1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/codegen/SkSLCPPCodeGenerator.h"
9
10 #include "src/sksl/SkSLAnalysis.h"
11 #include "src/sksl/SkSLCPPUniformCTypes.h"
12 #include "src/sksl/SkSLCompiler.h"
13 #include "src/sksl/codegen/SkSLHCodeGenerator.h"
14 #include "src/sksl/ir/SkSLEnum.h"
15
16 #include <algorithm>
17
18 #if defined(SKSL_STANDALONE) || GR_TEST_UTILS
19
20 namespace SkSL {
21
needs_uniform_var(const Variable & var)22 static bool needs_uniform_var(const Variable& var) {
23 return (var.modifiers().fFlags & Modifiers::kUniform_Flag) &&
24 var.type().typeKind() != Type::TypeKind::kSampler;
25 }
26
CPPCodeGenerator(const Context * context,const Program * program,ErrorReporter * errors,String name,OutputStream * out)27 CPPCodeGenerator::CPPCodeGenerator(const Context* context, const Program* program,
28 ErrorReporter* errors, String name, OutputStream* out)
29 : INHERITED(context, program, errors, out)
30 , fName(std::move(name))
31 , fFullName(String::printf("Gr%s", fName.c_str()))
32 , fSectionAndParameterHelper(program, *errors) {
33 fLineEnding = "\n";
34 fTextureFunctionOverride = "sample";
35 }
36
writef(const char * s,va_list va)37 void CPPCodeGenerator::writef(const char* s, va_list va) {
38 static constexpr int BUFFER_SIZE = 1024;
39 va_list copy;
40 va_copy(copy, va);
41 char buffer[BUFFER_SIZE];
42 int length = std::vsnprintf(buffer, BUFFER_SIZE, s, va);
43 if (length < BUFFER_SIZE) {
44 fOut->write(buffer, length);
45 } else {
46 std::unique_ptr<char[]> heap(new char[length + 1]);
47 vsprintf(heap.get(), s, copy);
48 fOut->write(heap.get(), length);
49 }
50 va_end(copy);
51 }
52
writef(const char * s,...)53 void CPPCodeGenerator::writef(const char* s, ...) {
54 va_list va;
55 va_start(va, s);
56 this->writef(s, va);
57 va_end(va);
58 }
59
writeHeader()60 void CPPCodeGenerator::writeHeader() {
61 }
62
usesPrecisionModifiers() const63 bool CPPCodeGenerator::usesPrecisionModifiers() const {
64 return false;
65 }
66
getTypeName(const Type & type)67 String CPPCodeGenerator::getTypeName(const Type& type) {
68 return type.name();
69 }
70
writeBinaryExpression(const BinaryExpression & b,Precedence parentPrecedence)71 void CPPCodeGenerator::writeBinaryExpression(const BinaryExpression& b,
72 Precedence parentPrecedence) {
73 const Expression& left = *b.left();
74 const Expression& right = *b.right();
75 Operator op = b.getOperator();
76 if (op.kind() == Token::Kind::TK_PERCENT) {
77 // need to use "%%" instead of "%" b/c the code will be inside of a printf
78 Precedence precedence = op.getBinaryPrecedence();
79 if (precedence >= parentPrecedence) {
80 this->write("(");
81 }
82 this->writeExpression(left, precedence);
83 this->write(" %% ");
84 this->writeExpression(right, precedence);
85 if (precedence >= parentPrecedence) {
86 this->write(")");
87 }
88 } else {
89 INHERITED::writeBinaryExpression(b, parentPrecedence);
90 }
91 }
92
default_value(const Type & type)93 static String default_value(const Type& type) {
94 if (type.isBoolean()) {
95 return "false";
96 }
97 switch (type.typeKind()) {
98 case Type::TypeKind::kScalar: return "0";
99 case Type::TypeKind::kVector: return type.name() + "(0)";
100 case Type::TypeKind::kMatrix: return type.name() + "(1)";
101 default: SK_ABORT("unsupported default_value type");
102 }
103 }
104
default_value(const Variable & var)105 static String default_value(const Variable& var) {
106 if (var.modifiers().fLayout.fCType == SkSL::Layout::CType::kSkPMColor4f) {
107 return "{SK_FloatNaN, SK_FloatNaN, SK_FloatNaN, SK_FloatNaN}";
108 }
109 return default_value(var.type());
110 }
111
is_private(const Variable & var)112 static bool is_private(const Variable& var) {
113 const Modifiers& modifiers = var.modifiers();
114 return !(modifiers.fFlags & Modifiers::kUniform_Flag) &&
115 !(modifiers.fFlags & Modifiers::kIn_Flag) &&
116 var.storage() == Variable::Storage::kGlobal &&
117 modifiers.fLayout.fBuiltin == -1;
118 }
119
is_uniform_in(const Variable & var)120 static bool is_uniform_in(const Variable& var) {
121 const Modifiers& modifiers = var.modifiers();
122 return (modifiers.fFlags & Modifiers::kUniform_Flag) &&
123 (modifiers.fFlags & Modifiers::kIn_Flag) &&
124 var.type().typeKind() != Type::TypeKind::kSampler;
125 }
126
formatRuntimeValue(const Type & type,const Layout & layout,const String & cppCode,std::vector<String> * formatArgs)127 String CPPCodeGenerator::formatRuntimeValue(const Type& type,
128 const Layout& layout,
129 const String& cppCode,
130 std::vector<String>* formatArgs) {
131 if (type.isArray()) {
132 String result("[");
133 const char* separator = "";
134 for (int i = 0; i < type.columns(); i++) {
135 result += separator + this->formatRuntimeValue(type.componentType(), layout,
136 "(" + cppCode + ")[" + to_string(i) +
137 "]", formatArgs);
138 separator = ",";
139 }
140 result += "]";
141 return result;
142 }
143 if (type.isFloat()) {
144 formatArgs->push_back(cppCode);
145 return "%f";
146 }
147 if (type == *fContext.fTypes.fInt) {
148 formatArgs->push_back(cppCode);
149 return "%d";
150 }
151 if (type == *fContext.fTypes.fBool) {
152 formatArgs->push_back("(" + cppCode + " ? \"true\" : \"false\")");
153 return "%s";
154 }
155 if (type == *fContext.fTypes.fFloat2 || type == *fContext.fTypes.fHalf2) {
156 formatArgs->push_back(cppCode + ".fX");
157 formatArgs->push_back(cppCode + ".fY");
158 return type.name() + "(%f, %f)";
159 }
160 if (type == *fContext.fTypes.fFloat3 || type == *fContext.fTypes.fHalf3) {
161 formatArgs->push_back(cppCode + ".fX");
162 formatArgs->push_back(cppCode + ".fY");
163 formatArgs->push_back(cppCode + ".fZ");
164 return type.name() + "(%f, %f, %f)";
165 }
166 if (type == *fContext.fTypes.fFloat4 || type == *fContext.fTypes.fHalf4) {
167 switch (layout.fCType) {
168 case Layout::CType::kSkPMColor:
169 formatArgs->push_back("SkGetPackedR32(" + cppCode + ") / 255.0");
170 formatArgs->push_back("SkGetPackedG32(" + cppCode + ") / 255.0");
171 formatArgs->push_back("SkGetPackedB32(" + cppCode + ") / 255.0");
172 formatArgs->push_back("SkGetPackedA32(" + cppCode + ") / 255.0");
173 break;
174 case Layout::CType::kSkPMColor4f:
175 formatArgs->push_back(cppCode + ".fR");
176 formatArgs->push_back(cppCode + ".fG");
177 formatArgs->push_back(cppCode + ".fB");
178 formatArgs->push_back(cppCode + ".fA");
179 break;
180 case Layout::CType::kSkV4:
181 formatArgs->push_back(cppCode + ".x");
182 formatArgs->push_back(cppCode + ".y");
183 formatArgs->push_back(cppCode + ".z");
184 formatArgs->push_back(cppCode + ".w");
185 break;
186 case Layout::CType::kSkRect:
187 case Layout::CType::kDefault:
188 formatArgs->push_back(cppCode + ".left()");
189 formatArgs->push_back(cppCode + ".top()");
190 formatArgs->push_back(cppCode + ".right()");
191 formatArgs->push_back(cppCode + ".bottom()");
192 break;
193 default:
194 SkASSERT(false);
195 }
196 return type.name() + "(%f, %f, %f, %f)";
197 }
198 if (type.isMatrix()) {
199 SkASSERT(type.componentType() == *fContext.fTypes.fFloat ||
200 type.componentType() == *fContext.fTypes.fHalf);
201
202 String format = type.name() + "(";
203 for (int c = 0; c < type.columns(); ++c) {
204 for (int r = 0; r < type.rows(); ++r) {
205 formatArgs->push_back(String::printf("%s.rc(%d, %d)", cppCode.c_str(), r, c));
206 format += "%f, ";
207 }
208 }
209
210 // Replace trailing ", " with ")".
211 format.pop_back();
212 format.back() = ')';
213 return format;
214 }
215 if (type.isEnum()) {
216 formatArgs->push_back("(int) " + cppCode);
217 return "%d";
218 }
219 if (type == *fContext.fTypes.fInt4 ||
220 type == *fContext.fTypes.fShort4) {
221 formatArgs->push_back(cppCode + ".left()");
222 formatArgs->push_back(cppCode + ".top()");
223 formatArgs->push_back(cppCode + ".right()");
224 formatArgs->push_back(cppCode + ".bottom()");
225 return type.name() + "(%d, %d, %d, %d)";
226 }
227
228 SkDEBUGFAILF("unsupported runtime value type '%s'\n", String(type.name()).c_str());
229 return "";
230 }
231
writeRuntimeValue(const Type & type,const Layout & layout,const String & cppCode)232 void CPPCodeGenerator::writeRuntimeValue(const Type& type, const Layout& layout,
233 const String& cppCode) {
234 this->write(this->formatRuntimeValue(type, layout, cppCode, &fFormatArgs));
235 }
236
writeVarInitializer(const Variable & var,const Expression & value)237 void CPPCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) {
238 if (is_private(var)) {
239 this->writeRuntimeValue(var.type(), var.modifiers().fLayout, var.name());
240 } else {
241 this->writeExpression(value, Precedence::kTopLevel);
242 }
243 }
244
getSamplerHandle(const Variable & var)245 String CPPCodeGenerator::getSamplerHandle(const Variable& var) {
246 int samplerCount = 0;
247 for (const auto param : fSectionAndParameterHelper.getParameters()) {
248 if (&var == param) {
249 return "args.fTexSamplers[" + to_string(samplerCount) + "]";
250 }
251 if (param->type().typeKind() == Type::TypeKind::kSampler) {
252 ++samplerCount;
253 }
254 }
255 SK_ABORT("should have found sampler in parameters\n");
256 }
257
writeIntLiteral(const IntLiteral & i)258 void CPPCodeGenerator::writeIntLiteral(const IntLiteral& i) {
259 this->write(to_string(i.value()));
260 }
261
writeSwizzle(const Swizzle & swizzle)262 void CPPCodeGenerator::writeSwizzle(const Swizzle& swizzle) {
263 if (fCPPMode) {
264 // no support for multiple swizzle components yet
265 SkASSERT(swizzle.components().size() == 1);
266 this->writeExpression(*swizzle.base(), Precedence::kPostfix);
267 switch (swizzle.components()[0]) {
268 case 0: this->write(".left()"); break;
269 case 1: this->write(".top()"); break;
270 case 2: this->write(".right()"); break;
271 case 3: this->write(".bottom()"); break;
272 }
273 } else {
274 INHERITED::writeSwizzle(swizzle);
275 }
276 }
277
writeVariableReference(const VariableReference & ref)278 void CPPCodeGenerator::writeVariableReference(const VariableReference& ref) {
279 if (fCPPMode) {
280 this->write(ref.variable()->name());
281 return;
282 }
283 switch (ref.variable()->modifiers().fLayout.fBuiltin) {
284 case SK_MAIN_COORDS_BUILTIN:
285 this->write("%s");
286 fFormatArgs.push_back(String("args.fSampleCoord"));
287 fAccessSampleCoordsDirectly = true;
288 break;
289 default:
290 const Variable& var = *ref.variable();
291 if (var.type().typeKind() == Type::TypeKind::kSampler) {
292 this->write("%s");
293 fFormatArgs.push_back("fragBuilder->getProgramBuilder()->samplerVariable(" +
294 this->getSamplerHandle(*ref.variable()) + ")");
295 return;
296 }
297 if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
298 this->write("%s");
299 String name = var.name();
300 String varCode = String::printf("args.fUniformHandler->getUniformCStr(%sVar)",
301 HCodeGenerator::FieldName(name.c_str()).c_str());
302 String code;
303 if (var.modifiers().fLayout.fWhen.fLength) {
304 code = String::printf("%sVar.isValid() ? %s : \"%s\"",
305 HCodeGenerator::FieldName(name.c_str()).c_str(),
306 varCode.c_str(),
307 default_value(var.type()).c_str());
308 } else {
309 code = varCode;
310 }
311 fFormatArgs.push_back(code);
312 } else if (SectionAndParameterHelper::IsParameter(var)) {
313 String name(var.name());
314 this->writeRuntimeValue(var.type(), var.modifiers().fLayout,
315 String::printf("_outer.%s", name.c_str()).c_str());
316 } else {
317 this->write(var.name());
318 }
319 }
320 }
321
writeIfStatement(const IfStatement & s)322 void CPPCodeGenerator::writeIfStatement(const IfStatement& s) {
323 if (s.isStatic()) {
324 this->write("@");
325 }
326 INHERITED::writeIfStatement(s);
327 }
328
writeReturnStatement(const ReturnStatement & s)329 void CPPCodeGenerator::writeReturnStatement(const ReturnStatement& s) {
330 INHERITED::writeReturnStatement(s);
331 }
332
writeSwitchStatement(const SwitchStatement & s)333 void CPPCodeGenerator::writeSwitchStatement(const SwitchStatement& s) {
334 if (s.isStatic()) {
335 this->write("@");
336 }
337 INHERITED::writeSwitchStatement(s);
338 }
339
getChildFPIndex(const Variable & var) const340 int CPPCodeGenerator::getChildFPIndex(const Variable& var) const {
341 int index = 0;
342 for (const ProgramElement* p : fProgram.elements()) {
343 if (p->is<GlobalVarDeclaration>()) {
344 const VarDeclaration& decl =
345 p->as<GlobalVarDeclaration>().declaration()->as<VarDeclaration>();
346 if (&decl.var() == &var) {
347 return index;
348 } else if (decl.var().type().isFragmentProcessor()) {
349 ++index;
350 }
351 }
352 }
353 SkDEBUGFAIL("child fragment processor not found");
354 return 0;
355 }
356
getSampleVarName(const char * prefix,int sampleCounter)357 String CPPCodeGenerator::getSampleVarName(const char* prefix, int sampleCounter) {
358 return String::printf("%s%d", prefix, sampleCounter);
359 }
360
writeFunctionCall(const FunctionCall & c)361 void CPPCodeGenerator::writeFunctionCall(const FunctionCall& c) {
362 const FunctionDeclaration& function = c.function();
363 const ExpressionArray& arguments = c.arguments();
364 if (function.isBuiltin() && function.name() == "sample" &&
365 arguments[0]->type().typeKind() != Type::TypeKind::kSampler) {
366 int sampleCounter = fSampleCounter++;
367
368 // Validity checks that are detected by function definition in sksl_fp.inc
369 SkASSERT(arguments.size() >= 1 && arguments.size() <= 3);
370 SkASSERT(arguments[0]->type().isFragmentProcessor());
371
372 // Actually fail during compilation if arguments with valid types are
373 // provided that are not variable references, since sample() is a
374 // special function that impacts code emission.
375 if (!arguments[0]->is<VariableReference>()) {
376 fErrors.error(arguments[0]->fOffset,
377 "sample()'s fragmentProcessor argument must be a variable reference\n");
378 return;
379 }
380 const Variable& child = *arguments[0]->as<VariableReference>().variable();
381
382 // Start a new extra emit code section so that the emitted child processor can depend on
383 // sksl variables defined in earlier sksl code.
384 this->newExtraEmitCodeBlock();
385
386 // inputColor is an optional argument that always appears last
387 String inputColor;
388 if (arguments.back()->type().name() == "half4") {
389 // Use the invokeChild() variant that accepts an input color, so convert the 2nd
390 // argument's expression into C++ code that produces sksl stored in an SkString.
391 String inputColorName = this->getSampleVarName("_input", sampleCounter);
392 addExtraEmitCodeLine(convertSKSLExpressionToCPP(*arguments.back(), inputColorName));
393
394 // invokeChild() needs a char* and a pre-pended comma
395 inputColor = ", " + inputColorName + ".c_str()";
396 }
397
398 // If coords are present, they're float2. They appear right after the fp.
399 String inputCoord;
400 if (arguments.size() > 1) {
401 if (arguments[1]->type().name() == "float2") {
402 // Invoking child with explicit coordinates at this call site
403 inputCoord = this->getSampleVarName("_coords", sampleCounter);
404 addExtraEmitCodeLine(convertSKSLExpressionToCPP(*arguments[1], inputCoord));
405 inputCoord.append(".c_str()");
406 }
407 }
408 if (!inputCoord.empty()) {
409 inputCoord = ", " + inputCoord;
410 }
411
412 // Write the output handling after the possible input handling
413 String childName = this->getSampleVarName("_sample", sampleCounter);
414 String childIndexStr = to_string(this->getChildFPIndex(child));
415 addExtraEmitCodeLine("SkString " + childName + " = this->invokeChild(" + childIndexStr +
416 inputColor + ", args" + inputCoord + ");");
417
418 this->write("%s");
419 fFormatArgs.push_back(childName + ".c_str()");
420 return;
421 }
422 if (function.isBuiltin()) {
423 INHERITED::writeFunctionCall(c);
424 } else {
425 this->write("%s");
426 fFormatArgs.push_back((String(function.name()) + "_name.c_str()").c_str());
427 this->write("(");
428 const char* separator = "";
429 for (const auto& arg : arguments) {
430 this->write(separator);
431 separator = ", ";
432 this->writeExpression(*arg, Precedence::kSequence);
433 }
434 this->write(")");
435 }
436 if (function.isBuiltin() && function.name() == "sample") {
437 this->write(".%s");
438 SkASSERT(arguments.size() >= 1);
439 SkASSERT(arguments[0]->is<VariableReference>());
440 String sampler =
441 this->getSamplerHandle(*arguments[0]->as<VariableReference>().variable());
442 fFormatArgs.push_back("fragBuilder->getProgramBuilder()->samplerSwizzle(" + sampler +
443 ").asString().c_str()");
444 }
445 }
446
glsltype_string(const Context & context,const Type & type)447 static const char* glsltype_string(const Context& context, const Type& type) {
448 // If a new GrSL type is added, this function will need to be updated.
449 static_assert(kGrSLTypeCount == 49);
450
451 if (type == *context.fTypes.fVoid ) { return "kVoid_GrSLType"; }
452 if (type == *context.fTypes.fBool ) { return "kBool_GrSLType"; }
453 if (type == *context.fTypes.fBool2 ) { return "kBool2_GrSLType"; }
454 if (type == *context.fTypes.fBool3 ) { return "kBool3_GrSLType"; }
455 if (type == *context.fTypes.fBool4 ) { return "kBool4_GrSLType"; }
456 if (type == *context.fTypes.fShort ) { return "kShort_GrSLType"; }
457 if (type == *context.fTypes.fShort2 ) { return "kShort2_GrSLType"; }
458 if (type == *context.fTypes.fShort3 ) { return "kShort3_GrSLType"; }
459 if (type == *context.fTypes.fShort4 ) { return "kShort4_GrSLType"; }
460 if (type == *context.fTypes.fUShort ) { return "kUShort_GrSLType"; }
461 if (type == *context.fTypes.fUShort2 ) { return "kUShort2_GrSLType"; }
462 if (type == *context.fTypes.fUShort3 ) { return "kUShort3_GrSLType"; }
463 if (type == *context.fTypes.fUShort4 ) { return "kUShort4_GrSLType"; }
464 if (type == *context.fTypes.fFloat ) { return "kFloat_GrSLType"; }
465 if (type == *context.fTypes.fFloat2 ) { return "kFloat2_GrSLType"; }
466 if (type == *context.fTypes.fFloat3 ) { return "kFloat3_GrSLType"; }
467 if (type == *context.fTypes.fFloat4 ) { return "kFloat4_GrSLType"; }
468 if (type == *context.fTypes.fFloat2x2) { return "kFloat2x2_GrSLType"; }
469 if (type == *context.fTypes.fFloat3x3) { return "kFloat3x3_GrSLType"; }
470 if (type == *context.fTypes.fFloat4x4) { return "kFloat4x4_GrSLType"; }
471 if (type == *context.fTypes.fHalf ) { return "kHalf_GrSLType"; }
472 if (type == *context.fTypes.fHalf2 ) { return "kHalf2_GrSLType"; }
473 if (type == *context.fTypes.fHalf3 ) { return "kHalf3_GrSLType"; }
474 if (type == *context.fTypes.fHalf4 ) { return "kHalf4_GrSLType"; }
475 if (type == *context.fTypes.fHalf2x2 ) { return "kHalf2x2_GrSLType"; }
476 if (type == *context.fTypes.fHalf3x3 ) { return "kHalf3x3_GrSLType"; }
477 if (type == *context.fTypes.fHalf4x4 ) { return "kHalf4x4_GrSLType"; }
478 if (type == *context.fTypes.fInt ) { return "kInt_GrSLType"; }
479 if (type == *context.fTypes.fInt2 ) { return "kInt2_GrSLType"; }
480 if (type == *context.fTypes.fInt3 ) { return "kInt3_GrSLType"; }
481 if (type == *context.fTypes.fInt4 ) { return "kInt4_GrSLType"; }
482 if (type == *context.fTypes.fUInt ) { return "kUint_GrSLType"; }
483 if (type == *context.fTypes.fUInt2 ) { return "kUint2_GrSLType"; }
484 if (type == *context.fTypes.fUInt3 ) { return "kUint3_GrSLType"; }
485 if (type == *context.fTypes.fUInt4 ) { return "kUint4_GrSLType"; }
486 if (type.isEnum()) { return "kInt_GrSLType"; }
487
488 SkDEBUGFAILF("unsupported type: %s", type.description().c_str());
489 return nullptr;
490 }
491
prepareHelperFunction(const FunctionDeclaration & decl)492 void CPPCodeGenerator::prepareHelperFunction(const FunctionDeclaration& decl) {
493 if (decl.isBuiltin() || decl.isMain()) {
494 return;
495 }
496
497 String funcName = decl.name();
498 this->addExtraEmitCodeLine(
499 String::printf("SkString %s_name = fragBuilder->getMangledFunctionName(\"%s\");",
500 funcName.c_str(),
501 funcName.c_str()));
502
503 String args = String::printf("const GrShaderVar %s_args[] = { ", funcName.c_str());
504 const char* separator = "";
505 for (const Variable* param : decl.parameters()) {
506 String paramName = param->name();
507 args.appendf("%sGrShaderVar(\"%s\", %s)", separator, paramName.c_str(),
508 glsltype_string(fContext, param->type()));
509 separator = ", ";
510 }
511 args += " };";
512
513 this->addExtraEmitCodeLine(args.c_str());
514 }
515
prototypeHelperFunction(const FunctionDeclaration & decl)516 void CPPCodeGenerator::prototypeHelperFunction(const FunctionDeclaration& decl) {
517 String funcName = decl.name();
518 this->addExtraEmitCodeLine(String::printf(
519 "fragBuilder->emitFunctionPrototype(%s, %s_name.c_str(), {%s_args, %zu});",
520 glsltype_string(fContext, decl.returnType()),
521 funcName.c_str(),
522 funcName.c_str(),
523 decl.parameters().size()));
524 }
525
writeFunction(const FunctionDefinition & f)526 void CPPCodeGenerator::writeFunction(const FunctionDefinition& f) {
527 const FunctionDeclaration& decl = f.declaration();
528 if (decl.isBuiltin()) {
529 return;
530 }
531 fFunctionHeader.clear();
532 OutputStream* oldOut = fOut;
533 StringStream buffer;
534 fOut = &buffer;
535 if (decl.isMain()) {
536 fInMain = true;
537 for (const std::unique_ptr<Statement>& s : f.body()->as<Block>().children()) {
538 this->writeStatement(*s);
539 this->writeLine();
540 }
541 fInMain = false;
542
543 fOut = oldOut;
544 this->write(fFunctionHeader);
545 this->write(buffer.str());
546 } else {
547 for (const std::unique_ptr<Statement>& s : f.body()->as<Block>().children()) {
548 this->writeStatement(*s);
549 this->writeLine();
550 }
551
552 fOut = oldOut;
553 String funcName = decl.name();
554
555 String funcImpl;
556 if (!fFormatArgs.empty()) {
557 this->addExtraEmitCodeLine("const String " + funcName + "_impl = String::printf(" +
558 assembleCodeAndFormatArgPrintf(buffer.str()).c_str() + ");");
559 funcImpl = String::printf(" %s_impl.c_str()", funcName.c_str());
560 } else {
561 funcImpl = "\nR\"SkSL(" + buffer.str() + ")SkSL\"";
562 }
563
564 this->addExtraEmitCodeLine(String::printf(
565 "fragBuilder->emitFunction(%s, %s_name.c_str(), {%s_args, %zu},%s);",
566 glsltype_string(fContext, decl.returnType()),
567 funcName.c_str(),
568 funcName.c_str(),
569 decl.parameters().size(),
570 funcImpl.c_str()));
571 }
572 }
573
writeSetting(const Setting & s)574 void CPPCodeGenerator::writeSetting(const Setting& s) {
575 this->writef("sk_Caps.%s", s.name().c_str());
576 }
577
writeSection(const char * name,const char * prefix)578 bool CPPCodeGenerator::writeSection(const char* name, const char* prefix) {
579 const Section* s = fSectionAndParameterHelper.getSection(name);
580 if (s) {
581 this->writef("%s%s", prefix, s->text().c_str());
582 return true;
583 }
584 return false;
585 }
586
writeProgramElement(const ProgramElement & p)587 void CPPCodeGenerator::writeProgramElement(const ProgramElement& p) {
588 switch (p.kind()) {
589 case ProgramElement::Kind::kSection:
590 return;
591 case ProgramElement::Kind::kGlobalVar: {
592 const GlobalVarDeclaration& decl = p.as<GlobalVarDeclaration>();
593 const Variable& var = decl.declaration()->as<VarDeclaration>().var();
594 if (var.modifiers().fFlags & (Modifiers::kIn_Flag | Modifiers::kUniform_Flag) ||
595 -1 != var.modifiers().fLayout.fBuiltin) {
596 return;
597 }
598 break;
599 }
600 case ProgramElement::Kind::kFunctionPrototype: {
601 // Function prototypes are handled at the C++ level (in writeEmitCode).
602 // We don't want prototypes to be emitted inside the FP's main() function.
603 return;
604 }
605 default:
606 break;
607 }
608 INHERITED::writeProgramElement(p);
609 }
610
addUniform(const Variable & var)611 void CPPCodeGenerator::addUniform(const Variable& var) {
612 if (!needs_uniform_var(var)) {
613 return;
614 }
615 if (var.modifiers().fLayout.fWhen.fLength) {
616 this->writef(" if (%s) {\n ", String(var.modifiers().fLayout.fWhen).c_str());
617 }
618 String name(var.name());
619 if (!var.type().isArray()) {
620 this->writef(" %sVar = args.fUniformHandler->addUniform(&_outer, "
621 "kFragment_GrShaderFlag, %s, \"%s\");\n",
622 HCodeGenerator::FieldName(name.c_str()).c_str(),
623 glsltype_string(fContext, var.type()),
624 name.c_str());
625 } else {
626 this->writef(" %sVar = args.fUniformHandler->addUniformArray(&_outer, "
627 "kFragment_GrShaderFlag, %s, \"%s\", %d);\n",
628 HCodeGenerator::FieldName(name.c_str()).c_str(),
629 glsltype_string(fContext, var.type().componentType()),
630 name.c_str(),
631 var.type().columns());
632 }
633 if (var.modifiers().fLayout.fWhen.fLength) {
634 this->write(" }\n");
635 }
636 }
637
writeInputVars()638 void CPPCodeGenerator::writeInputVars() {
639 }
640
writePrivateVars()641 void CPPCodeGenerator::writePrivateVars() {
642 for (const ProgramElement* p : fProgram.elements()) {
643 if (p->is<GlobalVarDeclaration>()) {
644 const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
645 const Variable& var = global.declaration()->as<VarDeclaration>().var();
646 if (is_private(var)) {
647 if (var.type().isFragmentProcessor()) {
648 fErrors.error(global.fOffset,
649 "fragmentProcessor variables must be declared 'in'");
650 return;
651 }
652 this->writef("%s %s = %s;\n",
653 HCodeGenerator::FieldType(fContext, var.type(),
654 var.modifiers().fLayout).c_str(),
655 String(var.name()).c_str(),
656 default_value(var).c_str());
657 } else if (var.modifiers().fLayout.fFlags & Layout::kTracked_Flag) {
658 // An auto-tracked uniform in variable, so add a field to hold onto the prior
659 // state. Note that tracked variables must be uniform in's and that is validated
660 // before writePrivateVars() is called.
661 const UniformCTypeMapper* mapper = UniformCTypeMapper::Get(fContext, var);
662 SkASSERT(mapper);
663
664 String name = HCodeGenerator::FieldName(String(var.name()).c_str());
665 // The member statement is different if the mapper reports a default value
666 if (mapper->defaultValue().size() > 0) {
667 this->writef("%s %sPrev = %s;\n",
668 Layout::CTypeToStr(mapper->ctype()), name.c_str(),
669 mapper->defaultValue().c_str());
670 } else {
671 this->writef("%s %sPrev;\n",
672 Layout::CTypeToStr(mapper->ctype()), name.c_str());
673 }
674 }
675 }
676 }
677 }
678
writePrivateVarValues()679 void CPPCodeGenerator::writePrivateVarValues() {
680 for (const ProgramElement* p : fProgram.elements()) {
681 if (p->is<GlobalVarDeclaration>()) {
682 const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
683 const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
684 if (is_private(decl.var()) && decl.value()) {
685 this->writef("%s = ", String(decl.var().name()).c_str());
686 fCPPMode = true;
687 this->writeExpression(*decl.value(), Precedence::kAssignment);
688 fCPPMode = false;
689 this->write(";\n");
690 }
691 }
692 }
693 }
694
is_accessible(const Variable & var)695 static bool is_accessible(const Variable& var) {
696 const Type& type = var.type();
697 return !type.isFragmentProcessor() &&
698 Type::TypeKind::kSampler != type.typeKind() &&
699 Type::TypeKind::kOther != type.typeKind();
700 }
701
newExtraEmitCodeBlock()702 void CPPCodeGenerator::newExtraEmitCodeBlock() {
703 // This should only be called when emitting SKSL for emitCode(), which can be detected if the
704 // cpp buffer is not null, and the cpp buffer is not the current output.
705 SkASSERT(fCPPBuffer && fCPPBuffer != fOut);
706
707 // Start a new block as an empty string
708 fExtraEmitCodeBlocks.push_back("");
709 // Mark its location in the output buffer, uses ${\d} for the token since ${} will not occur in
710 // valid sksl and makes detection trivial.
711 this->writef("${%zu}", fExtraEmitCodeBlocks.size() - 1);
712 }
713
addExtraEmitCodeLine(const String & toAppend)714 void CPPCodeGenerator::addExtraEmitCodeLine(const String& toAppend) {
715 SkASSERT(fExtraEmitCodeBlocks.size() > 0);
716 String& currentBlock = fExtraEmitCodeBlocks[fExtraEmitCodeBlocks.size() - 1];
717 // Automatically add indentation and newline
718 currentBlock += " " + toAppend + "\n";
719 }
720
flushEmittedCode()721 void CPPCodeGenerator::flushEmittedCode() {
722 if (fCPPBuffer == nullptr) {
723 // Not actually within writeEmitCode() so nothing to flush
724 return;
725 }
726
727 StringStream* skslBuffer = static_cast<StringStream*>(fOut);
728
729 String sksl = skslBuffer->str();
730 // Empty the accumulation buffer since its current contents are consumed.
731 skslBuffer->reset();
732
733 // Switch to the cpp buffer
734 fOut = fCPPBuffer;
735
736 // Iterate through the sksl, keeping track of where the last statement ended (e.g. the latest
737 // encountered ';', '{', or '}'). If an extra emit code block token is encountered then the
738 // code from 0 to last statement end is sent to writeCodeAppend, the extra code block is
739 // appended to the cpp buffer, and then the sksl string is trimmed to start where the last
740 // statement left off (minus the encountered token).
741 size_t i = 0;
742 int flushPoint = -1;
743 int tokenStart = -1;
744 while (i < sksl.size()) {
745 if (tokenStart >= 0) {
746 // Looking for the end of the token
747 if (sksl[i] == '}') {
748 // Must append the sksl from 0 to flushPoint (inclusive) then the extra code
749 // accumulated in the block with index parsed from chars [tokenStart+2, i-1]
750 String toFlush = String(sksl.c_str(), flushPoint + 1);
751 // writeCodeAppend automatically removes the format args that it consumed, so
752 // fFormatArgs will be in a valid state for any future sksl
753 this->writeCodeAppend(toFlush);
754
755 SKSL_INT codeBlock;
756 SkAssertResult(
757 stoi(StringFragment(sksl.c_str() + tokenStart + 2, i - tokenStart - 2),
758 &codeBlock));
759 SkASSERT((size_t)codeBlock < fExtraEmitCodeBlocks.size());
760 if (fExtraEmitCodeBlocks[codeBlock].size() > 0) {
761 this->write(fExtraEmitCodeBlocks[codeBlock].c_str());
762 }
763
764 // Now reset the sksl buffer to start after the flush point, but remove the token.
765 String compacted = String(sksl.c_str() + flushPoint + 1,
766 tokenStart - flushPoint - 1);
767 if (i < sksl.size() - 1) {
768 compacted += String(sksl.c_str() + i + 1, sksl.size() - i - 1);
769 }
770 sksl = compacted;
771
772 // And reset iteration
773 i = -1;
774 flushPoint = -1;
775 tokenStart = -1;
776 }
777 } else {
778 // Looking for the start of extra emit block tokens, and tracking when statements end
779 if (sksl[i] == ';' || sksl[i] == '{' || sksl[i] == '}') {
780 flushPoint = i;
781 } else if (i < sksl.size() - 1 && sksl[i] == '$' && sksl[i + 1] == '{') {
782 // found an extra emit code block token
783 tokenStart = i++;
784 }
785 }
786 i++;
787 }
788
789 // Once we've gone through the sksl string to this point, there are no remaining extra emit
790 // code blocks to interleave, so append the remainder as usual.
791 this->writeCodeAppend(sksl);
792
793 // After appending, switch back to the emptied sksl buffer and reset the extra code blocks
794 fOut = skslBuffer;
795 fExtraEmitCodeBlocks.clear();
796 }
797
assembleCodeAndFormatArgPrintf(const String & code)798 String CPPCodeGenerator::assembleCodeAndFormatArgPrintf(const String& code) {
799 // Count % format specifiers.
800 size_t argCount = 0;
801 for (size_t index = 0; index < code.size(); ++index) {
802 if ('%' == code[index]) {
803 if (index == code.size() - 1) {
804 SkDEBUGFAIL("found a dangling format specifier at the end of a string");
805 break;
806 }
807 if (code[index + 1] == '%') {
808 // %% indicates a literal % sign, not a format argument. Skip over the next
809 // character to avoid mistakenly counting that one as an argument.
810 ++index;
811 } else {
812 // Count the format argument that we found.
813 ++argCount;
814 }
815 }
816 }
817
818 // Assemble the printf arguments.
819 String result = String::printf("R\"SkSL(%s)SkSL\"\n", code.c_str());
820 for (size_t i = 0; i < argCount; ++i) {
821 result += ", ";
822 result += fFormatArgs[i].c_str();
823 }
824
825 // argCount is equal to the number of fFormatArgs that were consumed, so they should be
826 // removed from the list.
827 if (argCount > 0) {
828 fFormatArgs.erase(fFormatArgs.begin(), fFormatArgs.begin() + argCount);
829 }
830
831 return result;
832 }
833
writeCodeAppend(const String & code)834 void CPPCodeGenerator::writeCodeAppend(const String& code) {
835 if (!code.empty()) {
836 this->write(" fragBuilder->codeAppendf(\n");
837 this->write(assembleCodeAndFormatArgPrintf(code));
838 this->write(");\n");
839 }
840 }
841
convertSKSLExpressionToCPP(const Expression & e,const String & cppVar)842 String CPPCodeGenerator::convertSKSLExpressionToCPP(const Expression& e,
843 const String& cppVar) {
844 // To do this conversion, we temporarily switch the sksl output stream
845 // to an empty stringstream and reset the format args to empty.
846 OutputStream* oldSKSL = fOut;
847 StringStream exprBuffer;
848 fOut = &exprBuffer;
849
850 std::vector<String> oldArgs(fFormatArgs);
851 fFormatArgs.clear();
852
853 // Convert the argument expression into a format string and args
854 this->writeExpression(e, Precedence::kTopLevel);
855 std::vector<String> newArgs(fFormatArgs);
856 String expr = exprBuffer.str();
857
858 // After generating, restore the original output stream and format args
859 fFormatArgs = oldArgs;
860 fOut = oldSKSL;
861
862 // The sksl written to exprBuffer is not processed by flushEmittedCode(), so any extra emit code
863 // block tokens won't get handled. So we need to strip them from the expression and stick them
864 // to the end of the original sksl stream.
865 String exprFormat = "";
866 int tokenStart = -1;
867 for (size_t i = 0; i < expr.size(); i++) {
868 if (tokenStart >= 0) {
869 if (expr[i] == '}') {
870 // End of the token, so append the token to fOut
871 fOut->write(expr.c_str() + tokenStart, i - tokenStart + 1);
872 tokenStart = -1;
873 }
874 } else {
875 if (i < expr.size() - 1 && expr[i] == '$' && expr[i + 1] == '{') {
876 tokenStart = i++;
877 } else {
878 exprFormat += expr[i];
879 }
880 }
881 }
882
883 // Now build the final C++ code snippet from the format string and args
884 String cppExpr;
885 if (newArgs.empty()) {
886 // This was a static expression, so we can simplify the input
887 // color declaration in the emitted code to just a static string
888 cppExpr = "SkString " + cppVar + "(\"" + exprFormat + "\");";
889 } else if (newArgs.size() == 1 && exprFormat == "%s") {
890 // If the format expression is simply "%s", we can avoid an expensive call to printf.
891 // This happens fairly often in codegen so it is worth simplifying.
892 cppExpr = "SkString " + cppVar + "(" + newArgs[0] + ");";
893 } else {
894 // String formatting must occur dynamically, so have the C++ declaration
895 // use SkStringPrintf with the format args that were accumulated
896 // when the expression was written.
897 cppExpr = "SkString " + cppVar + " = SkStringPrintf(\"" + exprFormat + "\"";
898 for (size_t i = 0; i < newArgs.size(); i++) {
899 cppExpr += ", " + newArgs[i];
900 }
901 cppExpr += ");";
902 }
903 return cppExpr;
904 }
905
writeEmitCode(std::vector<const Variable * > & uniforms)906 bool CPPCodeGenerator::writeEmitCode(std::vector<const Variable*>& uniforms) {
907 this->write(" void emitCode(EmitArgs& args) override {\n"
908 " GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;\n");
909 this->writef(" const %s& _outer = args.fFp.cast<%s>();\n"
910 " (void) _outer;\n",
911 fFullName.c_str(), fFullName.c_str());
912 for (const ProgramElement* p : fProgram.elements()) {
913 if (p->is<GlobalVarDeclaration>()) {
914 const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
915 const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
916 String nameString(decl.var().name());
917 const char* name = nameString.c_str();
918 if (SectionAndParameterHelper::IsParameter(decl.var()) &&
919 is_accessible(decl.var())) {
920 this->writef(" auto %s = _outer.%s;\n"
921 " (void) %s;\n",
922 name, name, name);
923 }
924 }
925 }
926 this->writePrivateVarValues();
927 for (const auto u : uniforms) {
928 this->addUniform(*u);
929 }
930 this->writeSection(kEmitCodeSection);
931
932 // Save original buffer as the CPP buffer for flushEmittedCode()
933 fCPPBuffer = fOut;
934 StringStream skslBuffer;
935 fOut = &skslBuffer;
936
937 this->newExtraEmitCodeBlock();
938
939 // Generate mangled names and argument lists for helper functions.
940 std::unordered_set<const FunctionDeclaration*> definedHelpers;
941 for (const ProgramElement* p : fProgram.elements()) {
942 if (p->is<FunctionDefinition>()) {
943 const FunctionDeclaration* decl = &p->as<FunctionDefinition>().declaration();
944 definedHelpers.insert(decl);
945 this->prepareHelperFunction(*decl);
946 }
947 }
948
949 // Emit prototypes for defined helper functions that originally had prototypes in the FP file.
950 // (If a function was prototyped but never defined, we skip it, since it wasn't prepared above.)
951 for (const ProgramElement* p : fProgram.elements()) {
952 if (p->is<FunctionPrototype>()) {
953 const FunctionDeclaration* decl = &p->as<FunctionPrototype>().declaration();
954 if (definedHelpers.find(decl) != definedHelpers.end()) {
955 this->prototypeHelperFunction(*decl);
956 }
957 }
958 }
959
960 bool result = INHERITED::generateCode();
961 this->flushEmittedCode();
962
963 // Then restore the original CPP buffer and close the function
964 fOut = fCPPBuffer;
965 fCPPBuffer = nullptr;
966 this->write(" }\n");
967 return result;
968 }
969
writeSetData(std::vector<const Variable * > & uniforms)970 void CPPCodeGenerator::writeSetData(std::vector<const Variable*>& uniforms) {
971 const char* fullName = fFullName.c_str();
972 const Section* section = fSectionAndParameterHelper.getSection(kSetDataSection);
973 const char* pdman = section ? section->argument().c_str() : "pdman";
974 this->writef(" void onSetData(const GrGLSLProgramDataManager& %s, "
975 "const GrFragmentProcessor& _proc) override {\n",
976 pdman);
977 bool wroteProcessor = false;
978 for (const Variable* u : uniforms) {
979 if (is_uniform_in(*u)) {
980 if (!wroteProcessor) {
981 this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName, fullName);
982 wroteProcessor = true;
983 this->writef(" {\n");
984 }
985
986 const UniformCTypeMapper* mapper = UniformCTypeMapper::Get(fContext, *u);
987 SkASSERT(mapper);
988
989 String nameString(u->name());
990 const char* name = nameString.c_str();
991
992 // Switches for setData behavior in the generated code
993 bool conditionalUniform = u->modifiers().fLayout.fWhen != "";
994 bool isTracked = u->modifiers().fLayout.fFlags & Layout::kTracked_Flag;
995 bool needsValueDeclaration = isTracked || !mapper->canInlineUniformValue();
996
997 String uniformName = HCodeGenerator::FieldName(name) + "Var";
998
999 String indent = " "; // 8 by default, 12 when nested for conditional uniforms
1000 if (conditionalUniform) {
1001 // Add a pre-check to make sure the uniform was emitted
1002 // before trying to send any data to the GPU
1003 this->writef(" if (%s.isValid()) {\n", uniformName.c_str());
1004 indent += " ";
1005 }
1006
1007 String valueVar = "";
1008 if (needsValueDeclaration) {
1009 valueVar.appendf("%sValue", name);
1010 // Use AccessType since that will match the return type of _outer's public API.
1011 String valueType = HCodeGenerator::AccessType(fContext, u->type(),
1012 u->modifiers().fLayout);
1013 this->writef("%s%s %s = _outer.%s;\n",
1014 indent.c_str(), valueType.c_str(), valueVar.c_str(), name);
1015 } else {
1016 // Not tracked and the mapper only needs to use the value once
1017 // so send it a safe expression instead of the variable name
1018 valueVar.appendf("(_outer.%s)", name);
1019 }
1020
1021 if (isTracked) {
1022 String prevVar = HCodeGenerator::FieldName(name) + "Prev";
1023 this->writef("%sif (%s) {\n"
1024 "%s %s;\n"
1025 "%s %s;\n"
1026 "%s}\n", indent.c_str(),
1027 mapper->dirtyExpression(valueVar, prevVar).c_str(), indent.c_str(),
1028 mapper->saveState(valueVar, prevVar).c_str(), indent.c_str(),
1029 mapper->setUniform(pdman, uniformName, valueVar).c_str(), indent.c_str());
1030 } else {
1031 this->writef("%s%s;\n", indent.c_str(),
1032 mapper->setUniform(pdman, uniformName, valueVar).c_str());
1033 }
1034
1035 if (conditionalUniform) {
1036 // Close the earlier precheck block
1037 this->writef(" }\n");
1038 }
1039 }
1040 }
1041 if (wroteProcessor) {
1042 this->writef(" }\n");
1043 }
1044 if (section) {
1045 int samplerIndex = 0;
1046 for (const ProgramElement* p : fProgram.elements()) {
1047 if (p->is<GlobalVarDeclaration>()) {
1048 const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
1049 const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
1050 const Variable& variable = decl.var();
1051 String nameString(variable.name());
1052 const char* name = nameString.c_str();
1053 if (variable.type().typeKind() == Type::TypeKind::kSampler) {
1054 this->writef(" const GrSurfaceProxyView& %sView = "
1055 "_outer.textureSampler(%d).view();\n",
1056 name, samplerIndex);
1057 this->writef(" GrTexture& %s = *%sView.proxy()->peekTexture();\n",
1058 name, name);
1059 this->writef(" (void) %s;\n", name);
1060 ++samplerIndex;
1061 } else if (needs_uniform_var(variable)) {
1062 this->writef(" UniformHandle& %s = %sVar;\n"
1063 " (void) %s;\n",
1064 name, HCodeGenerator::FieldName(name).c_str(), name);
1065 } else if (SectionAndParameterHelper::IsParameter(variable) &&
1066 !variable.type().isFragmentProcessor()) {
1067 if (!wroteProcessor) {
1068 this->writef(" const %s& _outer = _proc.cast<%s>();\n", fullName,
1069 fullName);
1070 wroteProcessor = true;
1071 }
1072
1073 if (!variable.type().isFragmentProcessor()) {
1074 this->writef(" auto %s = _outer.%s;\n"
1075 " (void) %s;\n",
1076 name, name, name);
1077 }
1078 }
1079 }
1080 }
1081 this->writeSection(kSetDataSection);
1082 }
1083 this->write(" }\n");
1084 }
1085
writeOnTextureSampler()1086 void CPPCodeGenerator::writeOnTextureSampler() {
1087 bool foundSampler = false;
1088 for (const auto& param : fSectionAndParameterHelper.getParameters()) {
1089 if (param->type().typeKind() == Type::TypeKind::kSampler) {
1090 if (!foundSampler) {
1091 this->writef(
1092 "const GrFragmentProcessor::TextureSampler& %s::onTextureSampler(int "
1093 "index) const {\n",
1094 fFullName.c_str());
1095 this->writef(" return IthTextureSampler(index, %s",
1096 HCodeGenerator::FieldName(String(param->name()).c_str()).c_str());
1097 foundSampler = true;
1098 } else {
1099 this->writef(", %s",
1100 HCodeGenerator::FieldName(String(param->name()).c_str()).c_str());
1101 }
1102 }
1103 }
1104 if (foundSampler) {
1105 this->write(");\n}\n");
1106 }
1107 }
1108
writeClone()1109 void CPPCodeGenerator::writeClone() {
1110 if (!this->writeSection(kCloneSection)) {
1111 if (fSectionAndParameterHelper.getSection(kFieldsSection)) {
1112 fErrors.error(/*offset=*/0, "fragment processors with custom @fields must also have a "
1113 "custom @clone");
1114 }
1115 this->writef("%s::%s(const %s& src)\n"
1116 ": INHERITED(k%s_ClassID, src.optimizationFlags())", fFullName.c_str(),
1117 fFullName.c_str(), fFullName.c_str(), fFullName.c_str());
1118 for (const Variable* param : fSectionAndParameterHelper.getParameters()) {
1119 String fieldName = HCodeGenerator::FieldName(String(param->name()).c_str());
1120 if (!param->type().isFragmentProcessor()) {
1121 this->writef("\n, %s(src.%s)",
1122 fieldName.c_str(),
1123 fieldName.c_str());
1124 }
1125 }
1126 this->writef(" {\n");
1127 this->writef(" this->cloneAndRegisterAllChildProcessors(src);\n");
1128 int samplerCount = 0;
1129 for (const auto& param : fSectionAndParameterHelper.getParameters()) {
1130 if (param->type().typeKind() == Type::TypeKind::kSampler) {
1131 ++samplerCount;
1132 }
1133 }
1134 if (samplerCount) {
1135 this->writef(" this->setTextureSamplerCnt(%d);", samplerCount);
1136 }
1137 if (fAccessSampleCoordsDirectly) {
1138 this->writef(" this->setUsesSampleCoordsDirectly();\n");
1139 }
1140 this->write("}\n");
1141 this->writef("std::unique_ptr<GrFragmentProcessor> %s::clone() const {\n",
1142 fFullName.c_str());
1143 this->writef(" return std::make_unique<%s>(*this);\n",
1144 fFullName.c_str());
1145 this->write("}\n");
1146 }
1147 }
1148
writeDumpInfo()1149 void CPPCodeGenerator::writeDumpInfo() {
1150 this->writef("#if GR_TEST_UTILS\n"
1151 "SkString %s::onDumpInfo() const {\n", fFullName.c_str());
1152
1153 if (!this->writeSection(kDumpInfoSection)) {
1154 if (fSectionAndParameterHelper.getSection(kFieldsSection)) {
1155 fErrors.error(/*offset=*/0, "fragment processors with custom @fields must also have a "
1156 "custom @dumpInfo");
1157 }
1158
1159 String formatString;
1160 std::vector<String> argumentList;
1161
1162 for (const Variable* param : fSectionAndParameterHelper.getParameters()) {
1163 // dumpInfo() doesn't need to log child FPs.
1164 if (param->type().isFragmentProcessor()) {
1165 continue;
1166 }
1167
1168 // Add this field onto the format string and argument list.
1169 String fieldName = HCodeGenerator::FieldName(String(param->name()).c_str());
1170 String runtimeValue = this->formatRuntimeValue(param->type(),
1171 param->modifiers().fLayout,
1172 param->name(),
1173 &argumentList);
1174 formatString.appendf("%s%s=%s",
1175 formatString.empty() ? "" : ", ",
1176 fieldName.c_str(),
1177 runtimeValue.c_str());
1178 }
1179
1180 if (!formatString.empty()) {
1181 // Emit the finished format string and associated arguments.
1182 this->writef(" return SkStringPrintf(\"(%s)\"", formatString.c_str());
1183
1184 for (const String& argument : argumentList) {
1185 this->writef(", %s", argument.c_str());
1186 }
1187
1188 this->write(");");
1189 } else {
1190 // No fields to dump at all; just return an empty string.
1191 this->write(" return SkString();");
1192 }
1193 }
1194
1195 this->write("\n"
1196 "}\n"
1197 "#endif\n");
1198 }
1199
writeTest()1200 void CPPCodeGenerator::writeTest() {
1201 const Section* test = fSectionAndParameterHelper.getSection(kTestCodeSection);
1202 if (test) {
1203 this->writef(
1204 "GR_DEFINE_FRAGMENT_PROCESSOR_TEST(%s);\n"
1205 "#if GR_TEST_UTILS\n"
1206 "std::unique_ptr<GrFragmentProcessor> %s::TestCreate(GrProcessorTestData* %s) {\n",
1207 fFullName.c_str(),
1208 fFullName.c_str(),
1209 test->argument().c_str());
1210 this->writeSection(kTestCodeSection);
1211 this->write("}\n"
1212 "#endif\n");
1213 }
1214 }
1215
bits_needed(uint32_t v)1216 static int bits_needed(uint32_t v) {
1217 int bits = 1;
1218 while (v >= (1u << bits)) {
1219 bits++;
1220 }
1221 return bits;
1222 }
1223
writeGetKey()1224 void CPPCodeGenerator::writeGetKey() {
1225 auto bitsForEnum = [&](const Type& type) {
1226 for (const ProgramElement* e : fProgram.elements()) {
1227 if (!e->is<Enum>() || type.name() != e->as<Enum>().typeName()) {
1228 continue;
1229 }
1230 SKSL_INT minVal = 0, maxVal = 0;
1231 auto gatherEnumRange = [&](StringFragment, SKSL_INT value) {
1232 minVal = std::min(minVal, value);
1233 maxVal = std::max(maxVal, value);
1234 };
1235 e->as<Enum>().foreach(gatherEnumRange);
1236 if (minVal < 0) {
1237 // Found a negative value in the enum, just use 32 bits
1238 return 32;
1239 }
1240 SkASSERT(SkTFitsIn<uint32_t>(maxVal));
1241 return bits_needed(maxVal);
1242 }
1243 SK_ABORT("Didn't find declaring element for enum type!");
1244 return 32;
1245 };
1246
1247 this->writef("void %s::onGetGLSLProcessorKey(const GrShaderCaps& caps, "
1248 "GrProcessorKeyBuilder* b) const {\n",
1249 fFullName.c_str());
1250 for (const ProgramElement* p : fProgram.elements()) {
1251 if (p->is<GlobalVarDeclaration>()) {
1252 const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
1253 const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
1254 const Variable& var = decl.var();
1255 const Type& varType = var.type();
1256 String nameString(var.name());
1257 const char* name = nameString.c_str();
1258 if (var.modifiers().fLayout.fFlags & Layout::kKey_Flag) {
1259 if (var.modifiers().fFlags & Modifiers::kUniform_Flag) {
1260 fErrors.error(var.fOffset, "layout(key) may not be specified on uniforms");
1261 }
1262 if (is_private(var)) {
1263 this->writef(
1264 "%s %s =",
1265 HCodeGenerator::FieldType(fContext, varType, var.modifiers().fLayout)
1266 .c_str(),
1267 String(var.name()).c_str());
1268 if (decl.value()) {
1269 fCPPMode = true;
1270 this->writeExpression(*decl.value(), Precedence::kAssignment);
1271 fCPPMode = false;
1272 } else {
1273 this->writef("%s", default_value(var).c_str());
1274 }
1275 this->write(";\n");
1276 }
1277 if (var.modifiers().fLayout.fWhen.fLength) {
1278 this->writef("if (%s) {", String(var.modifiers().fLayout.fWhen).c_str());
1279 }
1280 if (varType == *fContext.fTypes.fHalf4) {
1281 this->writef(" uint16_t red = SkFloatToHalf(%s.fR);\n",
1282 HCodeGenerator::FieldName(name).c_str());
1283 this->writef(" uint16_t green = SkFloatToHalf(%s.fG);\n",
1284 HCodeGenerator::FieldName(name).c_str());
1285 this->writef(" uint16_t blue = SkFloatToHalf(%s.fB);\n",
1286 HCodeGenerator::FieldName(name).c_str());
1287 this->writef(" uint16_t alpha = SkFloatToHalf(%s.fA);\n",
1288 HCodeGenerator::FieldName(name).c_str());
1289 this->writef(" b->add32(((uint32_t)red << 16) | green, \"%s.rg\");\n", name);
1290 this->writef(" b->add32(((uint32_t)blue << 16) | alpha, \"%s.ba\");\n",
1291 name);
1292 } else if (varType == *fContext.fTypes.fHalf ||
1293 varType == *fContext.fTypes.fFloat) {
1294 this->writef(" b->add32(sk_bit_cast<uint32_t>(%s), \"%s\");\n",
1295 HCodeGenerator::FieldName(name).c_str(), name);
1296 } else if (varType.isBoolean()) {
1297 this->writef(" b->addBool(%s, \"%s\");\n",
1298 HCodeGenerator::FieldName(name).c_str(), name);
1299 } else if (varType.isEnum()) {
1300 this->writef(" b->addBits(%d, (uint32_t) %s, \"%s\");\n",
1301 bitsForEnum(varType), HCodeGenerator::FieldName(name).c_str(),
1302 name);
1303 } else if (varType.isInteger()) {
1304 this->writef(" b->add32((uint32_t) %s, \"%s\");\n",
1305 HCodeGenerator::FieldName(name).c_str(), name);
1306 } else {
1307 SK_ABORT("NOT YET IMPLEMENTED: automatic key handling for %s\n",
1308 varType.displayName().c_str());
1309 }
1310 if (var.modifiers().fLayout.fWhen.fLength) {
1311 this->write("}");
1312 }
1313 }
1314 }
1315 }
1316 this->write("}\n");
1317 }
1318
generateCode()1319 bool CPPCodeGenerator::generateCode() {
1320 std::vector<const Variable*> uniforms;
1321 for (const ProgramElement* p : fProgram.elements()) {
1322 if (p->is<GlobalVarDeclaration>()) {
1323 const GlobalVarDeclaration& global = p->as<GlobalVarDeclaration>();
1324 const VarDeclaration& decl = global.declaration()->as<VarDeclaration>();
1325 if ((decl.var().modifiers().fFlags & Modifiers::kUniform_Flag) &&
1326 decl.var().type().typeKind() != Type::TypeKind::kSampler) {
1327 uniforms.push_back(&decl.var());
1328 }
1329
1330 if (is_uniform_in(decl.var())) {
1331 // Validate the "uniform in" declarations to make sure they are fully supported,
1332 // instead of generating surprising C++
1333 const UniformCTypeMapper* mapper =
1334 UniformCTypeMapper::Get(fContext, decl.var());
1335 if (mapper == nullptr) {
1336 fErrors.error(decl.fOffset, String(decl.var().name())
1337 + "'s type is not supported for use as a 'uniform in'");
1338 return false;
1339 }
1340 } else {
1341 // If it's not a uniform_in, it's an error to be tracked
1342 if (decl.var().modifiers().fLayout.fFlags & Layout::kTracked_Flag) {
1343 fErrors.error(decl.fOffset, "Non-'in uniforms' cannot be tracked");
1344 return false;
1345 }
1346 }
1347 }
1348 }
1349 const char* baseName = fName.c_str();
1350 const char* fullName = fFullName.c_str();
1351 this->writef("%s\n", HCodeGenerator::GetHeader(fProgram, fErrors).c_str());
1352 this->writef(kFragmentProcessorHeader, fullName);
1353 this->writef("#include \"%s.h\"\n\n", fullName);
1354 this->writeSection(kCppSection);
1355 this->writef("#include \"src/core/SkUtils.h\"\n"
1356 "#include \"src/gpu/GrTexture.h\"\n"
1357 "#include \"src/gpu/glsl/GrGLSLFragmentProcessor.h\"\n"
1358 "#include \"src/gpu/glsl/GrGLSLFragmentShaderBuilder.h\"\n"
1359 "#include \"src/gpu/glsl/GrGLSLProgramBuilder.h\"\n"
1360 "#include \"src/sksl/SkSLCPP.h\"\n"
1361 "#include \"src/sksl/SkSLUtil.h\"\n"
1362 "class GrGLSL%s : public GrGLSLFragmentProcessor {\n"
1363 "public:\n"
1364 " GrGLSL%s() {}\n",
1365 baseName, baseName);
1366 bool result = this->writeEmitCode(uniforms);
1367 this->write("private:\n");
1368 this->writeSetData(uniforms);
1369 this->writePrivateVars();
1370 for (const auto& u : uniforms) {
1371 if (needs_uniform_var(*u) && !(u->modifiers().fFlags & Modifiers::kIn_Flag)) {
1372 this->writef(" UniformHandle %sVar;\n",
1373 HCodeGenerator::FieldName(String(u->name()).c_str()).c_str());
1374 }
1375 }
1376 for (const auto& param : fSectionAndParameterHelper.getParameters()) {
1377 if (needs_uniform_var(*param)) {
1378 this->writef(" UniformHandle %sVar;\n",
1379 HCodeGenerator::FieldName(String(param->name()).c_str()).c_str());
1380 }
1381 }
1382 this->writef("};\n"
1383 "std::unique_ptr<GrGLSLFragmentProcessor> %s::onMakeProgramImpl() const {\n"
1384 " return std::make_unique<GrGLSL%s>();\n"
1385 "}\n",
1386 fullName, baseName);
1387 this->writeGetKey();
1388 this->writef("bool %s::onIsEqual(const GrFragmentProcessor& other) const {\n"
1389 " const %s& that = other.cast<%s>();\n"
1390 " (void) that;\n",
1391 fullName, fullName, fullName);
1392 for (const auto& param : fSectionAndParameterHelper.getParameters()) {
1393 if (param->type().isFragmentProcessor()) {
1394 continue;
1395 }
1396 String nameString(param->name());
1397 const char* name = nameString.c_str();
1398 this->writef(" if (%s != that.%s) return false;\n",
1399 HCodeGenerator::FieldName(name).c_str(),
1400 HCodeGenerator::FieldName(name).c_str());
1401 }
1402 this->write(" return true;\n"
1403 "}\n");
1404 this->writeClone();
1405 this->writeDumpInfo();
1406 this->writeOnTextureSampler();
1407 this->writeTest();
1408 this->writeSection(kCppEndSection);
1409
1410 result &= 0 == fErrors.errorCount();
1411 return result;
1412 }
1413
1414 } // namespace SkSL
1415
1416 #endif // defined(SKSL_STANDALONE) || GR_TEST_UTILS
1417