1 // Copyright 2019 TiKV Project Authors. Licensed under Apache-2.0.
2
3 mod callback;
4 mod executor;
5 mod promise;
6
7 use std::fmt::{self, Debug, Formatter};
8 use std::pin::Pin;
9 use std::sync::Arc;
10
11 use futures::future::Future;
12 use futures::task::{Context, Poll, Waker};
13 use parking_lot::Mutex;
14
15 use self::callback::{Abort, Request as RequestCallback, UnaryRequest as UnaryRequestCallback};
16 use self::executor::SpawnTask;
17 use self::promise::{Action as ActionPromise, Batch as BatchPromise};
18 use crate::call::server::RequestContext;
19 use crate::call::{BatchContext, Call, MessageReader};
20 use crate::cq::CompletionQueue;
21 use crate::error::{Error, Result};
22 use crate::server::RequestCallContext;
23
24 pub(crate) use self::executor::{Executor, Kicker, UnfinishedWork};
25 pub use self::promise::BatchType;
26
27 /// A handle that is used to notify future that the task finishes.
28 pub struct NotifyHandle<T> {
29 result: Option<Result<T>>,
30 waker: Option<Waker>,
31 stale: bool,
32 }
33
34 impl<T> NotifyHandle<T> {
new() -> NotifyHandle<T>35 fn new() -> NotifyHandle<T> {
36 NotifyHandle {
37 result: None,
38 waker: None,
39 stale: false,
40 }
41 }
42
43 /// Set the result and notify future if necessary.
set_result(&mut self, res: Result<T>) -> Option<Waker>44 fn set_result(&mut self, res: Result<T>) -> Option<Waker> {
45 self.result = Some(res);
46
47 self.waker.take()
48 }
49 }
50
51 type Inner<T> = Mutex<NotifyHandle<T>>;
52
new_inner<T>() -> Arc<Inner<T>>53 fn new_inner<T>() -> Arc<Inner<T>> {
54 Arc::new(Mutex::new(NotifyHandle::new()))
55 }
56
57 /// Get the future status without the need to poll.
58 ///
59 /// If the future is polled successfully, this function will return None.
60 /// Not implemented as method as it's only for internal usage.
check_alive<T>(f: &CqFuture<T>) -> Result<()>61 pub fn check_alive<T>(f: &CqFuture<T>) -> Result<()> {
62 let guard = f.inner.lock();
63 match guard.result {
64 None => Ok(()),
65 Some(Err(Error::RpcFailure(ref status))) => {
66 Err(Error::RpcFinished(Some(status.to_owned())))
67 }
68 Some(Ok(_)) | Some(Err(_)) => Err(Error::RpcFinished(None)),
69 }
70 }
71
72 /// A future object for task that is scheduled to `CompletionQueue`.
73 pub struct CqFuture<T> {
74 inner: Arc<Inner<T>>,
75 }
76
77 impl<T> CqFuture<T> {
new(inner: Arc<Inner<T>>) -> CqFuture<T>78 fn new(inner: Arc<Inner<T>>) -> CqFuture<T> {
79 CqFuture { inner }
80 }
81 }
82
83 impl<T> Future for CqFuture<T> {
84 type Output = Result<T>;
85
poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output>86 fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
87 let mut guard = self.inner.lock();
88 if guard.stale {
89 panic!("Resolved future is not supposed to be polled again.");
90 }
91
92 if let Some(res) = guard.result.take() {
93 guard.stale = true;
94 return Poll::Ready(res);
95 }
96
97 // So the task has not been finished yet, add notification hook.
98 if guard.waker.is_none() || !guard.waker.as_ref().unwrap().will_wake(cx.waker()) {
99 guard.waker = Some(cx.waker().clone());
100 }
101
102 Poll::Pending
103 }
104 }
105
106 /// Future object for batch jobs.
107 pub type BatchFuture = CqFuture<Option<MessageReader>>;
108
109 /// A result holder for asynchronous execution.
110 // This enum is going to be passed to FFI, so don't use trait or generic here.
111 pub enum CallTag {
112 Batch(BatchPromise),
113 Request(RequestCallback),
114 UnaryRequest(UnaryRequestCallback),
115 Abort(Abort),
116 Action(ActionPromise),
117 Spawn(Arc<SpawnTask>),
118 }
119
120 impl CallTag {
121 /// Generate a Future/CallTag pair for batch jobs.
batch_pair(ty: BatchType) -> (BatchFuture, CallTag)122 pub fn batch_pair(ty: BatchType) -> (BatchFuture, CallTag) {
123 let inner = new_inner();
124 let batch = BatchPromise::new(ty, inner.clone());
125 (CqFuture::new(inner), CallTag::Batch(batch))
126 }
127
128 /// Generate a CallTag for request job. We don't have an eventloop
129 /// to pull the future, so just the tag is enough.
request(ctx: RequestCallContext) -> CallTag130 pub fn request(ctx: RequestCallContext) -> CallTag {
131 CallTag::Request(RequestCallback::new(ctx))
132 }
133
134 /// Generate a Future/CallTag pair for action call that only cares if the result is
135 /// successful.
action_pair() -> (CqFuture<bool>, CallTag)136 pub fn action_pair() -> (CqFuture<bool>, CallTag) {
137 let inner = new_inner();
138 let action = ActionPromise::new(inner.clone());
139 (CqFuture::new(inner), CallTag::Action(action))
140 }
141
142 /// Generate a CallTag for abort call before handler is called.
abort(call: Call) -> CallTag143 pub fn abort(call: Call) -> CallTag {
144 CallTag::Abort(Abort::new(call))
145 }
146
147 /// Generate a CallTag for unary request job.
unary_request(ctx: RequestContext, rc: RequestCallContext) -> CallTag148 pub fn unary_request(ctx: RequestContext, rc: RequestCallContext) -> CallTag {
149 let cb = UnaryRequestCallback::new(ctx, rc);
150 CallTag::UnaryRequest(cb)
151 }
152
153 /// Get the batch context from result holder.
batch_ctx(&self) -> Option<&BatchContext>154 pub fn batch_ctx(&self) -> Option<&BatchContext> {
155 match *self {
156 CallTag::Batch(ref prom) => Some(prom.context()),
157 CallTag::UnaryRequest(ref cb) => Some(cb.batch_ctx()),
158 CallTag::Abort(ref cb) => Some(cb.batch_ctx()),
159 _ => None,
160 }
161 }
162
163 /// Get the request context from the result holder.
request_ctx(&self) -> Option<&RequestContext>164 pub fn request_ctx(&self) -> Option<&RequestContext> {
165 match *self {
166 CallTag::Request(ref prom) => Some(prom.context()),
167 CallTag::UnaryRequest(ref cb) => Some(cb.request_ctx()),
168 _ => None,
169 }
170 }
171
172 /// Resolve the CallTag with given status.
resolve(self, cq: &CompletionQueue, success: bool)173 pub fn resolve(self, cq: &CompletionQueue, success: bool) {
174 match self {
175 CallTag::Batch(prom) => prom.resolve(success),
176 CallTag::Request(cb) => cb.resolve(cq, success),
177 CallTag::UnaryRequest(cb) => cb.resolve(cq, success),
178 CallTag::Abort(_) => {}
179 CallTag::Action(prom) => prom.resolve(success),
180 CallTag::Spawn(notify) => self::executor::resolve(notify, success),
181 }
182 }
183 }
184
185 impl Debug for CallTag {
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result186 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
187 match *self {
188 CallTag::Batch(ref ctx) => write!(f, "CallTag::Batch({:?})", ctx),
189 CallTag::Request(_) => write!(f, "CallTag::Request(..)"),
190 CallTag::UnaryRequest(_) => write!(f, "CallTag::UnaryRequest(..)"),
191 CallTag::Abort(_) => write!(f, "CallTag::Abort(..)"),
192 CallTag::Action(_) => write!(f, "CallTag::Action"),
193 CallTag::Spawn(_) => write!(f, "CallTag::Spawn"),
194 }
195 }
196 }
197
198 #[cfg(test)]
199 mod tests {
200 use std::sync::mpsc::*;
201 use std::sync::*;
202 use std::thread;
203
204 use super::*;
205 use crate::env::Environment;
206 use futures::executor::block_on;
207
208 #[test]
test_resolve()209 fn test_resolve() {
210 let env = Environment::new(1);
211
212 let (cq_f1, tag1) = CallTag::action_pair();
213 let (cq_f2, tag2) = CallTag::action_pair();
214 let (tx, rx) = mpsc::channel();
215
216 let handler = thread::spawn(move || {
217 tx.send(block_on(cq_f1)).unwrap();
218 tx.send(block_on(cq_f2)).unwrap();
219 });
220
221 assert_eq!(rx.try_recv().unwrap_err(), TryRecvError::Empty);
222 tag1.resolve(&env.pick_cq(), true);
223 assert!(rx.recv().unwrap().is_ok());
224
225 assert_eq!(rx.try_recv().unwrap_err(), TryRecvError::Empty);
226 tag2.resolve(&env.pick_cq(), false);
227 match rx.recv() {
228 Ok(Ok(false)) => {}
229 res => panic!("expect Ok(false), but got {:?}", res),
230 }
231
232 handler.join().unwrap();
233 }
234 }
235