• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/GrTriangulator.h"
9 
10 #include "src/gpu/GrEagerVertexAllocator.h"
11 #include "src/gpu/GrVertexWriter.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13 
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkPointPriv.h"
16 
17 #include <algorithm>
18 
19 
20 #if TRIANGULATOR_LOGGING
21 #define TESS_LOG printf
22 #define DUMP_MESH(M) (M).dump()
23 #else
24 #define TESS_LOG(...)
25 #define DUMP_MESH(M)
26 #endif
27 
28 using EdgeType = GrTriangulator::EdgeType;
29 using Vertex = GrTriangulator::Vertex;
30 using VertexList = GrTriangulator::VertexList;
31 using Line = GrTriangulator::Line;
32 using Edge = GrTriangulator::Edge;
33 using EdgeList = GrTriangulator::EdgeList;
34 using Poly = GrTriangulator::Poly;
35 using MonotonePoly = GrTriangulator::MonotonePoly;
36 using Comparator = GrTriangulator::Comparator;
37 
38 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)39 static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
40     t->*Prev = prev;
41     t->*Next = next;
42     if (prev) {
43         prev->*Next = t;
44     } else if (head) {
45         *head = t;
46     }
47     if (next) {
48         next->*Prev = t;
49     } else if (tail) {
50         *tail = t;
51     }
52 }
53 
54 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)55 static void list_remove(T* t, T** head, T** tail) {
56     if (t->*Prev) {
57         t->*Prev->*Next = t->*Next;
58     } else if (head) {
59         *head = t->*Next;
60     }
61     if (t->*Next) {
62         t->*Next->*Prev = t->*Prev;
63     } else if (tail) {
64         *tail = t->*Prev;
65     }
66     t->*Prev = t->*Next = nullptr;
67 }
68 
69 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
70 
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)71 static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
72     return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
73 }
74 
sweep_lt_vert(const SkPoint & a,const SkPoint & b)75 static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
76     return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
77 }
78 
sweep_lt(const SkPoint & a,const SkPoint & b) const79 bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
80     return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
81 }
82 
emit_vertex(Vertex * v,bool emitCoverage,void * data)83 static inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) {
84     GrVertexWriter verts{data};
85     verts.write(v->fPoint);
86 
87     if (emitCoverage) {
88         verts.write(GrNormalizeByteToFloat(v->fAlpha));
89     }
90 
91     return verts.fPtr;
92 }
93 
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,void * data)94 static void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) {
95     TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
96     TESS_LOG("              %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
97     TESS_LOG("              %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
98 #if TESSELLATOR_WIREFRAME
99     data = emit_vertex(v0, emitCoverage, data);
100     data = emit_vertex(v1, emitCoverage, data);
101     data = emit_vertex(v1, emitCoverage, data);
102     data = emit_vertex(v2, emitCoverage, data);
103     data = emit_vertex(v2, emitCoverage, data);
104     data = emit_vertex(v0, emitCoverage, data);
105 #else
106     data = emit_vertex(v0, emitCoverage, data);
107     data = emit_vertex(v1, emitCoverage, data);
108     data = emit_vertex(v2, emitCoverage, data);
109 #endif
110     return data;
111 }
112 
insert(Vertex * v,Vertex * prev,Vertex * next)113 void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
114     list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
115 }
116 
remove(Vertex * v)117 void GrTriangulator::VertexList::remove(Vertex* v) {
118     list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
119 }
120 
121 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
122 
round(SkPoint * p)123 static inline void round(SkPoint* p) {
124     p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
125     p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
126 }
127 
double_to_clamped_scalar(double d)128 static inline SkScalar double_to_clamped_scalar(double d) {
129     // Clamps large values to what's finitely representable when cast back to a float.
130     static const double kMaxLimit = (double) SK_ScalarMax;
131     // It's not perfect, but a using a value larger than float_min helps protect from denormalized
132     // values and ill-conditions in intermediate calculations on coordinates.
133     static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
134     if (std::abs(d) < kNearZeroLimit) {
135         d = 0.f;
136     }
137     return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
138 }
139 
intersect(const Line & other,SkPoint * point) const140 bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
141     double denom = fA * other.fB - fB * other.fA;
142     if (denom == 0.0) {
143         return false;
144     }
145     double scale = 1.0 / denom;
146     point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
147     point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
148     round(point);
149     return point->isFinite();
150 }
151 
intersect(const Edge & other,SkPoint * p,uint8_t * alpha) const152 bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
153     TESS_LOG("intersecting %g -> %g with %g -> %g\n",
154              fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
155     if (fTop == other.fTop || fBottom == other.fBottom) {
156         return false;
157     }
158     double denom = fLine.fA * other.fLine.fB - fLine.fB * other.fLine.fA;
159     if (denom == 0.0) {
160         return false;
161     }
162     double dx = static_cast<double>(other.fTop->fPoint.fX) - fTop->fPoint.fX;
163     double dy = static_cast<double>(other.fTop->fPoint.fY) - fTop->fPoint.fY;
164     double sNumer = dy * other.fLine.fB + dx * other.fLine.fA;
165     double tNumer = dy * fLine.fB + dx * fLine.fA;
166     // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
167     // This saves us doing the divide below unless absolutely necessary.
168     if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
169                     : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
170         return false;
171     }
172     double s = sNumer / denom;
173     SkASSERT(s >= 0.0 && s <= 1.0);
174     p->fX = double_to_clamped_scalar(fTop->fPoint.fX - s * fLine.fB);
175     p->fY = double_to_clamped_scalar(fTop->fPoint.fY + s * fLine.fA);
176     if (alpha) {
177         if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
178             // If the intersection is on any interior edge, it needs to stay fully opaque or later
179             // triangulation could leech transparency into the inner fill region.
180             *alpha = 255;
181         } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
182             // Trivially, the intersection will be fully transparent since since it is by
183             // construction on the outer edge.
184             *alpha = 0;
185         } else {
186             // Could be two connectors crossing, or a connector crossing an outer edge.
187             // Take the max interpolated alpha
188             SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
189             double t = tNumer / denom;
190             *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
191                               (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
192         }
193     }
194     return true;
195 }
196 
insert(Edge * edge,Edge * prev,Edge * next)197 void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
198     list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
199 }
200 
remove(Edge * edge)201 void GrTriangulator::EdgeList::remove(Edge* edge) {
202     TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
203     SkASSERT(this->contains(edge));
204     list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
205 }
206 
addEdge(Edge * edge)207 void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
208     if (fSide == kRight_Side) {
209         SkASSERT(!edge->fUsedInRightPoly);
210         list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
211             edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
212         edge->fUsedInRightPoly = true;
213     } else {
214         SkASSERT(!edge->fUsedInLeftPoly);
215         list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
216             edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
217         edge->fUsedInLeftPoly = true;
218     }
219 }
220 
emitMonotonePoly(const MonotonePoly * monotonePoly,void * data) const221 void* GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly, void* data) const {
222     SkASSERT(monotonePoly->fWinding != 0);
223     Edge* e = monotonePoly->fFirstEdge;
224     VertexList vertices;
225     vertices.append(e->fTop);
226     int count = 1;
227     while (e != nullptr) {
228         if (kRight_Side == monotonePoly->fSide) {
229             vertices.append(e->fBottom);
230             e = e->fRightPolyNext;
231         } else {
232             vertices.prepend(e->fBottom);
233             e = e->fLeftPolyNext;
234         }
235         count++;
236     }
237     Vertex* first = vertices.fHead;
238     Vertex* v = first->fNext;
239     while (v != vertices.fTail) {
240         SkASSERT(v && v->fPrev && v->fNext);
241         Vertex* prev = v->fPrev;
242         Vertex* curr = v;
243         Vertex* next = v->fNext;
244         if (count == 3) {
245             return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data);
246         }
247         double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
248         double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
249         double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
250         double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
251         if (ax * by - ay * bx >= 0.0) {
252             data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data);
253             v->fPrev->fNext = v->fNext;
254             v->fNext->fPrev = v->fPrev;
255             count--;
256             if (v->fPrev == first) {
257                 v = v->fNext;
258             } else {
259                 v = v->fPrev;
260             }
261         } else {
262             v = v->fNext;
263         }
264     }
265     return data;
266 }
267 
emitTriangle(Vertex * prev,Vertex * curr,Vertex * next,int winding,void * data) const268 void* GrTriangulator::emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding,
269                                    void* data) const {
270     if (winding > 0) {
271         // Ensure our triangles always wind in the same direction as if the path had been
272         // triangulated as a simple fan (a la red book).
273         std::swap(prev, next);
274     }
275     if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
276         fPath.getFillType() == SkPathFillType::kWinding) {
277         // The first winding count will come from the actual triangle we emit. The remaining counts
278         // come from the breadcrumb triangle.
279         fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
280     }
281     return emit_triangle(prev, curr, next, fEmitCoverage, data);
282 }
283 
Poly(Vertex * v,int winding)284 GrTriangulator::Poly::Poly(Vertex* v, int winding)
285         : fFirstVertex(v)
286         , fWinding(winding)
287         , fHead(nullptr)
288         , fTail(nullptr)
289         , fNext(nullptr)
290         , fPartner(nullptr)
291         , fCount(0)
292 {
293 #if TRIANGULATOR_LOGGING
294     static int gID = 0;
295     fID = gID++;
296     TESS_LOG("*** created Poly %d\n", fID);
297 #endif
298 }
299 
addEdge(Edge * e,Side side,SkArenaAlloc * alloc)300 Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, SkArenaAlloc* alloc) {
301     TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
302              e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
303     Poly* partner = fPartner;
304     Poly* poly = this;
305     if (side == kRight_Side) {
306         if (e->fUsedInRightPoly) {
307             return this;
308         }
309     } else {
310         if (e->fUsedInLeftPoly) {
311             return this;
312         }
313     }
314     if (partner) {
315         fPartner = partner->fPartner = nullptr;
316     }
317     if (!fTail) {
318         fHead = fTail = alloc->make<MonotonePoly>(e, side, fWinding);
319         fCount += 2;
320     } else if (e->fBottom == fTail->fLastEdge->fBottom) {
321         return poly;
322     } else if (side == fTail->fSide) {
323         fTail->addEdge(e);
324         fCount++;
325     } else {
326         e = alloc->make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
327         fTail->addEdge(e);
328         fCount++;
329         if (partner) {
330             partner->addEdge(e, side, alloc);
331             poly = partner;
332         } else {
333             MonotonePoly* m = alloc->make<MonotonePoly>(e, side, fWinding);
334             m->fPrev = fTail;
335             fTail->fNext = m;
336             fTail = m;
337         }
338     }
339     return poly;
340 }
emitPoly(const Poly * poly,void * data) const341 void* GrTriangulator::emitPoly(const Poly* poly, void *data) const {
342     if (poly->fCount < 3) {
343         return data;
344     }
345     TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
346     for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
347         data = this->emitMonotonePoly(m, data);
348     }
349     return data;
350 }
351 
coincident(const SkPoint & a,const SkPoint & b)352 static bool coincident(const SkPoint& a, const SkPoint& b) {
353     return a == b;
354 }
355 
makePoly(Poly ** head,Vertex * v,int winding) const356 Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
357     Poly* poly = fAlloc->make<Poly>(v, winding);
358     poly->fNext = *head;
359     *head = poly;
360     return poly;
361 }
362 
appendPointToContour(const SkPoint & p,VertexList * contour) const363 void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
364     Vertex* v = fAlloc->make<Vertex>(p, 255);
365 #if TRIANGULATOR_LOGGING
366     static float gID = 0.0f;
367     v->fID = gID++;
368 #endif
369     contour->append(v);
370 }
371 
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)372 static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
373     SkQuadCoeff quad(pts);
374     SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
375     SkPoint mid = to_point(quad.eval(t));
376     SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
377     if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
378         return 0;
379     }
380     return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
381 }
382 
appendQuadraticToContour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour) const383 void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
384                                               VertexList* contour) const {
385     SkQuadCoeff quad(pts);
386     Sk2s aa = quad.fA * quad.fA;
387     SkScalar denom = 2.0f * (aa[0] + aa[1]);
388     Sk2s ab = quad.fA * quad.fB;
389     SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
390     int nPoints = 1;
391     SkScalar u = 1.0f;
392     // Test possible subdivision values only at the point of maximum curvature.
393     // If it passes the flatness metric there, it'll pass everywhere.
394     while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
395         u = 1.0f / nPoints;
396         if (quad_error_at(pts, t, u) < toleranceSqd) {
397             break;
398         }
399         nPoints++;
400     }
401     for (int j = 1; j <= nPoints; j++) {
402         this->appendPointToContour(to_point(quad.eval(j * u)), contour);
403     }
404 }
405 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft) const406 void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
407                                          const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
408                                          int pointsLeft) const {
409     SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
410     SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
411     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
412         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
413         this->appendPointToContour(p3, contour);
414         return;
415     }
416     const SkPoint q[] = {
417         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
418         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
419         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
420     };
421     const SkPoint r[] = {
422         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
423         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
424     };
425     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
426     pointsLeft >>= 1;
427     this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
428     this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
429 }
430 
431 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
432 
pathToContours(float tolerance,const SkRect & clipBounds,VertexList * contours,bool * isLinear) const433 void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
434                                     VertexList* contours, bool* isLinear) const {
435     SkScalar toleranceSqd = tolerance * tolerance;
436     SkPoint pts[4];
437     *isLinear = true;
438     VertexList* contour = contours;
439     SkPath::Iter iter(fPath, false);
440     if (fPath.isInverseFillType()) {
441         SkPoint quad[4];
442         clipBounds.toQuad(quad);
443         for (int i = 3; i >= 0; i--) {
444             this->appendPointToContour(quad[i], contours);
445         }
446         contour++;
447     }
448     SkAutoConicToQuads converter;
449     SkPath::Verb verb;
450     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
451         switch (verb) {
452             case SkPath::kConic_Verb: {
453                 *isLinear = false;
454                 if (toleranceSqd == 0) {
455                     this->appendPointToContour(pts[2], contour);
456                     break;
457                 }
458                 SkScalar weight = iter.conicWeight();
459                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
460                 for (int i = 0; i < converter.countQuads(); ++i) {
461                     this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
462                     quadPts += 2;
463                 }
464                 break;
465             }
466             case SkPath::kMove_Verb:
467                 if (contour->fHead) {
468                     contour++;
469                 }
470                 this->appendPointToContour(pts[0], contour);
471                 break;
472             case SkPath::kLine_Verb: {
473                 this->appendPointToContour(pts[1], contour);
474                 break;
475             }
476             case SkPath::kQuad_Verb: {
477                 *isLinear = false;
478                 if (toleranceSqd == 0) {
479                     this->appendPointToContour(pts[2], contour);
480                     break;
481                 }
482                 this->appendQuadraticToContour(pts, toleranceSqd, contour);
483                 break;
484             }
485             case SkPath::kCubic_Verb: {
486                 *isLinear = false;
487                 if (toleranceSqd == 0) {
488                     this->appendPointToContour(pts[3], contour);
489                     break;
490                 }
491                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
492                 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
493                                           pointsLeft);
494                 break;
495             }
496             case SkPath::kClose_Verb:
497             case SkPath::kDone_Verb:
498                 break;
499         }
500     }
501 }
502 
apply_fill_type(SkPathFillType fillType,int winding)503 static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
504     switch (fillType) {
505         case SkPathFillType::kWinding:
506             return winding != 0;
507         case SkPathFillType::kEvenOdd:
508             return (winding & 1) != 0;
509         case SkPathFillType::kInverseWinding:
510             return winding == 1;
511         case SkPathFillType::kInverseEvenOdd:
512             return (winding & 1) == 1;
513         default:
514             SkASSERT(false);
515             return false;
516     }
517 }
518 
applyFillType(int winding) const519 bool GrTriangulator::applyFillType(int winding) const {
520     return apply_fill_type(fPath.getFillType(), winding);
521 }
522 
apply_fill_type(SkPathFillType fillType,Poly * poly)523 static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
524     return poly && apply_fill_type(fillType, poly->fWinding);
525 }
526 
makeEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c) const527 Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
528                                const Comparator& c) const {
529     SkASSERT(prev->fPoint != next->fPoint);
530     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
531     Vertex* top = winding < 0 ? next : prev;
532     Vertex* bottom = winding < 0 ? prev : next;
533     return fAlloc->make<Edge>(top, bottom, winding, type);
534 }
535 
insert(Edge * edge,Edge * prev)536 void EdgeList::insert(Edge* edge, Edge* prev) {
537     TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
538     SkASSERT(!this->contains(edge));
539     Edge* next = prev ? prev->fRight : fHead;
540     this->insert(edge, prev, next);
541 }
542 
FindEnclosingEdges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)543 void GrTriangulator::FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
544     if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
545         *left = v->fFirstEdgeAbove->fLeft;
546         *right = v->fLastEdgeAbove->fRight;
547         return;
548     }
549     Edge* next = nullptr;
550     Edge* prev;
551     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
552         if (prev->isLeftOf(v)) {
553             break;
554         }
555         next = prev;
556     }
557     *left = prev;
558     *right = next;
559 }
560 
insertAbove(Vertex * v,const Comparator & c)561 void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
562     if (fTop->fPoint == fBottom->fPoint ||
563         c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
564         return;
565     }
566     TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
567     Edge* prev = nullptr;
568     Edge* next;
569     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
570         if (next->isRightOf(fTop)) {
571             break;
572         }
573         prev = next;
574     }
575     list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
576         this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
577 }
578 
insertBelow(Vertex * v,const Comparator & c)579 void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
580     if (fTop->fPoint == fBottom->fPoint ||
581         c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
582         return;
583     }
584     TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
585     Edge* prev = nullptr;
586     Edge* next;
587     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
588         if (next->isRightOf(fBottom)) {
589             break;
590         }
591         prev = next;
592     }
593     list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
594         this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
595 }
596 
remove_edge_above(Edge * edge)597 static void remove_edge_above(Edge* edge) {
598     SkASSERT(edge->fTop && edge->fBottom);
599     TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
600              edge->fBottom->fID);
601     list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
602         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
603 }
604 
remove_edge_below(Edge * edge)605 static void remove_edge_below(Edge* edge) {
606     SkASSERT(edge->fTop && edge->fBottom);
607     TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
608              edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
609     list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
610         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
611 }
612 
disconnect()613 void GrTriangulator::Edge::disconnect() {
614     remove_edge_above(this);
615     remove_edge_below(this);
616 }
617 
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,const Comparator & c)618 static void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
619     if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
620         return;
621     }
622     Vertex* v = *current;
623     TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
624     while (v != dst) {
625         v = v->fPrev;
626         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
627             activeEdges->remove(e);
628         }
629         Edge* leftEdge = v->fLeftEnclosingEdge;
630         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
631             activeEdges->insert(e, leftEdge);
632             leftEdge = e;
633             Vertex* top = e->fTop;
634             if (c.sweep_lt(top->fPoint, dst->fPoint) &&
635                 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) ||
636                  (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) {
637                 dst = top;
638             }
639         }
640     }
641     *current = v;
642 }
643 
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c)644 static void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
645                                 const Comparator& c) {
646     if (!activeEdges || !current) {
647         return;
648     }
649     Vertex* top = edge->fTop;
650     Vertex* bottom = edge->fBottom;
651     if (edge->fLeft) {
652         Vertex* leftTop = edge->fLeft->fTop;
653         Vertex* leftBottom = edge->fLeft->fBottom;
654         if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
655             rewind(activeEdges, current, leftTop, c);
656         } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
657             rewind(activeEdges, current, top, c);
658         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
659                    !edge->fLeft->isLeftOf(bottom)) {
660             rewind(activeEdges, current, leftTop, c);
661         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
662             rewind(activeEdges, current, top, c);
663         }
664     }
665     if (edge->fRight) {
666         Vertex* rightTop = edge->fRight->fTop;
667         Vertex* rightBottom = edge->fRight->fBottom;
668         if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
669             rewind(activeEdges, current, rightTop, c);
670         } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
671             rewind(activeEdges, current, top, c);
672         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
673                    !edge->fRight->isRightOf(bottom)) {
674             rewind(activeEdges, current, rightTop, c);
675         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
676                    !edge->isLeftOf(rightBottom)) {
677             rewind(activeEdges, current, top, c);
678         }
679     }
680 }
681 
setTop(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const682 void GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
683                             const Comparator& c) const {
684     remove_edge_below(edge);
685     if (fCollectBreadcrumbTriangles) {
686         fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
687                                edge->fWinding);
688     }
689     edge->fTop = v;
690     edge->recompute();
691     edge->insertBelow(v, c);
692     rewind_if_necessary(edge, activeEdges, current, c);
693     this->mergeCollinearEdges(edge, activeEdges, current, c);
694 }
695 
setBottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const696 void GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
697                                const Comparator& c) const {
698     remove_edge_above(edge);
699     if (fCollectBreadcrumbTriangles) {
700         fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
701                                edge->fWinding);
702     }
703     edge->fBottom = v;
704     edge->recompute();
705     edge->insertAbove(v, c);
706     rewind_if_necessary(edge, activeEdges, current, c);
707     this->mergeCollinearEdges(edge, activeEdges, current, c);
708 }
709 
mergeEdgesAbove(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const710 void GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
711                                      Vertex** current, const Comparator& c) const {
712     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
713         TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
714                  edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
715                  edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
716         rewind(activeEdges, current, edge->fTop, c);
717         other->fWinding += edge->fWinding;
718         edge->disconnect();
719         edge->fTop = edge->fBottom = nullptr;
720     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
721         rewind(activeEdges, current, edge->fTop, c);
722         other->fWinding += edge->fWinding;
723         this->setBottom(edge, other->fTop, activeEdges, current, c);
724     } else {
725         rewind(activeEdges, current, other->fTop, c);
726         edge->fWinding += other->fWinding;
727         this->setBottom(other, edge->fTop, activeEdges, current, c);
728     }
729 }
730 
mergeEdgesBelow(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const731 void GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
732                                      Vertex** current, const Comparator& c) const {
733     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
734         TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
735                  edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
736                  edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
737         rewind(activeEdges, current, edge->fTop, c);
738         other->fWinding += edge->fWinding;
739         edge->disconnect();
740         edge->fTop = edge->fBottom = nullptr;
741     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
742         rewind(activeEdges, current, other->fTop, c);
743         edge->fWinding += other->fWinding;
744         this->setTop(other, edge->fBottom, activeEdges, current, c);
745     } else {
746         rewind(activeEdges, current, edge->fTop, c);
747         other->fWinding += edge->fWinding;
748         this->setTop(edge, other->fBottom, activeEdges, current, c);
749     }
750 }
751 
top_collinear(Edge * left,Edge * right)752 static bool top_collinear(Edge* left, Edge* right) {
753     if (!left || !right) {
754         return false;
755     }
756     return left->fTop->fPoint == right->fTop->fPoint ||
757            !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
758 }
759 
bottom_collinear(Edge * left,Edge * right)760 static bool bottom_collinear(Edge* left, Edge* right) {
761     if (!left || !right) {
762         return false;
763     }
764     return left->fBottom->fPoint == right->fBottom->fPoint ||
765            !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
766 }
767 
mergeCollinearEdges(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const768 void GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
769                                          const Comparator& c) const {
770     for (;;) {
771         if (top_collinear(edge->fPrevEdgeAbove, edge)) {
772             this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
773         } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
774             this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c);
775         } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
776             this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
777         } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
778             this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c);
779         } else {
780             break;
781         }
782     }
783     SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
784     SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
785     SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
786     SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
787 }
788 
splitEdge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const789 bool GrTriangulator::splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
790                                const Comparator& c) const {
791     if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
792         return false;
793     }
794     TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
795              edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
796     Vertex* top;
797     Vertex* bottom;
798     int winding = edge->fWinding;
799     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
800         top = v;
801         bottom = edge->fTop;
802         this->setTop(edge, v, activeEdges, current, c);
803     } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
804         top = edge->fBottom;
805         bottom = v;
806         this->setBottom(edge, v, activeEdges, current, c);
807     } else {
808         top = v;
809         bottom = edge->fBottom;
810         this->setBottom(edge, v, activeEdges, current, c);
811     }
812     Edge* newEdge = fAlloc->make<Edge>(top, bottom, winding, edge->fType);
813     newEdge->insertBelow(top, c);
814     newEdge->insertAbove(bottom, c);
815     this->mergeCollinearEdges(newEdge, activeEdges, current, c);
816     return true;
817 }
818 
intersectEdgePair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const819 bool GrTriangulator::intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges,
820                                        Vertex** current, const Comparator& c) const {
821     if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
822         return false;
823     }
824     if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
825         return false;
826     }
827     if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
828         if (!left->isLeftOf(right->fTop)) {
829             rewind(activeEdges, current, right->fTop, c);
830             return this->splitEdge(left, right->fTop, activeEdges, current, c);
831         }
832     } else {
833         if (!right->isRightOf(left->fTop)) {
834             rewind(activeEdges, current, left->fTop, c);
835             return this->splitEdge(right, left->fTop, activeEdges, current, c);
836         }
837     }
838     if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
839         if (!left->isLeftOf(right->fBottom)) {
840             rewind(activeEdges, current, right->fBottom, c);
841             return this->splitEdge(left, right->fBottom, activeEdges, current, c);
842         }
843     } else {
844         if (!right->isRightOf(left->fBottom)) {
845             rewind(activeEdges, current, left->fBottom, c);
846             return this->splitEdge(right, left->fBottom, activeEdges, current, c);
847         }
848     }
849     return false;
850 }
851 
makeConnectingEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c,int windingScale) const852 Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
853                                          const Comparator& c, int windingScale) const {
854     if (!prev || !next || prev->fPoint == next->fPoint) {
855         return nullptr;
856     }
857     Edge* edge = this->makeEdge(prev, next, type, c);
858     edge->insertBelow(edge->fTop, c);
859     edge->insertAbove(edge->fBottom, c);
860     edge->fWinding *= windingScale;
861     this->mergeCollinearEdges(edge, nullptr, nullptr, c);
862     return edge;
863 }
864 
mergeVertices(Vertex * src,Vertex * dst,VertexList * mesh,const Comparator & c) const865 void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
866                                    const Comparator& c) const {
867     TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
868              src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
869     dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
870     if (src->fPartner) {
871         src->fPartner->fPartner = dst;
872     }
873     while (Edge* edge = src->fFirstEdgeAbove) {
874         this->setBottom(edge, dst, nullptr, nullptr, c);
875     }
876     while (Edge* edge = src->fFirstEdgeBelow) {
877         this->setTop(edge, dst, nullptr, nullptr, c);
878     }
879     mesh->remove(src);
880     dst->fSynthetic = true;
881 }
882 
makeSortedVertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,const Comparator & c) const883 Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
884                                          Vertex* reference, const Comparator& c) const {
885     Vertex* prevV = reference;
886     while (prevV && c.sweep_lt(p, prevV->fPoint)) {
887         prevV = prevV->fPrev;
888     }
889     Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
890     while (nextV && c.sweep_lt(nextV->fPoint, p)) {
891         prevV = nextV;
892         nextV = nextV->fNext;
893     }
894     Vertex* v;
895     if (prevV && coincident(prevV->fPoint, p)) {
896         v = prevV;
897     } else if (nextV && coincident(nextV->fPoint, p)) {
898         v = nextV;
899     } else {
900         v = fAlloc->make<Vertex>(p, alpha);
901 #if TRIANGULATOR_LOGGING
902         if (!prevV) {
903             v->fID = mesh->fHead->fID - 1.0f;
904         } else if (!nextV) {
905             v->fID = mesh->fTail->fID + 1.0f;
906         } else {
907             v->fID = (prevV->fID + nextV->fID) * 0.5f;
908         }
909 #endif
910         mesh->insert(v, prevV, nextV);
911     }
912     return v;
913 }
914 
915 // If an edge's top and bottom points differ only by 1/2 machine epsilon in the primary
916 // sort criterion, it may not be possible to split correctly, since there is no point which is
917 // below the top and above the bottom. This function detects that case.
nearly_flat(const Comparator & c,Edge * edge)918 static bool nearly_flat(const Comparator& c, Edge* edge) {
919     SkPoint diff = edge->fBottom->fPoint - edge->fTop->fPoint;
920     float primaryDiff = c.fDirection == Comparator::Direction::kHorizontal ? diff.fX : diff.fY;
921     return fabs(primaryDiff) <= std::numeric_limits<float>::epsilon() && primaryDiff != 0.0f;
922 }
923 
clamp(SkPoint p,SkPoint min,SkPoint max,const Comparator & c)924 static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
925     if (c.sweep_lt(p, min)) {
926         return min;
927     } else if (c.sweep_lt(max, p)) {
928         return max;
929     } else {
930         return p;
931     }
932 }
933 
computeBisector(Edge * edge1,Edge * edge2,Vertex * v) const934 void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
935     SkASSERT(fEmitCoverage);  // Edge-AA only!
936     Line line1 = edge1->fLine;
937     Line line2 = edge2->fLine;
938     line1.normalize();
939     line2.normalize();
940     double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
941     if (cosAngle > 0.999) {
942         return;
943     }
944     line1.fC += edge1->fWinding > 0 ? -1 : 1;
945     line2.fC += edge2->fWinding > 0 ? -1 : 1;
946     SkPoint p;
947     if (line1.intersect(line2, &p)) {
948         uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
949         v->fPartner = fAlloc->make<Vertex>(p, alpha);
950         TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
951     }
952 }
953 
checkForIntersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,const Comparator & c) const954 bool GrTriangulator::checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges,
955                                           Vertex** current, VertexList* mesh,
956                                           const Comparator& c) const {
957     if (!left || !right) {
958         return false;
959     }
960     SkPoint p;
961     uint8_t alpha;
962     if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
963         Vertex* v;
964         TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
965         Vertex* top = *current;
966         // If the intersection point is above the current vertex, rewind to the vertex above the
967         // intersection.
968         while (top && c.sweep_lt(p, top->fPoint)) {
969             top = top->fPrev;
970         }
971         bool leftFlat = nearly_flat(c, left);
972         bool rightFlat = nearly_flat(c, right);
973         if (leftFlat && rightFlat) {
974             return false;
975         }
976         if (!leftFlat) {
977             p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
978         }
979         if (!rightFlat) {
980             p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
981         }
982         if (coincident(p, left->fTop->fPoint)) {
983             v = left->fTop;
984         } else if (coincident(p, left->fBottom->fPoint)) {
985             v = left->fBottom;
986         } else if (coincident(p, right->fTop->fPoint)) {
987             v = right->fTop;
988         } else if (coincident(p, right->fBottom->fPoint)) {
989             v = right->fBottom;
990         } else {
991             v = this->makeSortedVertex(p, alpha, mesh, top, c);
992             if (left->fTop->fPartner) {
993                 SkASSERT(fEmitCoverage);  // Edge-AA only!
994                 v->fSynthetic = true;
995                 this->computeBisector(left, right, v);
996             }
997         }
998         rewind(activeEdges, current, top ? top : v, c);
999         this->splitEdge(left, v, activeEdges, current, c);
1000         this->splitEdge(right, v, activeEdges, current, c);
1001         v->fAlpha = std::max(v->fAlpha, alpha);
1002         return true;
1003     }
1004     return this->intersectEdgePair(left, right, activeEdges, current, c);
1005 }
1006 
sanitizeContours(VertexList * contours,int contourCnt) const1007 void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
1008     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1009         SkASSERT(contour->fHead);
1010         Vertex* prev = contour->fTail;
1011         prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
1012         prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
1013         if (fRoundVerticesToQuarterPixel) {
1014             round(&prev->fPoint);
1015         }
1016         for (Vertex* v = contour->fHead; v;) {
1017             v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
1018             v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
1019             if (fRoundVerticesToQuarterPixel) {
1020                 round(&v->fPoint);
1021             }
1022             Vertex* next = v->fNext;
1023             Vertex* nextWrap = next ? next : contour->fHead;
1024             if (coincident(prev->fPoint, v->fPoint)) {
1025                 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1026                 contour->remove(v);
1027             } else if (!v->fPoint.isFinite()) {
1028                 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1029                 contour->remove(v);
1030             } else if (!fPreserveCollinearVertices &&
1031                        Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1032                 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1033                 contour->remove(v);
1034             } else {
1035                 prev = v;
1036             }
1037             v = next;
1038         }
1039     }
1040 }
1041 
mergeCoincidentVertices(VertexList * mesh,const Comparator & c) const1042 bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
1043     if (!mesh->fHead) {
1044         return false;
1045     }
1046     bool merged = false;
1047     for (Vertex* v = mesh->fHead->fNext; v;) {
1048         Vertex* next = v->fNext;
1049         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1050             v->fPoint = v->fPrev->fPoint;
1051         }
1052         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1053             this->mergeVertices(v, v->fPrev, mesh, c);
1054             merged = true;
1055         }
1056         v = next;
1057     }
1058     return merged;
1059 }
1060 
1061 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1062 
buildEdges(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c) const1063 void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
1064                                 const Comparator& c) const {
1065     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1066         Vertex* prev = contour->fTail;
1067         for (Vertex* v = contour->fHead; v;) {
1068             Vertex* next = v->fNext;
1069             this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
1070             mesh->append(v);
1071             prev = v;
1072             v = next;
1073         }
1074     }
1075 }
1076 
1077 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1078 static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1079     Vertex* a = front->fHead;
1080     Vertex* b = back->fHead;
1081     while (a && b) {
1082         if (sweep_lt(a->fPoint, b->fPoint)) {
1083             front->remove(a);
1084             result->append(a);
1085             a = front->fHead;
1086         } else {
1087             back->remove(b);
1088             result->append(b);
1089             b = back->fHead;
1090         }
1091     }
1092     result->append(*front);
1093     result->append(*back);
1094 }
1095 
SortedMerge(VertexList * front,VertexList * back,VertexList * result,const Comparator & c)1096 void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
1097                                  const Comparator& c) {
1098     if (c.fDirection == Comparator::Direction::kHorizontal) {
1099         sorted_merge<sweep_lt_horiz>(front, back, result);
1100     } else {
1101         sorted_merge<sweep_lt_vert>(front, back, result);
1102     }
1103 #if TRIANGULATOR_LOGGING
1104     float id = 0.0f;
1105     for (Vertex* v = result->fHead; v; v = v->fNext) {
1106         v->fID = id++;
1107     }
1108 #endif
1109 }
1110 
1111 // Stage 3: sort the vertices by increasing sweep direction.
1112 
1113 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1114 static void merge_sort(VertexList* vertices) {
1115     Vertex* slow = vertices->fHead;
1116     if (!slow) {
1117         return;
1118     }
1119     Vertex* fast = slow->fNext;
1120     if (!fast) {
1121         return;
1122     }
1123     do {
1124         fast = fast->fNext;
1125         if (fast) {
1126             fast = fast->fNext;
1127             slow = slow->fNext;
1128         }
1129     } while (fast);
1130     VertexList front(vertices->fHead, slow);
1131     VertexList back(slow->fNext, vertices->fTail);
1132     front.fTail->fNext = back.fHead->fPrev = nullptr;
1133 
1134     merge_sort<sweep_lt>(&front);
1135     merge_sort<sweep_lt>(&back);
1136 
1137     vertices->fHead = vertices->fTail = nullptr;
1138     sorted_merge<sweep_lt>(&front, &back, vertices);
1139 }
1140 
1141 #if TRIANGULATOR_LOGGING
dump() const1142 void VertexList::dump() const {
1143     for (Vertex* v = fHead; v; v = v->fNext) {
1144         TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1145         if (Vertex* p = v->fPartner) {
1146             TESS_LOG(", partner %g (%g, %g) alpha %d\n",
1147                     p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1148         } else {
1149             TESS_LOG(", null partner\n");
1150         }
1151         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1152             TESS_LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1153         }
1154         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1155             TESS_LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1156         }
1157     }
1158 }
1159 #endif
1160 
1161 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,const Comparator & c)1162 static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
1163     if (!left || !right) {
1164         return;
1165     }
1166     if (left->fTop == right->fTop) {
1167         SkASSERT(left->isLeftOf(right->fBottom));
1168         SkASSERT(right->isRightOf(left->fBottom));
1169     } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1170         SkASSERT(left->isLeftOf(right->fTop));
1171     } else {
1172         SkASSERT(right->isRightOf(left->fTop));
1173     }
1174     if (left->fBottom == right->fBottom) {
1175         SkASSERT(left->isLeftOf(right->fTop));
1176         SkASSERT(right->isRightOf(left->fTop));
1177     } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1178         SkASSERT(left->isLeftOf(right->fBottom));
1179     } else {
1180         SkASSERT(right->isRightOf(left->fBottom));
1181     }
1182 }
1183 
validate_edge_list(EdgeList * edges,const Comparator & c)1184 static void validate_edge_list(EdgeList* edges, const Comparator& c) {
1185     Edge* left = edges->fHead;
1186     if (!left) {
1187         return;
1188     }
1189     for (Edge* right = left->fRight; right; right = right->fRight) {
1190         validate_edge_pair(left, right, c);
1191         left = right;
1192     }
1193 }
1194 #endif
1195 
1196 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1197 
simplify(VertexList * mesh,const Comparator & c) const1198 GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
1199                                                         const Comparator& c) const {
1200     TESS_LOG("simplifying complex polygons\n");
1201     EdgeList activeEdges;
1202     auto result = SimplifyResult::kAlreadySimple;
1203     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1204         if (!v->isConnected()) {
1205             continue;
1206         }
1207         Edge* leftEnclosingEdge;
1208         Edge* rightEnclosingEdge;
1209         bool restartChecks;
1210         do {
1211             TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
1212                      v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1213             restartChecks = false;
1214             FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1215             v->fLeftEnclosingEdge = leftEnclosingEdge;
1216             v->fRightEnclosingEdge = rightEnclosingEdge;
1217             if (v->fFirstEdgeBelow) {
1218                 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1219                     if (this->checkForIntersection(
1220                             leftEnclosingEdge, edge, &activeEdges, &v, mesh, c) ||
1221                         this->checkForIntersection(
1222                             edge, rightEnclosingEdge, &activeEdges, &v, mesh, c)) {
1223                         result = SimplifyResult::kFoundSelfIntersection;
1224                         restartChecks = true;
1225                         break;
1226                     }
1227                 }
1228             } else {
1229                 if (this->checkForIntersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges,
1230                                                &v, mesh, c)) {
1231                     result = SimplifyResult::kFoundSelfIntersection;
1232                     restartChecks = true;
1233                 }
1234 
1235             }
1236         } while (restartChecks);
1237 #ifdef SK_DEBUG
1238         validate_edge_list(&activeEdges, c);
1239 #endif
1240         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1241             activeEdges.remove(e);
1242         }
1243         Edge* leftEdge = leftEnclosingEdge;
1244         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1245             activeEdges.insert(e, leftEdge);
1246             leftEdge = e;
1247         }
1248     }
1249     SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1250     return result;
1251 }
1252 
1253 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1254 
tessellate(const VertexList & vertices,const Comparator &) const1255 Poly* GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) const {
1256     TESS_LOG("\ntessellating simple polygons\n");
1257     EdgeList activeEdges;
1258     Poly* polys = nullptr;
1259     for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1260         if (!v->isConnected()) {
1261             continue;
1262         }
1263 #if TRIANGULATOR_LOGGING
1264         TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1265 #endif
1266         Edge* leftEnclosingEdge;
1267         Edge* rightEnclosingEdge;
1268         FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1269         Poly* leftPoly;
1270         Poly* rightPoly;
1271         if (v->fFirstEdgeAbove) {
1272             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1273             rightPoly = v->fLastEdgeAbove->fRightPoly;
1274         } else {
1275             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1276             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1277         }
1278 #if TRIANGULATOR_LOGGING
1279         TESS_LOG("edges above:\n");
1280         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1281             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1282                      e->fTop->fID, e->fBottom->fID,
1283                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1284                      e->fRightPoly ? e->fRightPoly->fID : -1);
1285         }
1286         TESS_LOG("edges below:\n");
1287         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1288             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1289                      e->fTop->fID, e->fBottom->fID,
1290                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1291                      e->fRightPoly ? e->fRightPoly->fID : -1);
1292         }
1293 #endif
1294         if (v->fFirstEdgeAbove) {
1295             if (leftPoly) {
1296                 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, fAlloc);
1297             }
1298             if (rightPoly) {
1299                 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, fAlloc);
1300             }
1301             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1302                 Edge* rightEdge = e->fNextEdgeAbove;
1303                 activeEdges.remove(e);
1304                 if (e->fRightPoly) {
1305                     e->fRightPoly->addEdge(e, kLeft_Side, fAlloc);
1306                 }
1307                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1308                     rightEdge->fLeftPoly->addEdge(e, kRight_Side, fAlloc);
1309                 }
1310             }
1311             activeEdges.remove(v->fLastEdgeAbove);
1312             if (!v->fFirstEdgeBelow) {
1313                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1314                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1315                     rightPoly->fPartner = leftPoly;
1316                     leftPoly->fPartner = rightPoly;
1317                 }
1318             }
1319         }
1320         if (v->fFirstEdgeBelow) {
1321             if (!v->fFirstEdgeAbove) {
1322                 if (leftPoly && rightPoly) {
1323                     if (leftPoly == rightPoly) {
1324                         if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
1325                             leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
1326                                                       leftPoly->fWinding);
1327                             leftEnclosingEdge->fRightPoly = leftPoly;
1328                         } else {
1329                             rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
1330                                                        rightPoly->fWinding);
1331                             rightEnclosingEdge->fLeftPoly = rightPoly;
1332                         }
1333                     }
1334                     Edge* join = fAlloc->make<Edge>(leftPoly->lastVertex(), v, 1,
1335                                                    EdgeType::kInner);
1336                     leftPoly = leftPoly->addEdge(join, kRight_Side, fAlloc);
1337                     rightPoly = rightPoly->addEdge(join, kLeft_Side, fAlloc);
1338                 }
1339             }
1340             Edge* leftEdge = v->fFirstEdgeBelow;
1341             leftEdge->fLeftPoly = leftPoly;
1342             activeEdges.insert(leftEdge, leftEnclosingEdge);
1343             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1344                  rightEdge = rightEdge->fNextEdgeBelow) {
1345                 activeEdges.insert(rightEdge, leftEdge);
1346                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1347                 winding += leftEdge->fWinding;
1348                 if (winding != 0) {
1349                     Poly* poly = this->makePoly(&polys, v, winding);
1350                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1351                 }
1352                 leftEdge = rightEdge;
1353             }
1354             v->fLastEdgeBelow->fRightPoly = rightPoly;
1355         }
1356 #if TRIANGULATOR_LOGGING
1357         TESS_LOG("\nactive edges:\n");
1358         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1359             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1360                      e->fTop->fID, e->fBottom->fID,
1361                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1362                      e->fRightPoly ? e->fRightPoly->fID : -1);
1363         }
1364 #endif
1365     }
1366     return polys;
1367 }
1368 
1369 // This is a driver function that calls stages 2-5 in turn.
1370 
contoursToMesh(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c) const1371 void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
1372                                     const Comparator& c) const {
1373 #if TRIANGULATOR_LOGGING
1374     for (int i = 0; i < contourCnt; ++i) {
1375         Vertex* v = contours[i].fHead;
1376         SkASSERT(v);
1377         TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1378         for (v = v->fNext; v; v = v->fNext) {
1379             TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1380         }
1381     }
1382 #endif
1383     this->sanitizeContours(contours, contourCnt);
1384     this->buildEdges(contours, contourCnt, mesh, c);
1385 }
1386 
SortMesh(VertexList * vertices,const Comparator & c)1387 void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
1388     if (!vertices || !vertices->fHead) {
1389         return;
1390     }
1391 
1392     // Sort vertices in Y (secondarily in X).
1393     if (c.fDirection == Comparator::Direction::kHorizontal) {
1394         merge_sort<sweep_lt_horiz>(vertices);
1395     } else {
1396         merge_sort<sweep_lt_vert>(vertices);
1397     }
1398 #if TRIANGULATOR_LOGGING
1399     for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1400         static float gID = 0.0f;
1401         v->fID = gID++;
1402     }
1403 #endif
1404 }
1405 
contoursToPolys(VertexList * contours,int contourCnt) const1406 Poly* GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) const {
1407     const SkRect& pathBounds = fPath.getBounds();
1408     Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1409                                                           : Comparator::Direction::kVertical);
1410     VertexList mesh;
1411     this->contoursToMesh(contours, contourCnt, &mesh, c);
1412     TESS_LOG("\ninitial mesh:\n");
1413     DUMP_MESH(mesh);
1414     SortMesh(&mesh, c);
1415     TESS_LOG("\nsorted mesh:\n");
1416     DUMP_MESH(mesh);
1417     this->mergeCoincidentVertices(&mesh, c);
1418     TESS_LOG("\nsorted+merged mesh:\n");
1419     DUMP_MESH(mesh);
1420     this->simplify(&mesh, c);
1421     TESS_LOG("\nsimplified mesh:\n");
1422     DUMP_MESH(mesh);
1423     return this->tessellate(mesh, c);
1424 }
1425 
1426 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polysToTriangles(Poly * polys,void * data,SkPathFillType overrideFillType) const1427 void* GrTriangulator::polysToTriangles(Poly* polys, void* data,
1428                                        SkPathFillType overrideFillType) const {
1429     for (Poly* poly = polys; poly; poly = poly->fNext) {
1430         if (apply_fill_type(overrideFillType, poly)) {
1431             data = this->emitPoly(poly, data);
1432         }
1433     }
1434     return data;
1435 }
1436 
get_contour_count(const SkPath & path,SkScalar tolerance)1437 static int get_contour_count(const SkPath& path, SkScalar tolerance) {
1438     // We could theoretically be more aggressive about not counting empty contours, but we need to
1439     // actually match the exact number of contour linked lists the tessellator will create later on.
1440     int contourCnt = 1;
1441     bool hasPoints = false;
1442 
1443     SkPath::Iter iter(path, false);
1444     SkPath::Verb verb;
1445     SkPoint pts[4];
1446     bool first = true;
1447     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1448         switch (verb) {
1449             case SkPath::kMove_Verb:
1450                 if (!first) {
1451                     ++contourCnt;
1452                 }
1453                 [[fallthrough]];
1454             case SkPath::kLine_Verb:
1455             case SkPath::kConic_Verb:
1456             case SkPath::kQuad_Verb:
1457             case SkPath::kCubic_Verb:
1458                 hasPoints = true;
1459                 break;
1460             default:
1461                 break;
1462         }
1463         first = false;
1464     }
1465     if (!hasPoints) {
1466         return 0;
1467     }
1468     return contourCnt;
1469 }
1470 
pathToPolys(float tolerance,const SkRect & clipBounds,bool * isLinear) const1471 Poly* GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) const {
1472     int contourCnt = get_contour_count(fPath, tolerance);
1473     if (contourCnt <= 0) {
1474         *isLinear = true;
1475         return nullptr;
1476     }
1477 
1478     if (SkPathFillType_IsInverse(fPath.getFillType())) {
1479         contourCnt++;
1480     }
1481     std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1482 
1483     this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
1484     return this->contoursToPolys(contours.get(), contourCnt);
1485 }
1486 
CountPoints(Poly * polys,SkPathFillType overrideFillType)1487 int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
1488     int64_t count = 0;
1489     for (Poly* poly = polys; poly; poly = poly->fNext) {
1490         if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
1491             count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
1492         }
1493     }
1494     return count;
1495 }
1496 
1497 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1498 
polysToTriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const1499 int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
1500     int64_t count64 = CountPoints(polys, fPath.getFillType());
1501     if (0 == count64 || count64 > SK_MaxS32) {
1502         return 0;
1503     }
1504     int count = count64;
1505 
1506     size_t vertexStride = sizeof(SkPoint);
1507     if (fEmitCoverage) {
1508         vertexStride += sizeof(float);
1509     }
1510     void* verts = vertexAllocator->lock(vertexStride, count);
1511     if (!verts) {
1512         SkDebugf("Could not allocate vertices\n");
1513         return 0;
1514     }
1515 
1516     TESS_LOG("emitting %d verts\n", count);
1517     void* end = this->polysToTriangles(polys, verts, fPath.getFillType());
1518 
1519     int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1520                                        / vertexStride);
1521     SkASSERT(actualCount <= count);
1522     vertexAllocator->unlock(actualCount);
1523     return actualCount;
1524 }
1525