1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/vk/GrVkUniformHandler.h"
9
10 #include "src/gpu/GrTexture.h"
11 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
12 #include "src/gpu/vk/GrVkGpu.h"
13 #include "src/gpu/vk/GrVkPipelineStateBuilder.h"
14 #include "src/gpu/vk/GrVkTexture.h"
15
16 // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
17 // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
18 // are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
19 // This alignment mask will give correct alignments for using the std430 block layout. If you want
20 // the std140 alignment, you can use this, but then make sure if you have an array type it is
21 // aligned to 16 bytes (i.e. has mask of 0xF).
22 // These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment".
23 // https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout
grsltype_to_alignment_mask(GrSLType type)24 static uint32_t grsltype_to_alignment_mask(GrSLType type) {
25 switch(type) {
26 case kByte_GrSLType: // fall through
27 case kUByte_GrSLType:
28 return 0x0;
29 case kByte2_GrSLType: // fall through
30 case kUByte2_GrSLType:
31 return 0x1;
32 case kByte3_GrSLType: // fall through
33 case kByte4_GrSLType:
34 case kUByte3_GrSLType:
35 case kUByte4_GrSLType:
36 return 0x3;
37 case kShort_GrSLType: // fall through
38 case kUShort_GrSLType:
39 return 0x1;
40 case kShort2_GrSLType: // fall through
41 case kUShort2_GrSLType:
42 return 0x3;
43 case kShort3_GrSLType: // fall through
44 case kShort4_GrSLType:
45 case kUShort3_GrSLType:
46 case kUShort4_GrSLType:
47 return 0x7;
48 case kInt_GrSLType:
49 case kUint_GrSLType:
50 return 0x3;
51 case kInt2_GrSLType:
52 case kUint2_GrSLType:
53 return 0x7;
54 case kInt3_GrSLType:
55 case kUint3_GrSLType:
56 case kInt4_GrSLType:
57 case kUint4_GrSLType:
58 return 0xF;
59 case kHalf_GrSLType: // fall through
60 case kFloat_GrSLType:
61 return 0x3;
62 case kHalf2_GrSLType: // fall through
63 case kFloat2_GrSLType:
64 return 0x7;
65 case kHalf3_GrSLType: // fall through
66 case kFloat3_GrSLType:
67 return 0xF;
68 case kHalf4_GrSLType: // fall through
69 case kFloat4_GrSLType:
70 return 0xF;
71 case kHalf2x2_GrSLType: // fall through
72 case kFloat2x2_GrSLType:
73 return 0x7;
74 case kHalf3x3_GrSLType: // fall through
75 case kFloat3x3_GrSLType:
76 return 0xF;
77 case kHalf4x4_GrSLType: // fall through
78 case kFloat4x4_GrSLType:
79 return 0xF;
80
81 // This query is only valid for certain types.
82 case kVoid_GrSLType:
83 case kBool_GrSLType:
84 case kBool2_GrSLType:
85 case kBool3_GrSLType:
86 case kBool4_GrSLType:
87 case kTexture2DSampler_GrSLType:
88 case kTextureExternalSampler_GrSLType:
89 case kTexture2DRectSampler_GrSLType:
90 case kSampler_GrSLType:
91 case kTexture2D_GrSLType:
92 case kInput_GrSLType:
93 break;
94 }
95 SK_ABORT("Unexpected type");
96 }
97
98 /** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */
grsltype_to_vk_size(GrSLType type,int layout)99 static inline uint32_t grsltype_to_vk_size(GrSLType type, int layout) {
100 switch(type) {
101 case kByte_GrSLType:
102 return sizeof(int8_t);
103 case kByte2_GrSLType:
104 return 2 * sizeof(int8_t);
105 case kByte3_GrSLType:
106 return 3 * sizeof(int8_t);
107 case kByte4_GrSLType:
108 return 4 * sizeof(int8_t);
109 case kUByte_GrSLType:
110 return sizeof(uint8_t);
111 case kUByte2_GrSLType:
112 return 2 * sizeof(uint8_t);
113 case kUByte3_GrSLType:
114 return 3 * sizeof(uint8_t);
115 case kUByte4_GrSLType:
116 return 4 * sizeof(uint8_t);
117 case kShort_GrSLType:
118 return sizeof(int16_t);
119 case kShort2_GrSLType:
120 return 2 * sizeof(int16_t);
121 case kShort3_GrSLType:
122 return 3 * sizeof(int16_t);
123 case kShort4_GrSLType:
124 return 4 * sizeof(int16_t);
125 case kUShort_GrSLType:
126 return sizeof(uint16_t);
127 case kUShort2_GrSLType:
128 return 2 * sizeof(uint16_t);
129 case kUShort3_GrSLType:
130 return 3 * sizeof(uint16_t);
131 case kUShort4_GrSLType:
132 return 4 * sizeof(uint16_t);
133 case kHalf_GrSLType: // fall through
134 case kFloat_GrSLType:
135 return sizeof(float);
136 case kHalf2_GrSLType: // fall through
137 case kFloat2_GrSLType:
138 return 2 * sizeof(float);
139 case kHalf3_GrSLType: // fall through
140 case kFloat3_GrSLType:
141 return 3 * sizeof(float);
142 case kHalf4_GrSLType: // fall through
143 case kFloat4_GrSLType:
144 return 4 * sizeof(float);
145 case kInt_GrSLType: // fall through
146 case kUint_GrSLType:
147 return sizeof(int32_t);
148 case kInt2_GrSLType: // fall through
149 case kUint2_GrSLType:
150 return 2 * sizeof(int32_t);
151 case kInt3_GrSLType: // fall through
152 case kUint3_GrSLType:
153 return 3 * sizeof(int32_t);
154 case kInt4_GrSLType: // fall through
155 case kUint4_GrSLType:
156 return 4 * sizeof(int32_t);
157 case kHalf2x2_GrSLType: // fall through
158 case kFloat2x2_GrSLType:
159 if (layout == GrVkUniformHandler::kStd430Layout) {
160 return 4 * sizeof(float);
161 } else {
162 return 8 * sizeof(float);
163 }
164 case kHalf3x3_GrSLType: // fall through
165 case kFloat3x3_GrSLType:
166 return 12 * sizeof(float);
167 case kHalf4x4_GrSLType: // fall through
168 case kFloat4x4_GrSLType:
169 return 16 * sizeof(float);
170
171 // This query is only valid for certain types.
172 case kVoid_GrSLType:
173 case kBool_GrSLType:
174 case kBool2_GrSLType:
175 case kBool3_GrSLType:
176 case kBool4_GrSLType:
177 case kTexture2DSampler_GrSLType:
178 case kTextureExternalSampler_GrSLType:
179 case kTexture2DRectSampler_GrSLType:
180 case kSampler_GrSLType:
181 case kTexture2D_GrSLType:
182 case kInput_GrSLType:
183 break;
184 }
185 SK_ABORT("Unexpected type");
186 }
187
188 // Given the current offset into the ubo data, calculate the offset for the uniform we're trying to
189 // add taking into consideration all alignment requirements. The uniformOffset is set to the offset
190 // for the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
get_aligned_offset(uint32_t * currentOffset,GrSLType type,int arrayCount,int layout)191 static uint32_t get_aligned_offset(uint32_t* currentOffset,
192 GrSLType type,
193 int arrayCount,
194 int layout) {
195 uint32_t alignmentMask = grsltype_to_alignment_mask(type);
196 // For std140 layout we must make arrays align to 16 bytes.
197 if (layout == GrVkUniformHandler::kStd140Layout && (arrayCount || type == kFloat2x2_GrSLType)) {
198 alignmentMask = 0xF;
199 }
200 uint32_t offsetDiff = *currentOffset & alignmentMask;
201 if (offsetDiff != 0) {
202 offsetDiff = alignmentMask - offsetDiff + 1;
203 }
204 int32_t uniformOffset = *currentOffset + offsetDiff;
205 SkASSERT(sizeof(float) == 4);
206 if (arrayCount) {
207 // TODO: this shouldn't be necessary for std430
208 uint32_t elementSize = std::max<uint32_t>(16, grsltype_to_vk_size(type, layout));
209 SkASSERT(0 == (elementSize & 0xF));
210 *currentOffset = uniformOffset + elementSize * arrayCount;
211 } else {
212 *currentOffset = uniformOffset + grsltype_to_vk_size(type, layout);
213 }
214 return uniformOffset;
215 }
216
~GrVkUniformHandler()217 GrVkUniformHandler::~GrVkUniformHandler() {
218 for (VkUniformInfo& sampler : fSamplers.items()) {
219 if (sampler.fImmutableSampler) {
220 sampler.fImmutableSampler->unref();
221 sampler.fImmutableSampler = nullptr;
222 }
223 }
224 }
225
internalAddUniformArray(const GrFragmentProcessor * owner,uint32_t visibility,GrSLType type,const char * name,bool mangleName,int arrayCount,const char ** outName)226 GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
227 const GrFragmentProcessor* owner,
228 uint32_t visibility,
229 GrSLType type,
230 const char* name,
231 bool mangleName,
232 int arrayCount,
233 const char** outName) {
234 SkASSERT(name && strlen(name));
235 SkASSERT(GrSLTypeCanBeUniformValue(type));
236
237 // TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use
238 // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
239 // exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then
240 // the names will mismatch. I think the correct solution is to have all GPs which need the
241 // uniform view matrix, they should upload the view matrix in their setData along with regular
242 // uniforms.
243 char prefix = 'u';
244 if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
245 prefix = '\0';
246 }
247 SkString resolvedName = fProgramBuilder->nameVariable(prefix, name, mangleName);
248
249 uint32_t offsets[kLayoutCount];
250 for (int layout = 0; layout < kLayoutCount; ++layout) {
251 offsets[layout] = get_aligned_offset(&fCurrentOffsets[layout], type, arrayCount, layout);
252 }
253
254 VkUniformInfo& uni = fUniforms.push_back(VkUniformInfo{
255 {
256 GrShaderVar{std::move(resolvedName), type, GrShaderVar::TypeModifier::None, arrayCount},
257 visibility, owner, SkString(name)
258 },
259 {offsets[0], offsets[1]}, nullptr
260 });
261
262 if (outName) {
263 *outName = uni.fVariable.c_str();
264 }
265
266 return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
267 }
268
addSampler(const GrBackendFormat & backendFormat,GrSamplerState state,const GrSwizzle & swizzle,const char * name,const GrShaderCaps * shaderCaps)269 GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(
270 const GrBackendFormat& backendFormat, GrSamplerState state, const GrSwizzle& swizzle,
271 const char* name, const GrShaderCaps* shaderCaps) {
272 SkASSERT(name && strlen(name));
273
274 const char prefix = 'u';
275 SkString mangleName = fProgramBuilder->nameVariable(prefix, name, /*mangle=*/true);
276
277 SkString layoutQualifier;
278 layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count());
279
280 VkUniformInfo& info = fSamplers.push_back(VkUniformInfo{
281 {
282 GrShaderVar{std::move(mangleName),
283 GrSLCombinedSamplerTypeForTextureType(backendFormat.textureType()),
284 GrShaderVar::TypeModifier::Uniform, GrShaderVar::kNonArray,
285 std::move(layoutQualifier), SkString()},
286 kFragment_GrShaderFlag, nullptr, SkString(name)
287 },
288 {0, 0}, nullptr
289 });
290
291 // Check if we are dealing with an external texture and store the needed information if so.
292 auto ycbcrInfo = backendFormat.getVkYcbcrConversionInfo();
293 if (ycbcrInfo && ycbcrInfo->isValid()) {
294 GrVkGpu* gpu = static_cast<GrVkPipelineStateBuilder*>(fProgramBuilder)->gpu();
295 info.fImmutableSampler = gpu->resourceProvider().findOrCreateCompatibleSampler(
296 state, *ycbcrInfo);
297 if (!info.fImmutableSampler) {
298 return {};
299 }
300 }
301
302 fSamplerSwizzles.push_back(swizzle);
303 SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
304 return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
305 }
306
addInputSampler(const GrSwizzle & swizzle,const char * name)307 GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addInputSampler(const GrSwizzle& swizzle,
308 const char* name) {
309 SkASSERT(name && strlen(name));
310 SkASSERT(fInputUniform.fVariable.getType() == kVoid_GrSLType);
311
312 const char prefix = 'u';
313 SkString mangleName = fProgramBuilder->nameVariable(prefix, name, /*mangle=*/true);
314
315 SkString layoutQualifier;
316 layoutQualifier.appendf("input_attachment_index=%d, set=%d, binding=%d",
317 kDstInputAttachmentIndex, kInputDescSet, kInputBinding);
318
319 fInputUniform = {
320 GrShaderVar{std::move(mangleName), kInput_GrSLType, GrShaderVar::TypeModifier::Uniform,
321 GrShaderVar::kNonArray, std::move(layoutQualifier), SkString()},
322 kFragment_GrShaderFlag, nullptr, SkString(name)};
323 fInputSwizzle = swizzle;
324 return GrGLSLUniformHandler::SamplerHandle(0);
325 }
326
appendUniformDecls(GrShaderFlags visibility,SkString * out) const327 void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
328 for (const VkUniformInfo& sampler : fSamplers.items()) {
329 SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType ||
330 sampler.fVariable.getType() == kTextureExternalSampler_GrSLType);
331 if (visibility == sampler.fVisibility) {
332 sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
333 out->append(";\n");
334 }
335 }
336 if (fInputUniform.fVariable.getType() == kInput_GrSLType) {
337 if (visibility == fInputUniform.fVisibility) {
338 SkASSERT(visibility == kFragment_GrShaderFlag);
339 fInputUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
340 out->append(";\n");
341 }
342 }
343
344 #ifdef SK_DEBUG
345 bool firstOffsetCheck = false;
346 for (const VkUniformInfo& localUniform : fUniforms.items()) {
347 if (!firstOffsetCheck) {
348 // Check to make sure we are starting our offset at 0 so the offset qualifier we
349 // set on each variable in the uniform block is valid.
350 SkASSERT(0 == localUniform.fOffsets[kStd140Layout] &&
351 0 == localUniform.fOffsets[kStd430Layout]);
352 firstOffsetCheck = true;
353 }
354 }
355 #endif
356
357 // At this point we determine whether we'll be using push constants based on the
358 // uniforms set so far. Later checks will use the internal bool we set here to
359 // keep things consistent.
360 this->determineIfUsePushConstants();
361 SkString uniformsString;
362 for (const VkUniformInfo& localUniform : fUniforms.items()) {
363 if (visibility & localUniform.fVisibility) {
364 if (GrSLTypeCanBeUniformValue(localUniform.fVariable.getType())) {
365 Layout layout = fUsePushConstants ? kStd430Layout : kStd140Layout;
366 uniformsString.appendf("layout(offset=%d) ", localUniform.fOffsets[layout]);
367 localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
368 uniformsString.append(";\n");
369 }
370 }
371 }
372
373 if (!uniformsString.isEmpty()) {
374 if (fUsePushConstants) {
375 out->append("layout (push_constant) ");
376 } else {
377 out->appendf("layout (set=%d, binding=%d) ",
378 kUniformBufferDescSet, kUniformBinding);
379 }
380 out->append("uniform uniformBuffer\n{\n");
381 out->appendf("%s\n};\n", uniformsString.c_str());
382 }
383 }
384
getRTHeightOffset() const385 uint32_t GrVkUniformHandler::getRTHeightOffset() const {
386 Layout layout = fUsePushConstants ? kStd430Layout : kStd140Layout;
387 uint32_t currentOffset = fCurrentOffsets[layout];
388 return get_aligned_offset(¤tOffset, kFloat_GrSLType, 0, layout);
389 }
390
determineIfUsePushConstants() const391 void GrVkUniformHandler::determineIfUsePushConstants() const {
392 // If flipY is enabled we may be adding the RTHeight uniform during compilation.
393 // We won't know that for sure until then but we need to make this determination now,
394 // so assume we will need it.
395 uint32_t pad = fFlipY ? sizeof(float) : 0;
396 fUsePushConstants = fCurrentOffsets[kStd430Layout] > 0 &&
397 fCurrentOffsets[kStd430Layout] + pad <= fProgramBuilder->caps()->maxPushConstantsSize();
398 }
399