1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/vk/GrVkCaps.h"
9
10 #include <memory>
11
12 #include "include/gpu/GrBackendSurface.h"
13 #include "include/gpu/vk/GrVkBackendContext.h"
14 #include "include/gpu/vk/GrVkExtensions.h"
15 #include "src/core/SkCompressedDataUtils.h"
16 #include "src/gpu/GrBackendUtils.h"
17 #include "src/gpu/GrProgramDesc.h"
18 #include "src/gpu/GrRenderTarget.h"
19 #include "src/gpu/GrRenderTargetProxy.h"
20 #include "src/gpu/GrShaderCaps.h"
21 #include "src/gpu/GrStencilSettings.h"
22 #include "src/gpu/GrUtil.h"
23 #include "src/gpu/SkGr.h"
24 #include "src/gpu/vk/GrVkGpu.h"
25 #include "src/gpu/vk/GrVkInterface.h"
26 #include "src/gpu/vk/GrVkRenderTarget.h"
27 #include "src/gpu/vk/GrVkTexture.h"
28 #include "src/gpu/vk/GrVkUniformHandler.h"
29 #include "src/gpu/vk/GrVkUtil.h"
30
31 #ifdef SK_BUILD_FOR_ANDROID
32 #include <sys/system_properties.h>
33 #endif
34
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)35 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
36 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
37 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
38 const GrVkExtensions& extensions, GrProtected isProtected)
39 : INHERITED(contextOptions) {
40 /**************************************************************************
41 * GrCaps fields
42 **************************************************************************/
43 fMipmapSupport = true; // always available in Vulkan
44 fNPOTTextureTileSupport = true; // always available in Vulkan
45 fReuseScratchTextures = true; //TODO: figure this out
46 fGpuTracingSupport = false; //TODO: figure this out
47 fOversizedStencilSupport = false; //TODO: figure this out
48 fDrawInstancedSupport = true;
49
50 fSemaphoreSupport = true; // always available in Vulkan
51 fFenceSyncSupport = true; // always available in Vulkan
52 fCrossContextTextureSupport = true;
53 fHalfFloatVertexAttributeSupport = true;
54
55 // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
56 fReadPixelsRowBytesSupport = true;
57 fWritePixelsRowBytesSupport = true;
58
59 fTransferFromBufferToTextureSupport = true;
60 fTransferFromSurfaceToBufferSupport = true;
61
62 fMaxRenderTargetSize = 4096; // minimum required by spec
63 fMaxTextureSize = 4096; // minimum required by spec
64
65 fDynamicStateArrayGeometryProcessorTextureSupport = true;
66
67 fTextureBarrierSupport = true;
68
69 fShaderCaps.reset(new GrShaderCaps(contextOptions));
70
71 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
72 isProtected);
73 }
74
75 namespace {
76 /**
77 * This comes from section 37.1.6 of the Vulkan spec. Format is
78 * (<bits>|<tag>)_<block_size>_<texels_per_block>.
79 */
80 enum class FormatCompatibilityClass {
81 k8_1_1,
82 k16_2_1,
83 k24_3_1,
84 k32_4_1,
85 k64_8_1,
86 kBC1_RGB_8_16_1,
87 kBC1_RGBA_8_16,
88 kETC2_RGB_8_16,
89 };
90 } // anonymous namespace
91
format_compatibility_class(VkFormat format)92 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
93 switch (format) {
94 case VK_FORMAT_B8G8R8A8_UNORM:
95 case VK_FORMAT_R8G8B8A8_UNORM:
96 case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
97 case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
98 case VK_FORMAT_R8G8B8A8_SRGB:
99 case VK_FORMAT_R16G16_UNORM:
100 case VK_FORMAT_R16G16_SFLOAT:
101 return FormatCompatibilityClass::k32_4_1;
102
103 case VK_FORMAT_R8_UNORM:
104 return FormatCompatibilityClass::k8_1_1;
105
106 case VK_FORMAT_R5G6B5_UNORM_PACK16:
107 case VK_FORMAT_R16_SFLOAT:
108 case VK_FORMAT_R8G8_UNORM:
109 case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
110 case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
111 case VK_FORMAT_R16_UNORM:
112 return FormatCompatibilityClass::k16_2_1;
113
114 case VK_FORMAT_R16G16B16A16_SFLOAT:
115 case VK_FORMAT_R16G16B16A16_UNORM:
116 return FormatCompatibilityClass::k64_8_1;
117
118 case VK_FORMAT_R8G8B8_UNORM:
119 return FormatCompatibilityClass::k24_3_1;
120
121 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
122 return FormatCompatibilityClass::kETC2_RGB_8_16;
123
124 case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
125 return FormatCompatibilityClass::kBC1_RGB_8_16_1;
126
127 case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
128 return FormatCompatibilityClass::kBC1_RGBA_8_16;
129
130 default:
131 SK_ABORT("Unsupported VkFormat");
132 }
133 }
134
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const135 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
136 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
137 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
138 return false;
139 }
140
141 if (dstHasYcbcr || srcHasYcbcr) {
142 return false;
143 }
144
145 // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
146 // as image usage flags.
147 return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
148 }
149
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const150 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
151 bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
152 bool srcIsLinear, bool srcHasYcbcr) const {
153 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
154 // as image usage flags.
155 if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
156 !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
157 return false;
158 }
159
160 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
161 // resolved msaa though.
162 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
163 return false;
164 }
165
166 if (dstHasYcbcr || srcHasYcbcr) {
167 return false;
168 }
169
170 return true;
171 }
172
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const173 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
174 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
175 // The src surface must be multisampled.
176 if (srcSampleCnt <= 1) {
177 return false;
178 }
179
180 // The dst must not be multisampled.
181 if (dstSampleCnt > 1) {
182 return false;
183 }
184
185 // Surfaces must have the same format.
186 if (srcFormat != dstFormat) {
187 return false;
188 }
189
190 if (dstHasYcbcr || srcHasYcbcr) {
191 return false;
192 }
193
194 return true;
195 }
196
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const197 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
198 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
199 if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
200 return false;
201 }
202
203 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
204 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
205 // tracking of external or rectangle textures in GL? For now we don't create linear textures
206 // internally, and I don't believe anyone is wrapping them.
207 bool srcIsLinear = false;
208 bool dstIsLinear = false;
209
210 int dstSampleCnt = 0;
211 int srcSampleCnt = 0;
212 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
213 // Copying to or from render targets that wrap a secondary command buffer is not allowed
214 // since they would require us to know the VkImage, which we don't have, as well as need us
215 // to stop and start the VkRenderPass which we don't have access to.
216 if (rtProxy->wrapsVkSecondaryCB()) {
217 return false;
218 }
219 if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() &&
220 rtProxy->supportsVkInputAttachment()) {
221 dstSampleCnt = 1;
222 } else {
223 dstSampleCnt = rtProxy->numSamples();
224 }
225 }
226 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
227 // Copying to or from render targets that wrap a secondary command buffer is not allowed
228 // since they would require us to know the VkImage, which we don't have, as well as need us
229 // to stop and start the VkRenderPass which we don't have access to.
230 if (rtProxy->wrapsVkSecondaryCB()) {
231 return false;
232 }
233 if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() &&
234 rtProxy->supportsVkInputAttachment()) {
235 srcSampleCnt = 1;
236 } else {
237 srcSampleCnt = rtProxy->numSamples();
238 }
239 }
240 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
241 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
242
243 bool dstHasYcbcr = false;
244 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
245 if (ycbcr->isValid()) {
246 dstHasYcbcr = true;
247 }
248 }
249
250 bool srcHasYcbcr = false;
251 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
252 if (ycbcr->isValid()) {
253 srcHasYcbcr = true;
254 }
255 }
256
257 VkFormat dstFormat, srcFormat;
258 SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
259 SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
260
261 return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
262 srcFormat, srcSampleCnt, srcHasYcbcr) ||
263 this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
264 srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
265 this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
266 srcFormat, srcSampleCnt, srcHasYcbcr);
267 }
268
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)269 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
270 VkStructureType type) {
271 // All Vulkan structs that could be part of the features chain will start with the
272 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
273 // so we can get access to the pNext for the next struct.
274 struct CommonVulkanHeader {
275 VkStructureType sType;
276 void* pNext;
277 };
278
279 void* pNext = features.pNext;
280 while (pNext) {
281 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
282 if (header->sType == type) {
283 return static_cast<T*>(pNext);
284 }
285 pNext = header->pNext;
286 }
287 return nullptr;
288 }
289
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)290 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
291 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
292 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
293 GrProtected isProtected) {
294 VkPhysicalDeviceProperties properties;
295 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
296
297 VkPhysicalDeviceMemoryProperties memoryProperties;
298 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
299
300 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
301
302 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
303 fSupportsSwapchain = true;
304 }
305
306 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
307 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
308 fSupportsPhysicalDeviceProperties2 = true;
309 }
310
311 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
312 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
313 fSupportsMemoryRequirements2 = true;
314 }
315
316 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
317 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
318 fSupportsBindMemory2 = true;
319 }
320
321 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
322 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
323 fSupportsMaintenance1 = true;
324 }
325
326 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
327 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
328 fSupportsMaintenance2 = true;
329 }
330
331 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
332 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
333 fSupportsMaintenance3 = true;
334 }
335
336 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
337 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
338 this->supportsMemoryRequirements2())) {
339 fSupportsDedicatedAllocation = true;
340 }
341
342 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
343 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
344 this->supportsPhysicalDeviceProperties2() &&
345 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
346 this->supportsDedicatedAllocation())) {
347 fSupportsExternalMemory = true;
348 }
349
350 #ifdef SK_BUILD_FOR_ANDROID
351 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
352 // do we don't explicitly require it here even the spec says it is required.
353 if (extensions.hasExtension(
354 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
355 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
356 this->supportsExternalMemory() &&
357 this->supportsBindMemory2()) {
358 fSupportsAndroidHWBExternalMemory = true;
359 fSupportsAHardwareBufferImages = true;
360 }
361 #endif
362
363 auto ycbcrFeatures =
364 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
365 features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
366 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
367 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
368 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
369 this->supportsMaintenance1() && this->supportsBindMemory2() &&
370 this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
371 fSupportsYcbcrConversion = true;
372 }
373
374 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
375 // will return a key of 0.
376 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
377
378 if ((isProtected == GrProtected::kYes) &&
379 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
380 fSupportsProtectedMemory = true;
381 fAvoidUpdateBuffers = true;
382 fShouldAlwaysUseDedicatedImageMemory = true;
383 }
384
385 fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments;
386
387 // On desktop GPUs we have found that this does not provide much benefit. The perf results show
388 // a mix of regressions, some improvements, and lots of no changes. Thus it is no worth enabling
389 // this (especially with the rendering artifacts) on desktop.
390 //
391 // On Adreno devices we were expecting to see perf gains. But instead there were actually a lot
392 // of perf regressions and only a few perf wins. This needs some follow up with qualcomm since
393 // we do expect this to be a big win on tilers.
394 //
395 // On ARM devices we are seeing an average perf win of around 50%-60% across the board.
396 if (kARM_VkVendor == properties.vendorID) {
397 fPreferDiscardableMSAAAttachment = true;
398 }
399
400 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
401 this->initShaderCaps(properties, features);
402
403 if (kQualcomm_VkVendor == properties.vendorID) {
404 // A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a
405 // scissored clear.
406 // On NVIDIA and Intel, the discard load followed by clear is faster.
407 // TODO: Evaluate on ARM, Imagination, and ATI.
408 fPreferFullscreenClears = true;
409 }
410
411 if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) {
412 // On discrete GPUs it can be faster to read gpu only memory compared to memory that is also
413 // mappable on the host.
414 fGpuOnlyBuffersMorePerformant = true;
415
416 // On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our
417 // cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped.
418 // Some discrete GPUs do not expose this special memory, however we still disable
419 // persistently mapped buffers for all of them since most GPUs with updated drivers do
420 // expose it. If this becomes an issue we can try to be more fine grained.
421 fShouldPersistentlyMapCpuToGpuBuffers = false;
422 }
423
424 if (kQualcomm_VkVendor == properties.vendorID) {
425 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
426 // even for small sizes.
427 fAvoidUpdateBuffers = true;
428 }
429
430 if (kQualcomm_VkVendor == properties.vendorID) {
431 // Adreno devices don't support push constants well
432 fMaxPushConstantsSize = 0;
433 }
434
435 fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance;
436 if (properties.vendorID == kQualcomm_VkVendor) {
437 // Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139
438 fNativeDrawIndirectSupport = false;
439 }
440
441 if (fNativeDrawIndirectSupport) {
442 fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount;
443 SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect);
444 }
445
446 #ifdef SK_BUILD_FOR_UNIX
447 if (kNvidia_VkVendor == properties.vendorID) {
448 // On nvidia linux we see a big perf regression when not using dedicated image allocations.
449 fShouldAlwaysUseDedicatedImageMemory = true;
450 }
451 #endif
452
453 this->initFormatTable(vkInterface, physDev, properties);
454 this->initStencilFormat(vkInterface, physDev);
455
456 if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) {
457 fMaxPerPoolCachedSecondaryCommandBuffers =
458 contextOptions.fMaxCachedVulkanSecondaryCommandBuffers;
459 }
460
461 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
462 this->applyDriverCorrectnessWorkarounds(properties);
463 }
464
465 this->finishInitialization(contextOptions);
466 }
467
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)468 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
469 #if defined(SK_BUILD_FOR_WIN)
470 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
471 fMustSyncCommandBuffersWithQueue = true;
472 }
473 #elif defined(SK_BUILD_FOR_ANDROID)
474 if (kImagination_VkVendor == properties.vendorID) {
475 fMustSyncCommandBuffersWithQueue = true;
476 }
477 #endif
478
479 // Defaults to zero since all our workaround checks that use this consider things "fixed" once
480 // above a certain api level. So this will just default to it being less which will enable
481 // workarounds.
482 int androidAPIVersion = 0;
483 #if defined(SK_BUILD_FOR_ANDROID)
484 char androidAPIVersionStr[PROP_VALUE_MAX];
485 int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr);
486 // Defaults to zero since most checks care if it is greater than a specific value. So this will
487 // just default to it being less.
488 androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr);
489 #endif
490
491 // Protected memory features have problems in Android P and earlier.
492 if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
493 if (androidAPIVersion <= 28) {
494 fSupportsProtectedMemory = false;
495 }
496 }
497
498 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
499 if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
500 fShouldAlwaysUseDedicatedImageMemory = true;
501 }
502
503 // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
504 // using only primary command buffers. We also see issues on the P30 running android 28.
505 if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
506 fPreferPrimaryOverSecondaryCommandBuffers = false;
507 // If we are using secondary command buffers our code isn't setup to insert barriers into
508 // the secondary cb so we need to disable support for them.
509 fTextureBarrierSupport = false;
510 fBlendEquationSupport = kBasic_BlendEquationSupport;
511 }
512
513 // We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier
514 // when trying to using discardable msaa attachments and loading from resolve. So we disable the
515 // feature for those devices.
516 if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) {
517 fPreferDiscardableMSAAAttachment = false;
518 }
519
520 // On Mali G series GPUs, applying transfer functions in the fragment shader with half-floats
521 // produces answers that are much less accurate than expected/required. This forces full floats
522 // for some intermediate values to get acceptable results.
523 if (kARM_VkVendor == properties.vendorID) {
524 fShaderCaps->fColorSpaceMathNeedsFloat = true;
525 }
526
527 // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
528 // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
529 // of bound buffers so that we will rebind them on the next draw.
530 if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
531 fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
532 }
533
534 // On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using
535 // discardable msaa attachments. This causes the resolve to resolve uninitialized data from the
536 // msaa image into the resolve image.
537 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
538 fMustLoadFullImageWithDiscardableMSAA = true;
539 }
540
541 #ifdef SK_BUILD_FOR_UNIX
542 if (kIntel_VkVendor == properties.vendorID) {
543 // At least on our linux Debug Intel HD405 bot we are seeing issues doing read pixels with
544 // non-conherent memory. It seems like the device is not properly honoring the
545 // vkInvalidateMappedMemoryRanges calls correctly. Other linux intel devices seem to work
546 // okay. However, since I'm not sure how to target a specific intel devices or driver
547 // version I am going to stop all intel linux from using non-coherent memory. Currently we
548 // are not shipping anything on these platforms and the only real thing that will regress is
549 // read backs. If we find later we do care about this performance we can come back to figure
550 // out how to do a more narrow workaround.
551 fMustUseCoherentHostVisibleMemory = true;
552 }
553 #endif
554
555 ////////////////////////////////////////////////////////////////////////////
556 // GrCaps workarounds
557 ////////////////////////////////////////////////////////////////////////////
558
559 #ifdef SK_BUILD_FOR_ANDROID
560 // MSAA CCPR was slow on Android. http://skbug.com/9676
561 fDriverDisableMSAAClipAtlas = true;
562 #endif
563
564 if (kARM_VkVendor == properties.vendorID) {
565 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
566 }
567
568 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
569 if (kAMD_VkVendor == properties.vendorID) {
570 fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
571 }
572
573 // Adreno devices fail when trying to read the dest using an input attachment and texture
574 // barriers.
575 if (kQualcomm_VkVendor == properties.vendorID) {
576 fTextureBarrierSupport = false;
577 }
578
579 // On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and
580 // Mate 20x running android 9.
581 if (properties.vendorID == kARM_VkVendor && androidAPIVersion <= 28) {
582 fNativeDrawIndirectSupport = false;
583 }
584
585 ////////////////////////////////////////////////////////////////////////////
586 // GrShaderCaps workarounds
587 ////////////////////////////////////////////////////////////////////////////
588
589 if (kImagination_VkVendor == properties.vendorID) {
590 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
591 }
592 }
593
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)594 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
595 VkPhysicalDevice physDev,
596 const VkPhysicalDeviceProperties& properties,
597 const VkPhysicalDeviceMemoryProperties& memoryProperties,
598 const VkPhysicalDeviceFeatures2& features,
599 const GrVkExtensions& extensions) {
600 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
601 // need for us ever to support that amount, and it makes tests which tests all the vertex
602 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
603 // we ever find that need.
604 static const uint32_t kMaxVertexAttributes = 64;
605 fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
606
607 // GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not
608 // program them). For now we just set this to true if the device uses standard locations, and
609 // return the standard locations back when queried.
610 if (properties.limits.standardSampleLocations) {
611 fSampleLocationsSupport = true;
612 }
613
614 // See skbug.com/10346
615 #if 0
616 if (extensions.hasExtension(VK_EXT_SAMPLE_LOCATIONS_EXTENSION_NAME, 1)) {
617 // We "disable" multisample by colocating all samples at pixel center.
618 fMultisampleDisableSupport = true;
619 }
620 #endif
621
622 if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
623 fConservativeRasterSupport = true;
624 }
625
626 fWireframeSupport = true;
627
628 // We could actually query and get a max size for each config, however maxImageDimension2D will
629 // give the minimum max size across all configs. So for simplicity we will use that for now.
630 fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
631 fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
632 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
633 fMaxTextureSize = std::min(fMaxTextureSize, 4096);
634 }
635
636 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
637 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
638
639 fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX);
640
641 // Assuming since we will always map in the end to upload the data we might as well just map
642 // from the get go. There is no hard data to suggest this is faster or slower.
643 fBufferMapThreshold = 0;
644
645 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
646
647 fOversizedStencilSupport = true;
648
649 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
650 this->supportsPhysicalDeviceProperties2()) {
651
652 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
653 blendProps.sType =
654 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
655 blendProps.pNext = nullptr;
656
657 VkPhysicalDeviceProperties2 props;
658 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
659 props.pNext = &blendProps;
660
661 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
662
663 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
664 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
665
666 auto blendFeatures =
667 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
668 features,
669 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
670 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
671 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
672 } else {
673 fBlendEquationSupport = kAdvanced_BlendEquationSupport;
674 }
675 }
676 }
677
678 if (kARM_VkVendor == properties.vendorID) {
679 fShouldCollapseSrcOverToSrcWhenAble = true;
680 }
681
682 // We're seeing vkCmdClearAttachments take a lot of cpu time when clearing the color attachment.
683 // We really should only be getting in there for partial clears. So instead we will do all
684 // partial clears as draws.
685 if (kQualcomm_VkVendor == properties.vendorID) {
686 fPerformPartialClearsAsDraws = true;
687 }
688 }
689
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)690 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
691 const VkPhysicalDeviceFeatures2& features) {
692 GrShaderCaps* shaderCaps = fShaderCaps.get();
693 shaderCaps->fVersionDeclString = "#version 330\n";
694
695 // Vulkan is based off ES 3.0 so the following should all be supported
696 shaderCaps->fUsesPrecisionModifiers = true;
697 shaderCaps->fFlatInterpolationSupport = true;
698 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
699 // to be true with Vulkan as well.
700 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
701
702 shaderCaps->fSampleMaskSupport = true;
703
704 shaderCaps->fShaderDerivativeSupport = true;
705
706 // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
707 // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
708 shaderCaps->fRewriteMatrixVectorMultiply = (kARM_VkVendor == properties.vendorID);
709
710 // FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
711 // shaderCaps->fGeometryShaderSupport =
712 // shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
713
714 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
715
716 shaderCaps->fIntegerSupport = true;
717 shaderCaps->fNonsquareMatrixSupport = true;
718 shaderCaps->fVertexIDSupport = true;
719 shaderCaps->fFPManipulationSupport = true;
720
721 // Assume the minimum precisions mandated by the SPIR-V spec.
722 shaderCaps->fFloatIs32Bits = true;
723 shaderCaps->fHalfIs32Bits = false;
724
725 shaderCaps->fMaxFragmentSamplers = std::min(
726 std::min(properties.limits.maxPerStageDescriptorSampledImages,
727 properties.limits.maxPerStageDescriptorSamplers),
728 (uint32_t)INT_MAX);
729 }
730
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)731 bool stencil_format_supported(const GrVkInterface* interface,
732 VkPhysicalDevice physDev,
733 VkFormat format) {
734 VkFormatProperties props;
735 memset(&props, 0, sizeof(VkFormatProperties));
736 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
737 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
738 }
739
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)740 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
741 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
742 fPreferredStencilFormat = VK_FORMAT_S8_UINT;
743 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
744 fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT;
745 } else {
746 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
747 fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
748 }
749 }
750
format_is_srgb(VkFormat format)751 static bool format_is_srgb(VkFormat format) {
752 SkASSERT(GrVkFormatIsSupported(format));
753
754 switch (format) {
755 case VK_FORMAT_R8G8B8A8_SRGB:
756 return true;
757 default:
758 return false;
759 }
760 }
761
762 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
763 // frequently used to least to improve look up times in arrays.
764 static constexpr VkFormat kVkFormats[] = {
765 VK_FORMAT_R8G8B8A8_UNORM,
766 VK_FORMAT_R8_UNORM,
767 VK_FORMAT_B8G8R8A8_UNORM,
768 VK_FORMAT_R5G6B5_UNORM_PACK16,
769 VK_FORMAT_R16G16B16A16_SFLOAT,
770 VK_FORMAT_R16_SFLOAT,
771 VK_FORMAT_R8G8B8_UNORM,
772 VK_FORMAT_R8G8_UNORM,
773 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
774 VK_FORMAT_A2R10G10B10_UNORM_PACK32,
775 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
776 VK_FORMAT_R4G4B4A4_UNORM_PACK16,
777 VK_FORMAT_R8G8B8A8_SRGB,
778 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
779 VK_FORMAT_BC1_RGB_UNORM_BLOCK,
780 VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
781 VK_FORMAT_R16_UNORM,
782 VK_FORMAT_R16G16_UNORM,
783 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
784 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
785 VK_FORMAT_R16G16B16A16_UNORM,
786 VK_FORMAT_R16G16_SFLOAT,
787 };
788
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)789 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
790 #ifdef SK_DEBUG
791 for (size_t i = 0; i < kNumVkFormats; ++i) {
792 const auto& formatInfo = fFormatTable[i];
793 for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
794 const auto& ctInfo = formatInfo.fColorTypeInfos[j];
795 if (ctInfo.fColorType == colorType &&
796 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
797 bool found = false;
798 for (auto it = formats.begin(); it != formats.end(); ++it) {
799 if (kVkFormats[i] == *it) {
800 found = true;
801 }
802 }
803 SkASSERT(found);
804 }
805 }
806 }
807 #endif
808 int idx = static_cast<int>(colorType);
809 for (auto it = formats.begin(); it != formats.end(); ++it) {
810 const auto& info = this->getFormatInfo(*it);
811 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
812 if (info.fColorTypeInfos[i].fColorType == colorType) {
813 fColorTypeToFormatTable[idx] = *it;
814 return;
815 }
816 }
817 }
818 }
819
getFormatInfo(VkFormat format) const820 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
821 GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
822 return nonConstThis->getFormatInfo(format);
823 }
824
getFormatInfo(VkFormat format)825 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
826 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
827 "Size of VkFormats array must match static value in header");
828 for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
829 if (kVkFormats[i] == format) {
830 return fFormatTable[i];
831 }
832 }
833 static FormatInfo kInvalidFormat;
834 return kInvalidFormat;
835 }
836
initFormatTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)837 void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
838 const VkPhysicalDeviceProperties& properties) {
839 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
840 "Size of VkFormats array must match static value in header");
841
842 std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
843
844 // Go through all the formats and init their support surface and data GrColorTypes.
845 // Format: VK_FORMAT_R8G8B8A8_UNORM
846 {
847 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
848 auto& info = this->getFormatInfo(format);
849 info.init(interface, physDev, properties, format);
850 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
851 info.fColorTypeInfoCount = 2;
852 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
853 int ctIdx = 0;
854 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
855 {
856 constexpr GrColorType ct = GrColorType::kRGBA_8888;
857 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
858 ctInfo.fColorType = ct;
859 ctInfo.fTransferColorType = ct;
860 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
861 }
862 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
863 {
864 constexpr GrColorType ct = GrColorType::kRGB_888x;
865 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
866 ctInfo.fColorType = ct;
867 ctInfo.fTransferColorType = ct;
868 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
869 ctInfo.fReadSwizzle = GrSwizzle::RGB1();
870 }
871 }
872 }
873
874 // Format: VK_FORMAT_R8_UNORM
875 {
876 constexpr VkFormat format = VK_FORMAT_R8_UNORM;
877 auto& info = this->getFormatInfo(format);
878 info.init(interface, physDev, properties, format);
879 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
880 info.fColorTypeInfoCount = 2;
881 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
882 int ctIdx = 0;
883 // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
884 {
885 constexpr GrColorType ct = GrColorType::kAlpha_8;
886 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
887 ctInfo.fColorType = ct;
888 ctInfo.fTransferColorType = ct;
889 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
890 ctInfo.fReadSwizzle = GrSwizzle("000r");
891 ctInfo.fWriteSwizzle = GrSwizzle("a000");
892 }
893 // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
894 {
895 constexpr GrColorType ct = GrColorType::kGray_8;
896 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
897 ctInfo.fColorType = ct;
898 ctInfo.fTransferColorType = ct;
899 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
900 ctInfo.fReadSwizzle = GrSwizzle("rrr1");
901 }
902 }
903 }
904 // Format: VK_FORMAT_B8G8R8A8_UNORM
905 {
906 constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
907 auto& info = this->getFormatInfo(format);
908 info.init(interface, physDev, properties, format);
909 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
910 info.fColorTypeInfoCount = 1;
911 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
912 int ctIdx = 0;
913 // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
914 {
915 constexpr GrColorType ct = GrColorType::kBGRA_8888;
916 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
917 ctInfo.fColorType = ct;
918 ctInfo.fTransferColorType = ct;
919 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
920 }
921 }
922 }
923 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
924 {
925 constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
926 auto& info = this->getFormatInfo(format);
927 info.init(interface, physDev, properties, format);
928 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
929 info.fColorTypeInfoCount = 1;
930 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
931 int ctIdx = 0;
932 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
933 {
934 constexpr GrColorType ct = GrColorType::kBGR_565;
935 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
936 ctInfo.fColorType = ct;
937 ctInfo.fTransferColorType = ct;
938 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
939 }
940 }
941 }
942 // Format: VK_FORMAT_R16G16B16A16_SFLOAT
943 {
944 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
945 auto& info = this->getFormatInfo(format);
946 info.init(interface, physDev, properties, format);
947 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
948 info.fColorTypeInfoCount = 2;
949 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
950 int ctIdx = 0;
951 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
952 {
953 constexpr GrColorType ct = GrColorType::kRGBA_F16;
954 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
955 ctInfo.fColorType = ct;
956 ctInfo.fTransferColorType = ct;
957 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
958 }
959 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
960 {
961 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
962 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
963 ctInfo.fColorType = ct;
964 ctInfo.fTransferColorType = ct;
965 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
966 }
967 }
968 }
969 // Format: VK_FORMAT_R16_SFLOAT
970 {
971 constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
972 auto& info = this->getFormatInfo(format);
973 info.init(interface, physDev, properties, format);
974 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
975 info.fColorTypeInfoCount = 1;
976 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
977 int ctIdx = 0;
978 // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
979 {
980 constexpr GrColorType ct = GrColorType::kAlpha_F16;
981 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
982 ctInfo.fColorType = ct;
983 ctInfo.fTransferColorType = ct;
984 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
985 ctInfo.fReadSwizzle = GrSwizzle("000r");
986 ctInfo.fWriteSwizzle = GrSwizzle("a000");
987 }
988 }
989 }
990 // Format: VK_FORMAT_R8G8B8_UNORM
991 {
992 constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
993 auto& info = this->getFormatInfo(format);
994 info.init(interface, physDev, properties, format);
995 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
996 info.fColorTypeInfoCount = 1;
997 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
998 int ctIdx = 0;
999 // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
1000 {
1001 constexpr GrColorType ct = GrColorType::kRGB_888x;
1002 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1003 ctInfo.fColorType = ct;
1004 // The Vulkan format is 3 bpp so we must convert to/from that when transferring.
1005 ctInfo.fTransferColorType = GrColorType::kRGB_888;
1006 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1007 }
1008 }
1009 }
1010 // Format: VK_FORMAT_R8G8_UNORM
1011 {
1012 constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
1013 auto& info = this->getFormatInfo(format);
1014 info.init(interface, physDev, properties, format);
1015 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1016 info.fColorTypeInfoCount = 1;
1017 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1018 int ctIdx = 0;
1019 // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
1020 {
1021 constexpr GrColorType ct = GrColorType::kRG_88;
1022 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1023 ctInfo.fColorType = ct;
1024 ctInfo.fTransferColorType = ct;
1025 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1026 }
1027 }
1028 }
1029 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
1030 {
1031 constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
1032 auto& info = this->getFormatInfo(format);
1033 info.init(interface, physDev, properties, format);
1034 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1035 info.fColorTypeInfoCount = 1;
1036 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1037 int ctIdx = 0;
1038 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
1039 {
1040 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
1041 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1042 ctInfo.fColorType = ct;
1043 ctInfo.fTransferColorType = ct;
1044 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1045 }
1046 }
1047 }
1048 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32
1049 {
1050 constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32;
1051 auto& info = this->getFormatInfo(format);
1052 info.init(interface, physDev, properties, format);
1053 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1054 info.fColorTypeInfoCount = 1;
1055 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1056 int ctIdx = 0;
1057 // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102
1058 {
1059 constexpr GrColorType ct = GrColorType::kBGRA_1010102;
1060 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1061 ctInfo.fColorType = ct;
1062 ctInfo.fTransferColorType = ct;
1063 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1064 }
1065 }
1066 }
1067 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
1068 {
1069 constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
1070 auto& info = this->getFormatInfo(format);
1071 info.init(interface, physDev, properties, format);
1072 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1073 info.fColorTypeInfoCount = 1;
1074 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1075 int ctIdx = 0;
1076 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
1077 {
1078 constexpr GrColorType ct = GrColorType::kABGR_4444;
1079 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1080 ctInfo.fColorType = ct;
1081 ctInfo.fTransferColorType = ct;
1082 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1083 ctInfo.fReadSwizzle = GrSwizzle::BGRA();
1084 ctInfo.fWriteSwizzle = GrSwizzle::BGRA();
1085 }
1086 }
1087 }
1088
1089 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
1090 {
1091 constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
1092 auto& info = this->getFormatInfo(format);
1093 info.init(interface, physDev, properties, format);
1094 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1095 info.fColorTypeInfoCount = 1;
1096 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1097 int ctIdx = 0;
1098 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
1099 {
1100 constexpr GrColorType ct = GrColorType::kABGR_4444;
1101 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1102 ctInfo.fColorType = ct;
1103 ctInfo.fTransferColorType = ct;
1104 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1105 }
1106 }
1107 }
1108 // Format: VK_FORMAT_R8G8B8A8_SRGB
1109 {
1110 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
1111 auto& info = this->getFormatInfo(format);
1112 info.init(interface, physDev, properties, format);
1113 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1114 info.fColorTypeInfoCount = 1;
1115 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1116 int ctIdx = 0;
1117 // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
1118 {
1119 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
1120 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1121 ctInfo.fColorType = ct;
1122 ctInfo.fTransferColorType = ct;
1123 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1124 }
1125 }
1126 }
1127 // Format: VK_FORMAT_R16_UNORM
1128 {
1129 constexpr VkFormat format = VK_FORMAT_R16_UNORM;
1130 auto& info = this->getFormatInfo(format);
1131 info.init(interface, physDev, properties, format);
1132 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1133 info.fColorTypeInfoCount = 1;
1134 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1135 int ctIdx = 0;
1136 // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
1137 {
1138 constexpr GrColorType ct = GrColorType::kAlpha_16;
1139 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1140 ctInfo.fColorType = ct;
1141 ctInfo.fTransferColorType = ct;
1142 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1143 ctInfo.fReadSwizzle = GrSwizzle("000r");
1144 ctInfo.fWriteSwizzle = GrSwizzle("a000");
1145 }
1146 }
1147 }
1148 // Format: VK_FORMAT_R16G16_UNORM
1149 {
1150 constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1151 auto& info = this->getFormatInfo(format);
1152 info.init(interface, physDev, properties, format);
1153 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1154 info.fColorTypeInfoCount = 1;
1155 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1156 int ctIdx = 0;
1157 // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1158 {
1159 constexpr GrColorType ct = GrColorType::kRG_1616;
1160 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1161 ctInfo.fColorType = ct;
1162 ctInfo.fTransferColorType = ct;
1163 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1164 }
1165 }
1166 }
1167 // Format: VK_FORMAT_R16G16B16A16_UNORM
1168 {
1169 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1170 auto& info = this->getFormatInfo(format);
1171 info.init(interface, physDev, properties, format);
1172 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1173 info.fColorTypeInfoCount = 1;
1174 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1175 int ctIdx = 0;
1176 // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1177 {
1178 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1179 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1180 ctInfo.fColorType = ct;
1181 ctInfo.fTransferColorType = ct;
1182 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1183 }
1184 }
1185 }
1186 // Format: VK_FORMAT_R16G16_SFLOAT
1187 {
1188 constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1189 auto& info = this->getFormatInfo(format);
1190 info.init(interface, physDev, properties, format);
1191 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1192 info.fColorTypeInfoCount = 1;
1193 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1194 int ctIdx = 0;
1195 // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1196 {
1197 constexpr GrColorType ct = GrColorType::kRG_F16;
1198 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1199 ctInfo.fColorType = ct;
1200 ctInfo.fTransferColorType = ct;
1201 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1202 }
1203 }
1204 }
1205 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1206 {
1207 constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1208 auto& info = this->getFormatInfo(format);
1209 if (fSupportsYcbcrConversion) {
1210 info.init(interface, physDev, properties, format);
1211 }
1212 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1213 info.fColorTypeInfoCount = 1;
1214 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1215 int ctIdx = 0;
1216 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1217 {
1218 constexpr GrColorType ct = GrColorType::kRGB_888x;
1219 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1220 ctInfo.fColorType = ct;
1221 ctInfo.fTransferColorType = ct;
1222 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1223 }
1224 }
1225 }
1226 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1227 {
1228 constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1229 auto& info = this->getFormatInfo(format);
1230 if (fSupportsYcbcrConversion) {
1231 info.init(interface, physDev, properties, format);
1232 }
1233 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1234 info.fColorTypeInfoCount = 1;
1235 info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1236 int ctIdx = 0;
1237 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1238 {
1239 constexpr GrColorType ct = GrColorType::kRGB_888x;
1240 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1241 ctInfo.fColorType = ct;
1242 ctInfo.fTransferColorType = ct;
1243 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1244 }
1245 }
1246 }
1247 // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1248 {
1249 constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1250 auto& info = this->getFormatInfo(format);
1251 info.init(interface, physDev, properties, format);
1252 // Setting this to texel block size
1253 // No supported GrColorTypes.
1254 }
1255
1256 // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
1257 {
1258 constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
1259 auto& info = this->getFormatInfo(format);
1260 info.init(interface, physDev, properties, format);
1261 // Setting this to texel block size
1262 // No supported GrColorTypes.
1263 }
1264
1265 // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
1266 {
1267 constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
1268 auto& info = this->getFormatInfo(format);
1269 info.init(interface, physDev, properties, format);
1270 // Setting this to texel block size
1271 // No supported GrColorTypes.
1272 }
1273
1274 ////////////////////////////////////////////////////////////////////////////
1275 // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1276 // are passed into the setColorType function indicates the priority in selecting which format
1277 // we use for a given GrcolorType.
1278
1279 this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
1280 this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
1281 this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1282 VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1283 this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
1284 this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
1285 this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
1286 VK_FORMAT_R8G8B8A8_UNORM });
1287 this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
1288 this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
1289 this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1290 this->setColorType(GrColorType::kBGRA_1010102, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 });
1291 this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
1292 this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
1293 this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
1294 this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1295 this->setColorType(GrColorType::kAlpha_16, { VK_FORMAT_R16_UNORM });
1296 this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
1297 this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
1298 this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
1299 }
1300
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1301 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1302 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1303 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1304 *flags = *flags | kTexturable_Flag;
1305
1306 // Ganesh assumes that all renderable surfaces are also texturable
1307 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1308 *flags = *flags | kRenderable_Flag;
1309 }
1310 }
1311 // TODO: For Vk w/ VK_KHR_maintenance1 extension support, check
1312 // VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags
1313 // Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits
1314
1315 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1316 *flags = *flags | kBlitSrc_Flag;
1317 }
1318
1319 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1320 *flags = *flags | kBlitDst_Flag;
1321 }
1322 }
1323
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1324 void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
1325 VkPhysicalDevice physDev,
1326 const VkPhysicalDeviceProperties& physProps,
1327 VkFormat format) {
1328 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1329 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1330 VK_IMAGE_USAGE_SAMPLED_BIT |
1331 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1332 VkImageFormatProperties properties;
1333 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1334 format,
1335 VK_IMAGE_TYPE_2D,
1336 VK_IMAGE_TILING_OPTIMAL,
1337 usage,
1338 0, // createFlags
1339 &properties));
1340 VkSampleCountFlags flags = properties.sampleCounts;
1341 if (flags & VK_SAMPLE_COUNT_1_BIT) {
1342 fColorSampleCounts.push_back(1);
1343 }
1344 if (kImagination_VkVendor == physProps.vendorID) {
1345 // MSAA does not work on imagination
1346 return;
1347 }
1348 if (kIntel_VkVendor == physProps.vendorID) {
1349 // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1350 return;
1351 }
1352 if (flags & VK_SAMPLE_COUNT_2_BIT) {
1353 fColorSampleCounts.push_back(2);
1354 }
1355 if (flags & VK_SAMPLE_COUNT_4_BIT) {
1356 fColorSampleCounts.push_back(4);
1357 }
1358 if (flags & VK_SAMPLE_COUNT_8_BIT) {
1359 fColorSampleCounts.push_back(8);
1360 }
1361 if (flags & VK_SAMPLE_COUNT_16_BIT) {
1362 fColorSampleCounts.push_back(16);
1363 }
1364 // Standard sample locations are not defined for more than 16 samples, and we don't need more
1365 // than 16. Omit 32 and 64.
1366 }
1367
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1368 void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
1369 VkPhysicalDevice physDev,
1370 const VkPhysicalDeviceProperties& properties,
1371 VkFormat format) {
1372 VkFormatProperties props;
1373 memset(&props, 0, sizeof(VkFormatProperties));
1374 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1375 InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1376 InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1377 if (fOptimalFlags & kRenderable_Flag) {
1378 this->initSampleCounts(interface, physDev, properties, format);
1379 }
1380 }
1381
1382 // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
1383 // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
1384 // capability checks.
backend_format_is_external(const GrBackendFormat & format)1385 static bool backend_format_is_external(const GrBackendFormat& format) {
1386 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1387 SkASSERT(ycbcrInfo);
1388
1389 // All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
1390 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1391 #ifdef SK_DEBUG
1392 VkFormat vkFormat;
1393 SkAssertResult(format.asVkFormat(&vkFormat));
1394 SkASSERT(vkFormat == VK_NULL_HANDLE);
1395 #endif
1396 return true;
1397 }
1398 return false;
1399 }
1400
isFormatSRGB(const GrBackendFormat & format) const1401 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1402 VkFormat vkFormat;
1403 if (!format.asVkFormat(&vkFormat)) {
1404 return false;
1405 }
1406 if (backend_format_is_external(format)) {
1407 return false;
1408 }
1409
1410 return format_is_srgb(vkFormat);
1411 }
1412
isFormatTexturable(const GrBackendFormat & format) const1413 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format) const {
1414 VkFormat vkFormat;
1415 if (!format.asVkFormat(&vkFormat)) {
1416 return false;
1417 }
1418 if (backend_format_is_external(format)) {
1419 // We can always texture from an external format (assuming we have the ycbcr conversion
1420 // info which we require to be passed in).
1421 return true;
1422 }
1423 return this->isVkFormatTexturable(vkFormat);
1424 }
1425
isVkFormatTexturable(VkFormat format) const1426 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1427 const FormatInfo& info = this->getFormatInfo(format);
1428 return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1429 }
1430
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1431 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1432 int sampleCount) const {
1433 if (!this->isFormatRenderable(format, sampleCount)) {
1434 return false;
1435 }
1436 VkFormat vkFormat;
1437 if (!format.asVkFormat(&vkFormat)) {
1438 return false;
1439 }
1440 const auto& info = this->getFormatInfo(vkFormat);
1441 if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1442 return false;
1443 }
1444 return true;
1445 }
1446
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1447 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1448 VkFormat vkFormat;
1449 if (!format.asVkFormat(&vkFormat)) {
1450 return false;
1451 }
1452 return this->isFormatRenderable(vkFormat, sampleCount);
1453 }
1454
isFormatRenderable(VkFormat format,int sampleCount) const1455 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1456 return sampleCount <= this->maxRenderTargetSampleCount(format);
1457 }
1458
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1459 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1460 const GrBackendFormat& format) const {
1461 VkFormat vkFormat;
1462 if (!format.asVkFormat(&vkFormat)) {
1463 return 0;
1464 }
1465
1466 return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1467 }
1468
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1469 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1470 requestedCount = std::max(1, requestedCount);
1471
1472 const FormatInfo& info = this->getFormatInfo(format);
1473
1474 int count = info.fColorSampleCounts.count();
1475
1476 if (!count) {
1477 return 0;
1478 }
1479
1480 if (1 == requestedCount) {
1481 SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
1482 return 1;
1483 }
1484
1485 for (int i = 0; i < count; ++i) {
1486 if (info.fColorSampleCounts[i] >= requestedCount) {
1487 return info.fColorSampleCounts[i];
1488 }
1489 }
1490 return 0;
1491 }
1492
maxRenderTargetSampleCount(const GrBackendFormat & format) const1493 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1494 VkFormat vkFormat;
1495 if (!format.asVkFormat(&vkFormat)) {
1496 return 0;
1497 }
1498 return this->maxRenderTargetSampleCount(vkFormat);
1499 }
1500
maxRenderTargetSampleCount(VkFormat format) const1501 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1502 const FormatInfo& info = this->getFormatInfo(format);
1503
1504 const auto& table = info.fColorSampleCounts;
1505 if (!table.count()) {
1506 return 0;
1507 }
1508 return table[table.count() - 1];
1509 }
1510
align_to_4(size_t v)1511 static inline size_t align_to_4(size_t v) {
1512 switch (v & 0b11) {
1513 // v is already a multiple of 4.
1514 case 0: return v;
1515 // v is a multiple of 2 but not 4.
1516 case 2: return 2 * v;
1517 // v is not a multiple of 2.
1518 default: return 4 * v;
1519 }
1520 }
1521
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1522 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1523 const GrBackendFormat& surfaceFormat,
1524 GrColorType srcColorType) const {
1525 VkFormat vkFormat;
1526 if (!surfaceFormat.asVkFormat(&vkFormat)) {
1527 return {GrColorType::kUnknown, 0};
1528 }
1529
1530 // We don't support the ability to upload to external formats or formats that require a ycbcr
1531 // sampler. In general these types of formats are only used for sampling in a shader.
1532 if (backend_format_is_external(surfaceFormat) || GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1533 return {GrColorType::kUnknown, 0};
1534 }
1535
1536 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1537 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1538
1539 const auto& info = this->getFormatInfo(vkFormat);
1540 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1541 const auto& ctInfo = info.fColorTypeInfos[i];
1542 if (ctInfo.fColorType == surfaceColorType) {
1543 return {ctInfo.fTransferColorType, offsetAlignment};
1544 }
1545 }
1546 return {GrColorType::kUnknown, 0};
1547 }
1548
surfaceSupportsReadPixels(const GrSurface * surface) const1549 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1550 const GrSurface* surface) const {
1551 if (surface->isProtected()) {
1552 return SurfaceReadPixelsSupport::kUnsupported;
1553 }
1554 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1555 auto texAttachment = tex->textureAttachment();
1556 // We can't directly read from a VkImage that has a ycbcr sampler.
1557 if (texAttachment->ycbcrConversionInfo().isValid()) {
1558 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1559 }
1560 // We can't directly read from a compressed format
1561 if (GrVkFormatIsCompressed(texAttachment->imageFormat())) {
1562 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1563 }
1564 return SurfaceReadPixelsSupport::kSupported;
1565 } else if (auto rt = surface->asRenderTarget()) {
1566 if (rt->numSamples() > 1) {
1567 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1568 }
1569 return SurfaceReadPixelsSupport::kSupported;
1570 }
1571 return SurfaceReadPixelsSupport::kUnsupported;
1572 }
1573
transferColorType(VkFormat vkFormat,GrColorType surfaceColorType) const1574 GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const {
1575 const auto& info = this->getFormatInfo(vkFormat);
1576 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1577 if (info.fColorTypeInfos[i].fColorType == surfaceColorType) {
1578 return info.fColorTypeInfos[i].fTransferColorType;
1579 }
1580 }
1581 return GrColorType::kUnknown;
1582 }
1583
onSurfaceSupportsWritePixels(const GrSurface * surface) const1584 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1585 if (auto rt = surface->asRenderTarget()) {
1586 return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1587 }
1588 // We can't write to a texture that has a ycbcr sampler.
1589 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1590 // We can't directly read from a VkImage that has a ycbcr sampler.
1591 if (tex->textureAttachment()->ycbcrConversionInfo().isValid()) {
1592 return false;
1593 }
1594 }
1595 return true;
1596 }
1597
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1598 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1599 const GrBackendFormat& format) const {
1600 VkFormat vkFormat;
1601 if (!format.asVkFormat(&vkFormat)) {
1602 return false;
1603 }
1604 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1605 SkASSERT(ycbcrInfo);
1606
1607 if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1608 // Format may be undefined for external images, which are required to have YCbCr conversion.
1609 if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
1610 return true;
1611 }
1612 return false;
1613 }
1614
1615 const auto& info = this->getFormatInfo(vkFormat);
1616 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1617 if (info.fColorTypeInfos[i].fColorType == ct) {
1618 return true;
1619 }
1620 }
1621 return false;
1622 }
1623
onGetDefaultBackendFormat(GrColorType ct) const1624 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const {
1625 VkFormat format = this->getFormatFromColorType(ct);
1626 if (format == VK_FORMAT_UNDEFINED) {
1627 return {};
1628 }
1629 return GrBackendFormat::MakeVk(format);
1630 }
1631
getBackendFormatFromCompressionType(SkImage::CompressionType compressionType) const1632 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1633 SkImage::CompressionType compressionType) const {
1634 switch (compressionType) {
1635 case SkImage::CompressionType::kNone:
1636 return {};
1637 case SkImage::CompressionType::kETC2_RGB8_UNORM:
1638 if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
1639 return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1640 }
1641 return {};
1642 case SkImage::CompressionType::kBC1_RGB8_UNORM:
1643 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
1644 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
1645 }
1646 return {};
1647 case SkImage::CompressionType::kBC1_RGBA8_UNORM:
1648 if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
1649 return GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
1650 }
1651 return {};
1652 }
1653
1654 SkUNREACHABLE;
1655 }
1656
onGetReadSwizzle(const GrBackendFormat & format,GrColorType colorType) const1657 GrSwizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1658 VkFormat vkFormat;
1659 SkAssertResult(format.asVkFormat(&vkFormat));
1660 const auto* ycbcrInfo = format.getVkYcbcrConversionInfo();
1661 SkASSERT(ycbcrInfo);
1662 if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1663 // We allow these to work with any color type and never swizzle. See
1664 // onAreColorTypeAndFormatCompatible.
1665 return GrSwizzle{"rgba"};
1666 }
1667
1668 const auto& info = this->getFormatInfo(vkFormat);
1669 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1670 const auto& ctInfo = info.fColorTypeInfos[i];
1671 if (ctInfo.fColorType == colorType) {
1672 return ctInfo.fReadSwizzle;
1673 }
1674 }
1675 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.", colorType, vkFormat);
1676 return {};
1677 }
1678
getWriteSwizzle(const GrBackendFormat & format,GrColorType colorType) const1679 GrSwizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1680 VkFormat vkFormat;
1681 SkAssertResult(format.asVkFormat(&vkFormat));
1682 const auto& info = this->getFormatInfo(vkFormat);
1683 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1684 const auto& ctInfo = info.fColorTypeInfos[i];
1685 if (ctInfo.fColorType == colorType) {
1686 return ctInfo.fWriteSwizzle;
1687 }
1688 }
1689 SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.", colorType, vkFormat);
1690 return {};
1691 }
1692
onGetDstSampleTypeForProxy(const GrRenderTargetProxy * rt) const1693 GrDstSampleType GrVkCaps::onGetDstSampleTypeForProxy(const GrRenderTargetProxy* rt) const {
1694 bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy();
1695 // TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call
1696 // references whether the resolve is supported as an input attachment. We need to add a check to
1697 // allow checking the color attachment (msaa or not) supports input attachment specifically.
1698 if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) {
1699 return GrDstSampleType::kAsInputAttachment;
1700 }
1701 return GrDstSampleType::kAsTextureCopy;
1702 }
1703
computeFormatKey(const GrBackendFormat & format) const1704 uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
1705 VkFormat vkFormat;
1706 SkAssertResult(format.asVkFormat(&vkFormat));
1707
1708 #ifdef SK_DEBUG
1709 // We should never be trying to compute a key for an external format
1710 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1711 SkASSERT(ycbcrInfo);
1712 SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
1713 #endif
1714
1715 // A VkFormat has a size of 64 bits.
1716 return (uint64_t)vkFormat;
1717 }
1718
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1719 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1720 GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1721 GrColorType dstColorType) const {
1722 VkFormat vkFormat;
1723 if (!srcBackendFormat.asVkFormat(&vkFormat)) {
1724 return {GrColorType::kUnknown, 0};
1725 }
1726
1727 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1728 return {GrColorType::kUnknown, 0};
1729 }
1730
1731 SkImage::CompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
1732 if (compression != SkImage::CompressionType::kNone) {
1733 return { SkCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
1734 : GrColorType::kRGBA_8888, 0 };
1735 }
1736
1737 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1738 size_t offsetAlignment = align_to_4(GrVkFormatBytesPerBlock(vkFormat));
1739
1740 const auto& info = this->getFormatInfo(vkFormat);
1741 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1742 const auto& ctInfo = info.fColorTypeInfos[i];
1743 if (ctInfo.fColorType == srcColorType) {
1744 return {ctInfo.fTransferColorType, offsetAlignment};
1745 }
1746 }
1747 return {GrColorType::kUnknown, 0};
1748 }
1749
getFragmentUniformBinding() const1750 int GrVkCaps::getFragmentUniformBinding() const {
1751 return GrVkUniformHandler::kUniformBinding;
1752 }
1753
getFragmentUniformSet() const1754 int GrVkCaps::getFragmentUniformSet() const {
1755 return GrVkUniformHandler::kUniformBufferDescSet;
1756 }
1757
addExtraSamplerKey(GrProcessorKeyBuilder * b,GrSamplerState samplerState,const GrBackendFormat & format) const1758 void GrVkCaps::addExtraSamplerKey(GrProcessorKeyBuilder* b,
1759 GrSamplerState samplerState,
1760 const GrBackendFormat& format) const {
1761 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1762 if (!ycbcrInfo) {
1763 return;
1764 }
1765
1766 GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
1767
1768 constexpr size_t numInts = (sizeof(key) + 3) / 4;
1769 uint32_t tmp[numInts];
1770 memcpy(tmp, &key, sizeof(key));
1771
1772 for (size_t i = 0; i < numInts; ++i) {
1773 b->add32(tmp[i]);
1774 }
1775 }
1776
1777 /**
1778 * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
1779 * the information needed to differentiate one pipeline from another.
1780 *
1781 * The GrProgramDesc contains all the information need to create the actual shaders for the
1782 * pipeline.
1783 *
1784 * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
1785 * pipline. This includes stencil settings, blending information, render pass format, draw face
1786 * information, and primitive type. Note that some state is set dynamically on the pipeline for
1787 * each draw and thus is not included in this descriptor. This includes the viewport, scissor,
1788 * and blend constant.
1789 */
makeDesc(GrRenderTarget * rt,const GrProgramInfo & programInfo,ProgramDescOverrideFlags overrideFlags) const1790 GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt,
1791 const GrProgramInfo& programInfo,
1792 ProgramDescOverrideFlags overrideFlags) const {
1793 GrProgramDesc desc;
1794 GrProgramDesc::Build(&desc, programInfo, *this);
1795
1796 GrProcessorKeyBuilder b(desc.key());
1797
1798 // This will become part of the sheared off key used to persistently cache
1799 // the SPIRV code. It needs to be added right after the base key so that,
1800 // when the base-key is sheared off, the shearing code can include it in the
1801 // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
1802 // GrVkPipelineStateBuilder.cpp).
1803 b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
1804
1805 GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
1806 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
1807 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
1808 }
1809 if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
1810 selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
1811 }
1812
1813 bool needsResolve = programInfo.targetSupportsVkResolveLoad() &&
1814 this->preferDiscardableMSAAAttachment();
1815
1816 bool forceLoadFromResolve =
1817 overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass;
1818 SkASSERT(!forceLoadFromResolve || needsResolve);
1819
1820 GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
1821 if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) {
1822 loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
1823 }
1824
1825 if (rt) {
1826 GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
1827
1828 SkASSERT(!needsResolve || (vkRT->resolveAttachment() &&
1829 vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
1830
1831 bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled();
1832 // TODO: support failure in getSimpleRenderPass
1833 auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags,
1834 loadFromResolve);
1835 SkASSERT(rp);
1836 rp->genKey(&b);
1837
1838 #ifdef SK_DEBUG
1839 if (!rp->isExternal()) {
1840 // This is to ensure ReconstructAttachmentsDescriptor keeps matching
1841 // getSimpleRenderPass' result
1842 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1843 GrVkRenderPass::AttachmentFlags attachmentFlags;
1844 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1845 &attachmentsDescriptor,
1846 &attachmentFlags);
1847 SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags,
1848 loadFromResolve));
1849 }
1850 #endif
1851 } else {
1852 GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
1853 GrVkRenderPass::AttachmentFlags attachmentFlags;
1854 GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
1855 &attachmentsDescriptor,
1856 &attachmentFlags);
1857
1858 // kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which
1859 // will always go through the above 'rt' path (i.e., we can always pass 0 as the final
1860 // parameter to GenKey).
1861 GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags,
1862 loadFromResolve, 0);
1863 }
1864
1865 GrStencilSettings stencil = programInfo.nonGLStencilSettings();
1866 stencil.genKey(&b, true);
1867
1868 programInfo.pipeline().genKey(&b, *this);
1869 b.add32(programInfo.numSamples());
1870
1871 // Vulkan requires the full primitive type as part of its key
1872 b.add32(programInfo.primitiveTypeKey());
1873
1874 b.flush();
1875 return desc;
1876 }
1877
getExtraSurfaceFlagsForDeferredRT() const1878 GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const {
1879 // We always create vulkan RT with the input attachment flag;
1880 return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment;
1881 }
1882
getPushConstantStageFlags() const1883 VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const {
1884 VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
1885 if (this->shaderCaps()->geometryShaderSupport()) {
1886 stageFlags |= VK_SHADER_STAGE_GEOMETRY_BIT;
1887 }
1888 return stageFlags;
1889 }
1890
1891 #if GR_TEST_UTILS
getTestingCombinations() const1892 std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
1893 std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
1894 { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1895 { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
1896 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
1897 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
1898 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1899 { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
1900 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1901 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
1902 { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
1903 { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
1904 { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
1905 { GrColorType::kBGRA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)},
1906 { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1907 { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
1908 { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1909 { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1910 { GrColorType::kAlpha_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
1911 { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
1912 { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
1913 { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
1914 // These two compressed formats both have an effective colorType of kRGB_888x
1915 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
1916 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
1917 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK) },
1918 };
1919
1920 return combos;
1921 }
1922 #endif
1923