1 //! A stably addressed token buffer supporting efficient traversal based on a
2 //! cheaply copyable cursor.
3 //!
4 //! *This module is available only if Syn is built with the `"parsing"` feature.*
5
6 // This module is heavily commented as it contains most of the unsafe code in
7 // Syn, and caution should be used when editing it. The public-facing interface
8 // is 100% safe but the implementation is fragile internally.
9
10 #[cfg(all(
11 not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
12 feature = "proc-macro"
13 ))]
14 use crate::proc_macro as pm;
15 use crate::Lifetime;
16 use proc_macro2::{Delimiter, Group, Ident, Literal, Punct, Spacing, Span, TokenStream, TokenTree};
17 use std::marker::PhantomData;
18 use std::ptr;
19
20 /// Internal type which is used instead of `TokenTree` to represent a token tree
21 /// within a `TokenBuffer`.
22 enum Entry {
23 // Mimicking types from proc-macro.
24 Group(Group, TokenBuffer),
25 Ident(Ident),
26 Punct(Punct),
27 Literal(Literal),
28 // End entries contain a raw pointer to the entry from the containing
29 // token tree, or null if this is the outermost level.
30 End(*const Entry),
31 }
32
33 /// A buffer that can be efficiently traversed multiple times, unlike
34 /// `TokenStream` which requires a deep copy in order to traverse more than
35 /// once.
36 ///
37 /// *This type is available only if Syn is built with the `"parsing"` feature.*
38 pub struct TokenBuffer {
39 // NOTE: Do not derive clone on this - there are raw pointers inside which
40 // will be messed up. Moving the `TokenBuffer` itself is safe as the actual
41 // backing slices won't be moved.
42 data: Box<[Entry]>,
43 }
44
45 impl TokenBuffer {
46 // NOTE: DO NOT MUTATE THE `Vec` RETURNED FROM THIS FUNCTION ONCE IT
47 // RETURNS, THE ADDRESS OF ITS BACKING MEMORY MUST REMAIN STABLE.
inner_new(stream: TokenStream, up: *const Entry) -> TokenBuffer48 fn inner_new(stream: TokenStream, up: *const Entry) -> TokenBuffer {
49 // Build up the entries list, recording the locations of any Groups
50 // in the list to be processed later.
51 let mut entries = Vec::new();
52 let mut seqs = Vec::new();
53 for tt in stream {
54 match tt {
55 TokenTree::Ident(sym) => {
56 entries.push(Entry::Ident(sym));
57 }
58 TokenTree::Punct(op) => {
59 entries.push(Entry::Punct(op));
60 }
61 TokenTree::Literal(l) => {
62 entries.push(Entry::Literal(l));
63 }
64 TokenTree::Group(g) => {
65 // Record the index of the interesting entry, and store an
66 // `End(null)` there temporarially.
67 seqs.push((entries.len(), g));
68 entries.push(Entry::End(ptr::null()));
69 }
70 }
71 }
72 // Add an `End` entry to the end with a reference to the enclosing token
73 // stream which was passed in.
74 entries.push(Entry::End(up));
75
76 // NOTE: This is done to ensure that we don't accidentally modify the
77 // length of the backing buffer. The backing buffer must remain at a
78 // constant address after this point, as we are going to store a raw
79 // pointer into it.
80 let mut entries = entries.into_boxed_slice();
81 for (idx, group) in seqs {
82 // We know that this index refers to one of the temporary
83 // `End(null)` entries, and we know that the last entry is
84 // `End(up)`, so the next index is also valid.
85 let seq_up = &entries[idx + 1] as *const Entry;
86
87 // The end entry stored at the end of this Entry::Group should
88 // point to the Entry which follows the Group in the list.
89 let inner = Self::inner_new(group.stream(), seq_up);
90 entries[idx] = Entry::Group(group, inner);
91 }
92
93 TokenBuffer { data: entries }
94 }
95
96 /// Creates a `TokenBuffer` containing all the tokens from the input
97 /// `TokenStream`.
98 ///
99 /// *This method is available only if Syn is built with both the `"parsing"` and
100 /// `"proc-macro"` features.*
101 #[cfg(all(
102 not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
103 feature = "proc-macro"
104 ))]
new(stream: pm::TokenStream) -> TokenBuffer105 pub fn new(stream: pm::TokenStream) -> TokenBuffer {
106 Self::new2(stream.into())
107 }
108
109 /// Creates a `TokenBuffer` containing all the tokens from the input
110 /// `TokenStream`.
new2(stream: TokenStream) -> TokenBuffer111 pub fn new2(stream: TokenStream) -> TokenBuffer {
112 Self::inner_new(stream, ptr::null())
113 }
114
115 /// Creates a cursor referencing the first token in the buffer and able to
116 /// traverse until the end of the buffer.
begin(&self) -> Cursor117 pub fn begin(&self) -> Cursor {
118 unsafe { Cursor::create(&self.data[0], &self.data[self.data.len() - 1]) }
119 }
120 }
121
122 /// A cheaply copyable cursor into a `TokenBuffer`.
123 ///
124 /// This cursor holds a shared reference into the immutable data which is used
125 /// internally to represent a `TokenStream`, and can be efficiently manipulated
126 /// and copied around.
127 ///
128 /// An empty `Cursor` can be created directly, or one may create a `TokenBuffer`
129 /// object and get a cursor to its first token with `begin()`.
130 ///
131 /// Two cursors are equal if they have the same location in the same input
132 /// stream, and have the same scope.
133 ///
134 /// *This type is available only if Syn is built with the `"parsing"` feature.*
135 pub struct Cursor<'a> {
136 // The current entry which the `Cursor` is pointing at.
137 ptr: *const Entry,
138 // This is the only `Entry::End(..)` object which this cursor is allowed to
139 // point at. All other `End` objects are skipped over in `Cursor::create`.
140 scope: *const Entry,
141 // Cursor is covariant in 'a. This field ensures that our pointers are still
142 // valid.
143 marker: PhantomData<&'a Entry>,
144 }
145
146 impl<'a> Cursor<'a> {
147 /// Creates a cursor referencing a static empty TokenStream.
empty() -> Self148 pub fn empty() -> Self {
149 // It's safe in this situation for us to put an `Entry` object in global
150 // storage, despite it not actually being safe to send across threads
151 // (`Ident` is a reference into a thread-local table). This is because
152 // this entry never includes a `Ident` object.
153 //
154 // This wrapper struct allows us to break the rules and put a `Sync`
155 // object in global storage.
156 struct UnsafeSyncEntry(Entry);
157 unsafe impl Sync for UnsafeSyncEntry {}
158 static EMPTY_ENTRY: UnsafeSyncEntry = UnsafeSyncEntry(Entry::End(0 as *const Entry));
159
160 Cursor {
161 ptr: &EMPTY_ENTRY.0,
162 scope: &EMPTY_ENTRY.0,
163 marker: PhantomData,
164 }
165 }
166
167 /// This create method intelligently exits non-explicitly-entered
168 /// `None`-delimited scopes when the cursor reaches the end of them,
169 /// allowing for them to be treated transparently.
create(mut ptr: *const Entry, scope: *const Entry) -> Self170 unsafe fn create(mut ptr: *const Entry, scope: *const Entry) -> Self {
171 // NOTE: If we're looking at a `End(..)`, we want to advance the cursor
172 // past it, unless `ptr == scope`, which means that we're at the edge of
173 // our cursor's scope. We should only have `ptr != scope` at the exit
174 // from None-delimited groups entered with `ignore_none`.
175 while let Entry::End(exit) = *ptr {
176 if ptr == scope {
177 break;
178 }
179 ptr = exit;
180 }
181
182 Cursor {
183 ptr,
184 scope,
185 marker: PhantomData,
186 }
187 }
188
189 /// Get the current entry.
entry(self) -> &'a Entry190 fn entry(self) -> &'a Entry {
191 unsafe { &*self.ptr }
192 }
193
194 /// Bump the cursor to point at the next token after the current one. This
195 /// is undefined behavior if the cursor is currently looking at an
196 /// `Entry::End`.
bump(self) -> Cursor<'a>197 unsafe fn bump(self) -> Cursor<'a> {
198 Cursor::create(self.ptr.offset(1), self.scope)
199 }
200
201 /// While the cursor is looking at a `None`-delimited group, move it to look
202 /// at the first token inside instead. If the group is empty, this will move
203 /// the cursor past the `None`-delimited group.
204 ///
205 /// WARNING: This mutates its argument.
ignore_none(&mut self)206 fn ignore_none(&mut self) {
207 while let Entry::Group(group, buf) = self.entry() {
208 if group.delimiter() == Delimiter::None {
209 // NOTE: We call `Cursor::create` here to make sure that
210 // situations where we should immediately exit the span after
211 // entering it are handled correctly.
212 unsafe {
213 *self = Cursor::create(&buf.data[0], self.scope);
214 }
215 } else {
216 break;
217 }
218 }
219 }
220
221 /// Checks whether the cursor is currently pointing at the end of its valid
222 /// scope.
eof(self) -> bool223 pub fn eof(self) -> bool {
224 // We're at eof if we're at the end of our scope.
225 self.ptr == self.scope
226 }
227
228 /// If the cursor is pointing at a `Group` with the given delimiter, returns
229 /// a cursor into that group and one pointing to the next `TokenTree`.
group(mut self, delim: Delimiter) -> Option<(Cursor<'a>, Span, Cursor<'a>)>230 pub fn group(mut self, delim: Delimiter) -> Option<(Cursor<'a>, Span, Cursor<'a>)> {
231 // If we're not trying to enter a none-delimited group, we want to
232 // ignore them. We have to make sure to _not_ ignore them when we want
233 // to enter them, of course. For obvious reasons.
234 if delim != Delimiter::None {
235 self.ignore_none();
236 }
237
238 if let Entry::Group(group, buf) = self.entry() {
239 if group.delimiter() == delim {
240 return Some((buf.begin(), group.span(), unsafe { self.bump() }));
241 }
242 }
243
244 None
245 }
246
247 /// If the cursor is pointing at a `Ident`, returns it along with a cursor
248 /// pointing at the next `TokenTree`.
ident(mut self) -> Option<(Ident, Cursor<'a>)>249 pub fn ident(mut self) -> Option<(Ident, Cursor<'a>)> {
250 self.ignore_none();
251 match self.entry() {
252 Entry::Ident(ident) => Some((ident.clone(), unsafe { self.bump() })),
253 _ => None,
254 }
255 }
256
257 /// If the cursor is pointing at an `Punct`, returns it along with a cursor
258 /// pointing at the next `TokenTree`.
punct(mut self) -> Option<(Punct, Cursor<'a>)>259 pub fn punct(mut self) -> Option<(Punct, Cursor<'a>)> {
260 self.ignore_none();
261 match self.entry() {
262 Entry::Punct(op) if op.as_char() != '\'' => Some((op.clone(), unsafe { self.bump() })),
263 _ => None,
264 }
265 }
266
267 /// If the cursor is pointing at a `Literal`, return it along with a cursor
268 /// pointing at the next `TokenTree`.
literal(mut self) -> Option<(Literal, Cursor<'a>)>269 pub fn literal(mut self) -> Option<(Literal, Cursor<'a>)> {
270 self.ignore_none();
271 match self.entry() {
272 Entry::Literal(lit) => Some((lit.clone(), unsafe { self.bump() })),
273 _ => None,
274 }
275 }
276
277 /// If the cursor is pointing at a `Lifetime`, returns it along with a
278 /// cursor pointing at the next `TokenTree`.
lifetime(mut self) -> Option<(Lifetime, Cursor<'a>)>279 pub fn lifetime(mut self) -> Option<(Lifetime, Cursor<'a>)> {
280 self.ignore_none();
281 match self.entry() {
282 Entry::Punct(op) if op.as_char() == '\'' && op.spacing() == Spacing::Joint => {
283 let next = unsafe { self.bump() };
284 match next.ident() {
285 Some((ident, rest)) => {
286 let lifetime = Lifetime {
287 apostrophe: op.span(),
288 ident,
289 };
290 Some((lifetime, rest))
291 }
292 None => None,
293 }
294 }
295 _ => None,
296 }
297 }
298
299 /// Copies all remaining tokens visible from this cursor into a
300 /// `TokenStream`.
token_stream(self) -> TokenStream301 pub fn token_stream(self) -> TokenStream {
302 let mut tts = Vec::new();
303 let mut cursor = self;
304 while let Some((tt, rest)) = cursor.token_tree() {
305 tts.push(tt);
306 cursor = rest;
307 }
308 tts.into_iter().collect()
309 }
310
311 /// If the cursor is pointing at a `TokenTree`, returns it along with a
312 /// cursor pointing at the next `TokenTree`.
313 ///
314 /// Returns `None` if the cursor has reached the end of its stream.
315 ///
316 /// This method does not treat `None`-delimited groups as transparent, and
317 /// will return a `Group(None, ..)` if the cursor is looking at one.
token_tree(self) -> Option<(TokenTree, Cursor<'a>)>318 pub fn token_tree(self) -> Option<(TokenTree, Cursor<'a>)> {
319 let tree = match self.entry() {
320 Entry::Group(group, _) => group.clone().into(),
321 Entry::Literal(lit) => lit.clone().into(),
322 Entry::Ident(ident) => ident.clone().into(),
323 Entry::Punct(op) => op.clone().into(),
324 Entry::End(..) => {
325 return None;
326 }
327 };
328
329 Some((tree, unsafe { self.bump() }))
330 }
331
332 /// Returns the `Span` of the current token, or `Span::call_site()` if this
333 /// cursor points to eof.
span(self) -> Span334 pub fn span(self) -> Span {
335 match self.entry() {
336 Entry::Group(group, _) => group.span(),
337 Entry::Literal(l) => l.span(),
338 Entry::Ident(t) => t.span(),
339 Entry::Punct(o) => o.span(),
340 Entry::End(..) => Span::call_site(),
341 }
342 }
343
344 /// Skip over the next token without cloning it. Returns `None` if this
345 /// cursor points to eof.
346 ///
347 /// This method treats `'lifetimes` as a single token.
skip(self) -> Option<Cursor<'a>>348 pub(crate) fn skip(self) -> Option<Cursor<'a>> {
349 match self.entry() {
350 Entry::End(..) => None,
351
352 // Treat lifetimes as a single tt for the purposes of 'skip'.
353 Entry::Punct(op) if op.as_char() == '\'' && op.spacing() == Spacing::Joint => {
354 let next = unsafe { self.bump() };
355 match next.entry() {
356 Entry::Ident(_) => Some(unsafe { next.bump() }),
357 _ => Some(next),
358 }
359 }
360 _ => Some(unsafe { self.bump() }),
361 }
362 }
363 }
364
365 impl<'a> Copy for Cursor<'a> {}
366
367 impl<'a> Clone for Cursor<'a> {
clone(&self) -> Self368 fn clone(&self) -> Self {
369 *self
370 }
371 }
372
373 impl<'a> Eq for Cursor<'a> {}
374
375 impl<'a> PartialEq for Cursor<'a> {
eq(&self, other: &Self) -> bool376 fn eq(&self, other: &Self) -> bool {
377 let Cursor { ptr, scope, marker } = self;
378 let _ = marker;
379 *ptr == other.ptr && *scope == other.scope
380 }
381 }
382
same_scope(a: Cursor, b: Cursor) -> bool383 pub(crate) fn same_scope(a: Cursor, b: Cursor) -> bool {
384 a.scope == b.scope
385 }
386
open_span_of_group(cursor: Cursor) -> Span387 pub(crate) fn open_span_of_group(cursor: Cursor) -> Span {
388 match cursor.entry() {
389 Entry::Group(group, _) => group.span_open(),
390 _ => cursor.span(),
391 }
392 }
393
close_span_of_group(cursor: Cursor) -> Span394 pub(crate) fn close_span_of_group(cursor: Cursor) -> Span {
395 match cursor.entry() {
396 Entry::Group(group, _) => group.span_close(),
397 _ => cursor.span(),
398 }
399 }
400