {
628   crypto_int32 f0, f1, f2, f3, f4;
629   int i;
630 
631   for (i = 0;i < p/5;++i) {
632     f0 = *f++ + qshift;
633     f1 = *f++ + qshift;
634     f2 = *f++ + qshift;
635     f3 = *f++ + qshift;
636     f4 = *f++ + qshift;
637     /* now want f0 + 6144*f1 + ... as a 64-bit integer */
638     f1 *= 3;
639     f2 *= 9;
640     f3 *= 27;
641     f4 *= 81;
642     /* now want f0 + f1<<11 + f2<<22 + f3<<33 + f4<<44 */
643     f0 += f1 << 11;
644     *c++ = f0; f0 >>= 8;
645     *c++ = f0; f0 >>= 8;
646     f0 += f2 << 6;
647     *c++ = f0; f0 >>= 8;
648     *c++ = f0; f0 >>= 8;
649     f0 += f3 << 1;
650     *c++ = f0; f0 >>= 8;
651     f0 += f4 << 4;
652     *c++ = f0; f0 >>= 8;
653     *c++ = f0; f0 >>= 8;
654     *c++ = f0;
655   }
656   /* XXX: using p mod 5 = 1 */
657   f0 = *f++ + qshift;
658   *c++ = f0; f0 >>= 8;
659   *c++ = f0;
660 }
661 
rq_decode(modq * f,const unsigned char * c)662 static void rq_decode(modq *f,const unsigned char *c)
663 {
664   crypto_uint32 c0, c1, c2, c3, c4, c5, c6, c7;
665   crypto_uint32 f0, f1, f2, f3, f4;
666   int i;
667 
668   for (i = 0;i < p/5;++i) {
669     c0 = *c++;
670     c1 = *c++;
671     c2 = *c++;
672     c3 = *c++;
673     c4 = *c++;
674     c5 = *c++;
675     c6 = *c++;
676     c7 = *c++;
677 
678     /* f0 + f1*6144 + f2*6144^2 + f3*6144^3 + f4*6144^4 */
679     /* = c0 + c1*256 + ... + c6*256^6 + c7*256^7 */
680     /* with each f between 0 and 4590 */
681 
682     c6 += c7 << 8;
683     /* c6 <= 23241 = floor(4591*6144^4/2^48) */
684     /* f4 = (16/81)c6 + (1/1296)(c5+[0,1]) - [0,0.75] */
685     /* claim: 2^19 f4 < x < 2^19(f4+1) */
686     /* where x = 103564 c6 + 405(c5+1) */
687     /* proof: x - 2^19 f4 = (76/81)c6 + (37/81)c5 + 405 - (32768/81)[0,1] + 2^19[0,0.75] */
688     /* at least 405 - 32768/81 > 0 */
689     /* at most (76/81)23241 + (37/81)255 + 405 + 2^19 0.75 < 2^19 */
690     f4 = (103564*c6 + 405*(c5+1)) >> 19;
691 
692     c5 += c6 << 8;
693     c5 -= (f4 * 81) << 4;
694     c4 += c5 << 8;
695 
696     /* f0 + f1*6144 + f2*6144^2 + f3*6144^3 */
697     /* = c0 + c1*256 + c2*256^2 + c3*256^3 + c4*256^4 */
698     /* c4 <= 247914 = floor(4591*6144^3/2^32) */
699     /* f3 = (1/54)(c4+[0,1]) - [0,0.75] */
700     /* claim: 2^19 f3 < x < 2^19(f3+1) */
701     /* where x = 9709(c4+2) */
702     /* proof: x - 2^19 f3 = 19418 - (1/27)c4 - (262144/27)[0,1] + 2^19[0,0.75] */
703     /* at least 19418 - 247914/27 - 262144/27 > 0 */
704     /* at most 19418 + 2^19 0.75 < 2^19 */
705     f3 = (9709*(c4+2)) >> 19;
706 
707     c4 -= (f3 * 27) << 1;
708     c3 += c4 << 8;
709     /* f0 + f1*6144 + f2*6144^2 */
710     /* = c0 + c1*256 + c2*256^2 + c3*256^3 */
711     /* c3 <= 10329 = floor(4591*6144^2/2^24) */
712     /* f2 = (4/9)c3 + (1/576)c2 + (1/147456)c1 + (1/37748736)c0 - [0,0.75] */
713     /* claim: 2^19 f2 < x < 2^19(f2+1) */
714     /* where x = 233017 c3 + 910(c2+2) */
715     /* proof: x - 2^19 f2 = 1820 + (1/9)c3 - (2/9)c2 - (32/9)c1 - (1/72)c0 + 2^19[0,0.75] */
716     /* at least 1820 - (2/9)255 - (32/9)255 - (1/72)255 > 0 */
717     /* at most 1820 + (1/9)10329 + 2^19 0.75 < 2^19 */
718     f2 = (233017*c3 + 910*(c2+2)) >> 19;
719 
720     c2 += c3 << 8;
721     c2 -= (f2 * 9) << 6;
722     c1 += c2 << 8;
723     /* f0 + f1*6144 */
724     /* = c0 + c1*256 */
725     /* c1 <= 110184 = floor(4591*6144/2^8) */
726     /* f1 = (1/24)c1 + (1/6144)c0 - (1/6144)f0 */
727     /* claim: 2^19 f1 < x < 2^19(f1+1) */
728     /* where x = 21845(c1+2) + 85 c0 */
729     /* proof: x - 2^19 f1 = 43690 - (1/3)c1 - (1/3)c0 + 2^19 [0,0.75] */
730     /* at least 43690 - (1/3)110184 - (1/3)255 > 0 */
731     /* at most 43690 + 2^19 0.75 < 2^19 */
732     f1 = (21845*(c1+2) + 85*c0) >> 19;
733 
734     c1 -= (f1 * 3) << 3;
735     c0 += c1 << 8;
736     f0 = c0;
737 
738     *f++ = modq_freeze(f0 + q - qshift);
739     *f++ = modq_freeze(f1 + q - qshift);
740     *f++ = modq_freeze(f2 + q - qshift);
741     *f++ = modq_freeze(f3 + q - qshift);
742     *f++ = modq_freeze(f4 + q - qshift);
743   }
744 
745   c0 = *c++;
746   c1 = *c++;
747   c0 += c1 << 8;
748   *f++ = modq_freeze(c0 + q - qshift);
749 }
750 
751 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/rq_mult.c */
752 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
753 
754 
rq_mult(modq * h,const modq * f,const small * g)755 static void rq_mult(modq *h,const modq *f,const small *g)
756 {
757   modq fg[p + p - 1];
758   modq result;
759   int i, j;
760 
761   for (i = 0;i < p;++i) {
762     result = 0;
763     for (j = 0;j <= i;++j)
764       result = modq_plusproduct(result,f[j],g[i - j]);
765     fg[i] = result;
766   }
767   for (i = p;i < p + p - 1;++i) {
768     result = 0;
769     for (j = i - p + 1;j < p;++j)
770       result = modq_plusproduct(result,f[j],g[i - j]);
771     fg[i] = result;
772   }
773 
774   for (i = p + p - 2;i >= p;--i) {
775     fg[i - p] = modq_sum(fg[i - p],fg[i]);
776     fg[i - p + 1] = modq_sum(fg[i - p + 1],fg[i]);
777   }
778 
779   for (i = 0;i < p;++i)
780     h[i] = fg[i];
781 }
782 
783 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/rq_recip3.c */
784 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
785 
786 
787 /* caller must ensure that x-y does not overflow */
smaller_mask_rq_recip3(int x,int y)788 static int smaller_mask_rq_recip3(int x,int y)
789 {
790   return (x - y) >> 31;
791 }
792 
vectormodq_product(modq * z,int len,const modq * x,const modq c)793 static void vectormodq_product(modq *z,int len,const modq *x,const modq c)
794 {
795   int i;
796   for (i = 0;i < len;++i) z[i] = modq_product(x[i],c);
797 }
798 
vectormodq_minusproduct(modq * z,int len,const modq * x,const modq * y,const modq c)799 static void vectormodq_minusproduct(modq *z,int len,const modq *x,const modq *y,const modq c)
800 {
801   int i;
802   for (i = 0;i < len;++i) z[i] = modq_minusproduct(x[i],y[i],c);
803 }
804 
vectormodq_shift(modq * z,int len)805 static void vectormodq_shift(modq *z,int len)
806 {
807   int i;
808   for (i = len - 1;i > 0;--i) z[i] = z[i - 1];
809   z[0] = 0;
810 }
811 
812 /*
813 r = (3s)^(-1) mod m, returning 0, if s is invertible mod m
814 or returning -1 if s is not invertible mod m
815 r,s are polys of degree <p
816 m is x^p-x-1
817 */
rq_recip3(modq * r,const small * s)818 int rq_recip3(modq *r,const small *s)
819 {
820   const int loops = 2*p + 1;
821   int loop;
822   modq f[p + 1];
823   modq g[p + 1];
824   modq u[2*p + 2];
825   modq v[2*p + 2];
826   modq c;
827   int i;
828   int d = p;
829   int e = p;
830   int swapmask;
831 
832   for (i = 2;i < p;++i) f[i] = 0;
833   f[0] = -1;
834   f[1] = -1;
835   f[p] = 1;
836   /* generalization: can initialize f to any polynomial m */
837   /* requirements: m has degree exactly p, nonzero constant coefficient */
838 
839   for (i = 0;i < p;++i) g[i] = 3 * s[i];
840   g[p] = 0;
841 
842   for (i = 0;i <= loops;++i) u[i] = 0;
843 
844   v[0] = 1;
845   for (i = 1;i <= loops;++i) v[i] = 0;
846 
847   loop = 0;
848   for (;;) {
849     /* e == -1 or d + e + loop <= 2*p */
850 
851     /* f has degree p: i.e., f[p]!=0 */
852     /* f[i]==0 for i < p-d */
853 
854     /* g has degree <=p (so it fits in p+1 coefficients) */
855     /* g[i]==0 for i < p-e */
856 
857     /* u has degree <=loop (so it fits in loop+1 coefficients) */
858     /* u[i]==0 for i < p-d */
859     /* if invertible: u[i]==0 for i < loop-p (so can look at just p+1 coefficients) */
860 
861     /* v has degree <=loop (so it fits in loop+1 coefficients) */
862     /* v[i]==0 for i < p-e */
863     /* v[i]==0 for i < loop-p (so can look at just p+1 coefficients) */
864 
865     if (loop >= loops) break;
866 
867     c = modq_quotient(g[p],f[p]);
868 
869     vectormodq_minusproduct(g,p + 1,g,f,c);
870     vectormodq_shift(g,p + 1);
871 
872 #ifdef SIMPLER
873     vectormodq_minusproduct(v,loops + 1,v,u,c);
874     vectormodq_shift(v,loops + 1);
875 #else
876     if (loop < p) {
877       vectormodq_minusproduct(v,loop + 1,v,u,c);
878       vectormodq_shift(v,loop + 2);
879     } else {
880       vectormodq_minusproduct(v + loop - p,p + 1,v + loop - p,u + loop - p,c);
881       vectormodq_shift(v + loop - p,p + 2);
882     }
883 #endif
884 
885     e -= 1;
886 
887     ++loop;
888 
889     swapmask = smaller_mask_rq_recip3(e,d) & modq_nonzero_mask(g[p]);
890     swap(&e,&d,sizeof e,swapmask);
891     swap(f,g,(p + 1) * sizeof(modq),swapmask);
892 
893 #ifdef SIMPLER
894     swap(u,v,(loops + 1) * sizeof(modq),swapmask);
895 #else
896     if (loop < p) {
897       swap(u,v,(loop + 1) * sizeof(modq),swapmask);
898     } else {
899       swap(u + loop - p,v + loop - p,(p + 1) * sizeof(modq),swapmask);
900     }
901 #endif
902   }
903 
904   c = modq_reciprocal(f[p]);
905   vectormodq_product(r,p,u + p,c);
906   return smaller_mask_rq_recip3(0,d);
907 }
908 
909 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/rq_round3.c */
910 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
911 
912 
rq_round3(modq * h,const modq * f)913 static void rq_round3(modq *h,const modq *f)
914 {
915   int i;
916 
917   for (i = 0;i < p;++i)
918     h[i] = ((21846 * (f[i] + 2295) + 32768) >> 16) * 3 - 2295;
919 }
920 
921 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/rq_rounded.c */
922 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
923 
924 
rq_encoderounded(unsigned char * c,const modq * f)925 static void rq_encoderounded(unsigned char *c,const modq *f)
926 {
927   crypto_int32 f0, f1, f2;
928   int i;
929 
930   for (i = 0;i < p/3;++i) {
931     f0 = *f++ + qshift;
932     f1 = *f++ + qshift;
933     f2 = *f++ + qshift;
934     f0 = (21846 * f0) >> 16;
935     f1 = (21846 * f1) >> 16;
936     f2 = (21846 * f2) >> 16;
937     /* now want f0 + f1*1536 + f2*1536^2 as a 32-bit integer */
938     f2 *= 3;
939     f1 += f2 << 9;
940     f1 *= 3;
941     f0 += f1 << 9;
942     *c++ = f0; f0 >>= 8;
943     *c++ = f0; f0 >>= 8;
944     *c++ = f0; f0 >>= 8;
945     *c++ = f0;
946   }
947   /* XXX: using p mod 3 = 2 */
948   f0 = *f++ + qshift;
949   f1 = *f++ + qshift;
950   f0 = (21846 * f0) >> 16;
951   f1 = (21846 * f1) >> 16;
952   f1 *= 3;
953   f0 += f1 << 9;
954   *c++ = f0; f0 >>= 8;
955   *c++ = f0; f0 >>= 8;
956   *c++ = f0;
957 }
958 
rq_decoderounded(modq * f,const unsigned char * c)959 static void rq_decoderounded(modq *f,const unsigned char *c)
960 {
961   crypto_uint32 c0, c1, c2, c3;
962   crypto_uint32 f0, f1, f2;
963   int i;
964 
965   for (i = 0;i < p/3;++i) {
966     c0 = *c++;
967     c1 = *c++;
968     c2 = *c++;
969     c3 = *c++;
970 
971     /* f0 + f1*1536 + f2*1536^2 */
972     /* = c0 + c1*256 + c2*256^2 + c3*256^3 */
973     /* with each f between 0 and 1530 */
974 
975     /* f2 = (64/9)c3 + (1/36)c2 + (1/9216)c1 + (1/2359296)c0 - [0,0.99675] */
976     /* claim: 2^21 f2 < x < 2^21(f2+1) */
977     /* where x = 14913081*c3 + 58254*c2 + 228*(c1+2) */
978     /* proof: x - 2^21 f2 = 456 - (8/9)c0 + (4/9)c1 - (2/9)c2 + (1/9)c3 + 2^21 [0,0.99675] */
979     /* at least 456 - (8/9)255 - (2/9)255 > 0 */
980     /* at most 456 + (4/9)255 + (1/9)255 + 2^21 0.99675 < 2^21 */
981     f2 = (14913081*c3 + 58254*c2 + 228*(c1+2)) >> 21;
982 
983     c2 += c3 << 8;
984     c2 -= (f2 * 9) << 2;
985     /* f0 + f1*1536 */
986     /* = c0 + c1*256 + c2*256^2 */
987     /* c2 <= 35 = floor((1530+1530*1536)/256^2) */
988     /* f1 = (128/3)c2 + (1/6)c1 + (1/1536)c0 - (1/1536)f0 */
989     /* claim: 2^21 f1 < x < 2^21(f1+1) */
990     /* where x = 89478485*c2 + 349525*c1 + 1365*(c0+1) */
991     /* proof: x - 2^21 f1 = 1365 - (1/3)c2 - (1/3)c1 - (1/3)c0 + (4096/3)f0 */
992     /* at least 1365 - (1/3)35 - (1/3)255 - (1/3)255 > 0 */
993     /* at most 1365 + (4096/3)1530 < 2^21 */
994     f1 = (89478485*c2 + 349525*c1 + 1365*(c0+1)) >> 21;
995 
996     c1 += c2 << 8;
997     c1 -= (f1 * 3) << 1;
998 
999     c0 += c1 << 8;
1000     f0 = c0;
1001 
1002     *f++ = modq_freeze(f0 * 3 + q - qshift);
1003     *f++ = modq_freeze(f1 * 3 + q - qshift);
1004     *f++ = modq_freeze(f2 * 3 + q - qshift);
1005   }
1006 
1007   c0 = *c++;
1008   c1 = *c++;
1009   c2 = *c++;
1010 
1011   f1 = (89478485*c2 + 349525*c1 + 1365*(c0+1)) >> 21;
1012 
1013   c1 += c2 << 8;
1014   c1 -= (f1 * 3) << 1;
1015 
1016   c0 += c1 << 8;
1017   f0 = c0;
1018 
1019   *f++ = modq_freeze(f0 * 3 + q - qshift);
1020   *f++ = modq_freeze(f1 * 3 + q - qshift);
1021 }
1022 
1023 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/small.c */
1024 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
1025 
1026 
1027 /* XXX: these functions rely on p mod 4 = 1 */
1028 
1029 /* all coefficients in -1, 0, 1 */
small_encode(unsigned char * c,const small * f)1030 static void small_encode(unsigned char *c,const small *f)
1031 {
1032   small c0;
1033   int i;
1034 
1035   for (i = 0;i < p/4;++i) {
1036     c0 = *f++ + 1;
1037     c0 += (*f++ + 1) << 2;
1038     c0 += (*f++ + 1) << 4;
1039     c0 += (*f++ + 1) << 6;
1040     *c++ = c0;
1041   }
1042   c0 = *f++ + 1;
1043   *c++ = c0;
1044 }
1045 
small_decode(small * f,const unsigned char * c)1046 static void small_decode(small *f,const unsigned char *c)
1047 {
1048   unsigned char c0;
1049   int i;
1050 
1051   for (i = 0;i < p/4;++i) {
1052     c0 = *c++;
1053     *f++ = ((small) (c0 & 3)) - 1; c0 >>= 2;
1054     *f++ = ((small) (c0 & 3)) - 1; c0 >>= 2;
1055     *f++ = ((small) (c0 & 3)) - 1; c0 >>= 2;
1056     *f++ = ((small) (c0 & 3)) - 1;
1057   }
1058   c0 = *c++;
1059   *f++ = ((small) (c0 & 3)) - 1;
1060 }
1061 
1062 /* from libpqcrypto-20180314/crypto_kem/sntrup4591761/ref/swap.c */
1063 /* See https://ntruprime.cr.yp.to/software.html for detailed documentation. */
1064 
1065 
swap(void * x,void * y,int bytes,int mask)1066 static void swap(void *x,void *y,int bytes,int mask)
1067 {
1068   int i;
1069   char xi, yi, c, t;
1070 
1071   c = mask;
1072 
1073   for (i = 0;i < bytes;++i) {
1074     xi = i[(char *) x];
1075     yi = i[(char *) y];
1076     t = c & (xi ^ yi);
1077     xi ^= t;
1078     yi ^= t;
1079     i[(char *) x] = xi;
1080     i[(char *) y] = yi;
1081   }
1082 }
1083 
1084