1 #ifndef Py_OBJECT_H 2 #define Py_OBJECT_H 3 #ifdef __cplusplus 4 extern "C" { 5 #endif 6 7 8 /* Object and type object interface */ 9 10 /* 11 Objects are structures allocated on the heap. Special rules apply to 12 the use of objects to ensure they are properly garbage-collected. 13 Objects are never allocated statically or on the stack; they must be 14 accessed through special macros and functions only. (Type objects are 15 exceptions to the first rule; the standard types are represented by 16 statically initialized type objects, although work on type/class unification 17 for Python 2.2 made it possible to have heap-allocated type objects too). 18 19 An object has a 'reference count' that is increased or decreased when a 20 pointer to the object is copied or deleted; when the reference count 21 reaches zero there are no references to the object left and it can be 22 removed from the heap. 23 24 An object has a 'type' that determines what it represents and what kind 25 of data it contains. An object's type is fixed when it is created. 26 Types themselves are represented as objects; an object contains a 27 pointer to the corresponding type object. The type itself has a type 28 pointer pointing to the object representing the type 'type', which 29 contains a pointer to itself!). 30 31 Objects do not float around in memory; once allocated an object keeps 32 the same size and address. Objects that must hold variable-size data 33 can contain pointers to variable-size parts of the object. Not all 34 objects of the same type have the same size; but the size cannot change 35 after allocation. (These restrictions are made so a reference to an 36 object can be simply a pointer -- moving an object would require 37 updating all the pointers, and changing an object's size would require 38 moving it if there was another object right next to it.) 39 40 Objects are always accessed through pointers of the type 'PyObject *'. 41 The type 'PyObject' is a structure that only contains the reference count 42 and the type pointer. The actual memory allocated for an object 43 contains other data that can only be accessed after casting the pointer 44 to a pointer to a longer structure type. This longer type must start 45 with the reference count and type fields; the macro PyObject_HEAD should be 46 used for this (to accommodate for future changes). The implementation 47 of a particular object type can cast the object pointer to the proper 48 type and back. 49 50 A standard interface exists for objects that contain an array of items 51 whose size is determined when the object is allocated. 52 */ 53 54 /* Py_DEBUG implies Py_TRACE_REFS. */ 55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS) 56 #define Py_TRACE_REFS 57 #endif 58 59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */ 60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG) 61 #define Py_REF_DEBUG 62 #endif 63 64 #ifdef Py_TRACE_REFS 65 /* Define pointers to support a doubly-linked list of all live heap objects. */ 66 #define _PyObject_HEAD_EXTRA \ 67 struct _object *_ob_next; \ 68 struct _object *_ob_prev; 69 70 #define _PyObject_EXTRA_INIT 0, 0, 71 72 #else 73 #define _PyObject_HEAD_EXTRA 74 #define _PyObject_EXTRA_INIT 75 #endif 76 77 /* PyObject_HEAD defines the initial segment of every PyObject. */ 78 #define PyObject_HEAD \ 79 _PyObject_HEAD_EXTRA \ 80 Py_ssize_t ob_refcnt; \ 81 struct _typeobject *ob_type; 82 83 #define PyObject_HEAD_INIT(type) \ 84 _PyObject_EXTRA_INIT \ 85 1, type, 86 87 #define PyVarObject_HEAD_INIT(type, size) \ 88 PyObject_HEAD_INIT(type) size, 89 90 /* PyObject_VAR_HEAD defines the initial segment of all variable-size 91 * container objects. These end with a declaration of an array with 1 92 * element, but enough space is malloc'ed so that the array actually 93 * has room for ob_size elements. Note that ob_size is an element count, 94 * not necessarily a byte count. 95 */ 96 #define PyObject_VAR_HEAD \ 97 PyObject_HEAD \ 98 Py_ssize_t ob_size; /* Number of items in variable part */ 99 #define Py_INVALID_SIZE (Py_ssize_t)-1 100 101 /* Nothing is actually declared to be a PyObject, but every pointer to 102 * a Python object can be cast to a PyObject*. This is inheritance built 103 * by hand. Similarly every pointer to a variable-size Python object can, 104 * in addition, be cast to PyVarObject*. 105 */ 106 typedef struct _object { 107 PyObject_HEAD 108 } PyObject; 109 110 typedef struct { 111 PyObject_VAR_HEAD 112 } PyVarObject; 113 114 #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt) 115 #define Py_TYPE(ob) (((PyObject*)(ob))->ob_type) 116 #define Py_SIZE(ob) (((PyVarObject*)(ob))->ob_size) 117 118 /* 119 Type objects contain a string containing the type name (to help somewhat 120 in debugging), the allocation parameters (see PyObject_New() and 121 PyObject_NewVar()), 122 and methods for accessing objects of the type. Methods are optional, a 123 nil pointer meaning that particular kind of access is not available for 124 this type. The Py_DECREF() macro uses the tp_dealloc method without 125 checking for a nil pointer; it should always be implemented except if 126 the implementation can guarantee that the reference count will never 127 reach zero (e.g., for statically allocated type objects). 128 129 NB: the methods for certain type groups are now contained in separate 130 method blocks. 131 */ 132 133 typedef PyObject * (*unaryfunc)(PyObject *); 134 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *); 135 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *); 136 typedef int (*inquiry)(PyObject *); 137 typedef Py_ssize_t (*lenfunc)(PyObject *); 138 typedef int (*coercion)(PyObject **, PyObject **); 139 typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5); 140 typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5); 141 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t); 142 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t); 143 typedef int(*intobjargproc)(PyObject *, int, PyObject *); 144 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *); 145 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *); 146 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *); 147 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *); 148 149 150 151 /* int-based buffer interface */ 152 typedef int (*getreadbufferproc)(PyObject *, int, void **); 153 typedef int (*getwritebufferproc)(PyObject *, int, void **); 154 typedef int (*getsegcountproc)(PyObject *, int *); 155 typedef int (*getcharbufferproc)(PyObject *, int, char **); 156 /* ssize_t-based buffer interface */ 157 typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **); 158 typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **); 159 typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *); 160 typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **); 161 162 163 /* Py3k buffer interface */ 164 typedef struct bufferinfo { 165 void *buf; 166 PyObject *obj; /* owned reference */ 167 Py_ssize_t len; 168 Py_ssize_t itemsize; /* This is Py_ssize_t so it can be 169 pointed to by strides in simple case.*/ 170 int readonly; 171 int ndim; 172 char *format; 173 Py_ssize_t *shape; 174 Py_ssize_t *strides; 175 Py_ssize_t *suboffsets; 176 Py_ssize_t smalltable[2]; /* static store for shape and strides of 177 mono-dimensional buffers. */ 178 void *internal; 179 } Py_buffer; 180 181 typedef int (*getbufferproc)(PyObject *, Py_buffer *, int); 182 typedef void (*releasebufferproc)(PyObject *, Py_buffer *); 183 184 /* Flags for getting buffers */ 185 #define PyBUF_SIMPLE 0 186 #define PyBUF_WRITABLE 0x0001 187 /* we used to include an E, backwards compatible alias */ 188 #define PyBUF_WRITEABLE PyBUF_WRITABLE 189 #define PyBUF_FORMAT 0x0004 190 #define PyBUF_ND 0x0008 191 #define PyBUF_STRIDES (0x0010 | PyBUF_ND) 192 #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES) 193 #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES) 194 #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES) 195 #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES) 196 197 #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE) 198 #define PyBUF_CONTIG_RO (PyBUF_ND) 199 200 #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE) 201 #define PyBUF_STRIDED_RO (PyBUF_STRIDES) 202 203 #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT) 204 #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT) 205 206 #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT) 207 #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT) 208 209 210 #define PyBUF_READ 0x100 211 #define PyBUF_WRITE 0x200 212 #define PyBUF_SHADOW 0x400 213 /* end Py3k buffer interface */ 214 215 typedef int (*objobjproc)(PyObject *, PyObject *); 216 typedef int (*visitproc)(PyObject *, void *); 217 typedef int (*traverseproc)(PyObject *, visitproc, void *); 218 219 typedef struct { 220 /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all 221 arguments are guaranteed to be of the object's type (modulo 222 coercion hacks -- i.e. if the type's coercion function 223 returns other types, then these are allowed as well). Numbers that 224 have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both* 225 arguments for proper type and implement the necessary conversions 226 in the slot functions themselves. */ 227 228 binaryfunc nb_add; 229 binaryfunc nb_subtract; 230 binaryfunc nb_multiply; 231 binaryfunc nb_divide; 232 binaryfunc nb_remainder; 233 binaryfunc nb_divmod; 234 ternaryfunc nb_power; 235 unaryfunc nb_negative; 236 unaryfunc nb_positive; 237 unaryfunc nb_absolute; 238 inquiry nb_nonzero; 239 unaryfunc nb_invert; 240 binaryfunc nb_lshift; 241 binaryfunc nb_rshift; 242 binaryfunc nb_and; 243 binaryfunc nb_xor; 244 binaryfunc nb_or; 245 coercion nb_coerce; 246 unaryfunc nb_int; 247 unaryfunc nb_long; 248 unaryfunc nb_float; 249 unaryfunc nb_oct; 250 unaryfunc nb_hex; 251 /* Added in release 2.0 */ 252 binaryfunc nb_inplace_add; 253 binaryfunc nb_inplace_subtract; 254 binaryfunc nb_inplace_multiply; 255 binaryfunc nb_inplace_divide; 256 binaryfunc nb_inplace_remainder; 257 ternaryfunc nb_inplace_power; 258 binaryfunc nb_inplace_lshift; 259 binaryfunc nb_inplace_rshift; 260 binaryfunc nb_inplace_and; 261 binaryfunc nb_inplace_xor; 262 binaryfunc nb_inplace_or; 263 264 /* Added in release 2.2 */ 265 /* The following require the Py_TPFLAGS_HAVE_CLASS flag */ 266 binaryfunc nb_floor_divide; 267 binaryfunc nb_true_divide; 268 binaryfunc nb_inplace_floor_divide; 269 binaryfunc nb_inplace_true_divide; 270 271 /* Added in release 2.5 */ 272 unaryfunc nb_index; 273 } PyNumberMethods; 274 275 typedef struct { 276 lenfunc sq_length; 277 binaryfunc sq_concat; 278 ssizeargfunc sq_repeat; 279 ssizeargfunc sq_item; 280 ssizessizeargfunc sq_slice; 281 ssizeobjargproc sq_ass_item; 282 ssizessizeobjargproc sq_ass_slice; 283 objobjproc sq_contains; 284 /* Added in release 2.0 */ 285 binaryfunc sq_inplace_concat; 286 ssizeargfunc sq_inplace_repeat; 287 } PySequenceMethods; 288 289 typedef struct { 290 lenfunc mp_length; 291 binaryfunc mp_subscript; 292 objobjargproc mp_ass_subscript; 293 } PyMappingMethods; 294 295 typedef struct { 296 readbufferproc bf_getreadbuffer; 297 writebufferproc bf_getwritebuffer; 298 segcountproc bf_getsegcount; 299 charbufferproc bf_getcharbuffer; 300 getbufferproc bf_getbuffer; 301 releasebufferproc bf_releasebuffer; 302 } PyBufferProcs; 303 304 305 typedef void (*freefunc)(void *); 306 typedef void (*destructor)(PyObject *); 307 typedef int (*printfunc)(PyObject *, FILE *, int); 308 typedef PyObject *(*getattrfunc)(PyObject *, char *); 309 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *); 310 typedef int (*setattrfunc)(PyObject *, char *, PyObject *); 311 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *); 312 typedef int (*cmpfunc)(PyObject *, PyObject *); 313 typedef PyObject *(*reprfunc)(PyObject *); 314 typedef long (*hashfunc)(PyObject *); 315 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int); 316 typedef PyObject *(*getiterfunc) (PyObject *); 317 typedef PyObject *(*iternextfunc) (PyObject *); 318 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *); 319 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *); 320 typedef int (*initproc)(PyObject *, PyObject *, PyObject *); 321 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *); 322 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t); 323 324 typedef struct _typeobject { 325 PyObject_VAR_HEAD 326 const char *tp_name; /* For printing, in format "<module>.<name>" */ 327 Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */ 328 329 /* Methods to implement standard operations */ 330 331 destructor tp_dealloc; 332 printfunc tp_print; 333 getattrfunc tp_getattr; 334 setattrfunc tp_setattr; 335 cmpfunc tp_compare; 336 reprfunc tp_repr; 337 338 /* Method suites for standard classes */ 339 340 PyNumberMethods *tp_as_number; 341 PySequenceMethods *tp_as_sequence; 342 PyMappingMethods *tp_as_mapping; 343 344 /* More standard operations (here for binary compatibility) */ 345 346 hashfunc tp_hash; 347 ternaryfunc tp_call; 348 reprfunc tp_str; 349 getattrofunc tp_getattro; 350 setattrofunc tp_setattro; 351 352 /* Functions to access object as input/output buffer */ 353 PyBufferProcs *tp_as_buffer; 354 355 /* Flags to define presence of optional/expanded features */ 356 long tp_flags; 357 358 const char *tp_doc; /* Documentation string */ 359 360 /* Assigned meaning in release 2.0 */ 361 /* call function for all accessible objects */ 362 traverseproc tp_traverse; 363 364 /* delete references to contained objects */ 365 inquiry tp_clear; 366 367 /* Assigned meaning in release 2.1 */ 368 /* rich comparisons */ 369 richcmpfunc tp_richcompare; 370 371 /* weak reference enabler */ 372 Py_ssize_t tp_weaklistoffset; 373 374 /* Added in release 2.2 */ 375 /* Iterators */ 376 getiterfunc tp_iter; 377 iternextfunc tp_iternext; 378 379 /* Attribute descriptor and subclassing stuff */ 380 struct PyMethodDef *tp_methods; 381 struct PyMemberDef *tp_members; 382 struct PyGetSetDef *tp_getset; 383 struct _typeobject *tp_base; 384 PyObject *tp_dict; 385 descrgetfunc tp_descr_get; 386 descrsetfunc tp_descr_set; 387 Py_ssize_t tp_dictoffset; 388 initproc tp_init; 389 allocfunc tp_alloc; 390 newfunc tp_new; 391 freefunc tp_free; /* Low-level free-memory routine */ 392 inquiry tp_is_gc; /* For PyObject_IS_GC */ 393 PyObject *tp_bases; 394 PyObject *tp_mro; /* method resolution order */ 395 PyObject *tp_cache; 396 PyObject *tp_subclasses; 397 PyObject *tp_weaklist; 398 destructor tp_del; 399 400 /* Type attribute cache version tag. Added in version 2.6 */ 401 unsigned int tp_version_tag; 402 403 #ifdef COUNT_ALLOCS 404 /* these must be last and never explicitly initialized */ 405 Py_ssize_t tp_allocs; 406 Py_ssize_t tp_frees; 407 Py_ssize_t tp_maxalloc; 408 struct _typeobject *tp_prev; 409 struct _typeobject *tp_next; 410 #endif 411 } PyTypeObject; 412 413 414 /* The *real* layout of a type object when allocated on the heap */ 415 typedef struct _heaptypeobject { 416 /* Note: there's a dependency on the order of these members 417 in slotptr() in typeobject.c . */ 418 PyTypeObject ht_type; 419 PyNumberMethods as_number; 420 PyMappingMethods as_mapping; 421 PySequenceMethods as_sequence; /* as_sequence comes after as_mapping, 422 so that the mapping wins when both 423 the mapping and the sequence define 424 a given operator (e.g. __getitem__). 425 see add_operators() in typeobject.c . */ 426 PyBufferProcs as_buffer; 427 PyObject *ht_name, *ht_slots; 428 /* here are optional user slots, followed by the members. */ 429 } PyHeapTypeObject; 430 431 /* access macro to the members which are floating "behind" the object */ 432 #define PyHeapType_GET_MEMBERS(etype) \ 433 ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize)) 434 435 436 /* Generic type check */ 437 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *); 438 #define PyObject_TypeCheck(ob, tp) \ 439 (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp))) 440 441 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */ 442 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */ 443 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */ 444 445 #define PyType_Check(op) \ 446 PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS) 447 #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type) 448 449 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *); 450 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t); 451 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *, 452 PyObject *, PyObject *); 453 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *); 454 PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **); 455 PyAPI_FUNC(unsigned int) PyType_ClearCache(void); 456 PyAPI_FUNC(void) PyType_Modified(PyTypeObject *); 457 458 /* Generic operations on objects */ 459 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int); 460 PyAPI_FUNC(void) _PyObject_Dump(PyObject *); 461 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *); 462 PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *); 463 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *); 464 #define PyObject_Bytes PyObject_Str 465 #ifdef Py_USING_UNICODE 466 PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *); 467 #endif 468 PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *); 469 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int); 470 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int); 471 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *); 472 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *); 473 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *); 474 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *); 475 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *); 476 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *); 477 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *); 478 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *); 479 PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *); 480 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *); 481 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, 482 PyObject *, PyObject *); 483 PyAPI_FUNC(long) PyObject_Hash(PyObject *); 484 PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *); 485 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *); 486 PyAPI_FUNC(int) PyObject_Not(PyObject *); 487 PyAPI_FUNC(int) PyCallable_Check(PyObject *); 488 PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **); 489 PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **); 490 491 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *); 492 493 /* A slot function whose address we need to compare */ 494 extern int _PyObject_SlotCompare(PyObject *, PyObject *); 495 /* Same as PyObject_Generic{Get,Set}Attr, but passing the attributes 496 dict as the last parameter. */ 497 PyAPI_FUNC(PyObject *) 498 _PyObject_GenericGetAttrWithDict(PyObject *, PyObject *, PyObject *); 499 PyAPI_FUNC(int) 500 _PyObject_GenericSetAttrWithDict(PyObject *, PyObject *, 501 PyObject *, PyObject *); 502 503 504 /* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a 505 list of strings. PyObject_Dir(NULL) is like __builtin__.dir(), 506 returning the names of the current locals. In this case, if there are 507 no current locals, NULL is returned, and PyErr_Occurred() is false. 508 */ 509 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *); 510 511 512 /* Helpers for printing recursive container types */ 513 PyAPI_FUNC(int) Py_ReprEnter(PyObject *); 514 PyAPI_FUNC(void) Py_ReprLeave(PyObject *); 515 516 /* Helpers for hash functions */ 517 PyAPI_FUNC(long) _Py_HashDouble(double); 518 PyAPI_FUNC(long) _Py_HashPointer(void*); 519 520 typedef struct { 521 long prefix; 522 long suffix; 523 } _Py_HashSecret_t; 524 PyAPI_DATA(_Py_HashSecret_t) _Py_HashSecret; 525 526 #ifdef Py_DEBUG 527 PyAPI_DATA(int) _Py_HashSecret_Initialized; 528 #endif 529 530 /* Helper for passing objects to printf and the like. 531 Leaks refcounts. Don't use it! 532 */ 533 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj)) 534 535 /* Flag bits for printing: */ 536 #define Py_PRINT_RAW 1 /* No string quotes etc. */ 537 538 /* 539 `Type flags (tp_flags) 540 541 These flags are used to extend the type structure in a backwards-compatible 542 fashion. Extensions can use the flags to indicate (and test) when a given 543 type structure contains a new feature. The Python core will use these when 544 introducing new functionality between major revisions (to avoid mid-version 545 changes in the PYTHON_API_VERSION). 546 547 Arbitration of the flag bit positions will need to be coordinated among 548 all extension writers who publically release their extensions (this will 549 be fewer than you might expect!).. 550 551 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs. 552 553 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value. 554 555 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the 556 given type object has a specified feature. 557 558 NOTE: when building the core, Py_TPFLAGS_DEFAULT includes 559 Py_TPFLAGS_HAVE_VERSION_TAG; outside the core, it doesn't. This is so 560 that extensions that modify tp_dict of their own types directly don't 561 break, since this was allowed in 2.5. In 3.0 they will have to 562 manually remove this flag though! 563 */ 564 565 /* PyBufferProcs contains bf_getcharbuffer */ 566 #define Py_TPFLAGS_HAVE_GETCHARBUFFER (1L<<0) 567 568 /* PySequenceMethods contains sq_contains */ 569 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1) 570 571 /* This is here for backwards compatibility. Extensions that use the old GC 572 * API will still compile but the objects will not be tracked by the GC. */ 573 #define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */ 574 575 /* PySequenceMethods and PyNumberMethods contain in-place operators */ 576 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3) 577 578 /* PyNumberMethods do their own coercion */ 579 #define Py_TPFLAGS_CHECKTYPES (1L<<4) 580 581 /* tp_richcompare is defined */ 582 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5) 583 584 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */ 585 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6) 586 587 /* tp_iter is defined */ 588 #define Py_TPFLAGS_HAVE_ITER (1L<<7) 589 590 /* New members introduced by Python 2.2 exist */ 591 #define Py_TPFLAGS_HAVE_CLASS (1L<<8) 592 593 /* Set if the type object is dynamically allocated */ 594 #define Py_TPFLAGS_HEAPTYPE (1L<<9) 595 596 /* Set if the type allows subclassing */ 597 #define Py_TPFLAGS_BASETYPE (1L<<10) 598 599 /* Set if the type is 'ready' -- fully initialized */ 600 #define Py_TPFLAGS_READY (1L<<12) 601 602 /* Set while the type is being 'readied', to prevent recursive ready calls */ 603 #define Py_TPFLAGS_READYING (1L<<13) 604 605 /* Objects support garbage collection (see objimp.h) */ 606 #define Py_TPFLAGS_HAVE_GC (1L<<14) 607 608 /* These two bits are preserved for Stackless Python, next after this is 17 */ 609 #ifdef STACKLESS 610 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15) 611 #else 612 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0 613 #endif 614 615 /* Objects support nb_index in PyNumberMethods */ 616 #define Py_TPFLAGS_HAVE_INDEX (1L<<17) 617 618 /* Objects support type attribute cache */ 619 #define Py_TPFLAGS_HAVE_VERSION_TAG (1L<<18) 620 #define Py_TPFLAGS_VALID_VERSION_TAG (1L<<19) 621 622 /* Type is abstract and cannot be instantiated */ 623 #define Py_TPFLAGS_IS_ABSTRACT (1L<<20) 624 625 /* Has the new buffer protocol */ 626 #define Py_TPFLAGS_HAVE_NEWBUFFER (1L<<21) 627 628 /* These flags are used to determine if a type is a subclass. */ 629 #define Py_TPFLAGS_INT_SUBCLASS (1L<<23) 630 #define Py_TPFLAGS_LONG_SUBCLASS (1L<<24) 631 #define Py_TPFLAGS_LIST_SUBCLASS (1L<<25) 632 #define Py_TPFLAGS_TUPLE_SUBCLASS (1L<<26) 633 #define Py_TPFLAGS_STRING_SUBCLASS (1L<<27) 634 #define Py_TPFLAGS_UNICODE_SUBCLASS (1L<<28) 635 #define Py_TPFLAGS_DICT_SUBCLASS (1L<<29) 636 #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1L<<30) 637 #define Py_TPFLAGS_TYPE_SUBCLASS (1L<<31) 638 639 #define Py_TPFLAGS_DEFAULT_EXTERNAL ( \ 640 Py_TPFLAGS_HAVE_GETCHARBUFFER | \ 641 Py_TPFLAGS_HAVE_SEQUENCE_IN | \ 642 Py_TPFLAGS_HAVE_INPLACEOPS | \ 643 Py_TPFLAGS_HAVE_RICHCOMPARE | \ 644 Py_TPFLAGS_HAVE_WEAKREFS | \ 645 Py_TPFLAGS_HAVE_ITER | \ 646 Py_TPFLAGS_HAVE_CLASS | \ 647 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \ 648 Py_TPFLAGS_HAVE_INDEX | \ 649 0) 650 #define Py_TPFLAGS_DEFAULT_CORE (Py_TPFLAGS_DEFAULT_EXTERNAL | \ 651 Py_TPFLAGS_HAVE_VERSION_TAG) 652 653 #ifdef Py_BUILD_CORE 654 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_CORE 655 #else 656 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_EXTERNAL 657 #endif 658 659 #define PyType_HasFeature(t,f) (((t)->tp_flags & (f)) != 0) 660 #define PyType_FastSubclass(t,f) PyType_HasFeature(t,f) 661 662 663 /* 664 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement 665 reference counts. Py_DECREF calls the object's deallocator function when 666 the refcount falls to 0; for 667 objects that don't contain references to other objects or heap memory 668 this can be the standard function free(). Both macros can be used 669 wherever a void expression is allowed. The argument must not be a 670 NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead. 671 The macro _Py_NewReference(op) initialize reference counts to 1, and 672 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional 673 bookkeeping appropriate to the special build. 674 675 We assume that the reference count field can never overflow; this can 676 be proven when the size of the field is the same as the pointer size, so 677 we ignore the possibility. Provided a C int is at least 32 bits (which 678 is implicitly assumed in many parts of this code), that's enough for 679 about 2**31 references to an object. 680 681 XXX The following became out of date in Python 2.2, but I'm not sure 682 XXX what the full truth is now. Certainly, heap-allocated type objects 683 XXX can and should be deallocated. 684 Type objects should never be deallocated; the type pointer in an object 685 is not considered to be a reference to the type object, to save 686 complications in the deallocation function. (This is actually a 687 decision that's up to the implementer of each new type so if you want, 688 you can count such references to the type object.) 689 690 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument 691 since it may evaluate its argument multiple times. (The alternative 692 would be to mace it a proper function or assign it to a global temporary 693 variable first, both of which are slower; and in a multi-threaded 694 environment the global variable trick is not safe.) 695 */ 696 697 /* First define a pile of simple helper macros, one set per special 698 * build symbol. These either expand to the obvious things, or to 699 * nothing at all when the special mode isn't in effect. The main 700 * macros can later be defined just once then, yet expand to different 701 * things depending on which special build options are and aren't in effect. 702 * Trust me <wink>: while painful, this is 20x easier to understand than, 703 * e.g, defining _Py_NewReference five different times in a maze of nested 704 * #ifdefs (we used to do that -- it was impenetrable). 705 */ 706 #ifdef Py_REF_DEBUG 707 PyAPI_DATA(Py_ssize_t) _Py_RefTotal; 708 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname, 709 int lineno, PyObject *op); 710 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void); 711 PyAPI_FUNC(PyObject *) _PySet_Dummy(void); 712 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void); 713 #define _Py_INC_REFTOTAL _Py_RefTotal++ 714 #define _Py_DEC_REFTOTAL _Py_RefTotal-- 715 #define _Py_REF_DEBUG_COMMA , 716 #define _Py_CHECK_REFCNT(OP) \ 717 { if (((PyObject*)OP)->ob_refcnt < 0) \ 718 _Py_NegativeRefcount(__FILE__, __LINE__, \ 719 (PyObject *)(OP)); \ 720 } 721 #else 722 #define _Py_INC_REFTOTAL 723 #define _Py_DEC_REFTOTAL 724 #define _Py_REF_DEBUG_COMMA 725 #define _Py_CHECK_REFCNT(OP) /* a semicolon */; 726 #endif /* Py_REF_DEBUG */ 727 728 #ifdef COUNT_ALLOCS 729 PyAPI_FUNC(void) inc_count(PyTypeObject *); 730 PyAPI_FUNC(void) dec_count(PyTypeObject *); 731 #define _Py_INC_TPALLOCS(OP) inc_count(Py_TYPE(OP)) 732 #define _Py_INC_TPFREES(OP) dec_count(Py_TYPE(OP)) 733 #define _Py_DEC_TPFREES(OP) Py_TYPE(OP)->tp_frees-- 734 #define _Py_COUNT_ALLOCS_COMMA , 735 #else 736 #define _Py_INC_TPALLOCS(OP) 737 #define _Py_INC_TPFREES(OP) 738 #define _Py_DEC_TPFREES(OP) 739 #define _Py_COUNT_ALLOCS_COMMA 740 #endif /* COUNT_ALLOCS */ 741 742 #ifdef Py_TRACE_REFS 743 /* Py_TRACE_REFS is such major surgery that we call external routines. */ 744 PyAPI_FUNC(void) _Py_NewReference(PyObject *); 745 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *); 746 PyAPI_FUNC(void) _Py_Dealloc(PyObject *); 747 PyAPI_FUNC(void) _Py_PrintReferences(FILE *); 748 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *); 749 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force); 750 751 #else 752 /* Without Py_TRACE_REFS, there's little enough to do that we expand code 753 * inline. 754 */ 755 #define _Py_NewReference(op) ( \ 756 _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA \ 757 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \ 758 Py_REFCNT(op) = 1) 759 760 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op) 761 762 #define _Py_Dealloc(op) ( \ 763 _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA \ 764 (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op))) 765 #endif /* !Py_TRACE_REFS */ 766 767 #define Py_INCREF(op) ( \ 768 _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA \ 769 ((PyObject*)(op))->ob_refcnt++) 770 771 #define Py_DECREF(op) \ 772 do { \ 773 if (_Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA \ 774 --((PyObject*)(op))->ob_refcnt != 0) \ 775 _Py_CHECK_REFCNT(op) \ 776 else \ 777 _Py_Dealloc((PyObject *)(op)); \ 778 } while (0) 779 780 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear 781 * and tp_dealloc implementations. 782 * 783 * Note that "the obvious" code can be deadly: 784 * 785 * Py_XDECREF(op); 786 * op = NULL; 787 * 788 * Typically, `op` is something like self->containee, and `self` is done 789 * using its `containee` member. In the code sequence above, suppose 790 * `containee` is non-NULL with a refcount of 1. Its refcount falls to 791 * 0 on the first line, which can trigger an arbitrary amount of code, 792 * possibly including finalizers (like __del__ methods or weakref callbacks) 793 * coded in Python, which in turn can release the GIL and allow other threads 794 * to run, etc. Such code may even invoke methods of `self` again, or cause 795 * cyclic gc to trigger, but-- oops! --self->containee still points to the 796 * object being torn down, and it may be in an insane state while being torn 797 * down. This has in fact been a rich historic source of miserable (rare & 798 * hard-to-diagnose) segfaulting (and other) bugs. 799 * 800 * The safe way is: 801 * 802 * Py_CLEAR(op); 803 * 804 * That arranges to set `op` to NULL _before_ decref'ing, so that any code 805 * triggered as a side-effect of `op` getting torn down no longer believes 806 * `op` points to a valid object. 807 * 808 * There are cases where it's safe to use the naive code, but they're brittle. 809 * For example, if `op` points to a Python integer, you know that destroying 810 * one of those can't cause problems -- but in part that relies on that 811 * Python integers aren't currently weakly referencable. Best practice is 812 * to use Py_CLEAR() even if you can't think of a reason for why you need to. 813 */ 814 #define Py_CLEAR(op) \ 815 do { \ 816 if (op) { \ 817 PyObject *_py_tmp = (PyObject *)(op); \ 818 (op) = NULL; \ 819 Py_DECREF(_py_tmp); \ 820 } \ 821 } while (0) 822 823 /* Macros to use in case the object pointer may be NULL: */ 824 #define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0) 825 #define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0) 826 827 /* Safely decref `op` and set `op` to `op2`. 828 * 829 * As in case of Py_CLEAR "the obvious" code can be deadly: 830 * 831 * Py_DECREF(op); 832 * op = op2; 833 * 834 * The safe way is: 835 * 836 * Py_SETREF(op, op2); 837 * 838 * That arranges to set `op` to `op2` _before_ decref'ing, so that any code 839 * triggered as a side-effect of `op` getting torn down no longer believes 840 * `op` points to a valid object. 841 * 842 * Py_XSETREF is a variant of Py_SETREF that uses Py_XDECREF instead of 843 * Py_DECREF. 844 */ 845 846 #define Py_SETREF(op, op2) \ 847 do { \ 848 PyObject *_py_tmp = (PyObject *)(op); \ 849 (op) = (op2); \ 850 Py_DECREF(_py_tmp); \ 851 } while (0) 852 853 #define Py_XSETREF(op, op2) \ 854 do { \ 855 PyObject *_py_tmp = (PyObject *)(op); \ 856 (op) = (op2); \ 857 Py_XDECREF(_py_tmp); \ 858 } while (0) 859 860 /* 861 These are provided as conveniences to Python runtime embedders, so that 862 they can have object code that is not dependent on Python compilation flags. 863 */ 864 PyAPI_FUNC(void) Py_IncRef(PyObject *); 865 PyAPI_FUNC(void) Py_DecRef(PyObject *); 866 867 /* 868 _Py_NoneStruct is an object of undefined type which can be used in contexts 869 where NULL (nil) is not suitable (since NULL often means 'error'). 870 871 Don't forget to apply Py_INCREF() when returning this value!!! 872 */ 873 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */ 874 #define Py_None (&_Py_NoneStruct) 875 876 /* Macro for returning Py_None from a function */ 877 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None 878 879 /* 880 Py_NotImplemented is a singleton used to signal that an operation is 881 not implemented for a given type combination. 882 */ 883 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */ 884 #define Py_NotImplemented (&_Py_NotImplementedStruct) 885 886 /* Rich comparison opcodes */ 887 #define Py_LT 0 888 #define Py_LE 1 889 #define Py_EQ 2 890 #define Py_NE 3 891 #define Py_GT 4 892 #define Py_GE 5 893 894 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE. 895 * Defined in object.c. 896 */ 897 PyAPI_DATA(int) _Py_SwappedOp[]; 898 899 /* 900 Define staticforward and statichere for source compatibility with old 901 C extensions. 902 903 The staticforward define was needed to support certain broken C 904 compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the 905 static keyword when it was used with a forward declaration of a static 906 initialized structure. Standard C allows the forward declaration with 907 static, and we've decided to stop catering to broken C compilers. 908 (In fact, we expect that the compilers are all fixed eight years later.) 909 */ 910 911 #define staticforward static 912 #define statichere static 913 914 915 /* 916 More conventions 917 ================ 918 919 Argument Checking 920 ----------------- 921 922 Functions that take objects as arguments normally don't check for nil 923 arguments, but they do check the type of the argument, and return an 924 error if the function doesn't apply to the type. 925 926 Failure Modes 927 ------------- 928 929 Functions may fail for a variety of reasons, including running out of 930 memory. This is communicated to the caller in two ways: an error string 931 is set (see errors.h), and the function result differs: functions that 932 normally return a pointer return NULL for failure, functions returning 933 an integer return -1 (which could be a legal return value too!), and 934 other functions return 0 for success and -1 for failure. 935 Callers should always check for errors before using the result. If 936 an error was set, the caller must either explicitly clear it, or pass 937 the error on to its caller. 938 939 Reference Counts 940 ---------------- 941 942 It takes a while to get used to the proper usage of reference counts. 943 944 Functions that create an object set the reference count to 1; such new 945 objects must be stored somewhere or destroyed again with Py_DECREF(). 946 Some functions that 'store' objects, such as PyTuple_SetItem() and 947 PyList_SetItem(), 948 don't increment the reference count of the object, since the most 949 frequent use is to store a fresh object. Functions that 'retrieve' 950 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also 951 don't increment 952 the reference count, since most frequently the object is only looked at 953 quickly. Thus, to retrieve an object and store it again, the caller 954 must call Py_INCREF() explicitly. 955 956 NOTE: functions that 'consume' a reference count, like 957 PyList_SetItem(), consume the reference even if the object wasn't 958 successfully stored, to simplify error handling. 959 960 It seems attractive to make other functions that take an object as 961 argument consume a reference count; however, this may quickly get 962 confusing (even the current practice is already confusing). Consider 963 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at 964 times. 965 */ 966 967 968 /* Trashcan mechanism, thanks to Christian Tismer. 969 970 When deallocating a container object, it's possible to trigger an unbounded 971 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the 972 next" object in the chain to 0. This can easily lead to stack faults, and 973 especially in threads (which typically have less stack space to work with). 974 975 A container object that participates in cyclic gc can avoid this by 976 bracketing the body of its tp_dealloc function with a pair of macros: 977 978 static void 979 mytype_dealloc(mytype *p) 980 { 981 ... declarations go here ... 982 983 PyObject_GC_UnTrack(p); // must untrack first 984 Py_TRASHCAN_SAFE_BEGIN(p) 985 ... The body of the deallocator goes here, including all calls ... 986 ... to Py_DECREF on contained objects. ... 987 Py_TRASHCAN_SAFE_END(p) 988 } 989 990 CAUTION: Never return from the middle of the body! If the body needs to 991 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END 992 call, and goto it. Else the call-depth counter (see below) will stay 993 above 0 forever, and the trashcan will never get emptied. 994 995 How it works: The BEGIN macro increments a call-depth counter. So long 996 as this counter is small, the body of the deallocator is run directly without 997 further ado. But if the counter gets large, it instead adds p to a list of 998 objects to be deallocated later, skips the body of the deallocator, and 999 resumes execution after the END macro. The tp_dealloc routine then returns 1000 without deallocating anything (and so unbounded call-stack depth is avoided). 1001 1002 When the call stack finishes unwinding again, code generated by the END macro 1003 notices this, and calls another routine to deallocate all the objects that 1004 may have been added to the list of deferred deallocations. In effect, a 1005 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces, 1006 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL. 1007 */ 1008 1009 /* This is the old private API, invoked by the macros before 2.7.4. 1010 Kept for binary compatibility of extensions. */ 1011 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*); 1012 PyAPI_FUNC(void) _PyTrash_destroy_chain(void); 1013 PyAPI_DATA(int) _PyTrash_delete_nesting; 1014 PyAPI_DATA(PyObject *) _PyTrash_delete_later; 1015 1016 /* The new thread-safe private API, invoked by the macros below. */ 1017 PyAPI_FUNC(void) _PyTrash_thread_deposit_object(PyObject*); 1018 PyAPI_FUNC(void) _PyTrash_thread_destroy_chain(void); 1019 1020 #define PyTrash_UNWIND_LEVEL 50 1021 1022 /* Note the workaround for when the thread state is NULL (issue #17703) */ 1023 #define Py_TRASHCAN_SAFE_BEGIN(op) \ 1024 do { \ 1025 PyThreadState *_tstate = PyThreadState_GET(); \ 1026 if (!_tstate || \ 1027 _tstate->trash_delete_nesting < PyTrash_UNWIND_LEVEL) { \ 1028 if (_tstate) \ 1029 ++_tstate->trash_delete_nesting; 1030 /* The body of the deallocator is here. */ 1031 #define Py_TRASHCAN_SAFE_END(op) \ 1032 if (_tstate) { \ 1033 --_tstate->trash_delete_nesting; \ 1034 if (_tstate->trash_delete_later \ 1035 && _tstate->trash_delete_nesting <= 0) \ 1036 _PyTrash_thread_destroy_chain(); \ 1037 } \ 1038 } \ 1039 else \ 1040 _PyTrash_thread_deposit_object((PyObject*)op); \ 1041 } while (0); 1042 1043 #ifdef __cplusplus 1044 } 1045 #endif 1046 #endif /* !Py_OBJECT_H */ 1047