1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "tests/Test.h"
9
10 #include "include/gpu/GrDirectContext.h"
11 #include "src/gpu/GrClip.h"
12 #include "src/gpu/GrDirectContextPriv.h"
13 #include "src/gpu/GrGpuResource.h"
14 #include "src/gpu/GrImageInfo.h"
15 #include "src/gpu/GrMemoryPool.h"
16 #include "src/gpu/GrProxyProvider.h"
17 #include "src/gpu/GrResourceProvider.h"
18 #include "src/gpu/GrSurfaceDrawContext.h"
19 #include "src/gpu/SkGr.h"
20 #include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
21 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
22 #include "src/gpu/ops/GrFillRectOp.h"
23 #include "src/gpu/ops/GrMeshDrawOp.h"
24 #include "tests/TestUtils.h"
25
26 #include <atomic>
27 #include <random>
28
29 namespace {
30 class TestOp : public GrMeshDrawOp {
31 public:
32 DEFINE_OP_CLASS_ID
Make(GrRecordingContext * rContext,std::unique_ptr<GrFragmentProcessor> fp)33 static GrOp::Owner Make(GrRecordingContext* rContext,
34 std::unique_ptr<GrFragmentProcessor> fp) {
35 return GrOp::Make<TestOp>(rContext, std::move(fp));
36 }
37
name() const38 const char* name() const override { return "TestOp"; }
39
visitProxies(const VisitProxyFunc & func) const40 void visitProxies(const VisitProxyFunc& func) const override {
41 fProcessors.visitProxies(func);
42 }
43
fixedFunctionFlags() const44 FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
45
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)46 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
47 GrClampType clampType) override {
48 static constexpr GrProcessorAnalysisColor kUnknownColor;
49 SkPMColor4f overrideColor;
50 return fProcessors.finalize(
51 kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
52 &GrUserStencilSettings::kUnused, caps, clampType, &overrideColor);
53 }
54
55 private:
56 friend class ::GrOp; // for ctor
57
TestOp(std::unique_ptr<GrFragmentProcessor> fp)58 TestOp(std::unique_ptr<GrFragmentProcessor> fp)
59 : INHERITED(ClassID()), fProcessors(std::move(fp)) {
60 this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
61 }
62
programInfo()63 GrProgramInfo* programInfo() override { return nullptr; }
onCreateProgramInfo(const GrCaps *,SkArenaAlloc *,const GrSurfaceProxyView & writeView,GrAppliedClip &&,const GrXferProcessor::DstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)64 void onCreateProgramInfo(const GrCaps*,
65 SkArenaAlloc*,
66 const GrSurfaceProxyView& writeView,
67 GrAppliedClip&&,
68 const GrXferProcessor::DstProxyView&,
69 GrXferBarrierFlags renderPassXferBarriers,
70 GrLoadOp colorLoadOp) override {}
onPrePrepareDraws(GrRecordingContext *,const GrSurfaceProxyView & writeView,GrAppliedClip *,const GrXferProcessor::DstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)71 void onPrePrepareDraws(GrRecordingContext*,
72 const GrSurfaceProxyView& writeView,
73 GrAppliedClip*,
74 const GrXferProcessor::DstProxyView&,
75 GrXferBarrierFlags renderPassXferBarriers,
76 GrLoadOp colorLoadOp) override {}
onPrepareDraws(Target * target)77 void onPrepareDraws(Target* target) override { return; }
onExecute(GrOpFlushState *,const SkRect &)78 void onExecute(GrOpFlushState*, const SkRect&) override { return; }
79
80 GrProcessorSet fProcessors;
81
82 using INHERITED = GrMeshDrawOp;
83 };
84
85 /**
86 * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
87 * of resources owned by child FPs.
88 */
89 class TestFP : public GrFragmentProcessor {
90 public:
Make(std::unique_ptr<GrFragmentProcessor> child)91 static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
92 return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
93 }
Make(const SkTArray<GrSurfaceProxyView> & views)94 static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) {
95 return std::unique_ptr<GrFragmentProcessor>(new TestFP(views));
96 }
97
name() const98 const char* name() const override { return "test"; }
99
onGetGLSLProcessorKey(const GrShaderCaps &,GrProcessorKeyBuilder * b) const100 void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
101 static std::atomic<int32_t> nextKey{0};
102 b->add32(nextKey++);
103 }
104
clone() const105 std::unique_ptr<GrFragmentProcessor> clone() const override {
106 return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
107 }
108
109 private:
TestFP(const SkTArray<GrSurfaceProxyView> & views)110 TestFP(const SkTArray<GrSurfaceProxyView>& views)
111 : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
112 for (const GrSurfaceProxyView& view : views) {
113 this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType));
114 }
115 }
116
TestFP(std::unique_ptr<GrFragmentProcessor> child)117 TestFP(std::unique_ptr<GrFragmentProcessor> child)
118 : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
119 this->registerChild(std::move(child));
120 }
121
TestFP(const TestFP & that)122 explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) {
123 this->cloneAndRegisterAllChildProcessors(that);
124 }
125
onMakeProgramImpl() const126 std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override {
127 class TestGLSLFP : public GrGLSLFragmentProcessor {
128 public:
129 TestGLSLFP() {}
130 void emitCode(EmitArgs& args) override {
131 args.fFragBuilder->codeAppendf("return half4(1);");
132 }
133
134 private:
135 };
136 return std::make_unique<TestGLSLFP>();
137 }
138
onIsEqual(const GrFragmentProcessor &) const139 bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
140
141 using INHERITED = GrFragmentProcessor;
142 };
143 } // namespace
144
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest,reporter,ctxInfo)145 DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
146 auto context = ctxInfo.directContext();
147 GrProxyProvider* proxyProvider = context->priv().proxyProvider();
148
149 static constexpr SkISize kDims = {10, 10};
150
151 const GrBackendFormat format =
152 context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
153 GrRenderable::kNo);
154 GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
155
156 for (bool makeClone : {false, true}) {
157 for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
158 auto surfaceDrawContext = GrSurfaceDrawContext::Make(
159 context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1},
160 SkSurfaceProps());
161 {
162 sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(
163 format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact,
164 SkBudgeted::kYes, GrProtected::kNo);
165
166 {
167 SkTArray<GrSurfaceProxyView> views;
168 views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
169 auto fp = TestFP::Make(std::move(views));
170 for (int i = 0; i < parentCnt; ++i) {
171 fp = TestFP::Make(std::move(fp));
172 }
173 std::unique_ptr<GrFragmentProcessor> clone;
174 if (makeClone) {
175 clone = fp->clone();
176 }
177 GrOp::Owner op = TestOp::Make(context, std::move(fp));
178 surfaceDrawContext->addDrawOp(std::move(op));
179 if (clone) {
180 op = TestOp::Make(context, std::move(clone));
181 surfaceDrawContext->addDrawOp(std::move(op));
182 }
183 }
184
185 // If the fp is cloned the number of refs should increase by one (for the clone)
186 int expectedProxyRefs = makeClone ? 3 : 2;
187
188 CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
189
190 context->flushAndSubmit();
191
192 // just one from the 'proxy' sk_sp
193 CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
194 }
195 }
196 }
197 }
198
199 #include "tools/flags/CommandLineFlags.h"
200 static DEFINE_bool(randomProcessorTest, false,
201 "Use non-deterministic seed for random processor tests?");
202 static DEFINE_int(processorSeed, 0,
203 "Use specific seed for processor tests. Overridden by --randomProcessorTest.");
204
205 #if GR_TEST_UTILS
206
input_texel_color(int i,int j,SkScalar delta)207 static GrColor input_texel_color(int i, int j, SkScalar delta) {
208 // Delta must be less than 0.5 to prevent over/underflow issues with the input color
209 SkASSERT(delta <= 0.5);
210
211 SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
212 (uint8_t)(j & 0xFF),
213 (uint8_t)((i + j) & 0xFF),
214 (uint8_t)((2 * j - i) & 0xFF));
215 SkColor4f color4f = SkColor4f::FromColor(color);
216 // We only apply delta to the r,g, and b channels. This is because we're using this
217 // to test the canTweakAlphaForCoverage() optimization. A processor is allowed
218 // to use the input color's alpha in its calculation and report this optimization.
219 for (int i = 0; i < 3; i++) {
220 if (color4f[i] > 0.5) {
221 color4f[i] -= delta;
222 } else {
223 color4f[i] += delta;
224 }
225 }
226 return color4f.premul().toBytes_RGBA();
227 }
228
test_draw_op(GrRecordingContext * rContext,GrSurfaceDrawContext * rtc,std::unique_ptr<GrFragmentProcessor> fp)229 void test_draw_op(GrRecordingContext* rContext,
230 GrSurfaceDrawContext* rtc,
231 std::unique_ptr<GrFragmentProcessor> fp) {
232 GrPaint paint;
233 paint.setColorFragmentProcessor(std::move(fp));
234 paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
235
236 auto op = GrFillRectOp::MakeNonAARect(rContext, std::move(paint), SkMatrix::I(),
237 SkRect::MakeWH(rtc->width(), rtc->height()));
238 rtc->addDrawOp(std::move(op));
239 }
240
241 // The output buffer must be the same size as the render-target context.
render_fp(GrDirectContext * dContext,GrSurfaceDrawContext * rtc,std::unique_ptr<GrFragmentProcessor> fp,GrColor * outBuffer)242 void render_fp(GrDirectContext* dContext,
243 GrSurfaceDrawContext* rtc,
244 std::unique_ptr<GrFragmentProcessor> fp,
245 GrColor* outBuffer) {
246 test_draw_op(dContext, rtc, std::move(fp));
247 std::fill_n(outBuffer, rtc->width() * rtc->height(), 0);
248 auto ii = SkImageInfo::Make(rtc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType);
249 GrPixmap resultPM(ii, outBuffer, rtc->width()*sizeof(uint32_t));
250 rtc->readPixels(dContext, resultPM, {0, 0});
251 }
252
253 // This class is responsible for reproducibly generating a random fragment processor.
254 // An identical randomly-designed FP can be generated as many times as needed.
255 class TestFPGenerator {
256 public:
257 TestFPGenerator() = delete;
TestFPGenerator(GrDirectContext * context,GrResourceProvider * resourceProvider)258 TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider)
259 : fContext(context)
260 , fResourceProvider(resourceProvider)
261 , fInitialSeed(synthesizeInitialSeed())
262 , fRandomSeed(fInitialSeed) {}
263
initialSeed()264 uint32_t initialSeed() { return fInitialSeed; }
265
init()266 bool init() {
267 // Initializes the two test texture proxies that are available to the FP test factories.
268 SkRandom random{fRandomSeed};
269 static constexpr int kTestTextureSize = 256;
270
271 {
272 // Put premul data into the RGBA texture that the test FPs can optionally use.
273 GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
274 for (int y = 0; y < kTestTextureSize; ++y) {
275 for (int x = 0; x < kTestTextureSize; ++x) {
276 rgbaData[kTestTextureSize * y + x] = input_texel_color(
277 random.nextULessThan(256), random.nextULessThan(256), 0.0f);
278 }
279 }
280
281 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
282 kRGBA_8888_SkColorType, kPremul_SkAlphaType);
283 SkBitmap bitmap;
284 bitmap.installPixels(
285 ii, rgbaData, ii.minRowBytes(),
286 [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr);
287 bitmap.setImmutable();
288 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
289 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
290 SkDebugf("Unable to instantiate RGBA8888 test texture.");
291 return false;
292 }
293 fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888,
294 kPremul_SkAlphaType};
295 }
296
297 {
298 // Put random values into the alpha texture that the test FPs can optionally use.
299 uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
300 for (int y = 0; y < kTestTextureSize; ++y) {
301 for (int x = 0; x < kTestTextureSize; ++x) {
302 alphaData[kTestTextureSize * y + x] = random.nextULessThan(256);
303 }
304 }
305
306 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
307 kAlpha_8_SkColorType, kPremul_SkAlphaType);
308 SkBitmap bitmap;
309 bitmap.installPixels(
310 ii, alphaData, ii.minRowBytes(),
311 [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr);
312 bitmap.setImmutable();
313 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
314 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
315 SkDebugf("Unable to instantiate A8 test texture.");
316 return false;
317 }
318 fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8,
319 kPremul_SkAlphaType};
320 }
321
322 return true;
323 }
324
reroll()325 void reroll() {
326 // Feed our current random seed into SkRandom to generate a new seed.
327 SkRandom random{fRandomSeed};
328 fRandomSeed = random.nextU();
329 }
330
make(int type,int randomTreeDepth,std::unique_ptr<GrFragmentProcessor> inputFP)331 std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
332 std::unique_ptr<GrFragmentProcessor> inputFP) {
333 // This will generate the exact same randomized FP (of each requested type) each time
334 // it's called. Call `reroll` to get a different FP.
335 SkRandom random{fRandomSeed};
336 GrProcessorTestData testData{&random, fContext, randomTreeDepth,
337 SK_ARRAY_COUNT(fTestViews), fTestViews,
338 std::move(inputFP)};
339 return GrFragmentProcessorTestFactory::MakeIdx(type, &testData);
340 }
341
make(int type,int randomTreeDepth,GrSurfaceProxyView view,SkAlphaType alpha=kPremul_SkAlphaType)342 std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
343 GrSurfaceProxyView view,
344 SkAlphaType alpha = kPremul_SkAlphaType) {
345 return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha));
346 }
347
348 private:
synthesizeInitialSeed()349 static uint32_t synthesizeInitialSeed() {
350 if (FLAGS_randomProcessorTest) {
351 std::random_device rd;
352 return rd();
353 } else {
354 return FLAGS_processorSeed;
355 }
356 }
357
358 GrDirectContext* fContext; // owned by caller
359 GrResourceProvider* fResourceProvider; // owned by caller
360 const uint32_t fInitialSeed;
361 uint32_t fRandomSeed;
362 GrProcessorTestData::ViewInfo fTestViews[2];
363 };
364
365 // Creates an array of color values from input_texel_color(), to be used as an input texture.
make_input_pixels(int width,int height,SkScalar delta)366 std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) {
367 std::vector<GrColor> pixel(width * height);
368 for (int y = 0; y < width; ++y) {
369 for (int x = 0; x < height; ++x) {
370 pixel[width * y + x] = input_texel_color(x, y, delta);
371 }
372 }
373
374 return pixel;
375 }
376
377 // Creates a texture of premul colors used as the output of the fragment processor that precedes
378 // the fragment processor under test. An array of W*H colors are passed in as the texture data.
make_input_texture(GrRecordingContext * context,int width,int height,GrColor * pixel)379 GrSurfaceProxyView make_input_texture(GrRecordingContext* context,
380 int width, int height, GrColor* pixel) {
381 SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
382 SkBitmap bitmap;
383 bitmap.installPixels(ii, pixel, ii.minRowBytes());
384 bitmap.setImmutable();
385 return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap));
386 }
387
388 // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
389 // actually contains unpremul data. Also, even though we made the result data by rendering into
390 // a "unpremul" GrSurfaceDrawContext, our input texture is unpremul and outside of the random
391 // effect configuration, we didn't do anything to ensure the output is actually premul. We just
392 // don't currently allow kUnpremul GrSurfaceDrawContexts.
393 static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
394
log_pixels(GrColor * pixels,int widthHeight,SkString * dst)395 bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
396 SkImageInfo info =
397 SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
398 SkBitmap bmp;
399 bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
400 return BipmapToBase64DataURI(bmp, dst);
401 }
402
log_texture_view(GrDirectContext * dContext,GrSurfaceProxyView src,SkString * dst)403 bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) {
404 SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
405 kLogAlphaType);
406
407 auto sContext = GrSurfaceContext::Make(dContext, std::move(src), ii.colorInfo());
408 SkBitmap bm;
409 SkAssertResult(bm.tryAllocPixels(ii));
410 SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0}));
411 return BipmapToBase64DataURI(bm, dst);
412 }
413
fuzzy_color_equals(const SkPMColor4f & c1,const SkPMColor4f & c2)414 bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
415 // With the loss of precision of rendering into 32-bit color, then estimating the FP's output
416 // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
417 // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
418 // too unforgiving).
419 static constexpr SkScalar kTolerance = 0.01f;
420 for (int i = 0; i < 4; i++) {
421 if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
422 return false;
423 }
424 }
425 return true;
426 }
427
428 // Given three input colors (color preceding the FP being tested) provided to the FP at the same
429 // local coord and the three corresponding FP outputs, this ensures that either:
430 // out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
431 // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
432 // change), OR:
433 // out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
434 // (per-channel modulation instead of modulation by just the alpha channel)
435 // It does this by estimating the pre-modulated fp color from one of the input/output pairs and
436 // confirms the conditions hold for the other two pairs.
437 // It is required that the three input colors have the same alpha as fp is allowed to be a function
438 // of the input alpha (but not r, g, or b).
legal_modulation(const GrColor in[3],const GrColor out[3])439 bool legal_modulation(const GrColor in[3], const GrColor out[3]) {
440 // Convert to floating point, which is the number space the FP operates in (more or less)
441 SkPMColor4f inf[3], outf[3];
442 for (int i = 0; i < 3; ++i) {
443 inf[i] = SkPMColor4f::FromBytes_RGBA(in[i]);
444 outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]);
445 }
446 // This test is only valid if all the input alphas are the same.
447 SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
448
449 // Reconstruct the output of the FP before the shader modulated its color with the input value.
450 // When the original input is very small, it may cause the final output color to round
451 // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
452 // will then have a guaranteed larger channel value (since the offset will be added to it).
453 SkPMColor4f fpPreColorModulation = {0,0,0,0};
454 SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
455 for (int i = 0; i < 4; i++) {
456 // Use the most stepped up frame
457 int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
458 maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
459 const SkPMColor4f& in = inf[maxInIdx];
460 const SkPMColor4f& out = outf[maxInIdx];
461 if (in[i] > 0) {
462 fpPreColorModulation[i] = out[i] / in[i];
463 }
464 if (in[3] > 0) {
465 fpPreAlphaModulation[i] = out[i] / in[3];
466 }
467 }
468
469 // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
470 // of the transformed input colors.
471 SkPMColor4f expectedForAlphaModulation[3];
472 SkPMColor4f expectedForColorModulation[3];
473 for (int i = 0; i < 3; ++i) {
474 expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
475 expectedForColorModulation[i] = fpPreColorModulation * inf[i];
476 // If the input alpha is 0 then the other channels should also be zero
477 // since the color is assumed to be premul. Modulating zeros by anything
478 // should produce zeros.
479 if (inf[i].fA == 0) {
480 SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
481 expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
482 }
483 }
484
485 bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
486 fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
487 fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
488
489 bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
490 fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
491 fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
492
493 // This can be enabled to print the values that caused this check to fail.
494 if (0 && !isLegalColorModulation && !isLegalAlphaModulation) {
495 SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
496 fpPreColorModulation[0],
497 fpPreColorModulation[1],
498 fpPreColorModulation[2],
499 fpPreColorModulation[3]);
500 for (int i = 0; i < 3; ++i) {
501 SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
502 "(%.03f, %.03f, %.03f, %.03f) | "
503 "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
504 inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
505 outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
506 expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
507 expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
508 fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
509 }
510 SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
511 fpPreAlphaModulation[0],
512 fpPreAlphaModulation[1],
513 fpPreAlphaModulation[2],
514 fpPreAlphaModulation[3]);
515 for (int i = 0; i < 3; ++i) {
516 SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
517 "(%.03f, %.03f, %.03f, %.03f) | "
518 "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
519 inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
520 outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
521 expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
522 expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
523 fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
524 }
525 }
526 return isLegalColorModulation || isLegalAlphaModulation;
527 }
528
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest,reporter,ctxInfo)529 DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
530 GrDirectContext* context = ctxInfo.directContext();
531 GrResourceProvider* resourceProvider = context->priv().resourceProvider();
532 using FPFactory = GrFragmentProcessorTestFactory;
533
534 TestFPGenerator fpGenerator{context, resourceProvider};
535 if (!fpGenerator.init()) {
536 ERRORF(reporter, "Could not initialize TestFPGenerator");
537 return;
538 }
539
540 // Make the destination context for the test.
541 static constexpr int kRenderSize = 256;
542 auto rtc = GrSurfaceDrawContext::Make(
543 context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
544 {kRenderSize, kRenderSize}, SkSurfaceProps());
545
546 // Coverage optimization uses three frames with a linearly transformed input texture. The first
547 // frame has no offset, second frames add .2 and .4, which should then be present as a fixed
548 // difference between the frame outputs if the FP is properly following the modulation
549 // requirements of the coverage optimization.
550 static constexpr SkScalar kInputDelta = 0.2f;
551 std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
552 std::vector<GrColor> inputPixels2 =
553 make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta);
554 std::vector<GrColor> inputPixels3 =
555 make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta);
556 GrSurfaceProxyView inputTexture1 =
557 make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data());
558 GrSurfaceProxyView inputTexture2 =
559 make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data());
560 GrSurfaceProxyView inputTexture3 =
561 make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data());
562
563 // Encoded images are very verbose and this tests many potential images, so only export the
564 // first failure (subsequent failures have a reasonable chance of being related).
565 bool loggedFirstFailure = false;
566 bool loggedFirstWarning = false;
567
568 // Storage for the three frames required for coverage compatibility optimization testing.
569 // Each frame uses the correspondingly numbered inputTextureX.
570 std::vector<GrColor> readData1(kRenderSize * kRenderSize);
571 std::vector<GrColor> readData2(kRenderSize * kRenderSize);
572 std::vector<GrColor> readData3(kRenderSize * kRenderSize);
573
574 // Because processor factories configure themselves in random ways, this is not exhaustive.
575 for (int i = 0; i < FPFactory::Count(); ++i) {
576 int optimizedForOpaqueInput = 0;
577 int optimizedForCoverageAsAlpha = 0;
578 int optimizedForConstantOutputForInput = 0;
579
580 #ifdef __MSVC_RUNTIME_CHECKS
581 // This test is infuriatingly slow with MSVC runtime checks enabled
582 static constexpr int kMinimumTrials = 1;
583 static constexpr int kMaximumTrials = 1;
584 static constexpr int kExpectedSuccesses = 1;
585 #else
586 // We start by testing each fragment-processor 100 times, watching the optimization bits
587 // that appear. If we see an optimization bit appear in those first 100 trials, we keep
588 // running tests until we see at least five successful trials that have this optimization
589 // bit enabled. If we never see a particular optimization bit after 100 trials, we assume
590 // that this FP doesn't support that optimization at all.
591 static constexpr int kMinimumTrials = 100;
592 static constexpr int kMaximumTrials = 2000;
593 static constexpr int kExpectedSuccesses = 5;
594 #endif
595
596 for (int trial = 0;; ++trial) {
597 // Create a randomly-configured FP.
598 fpGenerator.reroll();
599 std::unique_ptr<GrFragmentProcessor> fp =
600 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1);
601
602 // If we have iterated enough times and seen a sufficient number of successes on each
603 // optimization bit that can be returned, stop running trials.
604 if (trial >= kMinimumTrials) {
605 bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 &&
606 optimizedForOpaqueInput < kExpectedSuccesses) ||
607 (optimizedForCoverageAsAlpha > 0 &&
608 optimizedForCoverageAsAlpha < kExpectedSuccesses) ||
609 (optimizedForConstantOutputForInput > 0 &&
610 optimizedForConstantOutputForInput < kExpectedSuccesses);
611 if (!moreTrialsNeeded) break;
612
613 if (trial >= kMaximumTrials) {
614 SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. "
615 "Seed: 0x%08x, processor:\n%s",
616 kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str());
617 break;
618 }
619 }
620
621 // Skip further testing if this trial has no optimization bits enabled.
622 if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
623 !fp->compatibleWithCoverageAsAlpha()) {
624 continue;
625 }
626
627 // We can make identical copies of the test FP in order to test coverage-as-alpha.
628 if (fp->compatibleWithCoverageAsAlpha()) {
629 // Create and render two identical versions of this FP, but using different input
630 // textures, to check coverage optimization. We don't need to do this step for
631 // constant-output or preserving-opacity tests.
632 render_fp(context, rtc.get(),
633 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2),
634 readData2.data());
635 render_fp(context, rtc.get(),
636 fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3),
637 readData3.data());
638 ++optimizedForCoverageAsAlpha;
639 }
640
641 if (fp->hasConstantOutputForConstantInput()) {
642 ++optimizedForConstantOutputForInput;
643 }
644
645 if (fp->preservesOpaqueInput()) {
646 ++optimizedForOpaqueInput;
647 }
648
649 // Draw base frame last so that rtc holds the original FP behavior if we need to dump
650 // the image to the log.
651 render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1),
652 readData1.data());
653
654 // This test has a history of being flaky on a number of devices. If an FP is logically
655 // violating the optimizations, it's reasonable to expect it to violate requirements on
656 // a large number of pixels in the image. Sporadic pixel violations are more indicative
657 // of device errors and represents a separate problem.
658 #if defined(SK_BUILD_FOR_SKQP)
659 static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
660 #else
661 static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
662 #endif
663
664 // Collect first optimization failure message, to be output later as a warning or an
665 // error depending on whether the rendering "passed" or failed.
666 int failedPixelCount = 0;
667 SkString coverageMessage;
668 SkString opaqueMessage;
669 SkString constMessage;
670 for (int y = 0; y < kRenderSize; ++y) {
671 for (int x = 0; x < kRenderSize; ++x) {
672 bool passing = true;
673 GrColor input = inputPixels1[y * kRenderSize + x];
674 GrColor output = readData1[y * kRenderSize + x];
675
676 if (fp->compatibleWithCoverageAsAlpha()) {
677 GrColor ins[3];
678 ins[0] = input;
679 ins[1] = inputPixels2[y * kRenderSize + x];
680 ins[2] = inputPixels3[y * kRenderSize + x];
681
682 GrColor outs[3];
683 outs[0] = output;
684 outs[1] = readData2[y * kRenderSize + x];
685 outs[2] = readData3[y * kRenderSize + x];
686
687 if (!legal_modulation(ins, outs)) {
688 passing = false;
689 if (coverageMessage.isEmpty()) {
690 coverageMessage.printf(
691 "\"Modulating\" processor did not match alpha-modulation "
692 "nor color-modulation rules.\n"
693 "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
694 input, output, x, y);
695 }
696 }
697 }
698
699 SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
700 SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
701 SkPMColor4f expected4f;
702 if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
703 float rDiff = fabsf(output4f.fR - expected4f.fR);
704 float gDiff = fabsf(output4f.fG - expected4f.fG);
705 float bDiff = fabsf(output4f.fB - expected4f.fB);
706 float aDiff = fabsf(output4f.fA - expected4f.fA);
707 static constexpr float kTol = 4 / 255.f;
708 if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
709 if (constMessage.isEmpty()) {
710 passing = false;
711
712 constMessage.printf(
713 "Processor claimed output for const input doesn't match "
714 "actual output.\n"
715 "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), "
716 "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).",
717 std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))),
718 kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA,
719 output4f.fR, output4f.fG, output4f.fB, output4f.fA,
720 expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
721 }
722 }
723 }
724 if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
725 passing = false;
726
727 if (opaqueMessage.isEmpty()) {
728 opaqueMessage.printf(
729 "Processor claimed opaqueness is preserved but "
730 "it is not. Input: 0x%08x, Output: 0x%08x.",
731 input, output);
732 }
733 }
734
735 if (!passing) {
736 // Regardless of how many optimizations the pixel violates, count it as a
737 // single bad pixel.
738 failedPixelCount++;
739 }
740 }
741 }
742
743 // Finished analyzing the entire image, see if the number of pixel failures meets the
744 // threshold for an FP violating the optimization requirements.
745 if (failedPixelCount > kMaxAcceptableFailedPixels) {
746 ERRORF(reporter,
747 "Processor violated %d of %d pixels, seed: 0x%08x.\n"
748 "Processor:\n%s\nFirst failing pixel details are below:",
749 failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(),
750 fp->dumpTreeInfo().c_str());
751
752 // Print first failing pixel's details.
753 if (!coverageMessage.isEmpty()) {
754 ERRORF(reporter, coverageMessage.c_str());
755 }
756 if (!constMessage.isEmpty()) {
757 ERRORF(reporter, constMessage.c_str());
758 }
759 if (!opaqueMessage.isEmpty()) {
760 ERRORF(reporter, opaqueMessage.c_str());
761 }
762
763 if (!loggedFirstFailure) {
764 // Print with ERRORF to make sure the encoded image is output
765 SkString input;
766 log_texture_view(context, inputTexture1, &input);
767 SkString output;
768 log_pixels(readData1.data(), kRenderSize, &output);
769 ERRORF(reporter, "Input image: %s\n\n"
770 "===========================================================\n\n"
771 "Output image: %s\n", input.c_str(), output.c_str());
772 loggedFirstFailure = true;
773 }
774 } else if (failedPixelCount > 0) {
775 // Don't trigger an error, but don't just hide the failures either.
776 INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
777 "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
778 fpGenerator.initialSeed(), fp->dumpInfo().c_str());
779 if (!coverageMessage.isEmpty()) {
780 INFOF(reporter, coverageMessage.c_str());
781 }
782 if (!constMessage.isEmpty()) {
783 INFOF(reporter, constMessage.c_str());
784 }
785 if (!opaqueMessage.isEmpty()) {
786 INFOF(reporter, opaqueMessage.c_str());
787 }
788 if (!loggedFirstWarning) {
789 SkString input;
790 log_texture_view(context, inputTexture1, &input);
791 SkString output;
792 log_pixels(readData1.data(), kRenderSize, &output);
793 INFOF(reporter, "Input image: %s\n\n"
794 "===========================================================\n\n"
795 "Output image: %s\n", input.c_str(), output.c_str());
796 loggedFirstWarning = true;
797 }
798 }
799 }
800 }
801 }
802
assert_processor_equality(skiatest::Reporter * reporter,const GrFragmentProcessor & fp,const GrFragmentProcessor & clone)803 static void assert_processor_equality(skiatest::Reporter* reporter,
804 const GrFragmentProcessor& fp,
805 const GrFragmentProcessor& clone) {
806 REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()),
807 "\n%s", fp.dumpTreeInfo().c_str());
808 REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() ==
809 clone.compatibleWithCoverageAsAlpha(),
810 "\n%s", fp.dumpTreeInfo().c_str());
811 REPORTER_ASSERT(reporter, fp.isEqual(clone),
812 "\n%s", fp.dumpTreeInfo().c_str());
813 REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(),
814 "\n%s", fp.dumpTreeInfo().c_str());
815 REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() ==
816 clone.hasConstantOutputForConstantInput(),
817 "\n%s", fp.dumpTreeInfo().c_str());
818 REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(),
819 "\n%s", fp.dumpTreeInfo().c_str());
820 REPORTER_ASSERT(reporter, fp.usesVaryingCoords() == clone.usesVaryingCoords(),
821 "\n%s", fp.dumpTreeInfo().c_str());
822 REPORTER_ASSERT(reporter, fp.referencesSampleCoords() == clone.referencesSampleCoords(),
823 "\n%s", fp.dumpTreeInfo().c_str());
824 }
825
verify_identical_render(skiatest::Reporter * reporter,int renderSize,const char * processorType,const GrColor readData1[],const GrColor readData2[])826 static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize,
827 const char* processorType,
828 const GrColor readData1[], const GrColor readData2[]) {
829 // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone
830 // is logically wrong, it's reasonable to expect it produce a large number of pixel differences
831 // in the image. Sporadic pixel violations are more indicative device errors and represents a
832 // separate problem.
833 #if defined(SK_BUILD_FOR_SKQP)
834 const int maxAcceptableFailedPixels = 0; // Strict when running as SKQP
835 #else
836 const int maxAcceptableFailedPixels = 2 * renderSize; // ~0.002% of the pixels (size 1024*1024)
837 #endif
838
839 int failedPixelCount = 0;
840 int firstWrongX = 0;
841 int firstWrongY = 0;
842 int idx = 0;
843 for (int y = 0; y < renderSize; ++y) {
844 for (int x = 0; x < renderSize; ++x, ++idx) {
845 if (readData1[idx] != readData2[idx]) {
846 if (!failedPixelCount) {
847 firstWrongX = x;
848 firstWrongY = y;
849 }
850 ++failedPixelCount;
851 }
852 if (failedPixelCount > maxAcceptableFailedPixels) {
853 idx = firstWrongY * renderSize + firstWrongX;
854 ERRORF(reporter,
855 "%s produced different output at (%d, %d). "
856 "Input color: 0x%08x, Original Output Color: 0x%08x, "
857 "Clone Output Color: 0x%08x.",
858 processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
859 readData1[idx], readData2[idx]);
860
861 return false;
862 }
863 }
864 }
865
866 return true;
867 }
868
log_clone_failure(skiatest::Reporter * reporter,int renderSize,GrDirectContext * context,const GrSurfaceProxyView & inputTexture,GrColor pixelsFP[],GrColor pixelsClone[],GrColor pixelsRegen[])869 static void log_clone_failure(skiatest::Reporter* reporter, int renderSize,
870 GrDirectContext* context, const GrSurfaceProxyView& inputTexture,
871 GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) {
872 // Write the images out as data URLs for inspection.
873 SkString inputURL, origURL, cloneURL, regenURL;
874 if (log_texture_view(context, inputTexture, &inputURL) &&
875 log_pixels(pixelsFP, renderSize, &origURL) &&
876 log_pixels(pixelsClone, renderSize, &cloneURL) &&
877 log_pixels(pixelsRegen, renderSize, ®enURL)) {
878 ERRORF(reporter,
879 "\nInput image:\n%s\n\n"
880 "==========================================================="
881 "\n\n"
882 "Orig output image:\n%s\n"
883 "==========================================================="
884 "\n\n"
885 "Clone output image:\n%s\n"
886 "==========================================================="
887 "\n\n"
888 "Regen output image:\n%s\n",
889 inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str());
890 }
891 }
892
893 // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its
894 // progenitor.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest,reporter,ctxInfo)895 DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
896 GrDirectContext* context = ctxInfo.directContext();
897 GrResourceProvider* resourceProvider = context->priv().resourceProvider();
898
899 TestFPGenerator fpGenerator{context, resourceProvider};
900 if (!fpGenerator.init()) {
901 ERRORF(reporter, "Could not initialize TestFPGenerator");
902 return;
903 }
904
905 // Make the destination context for the test.
906 static constexpr int kRenderSize = 1024;
907 auto rtc = GrSurfaceDrawContext::Make(
908 context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
909 {kRenderSize, kRenderSize}, SkSurfaceProps());
910
911 std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
912 GrSurfaceProxyView inputTexture =
913 make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data());
914
915 // On failure we write out images, but just write the first failing set as the print is very
916 // large.
917 bool loggedFirstFailure = false;
918
919 // Storage for the original frame's readback and the readback of its clone.
920 std::vector<GrColor> readDataFP(kRenderSize * kRenderSize);
921 std::vector<GrColor> readDataClone(kRenderSize * kRenderSize);
922 std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize);
923
924 // Because processor factories configure themselves in random ways, this is not exhaustive.
925 for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
926 static constexpr int kTimesToInvokeFactory = 10;
927 for (int j = 0; j < kTimesToInvokeFactory; ++j) {
928 fpGenerator.reroll();
929 std::unique_ptr<GrFragmentProcessor> fp =
930 fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
931 std::unique_ptr<GrFragmentProcessor> regen =
932 fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
933 std::unique_ptr<GrFragmentProcessor> clone = fp->clone();
934 if (!clone) {
935 ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str());
936 continue;
937 }
938 assert_processor_equality(reporter, *fp, *clone);
939
940 // Draw with original and read back the results.
941 render_fp(context, rtc.get(), std::move(fp), readDataFP.data());
942
943 // Draw with clone and read back the results.
944 render_fp(context, rtc.get(), std::move(clone), readDataClone.data());
945
946 // Check that the results are the same.
947 if (!verify_identical_render(reporter, kRenderSize, "Processor clone",
948 readDataFP.data(), readDataClone.data())) {
949 // Dump a description from the regenerated processor (since the original FP has
950 // already been consumed).
951 ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str());
952
953 // Render and readback output from the regenerated FP. If this also mismatches, the
954 // FP itself doesn't generate consistent output. This could happen if:
955 // - the FP's TestCreate() does not always generate the same FP from a given seed
956 // - the FP's Make() does not always generate the same FP when given the same inputs
957 // - the FP itself generates inconsistent pixels (shader UB?)
958 // - the driver has a bug
959 render_fp(context, rtc.get(), std::move(regen), readDataRegen.data());
960
961 if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor",
962 readDataFP.data(), readDataRegen.data())) {
963 ERRORF(reporter, "Output from regen did not match original!\n");
964 } else {
965 ERRORF(reporter, "Regenerated processor output matches original results.\n");
966 }
967
968 // If this is the first time we've encountered a cloning failure, log the generated
969 // images to the reporter as data URLs.
970 if (!loggedFirstFailure) {
971 log_clone_failure(reporter, kRenderSize, context, inputTexture,
972 readDataFP.data(), readDataClone.data(),
973 readDataRegen.data());
974 loggedFirstFailure = true;
975 }
976 }
977 }
978 }
979 }
980
981 #endif // GR_TEST_UTILS
982