• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "tests/Test.h"
9 
10 #include "include/gpu/GrDirectContext.h"
11 #include "src/gpu/GrClip.h"
12 #include "src/gpu/GrDirectContextPriv.h"
13 #include "src/gpu/GrGpuResource.h"
14 #include "src/gpu/GrImageInfo.h"
15 #include "src/gpu/GrMemoryPool.h"
16 #include "src/gpu/GrProxyProvider.h"
17 #include "src/gpu/GrResourceProvider.h"
18 #include "src/gpu/GrSurfaceDrawContext.h"
19 #include "src/gpu/SkGr.h"
20 #include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
21 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
22 #include "src/gpu/ops/GrFillRectOp.h"
23 #include "src/gpu/ops/GrMeshDrawOp.h"
24 #include "tests/TestUtils.h"
25 
26 #include <atomic>
27 #include <random>
28 
29 namespace {
30 class TestOp : public GrMeshDrawOp {
31 public:
32     DEFINE_OP_CLASS_ID
Make(GrRecordingContext * rContext,std::unique_ptr<GrFragmentProcessor> fp)33     static GrOp::Owner Make(GrRecordingContext* rContext,
34                             std::unique_ptr<GrFragmentProcessor> fp) {
35         return GrOp::Make<TestOp>(rContext, std::move(fp));
36     }
37 
name() const38     const char* name() const override { return "TestOp"; }
39 
visitProxies(const VisitProxyFunc & func) const40     void visitProxies(const VisitProxyFunc& func) const override {
41         fProcessors.visitProxies(func);
42     }
43 
fixedFunctionFlags() const44     FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
45 
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)46     GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
47                                       GrClampType clampType) override {
48         static constexpr GrProcessorAnalysisColor kUnknownColor;
49         SkPMColor4f overrideColor;
50         return fProcessors.finalize(
51                 kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
52                 &GrUserStencilSettings::kUnused, caps, clampType, &overrideColor);
53     }
54 
55 private:
56     friend class ::GrOp; // for ctor
57 
TestOp(std::unique_ptr<GrFragmentProcessor> fp)58     TestOp(std::unique_ptr<GrFragmentProcessor> fp)
59             : INHERITED(ClassID()), fProcessors(std::move(fp)) {
60         this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
61     }
62 
programInfo()63     GrProgramInfo* programInfo() override { return nullptr; }
onCreateProgramInfo(const GrCaps *,SkArenaAlloc *,const GrSurfaceProxyView & writeView,GrAppliedClip &&,const GrXferProcessor::DstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)64     void onCreateProgramInfo(const GrCaps*,
65                              SkArenaAlloc*,
66                              const GrSurfaceProxyView& writeView,
67                              GrAppliedClip&&,
68                              const GrXferProcessor::DstProxyView&,
69                              GrXferBarrierFlags renderPassXferBarriers,
70                              GrLoadOp colorLoadOp) override {}
onPrePrepareDraws(GrRecordingContext *,const GrSurfaceProxyView & writeView,GrAppliedClip *,const GrXferProcessor::DstProxyView &,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)71     void onPrePrepareDraws(GrRecordingContext*,
72                            const GrSurfaceProxyView& writeView,
73                            GrAppliedClip*,
74                            const GrXferProcessor::DstProxyView&,
75                            GrXferBarrierFlags renderPassXferBarriers,
76                            GrLoadOp colorLoadOp) override {}
onPrepareDraws(Target * target)77     void onPrepareDraws(Target* target) override { return; }
onExecute(GrOpFlushState *,const SkRect &)78     void onExecute(GrOpFlushState*, const SkRect&) override { return; }
79 
80     GrProcessorSet fProcessors;
81 
82     using INHERITED = GrMeshDrawOp;
83 };
84 
85 /**
86  * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
87  * of resources owned by child FPs.
88  */
89 class TestFP : public GrFragmentProcessor {
90 public:
Make(std::unique_ptr<GrFragmentProcessor> child)91     static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
92         return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
93     }
Make(const SkTArray<GrSurfaceProxyView> & views)94     static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) {
95         return std::unique_ptr<GrFragmentProcessor>(new TestFP(views));
96     }
97 
name() const98     const char* name() const override { return "test"; }
99 
onGetGLSLProcessorKey(const GrShaderCaps &,GrProcessorKeyBuilder * b) const100     void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
101         static std::atomic<int32_t> nextKey{0};
102         b->add32(nextKey++);
103     }
104 
clone() const105     std::unique_ptr<GrFragmentProcessor> clone() const override {
106         return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
107     }
108 
109 private:
TestFP(const SkTArray<GrSurfaceProxyView> & views)110     TestFP(const SkTArray<GrSurfaceProxyView>& views)
111             : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
112         for (const GrSurfaceProxyView& view : views) {
113             this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType));
114         }
115     }
116 
TestFP(std::unique_ptr<GrFragmentProcessor> child)117     TestFP(std::unique_ptr<GrFragmentProcessor> child)
118             : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
119         this->registerChild(std::move(child));
120     }
121 
TestFP(const TestFP & that)122     explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) {
123         this->cloneAndRegisterAllChildProcessors(that);
124     }
125 
onMakeProgramImpl() const126     std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override {
127         class TestGLSLFP : public GrGLSLFragmentProcessor {
128         public:
129             TestGLSLFP() {}
130             void emitCode(EmitArgs& args) override {
131                 args.fFragBuilder->codeAppendf("return half4(1);");
132             }
133 
134         private:
135         };
136         return std::make_unique<TestGLSLFP>();
137     }
138 
onIsEqual(const GrFragmentProcessor &) const139     bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
140 
141     using INHERITED = GrFragmentProcessor;
142 };
143 }  // namespace
144 
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest,reporter,ctxInfo)145 DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
146     auto context = ctxInfo.directContext();
147     GrProxyProvider* proxyProvider = context->priv().proxyProvider();
148 
149     static constexpr SkISize kDims = {10, 10};
150 
151     const GrBackendFormat format =
152         context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
153                                                         GrRenderable::kNo);
154     GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
155 
156     for (bool makeClone : {false, true}) {
157         for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
158             auto surfaceDrawContext = GrSurfaceDrawContext::Make(
159                     context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1},
160                     SkSurfaceProps());
161             {
162                 sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(
163                         format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact,
164                         SkBudgeted::kYes, GrProtected::kNo);
165 
166                 {
167                     SkTArray<GrSurfaceProxyView> views;
168                     views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
169                     auto fp = TestFP::Make(std::move(views));
170                     for (int i = 0; i < parentCnt; ++i) {
171                         fp = TestFP::Make(std::move(fp));
172                     }
173                     std::unique_ptr<GrFragmentProcessor> clone;
174                     if (makeClone) {
175                         clone = fp->clone();
176                     }
177                     GrOp::Owner op = TestOp::Make(context, std::move(fp));
178                     surfaceDrawContext->addDrawOp(std::move(op));
179                     if (clone) {
180                         op = TestOp::Make(context, std::move(clone));
181                         surfaceDrawContext->addDrawOp(std::move(op));
182                     }
183                 }
184 
185                 // If the fp is cloned the number of refs should increase by one (for the clone)
186                 int expectedProxyRefs = makeClone ? 3 : 2;
187 
188                 CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
189 
190                 context->flushAndSubmit();
191 
192                 // just one from the 'proxy' sk_sp
193                 CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
194             }
195         }
196     }
197 }
198 
199 #include "tools/flags/CommandLineFlags.h"
200 static DEFINE_bool(randomProcessorTest, false,
201                    "Use non-deterministic seed for random processor tests?");
202 static DEFINE_int(processorSeed, 0,
203                   "Use specific seed for processor tests. Overridden by --randomProcessorTest.");
204 
205 #if GR_TEST_UTILS
206 
input_texel_color(int i,int j,SkScalar delta)207 static GrColor input_texel_color(int i, int j, SkScalar delta) {
208     // Delta must be less than 0.5 to prevent over/underflow issues with the input color
209     SkASSERT(delta <= 0.5);
210 
211     SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
212                                    (uint8_t)(j & 0xFF),
213                                    (uint8_t)((i + j) & 0xFF),
214                                    (uint8_t)((2 * j - i) & 0xFF));
215     SkColor4f color4f = SkColor4f::FromColor(color);
216     // We only apply delta to the r,g, and b channels. This is because we're using this
217     // to test the canTweakAlphaForCoverage() optimization. A processor is allowed
218     // to use the input color's alpha in its calculation and report this optimization.
219     for (int i = 0; i < 3; i++) {
220         if (color4f[i] > 0.5) {
221             color4f[i] -= delta;
222         } else {
223             color4f[i] += delta;
224         }
225     }
226     return color4f.premul().toBytes_RGBA();
227 }
228 
test_draw_op(GrRecordingContext * rContext,GrSurfaceDrawContext * rtc,std::unique_ptr<GrFragmentProcessor> fp)229 void test_draw_op(GrRecordingContext* rContext,
230                   GrSurfaceDrawContext* rtc,
231                   std::unique_ptr<GrFragmentProcessor> fp) {
232     GrPaint paint;
233     paint.setColorFragmentProcessor(std::move(fp));
234     paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
235 
236     auto op = GrFillRectOp::MakeNonAARect(rContext, std::move(paint), SkMatrix::I(),
237                                           SkRect::MakeWH(rtc->width(), rtc->height()));
238     rtc->addDrawOp(std::move(op));
239 }
240 
241 // The output buffer must be the same size as the render-target context.
render_fp(GrDirectContext * dContext,GrSurfaceDrawContext * rtc,std::unique_ptr<GrFragmentProcessor> fp,GrColor * outBuffer)242 void render_fp(GrDirectContext* dContext,
243                GrSurfaceDrawContext* rtc,
244                std::unique_ptr<GrFragmentProcessor> fp,
245                GrColor* outBuffer) {
246     test_draw_op(dContext, rtc, std::move(fp));
247     std::fill_n(outBuffer, rtc->width() * rtc->height(), 0);
248     auto ii = SkImageInfo::Make(rtc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType);
249     GrPixmap resultPM(ii, outBuffer, rtc->width()*sizeof(uint32_t));
250     rtc->readPixels(dContext, resultPM, {0, 0});
251 }
252 
253 // This class is responsible for reproducibly generating a random fragment processor.
254 // An identical randomly-designed FP can be generated as many times as needed.
255 class TestFPGenerator {
256     public:
257         TestFPGenerator() = delete;
TestFPGenerator(GrDirectContext * context,GrResourceProvider * resourceProvider)258         TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider)
259                 : fContext(context)
260                 , fResourceProvider(resourceProvider)
261                 , fInitialSeed(synthesizeInitialSeed())
262                 , fRandomSeed(fInitialSeed) {}
263 
initialSeed()264         uint32_t initialSeed() { return fInitialSeed; }
265 
init()266         bool init() {
267             // Initializes the two test texture proxies that are available to the FP test factories.
268             SkRandom random{fRandomSeed};
269             static constexpr int kTestTextureSize = 256;
270 
271             {
272                 // Put premul data into the RGBA texture that the test FPs can optionally use.
273                 GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
274                 for (int y = 0; y < kTestTextureSize; ++y) {
275                     for (int x = 0; x < kTestTextureSize; ++x) {
276                         rgbaData[kTestTextureSize * y + x] = input_texel_color(
277                                 random.nextULessThan(256), random.nextULessThan(256), 0.0f);
278                     }
279                 }
280 
281                 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
282                                                    kRGBA_8888_SkColorType, kPremul_SkAlphaType);
283                 SkBitmap bitmap;
284                 bitmap.installPixels(
285                         ii, rgbaData, ii.minRowBytes(),
286                         [](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr);
287                 bitmap.setImmutable();
288                 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
289                 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
290                     SkDebugf("Unable to instantiate RGBA8888 test texture.");
291                     return false;
292                 }
293                 fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888,
294                                                               kPremul_SkAlphaType};
295             }
296 
297             {
298                 // Put random values into the alpha texture that the test FPs can optionally use.
299                 uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
300                 for (int y = 0; y < kTestTextureSize; ++y) {
301                     for (int x = 0; x < kTestTextureSize; ++x) {
302                         alphaData[kTestTextureSize * y + x] = random.nextULessThan(256);
303                     }
304                 }
305 
306                 SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
307                                                    kAlpha_8_SkColorType, kPremul_SkAlphaType);
308                 SkBitmap bitmap;
309                 bitmap.installPixels(
310                         ii, alphaData, ii.minRowBytes(),
311                         [](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr);
312                 bitmap.setImmutable();
313                 auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
314                 if (!view || !view.proxy()->instantiate(fResourceProvider)) {
315                     SkDebugf("Unable to instantiate A8 test texture.");
316                     return false;
317                 }
318                 fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8,
319                                                               kPremul_SkAlphaType};
320             }
321 
322             return true;
323         }
324 
reroll()325         void reroll() {
326             // Feed our current random seed into SkRandom to generate a new seed.
327             SkRandom random{fRandomSeed};
328             fRandomSeed = random.nextU();
329         }
330 
make(int type,int randomTreeDepth,std::unique_ptr<GrFragmentProcessor> inputFP)331         std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
332                                                   std::unique_ptr<GrFragmentProcessor> inputFP) {
333             // This will generate the exact same randomized FP (of each requested type) each time
334             // it's called. Call `reroll` to get a different FP.
335             SkRandom random{fRandomSeed};
336             GrProcessorTestData testData{&random, fContext, randomTreeDepth,
337                                          SK_ARRAY_COUNT(fTestViews), fTestViews,
338                                          std::move(inputFP)};
339             return GrFragmentProcessorTestFactory::MakeIdx(type, &testData);
340         }
341 
make(int type,int randomTreeDepth,GrSurfaceProxyView view,SkAlphaType alpha=kPremul_SkAlphaType)342         std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
343                                                   GrSurfaceProxyView view,
344                                                   SkAlphaType alpha = kPremul_SkAlphaType) {
345             return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha));
346         }
347 
348     private:
synthesizeInitialSeed()349         static uint32_t synthesizeInitialSeed() {
350             if (FLAGS_randomProcessorTest) {
351                 std::random_device rd;
352                 return rd();
353             } else {
354                 return FLAGS_processorSeed;
355             }
356         }
357 
358         GrDirectContext* fContext;              // owned by caller
359         GrResourceProvider* fResourceProvider;  // owned by caller
360         const uint32_t fInitialSeed;
361         uint32_t fRandomSeed;
362         GrProcessorTestData::ViewInfo fTestViews[2];
363 };
364 
365 // Creates an array of color values from input_texel_color(), to be used as an input texture.
make_input_pixels(int width,int height,SkScalar delta)366 std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) {
367     std::vector<GrColor> pixel(width * height);
368     for (int y = 0; y < width; ++y) {
369         for (int x = 0; x < height; ++x) {
370             pixel[width * y + x] = input_texel_color(x, y, delta);
371         }
372     }
373 
374     return pixel;
375 }
376 
377 // Creates a texture of premul colors used as the output of the fragment processor that precedes
378 // the fragment processor under test. An array of W*H colors are passed in as the texture data.
make_input_texture(GrRecordingContext * context,int width,int height,GrColor * pixel)379 GrSurfaceProxyView make_input_texture(GrRecordingContext* context,
380                                       int width, int height, GrColor* pixel) {
381     SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
382     SkBitmap bitmap;
383     bitmap.installPixels(ii, pixel, ii.minRowBytes());
384     bitmap.setImmutable();
385     return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap));
386 }
387 
388 // We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
389 // actually contains unpremul data. Also, even though we made the result data by rendering into
390 // a "unpremul" GrSurfaceDrawContext, our input texture is unpremul and outside of the random
391 // effect configuration, we didn't do anything to ensure the output is actually premul. We just
392 // don't currently allow kUnpremul GrSurfaceDrawContexts.
393 static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
394 
log_pixels(GrColor * pixels,int widthHeight,SkString * dst)395 bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
396     SkImageInfo info =
397             SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
398     SkBitmap bmp;
399     bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
400     return BipmapToBase64DataURI(bmp, dst);
401 }
402 
log_texture_view(GrDirectContext * dContext,GrSurfaceProxyView src,SkString * dst)403 bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) {
404     SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
405                                        kLogAlphaType);
406 
407     auto sContext = GrSurfaceContext::Make(dContext, std::move(src), ii.colorInfo());
408     SkBitmap bm;
409     SkAssertResult(bm.tryAllocPixels(ii));
410     SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0}));
411     return BipmapToBase64DataURI(bm, dst);
412 }
413 
fuzzy_color_equals(const SkPMColor4f & c1,const SkPMColor4f & c2)414 bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
415     // With the loss of precision of rendering into 32-bit color, then estimating the FP's output
416     // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
417     // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
418     // too unforgiving).
419     static constexpr SkScalar kTolerance = 0.01f;
420     for (int i = 0; i < 4; i++) {
421         if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
422             return false;
423         }
424     }
425     return true;
426 }
427 
428 // Given three input colors (color preceding the FP being tested) provided to the FP at the same
429 // local coord and the three corresponding FP outputs, this ensures that either:
430 //   out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
431 // where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
432 // change), OR:
433 //   out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
434 // (per-channel modulation instead of modulation by just the alpha channel)
435 // It does this by estimating the pre-modulated fp color from one of the input/output pairs and
436 // confirms the conditions hold for the other two pairs.
437 // It is required that the three input colors have the same alpha as fp is allowed to be a function
438 // of the input alpha (but not r, g, or b).
legal_modulation(const GrColor in[3],const GrColor out[3])439 bool legal_modulation(const GrColor in[3], const GrColor out[3]) {
440     // Convert to floating point, which is the number space the FP operates in (more or less)
441     SkPMColor4f inf[3], outf[3];
442     for (int i = 0; i < 3; ++i) {
443         inf[i]  = SkPMColor4f::FromBytes_RGBA(in[i]);
444         outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]);
445     }
446     // This test is only valid if all the input alphas are the same.
447     SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
448 
449     // Reconstruct the output of the FP before the shader modulated its color with the input value.
450     // When the original input is very small, it may cause the final output color to round
451     // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
452     // will then have a guaranteed larger channel value (since the offset will be added to it).
453     SkPMColor4f fpPreColorModulation = {0,0,0,0};
454     SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
455     for (int i = 0; i < 4; i++) {
456         // Use the most stepped up frame
457         int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
458         maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
459         const SkPMColor4f& in = inf[maxInIdx];
460         const SkPMColor4f& out = outf[maxInIdx];
461         if (in[i] > 0) {
462             fpPreColorModulation[i] = out[i] / in[i];
463         }
464         if (in[3] > 0) {
465             fpPreAlphaModulation[i] = out[i] / in[3];
466         }
467     }
468 
469     // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
470     // of the transformed input colors.
471     SkPMColor4f expectedForAlphaModulation[3];
472     SkPMColor4f expectedForColorModulation[3];
473     for (int i = 0; i < 3; ++i) {
474         expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
475         expectedForColorModulation[i] = fpPreColorModulation * inf[i];
476         // If the input alpha is 0 then the other channels should also be zero
477         // since the color is assumed to be premul. Modulating zeros by anything
478         // should produce zeros.
479         if (inf[i].fA == 0) {
480             SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
481             expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
482         }
483     }
484 
485     bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
486                                   fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
487                                   fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
488 
489     bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
490                                   fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
491                                   fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
492 
493     // This can be enabled to print the values that caused this check to fail.
494     if (0 && !isLegalColorModulation && !isLegalAlphaModulation) {
495         SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
496                  fpPreColorModulation[0],
497                  fpPreColorModulation[1],
498                  fpPreColorModulation[2],
499                  fpPreColorModulation[3]);
500         for (int i = 0; i < 3; ++i) {
501             SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
502                      "(%.03f, %.03f, %.03f, %.03f) | "
503                      "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
504                      inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
505                      outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
506                      expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
507                      expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
508                      fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
509         }
510         SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
511                  fpPreAlphaModulation[0],
512                  fpPreAlphaModulation[1],
513                  fpPreAlphaModulation[2],
514                  fpPreAlphaModulation[3]);
515         for (int i = 0; i < 3; ++i) {
516             SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
517                      "(%.03f, %.03f, %.03f, %.03f) | "
518                      "(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
519                      inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
520                      outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
521                      expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
522                      expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
523                      fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
524         }
525     }
526     return isLegalColorModulation || isLegalAlphaModulation;
527 }
528 
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest,reporter,ctxInfo)529 DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
530     GrDirectContext* context = ctxInfo.directContext();
531     GrResourceProvider* resourceProvider = context->priv().resourceProvider();
532     using FPFactory = GrFragmentProcessorTestFactory;
533 
534     TestFPGenerator fpGenerator{context, resourceProvider};
535     if (!fpGenerator.init()) {
536         ERRORF(reporter, "Could not initialize TestFPGenerator");
537         return;
538     }
539 
540     // Make the destination context for the test.
541     static constexpr int kRenderSize = 256;
542     auto rtc = GrSurfaceDrawContext::Make(
543             context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
544             {kRenderSize, kRenderSize}, SkSurfaceProps());
545 
546     // Coverage optimization uses three frames with a linearly transformed input texture.  The first
547     // frame has no offset, second frames add .2 and .4, which should then be present as a fixed
548     // difference between the frame outputs if the FP is properly following the modulation
549     // requirements of the coverage optimization.
550     static constexpr SkScalar kInputDelta = 0.2f;
551     std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
552     std::vector<GrColor> inputPixels2 =
553             make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta);
554     std::vector<GrColor> inputPixels3 =
555             make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta);
556     GrSurfaceProxyView inputTexture1 =
557             make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data());
558     GrSurfaceProxyView inputTexture2 =
559             make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data());
560     GrSurfaceProxyView inputTexture3 =
561             make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data());
562 
563     // Encoded images are very verbose and this tests many potential images, so only export the
564     // first failure (subsequent failures have a reasonable chance of being related).
565     bool loggedFirstFailure = false;
566     bool loggedFirstWarning = false;
567 
568     // Storage for the three frames required for coverage compatibility optimization testing.
569     // Each frame uses the correspondingly numbered inputTextureX.
570     std::vector<GrColor> readData1(kRenderSize * kRenderSize);
571     std::vector<GrColor> readData2(kRenderSize * kRenderSize);
572     std::vector<GrColor> readData3(kRenderSize * kRenderSize);
573 
574     // Because processor factories configure themselves in random ways, this is not exhaustive.
575     for (int i = 0; i < FPFactory::Count(); ++i) {
576         int optimizedForOpaqueInput = 0;
577         int optimizedForCoverageAsAlpha = 0;
578         int optimizedForConstantOutputForInput = 0;
579 
580 #ifdef __MSVC_RUNTIME_CHECKS
581         // This test is infuriatingly slow with MSVC runtime checks enabled
582         static constexpr int kMinimumTrials = 1;
583         static constexpr int kMaximumTrials = 1;
584         static constexpr int kExpectedSuccesses = 1;
585 #else
586         // We start by testing each fragment-processor 100 times, watching the optimization bits
587         // that appear. If we see an optimization bit appear in those first 100 trials, we keep
588         // running tests until we see at least five successful trials that have this optimization
589         // bit enabled. If we never see a particular optimization bit after 100 trials, we assume
590         // that this FP doesn't support that optimization at all.
591         static constexpr int kMinimumTrials = 100;
592         static constexpr int kMaximumTrials = 2000;
593         static constexpr int kExpectedSuccesses = 5;
594 #endif
595 
596         for (int trial = 0;; ++trial) {
597             // Create a randomly-configured FP.
598             fpGenerator.reroll();
599             std::unique_ptr<GrFragmentProcessor> fp =
600                     fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1);
601 
602             // If we have iterated enough times and seen a sufficient number of successes on each
603             // optimization bit that can be returned, stop running trials.
604             if (trial >= kMinimumTrials) {
605                 bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 &&
606                                          optimizedForOpaqueInput < kExpectedSuccesses) ||
607                                         (optimizedForCoverageAsAlpha > 0 &&
608                                          optimizedForCoverageAsAlpha < kExpectedSuccesses) ||
609                                         (optimizedForConstantOutputForInput > 0 &&
610                                          optimizedForConstantOutputForInput < kExpectedSuccesses);
611                 if (!moreTrialsNeeded) break;
612 
613                 if (trial >= kMaximumTrials) {
614                     SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. "
615                              "Seed: 0x%08x, processor:\n%s",
616                              kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str());
617                     break;
618                 }
619             }
620 
621             // Skip further testing if this trial has no optimization bits enabled.
622             if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
623                 !fp->compatibleWithCoverageAsAlpha()) {
624                 continue;
625             }
626 
627             // We can make identical copies of the test FP in order to test coverage-as-alpha.
628             if (fp->compatibleWithCoverageAsAlpha()) {
629                 // Create and render two identical versions of this FP, but using different input
630                 // textures, to check coverage optimization. We don't need to do this step for
631                 // constant-output or preserving-opacity tests.
632                 render_fp(context, rtc.get(),
633                           fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2),
634                           readData2.data());
635                 render_fp(context, rtc.get(),
636                           fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3),
637                           readData3.data());
638                 ++optimizedForCoverageAsAlpha;
639             }
640 
641             if (fp->hasConstantOutputForConstantInput()) {
642                 ++optimizedForConstantOutputForInput;
643             }
644 
645             if (fp->preservesOpaqueInput()) {
646                 ++optimizedForOpaqueInput;
647             }
648 
649             // Draw base frame last so that rtc holds the original FP behavior if we need to dump
650             // the image to the log.
651             render_fp(context, rtc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1),
652                       readData1.data());
653 
654             // This test has a history of being flaky on a number of devices. If an FP is logically
655             // violating the optimizations, it's reasonable to expect it to violate requirements on
656             // a large number of pixels in the image. Sporadic pixel violations are more indicative
657             // of device errors and represents a separate problem.
658 #if defined(SK_BUILD_FOR_SKQP)
659             static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
660 #else
661             static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
662 #endif
663 
664             // Collect first optimization failure message, to be output later as a warning or an
665             // error depending on whether the rendering "passed" or failed.
666             int failedPixelCount = 0;
667             SkString coverageMessage;
668             SkString opaqueMessage;
669             SkString constMessage;
670             for (int y = 0; y < kRenderSize; ++y) {
671                 for (int x = 0; x < kRenderSize; ++x) {
672                     bool passing = true;
673                     GrColor input = inputPixels1[y * kRenderSize + x];
674                     GrColor output = readData1[y * kRenderSize + x];
675 
676                     if (fp->compatibleWithCoverageAsAlpha()) {
677                         GrColor ins[3];
678                         ins[0] = input;
679                         ins[1] = inputPixels2[y * kRenderSize + x];
680                         ins[2] = inputPixels3[y * kRenderSize + x];
681 
682                         GrColor outs[3];
683                         outs[0] = output;
684                         outs[1] = readData2[y * kRenderSize + x];
685                         outs[2] = readData3[y * kRenderSize + x];
686 
687                         if (!legal_modulation(ins, outs)) {
688                             passing = false;
689                             if (coverageMessage.isEmpty()) {
690                                 coverageMessage.printf(
691                                         "\"Modulating\" processor did not match alpha-modulation "
692                                         "nor color-modulation rules.\n"
693                                         "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
694                                         input, output, x, y);
695                             }
696                         }
697                     }
698 
699                     SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
700                     SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
701                     SkPMColor4f expected4f;
702                     if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
703                         float rDiff = fabsf(output4f.fR - expected4f.fR);
704                         float gDiff = fabsf(output4f.fG - expected4f.fG);
705                         float bDiff = fabsf(output4f.fB - expected4f.fB);
706                         float aDiff = fabsf(output4f.fA - expected4f.fA);
707                         static constexpr float kTol = 4 / 255.f;
708                         if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
709                             if (constMessage.isEmpty()) {
710                                 passing = false;
711 
712                                 constMessage.printf(
713                                         "Processor claimed output for const input doesn't match "
714                                         "actual output.\n"
715                                         "Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), "
716                                         "actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).",
717                                         std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))),
718                                         kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA,
719                                         output4f.fR, output4f.fG, output4f.fB, output4f.fA,
720                                         expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
721                             }
722                         }
723                     }
724                     if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
725                         passing = false;
726 
727                         if (opaqueMessage.isEmpty()) {
728                             opaqueMessage.printf(
729                                     "Processor claimed opaqueness is preserved but "
730                                     "it is not. Input: 0x%08x, Output: 0x%08x.",
731                                     input, output);
732                         }
733                     }
734 
735                     if (!passing) {
736                         // Regardless of how many optimizations the pixel violates, count it as a
737                         // single bad pixel.
738                         failedPixelCount++;
739                     }
740                 }
741             }
742 
743             // Finished analyzing the entire image, see if the number of pixel failures meets the
744             // threshold for an FP violating the optimization requirements.
745             if (failedPixelCount > kMaxAcceptableFailedPixels) {
746                 ERRORF(reporter,
747                        "Processor violated %d of %d pixels, seed: 0x%08x.\n"
748                        "Processor:\n%s\nFirst failing pixel details are below:",
749                        failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(),
750                        fp->dumpTreeInfo().c_str());
751 
752                 // Print first failing pixel's details.
753                 if (!coverageMessage.isEmpty()) {
754                     ERRORF(reporter, coverageMessage.c_str());
755                 }
756                 if (!constMessage.isEmpty()) {
757                     ERRORF(reporter, constMessage.c_str());
758                 }
759                 if (!opaqueMessage.isEmpty()) {
760                     ERRORF(reporter, opaqueMessage.c_str());
761                 }
762 
763                 if (!loggedFirstFailure) {
764                     // Print with ERRORF to make sure the encoded image is output
765                     SkString input;
766                     log_texture_view(context, inputTexture1, &input);
767                     SkString output;
768                     log_pixels(readData1.data(), kRenderSize, &output);
769                     ERRORF(reporter, "Input image: %s\n\n"
770                            "===========================================================\n\n"
771                            "Output image: %s\n", input.c_str(), output.c_str());
772                     loggedFirstFailure = true;
773                 }
774             } else if (failedPixelCount > 0) {
775                 // Don't trigger an error, but don't just hide the failures either.
776                 INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
777                       "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
778                       fpGenerator.initialSeed(), fp->dumpInfo().c_str());
779                 if (!coverageMessage.isEmpty()) {
780                     INFOF(reporter, coverageMessage.c_str());
781                 }
782                 if (!constMessage.isEmpty()) {
783                     INFOF(reporter, constMessage.c_str());
784                 }
785                 if (!opaqueMessage.isEmpty()) {
786                     INFOF(reporter, opaqueMessage.c_str());
787                 }
788                 if (!loggedFirstWarning) {
789                     SkString input;
790                     log_texture_view(context, inputTexture1, &input);
791                     SkString output;
792                     log_pixels(readData1.data(), kRenderSize, &output);
793                     INFOF(reporter, "Input image: %s\n\n"
794                           "===========================================================\n\n"
795                           "Output image: %s\n", input.c_str(), output.c_str());
796                     loggedFirstWarning = true;
797                 }
798             }
799         }
800     }
801 }
802 
assert_processor_equality(skiatest::Reporter * reporter,const GrFragmentProcessor & fp,const GrFragmentProcessor & clone)803 static void assert_processor_equality(skiatest::Reporter* reporter,
804                                       const GrFragmentProcessor& fp,
805                                       const GrFragmentProcessor& clone) {
806     REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()),
807                               "\n%s", fp.dumpTreeInfo().c_str());
808     REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() ==
809                               clone.compatibleWithCoverageAsAlpha(),
810                               "\n%s", fp.dumpTreeInfo().c_str());
811     REPORTER_ASSERT(reporter, fp.isEqual(clone),
812                               "\n%s", fp.dumpTreeInfo().c_str());
813     REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(),
814                               "\n%s", fp.dumpTreeInfo().c_str());
815     REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() ==
816                               clone.hasConstantOutputForConstantInput(),
817                               "\n%s", fp.dumpTreeInfo().c_str());
818     REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(),
819                               "\n%s", fp.dumpTreeInfo().c_str());
820     REPORTER_ASSERT(reporter, fp.usesVaryingCoords() == clone.usesVaryingCoords(),
821                               "\n%s", fp.dumpTreeInfo().c_str());
822     REPORTER_ASSERT(reporter, fp.referencesSampleCoords() == clone.referencesSampleCoords(),
823                               "\n%s", fp.dumpTreeInfo().c_str());
824 }
825 
verify_identical_render(skiatest::Reporter * reporter,int renderSize,const char * processorType,const GrColor readData1[],const GrColor readData2[])826 static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize,
827                                     const char* processorType,
828                                     const GrColor readData1[], const GrColor readData2[]) {
829     // The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone
830     // is logically wrong, it's reasonable to expect it produce a large number of pixel differences
831     // in the image. Sporadic pixel violations are more indicative device errors and represents a
832     // separate problem.
833 #if defined(SK_BUILD_FOR_SKQP)
834     const int maxAcceptableFailedPixels = 0;  // Strict when running as SKQP
835 #else
836     const int maxAcceptableFailedPixels = 2 * renderSize;  // ~0.002% of the pixels (size 1024*1024)
837 #endif
838 
839     int failedPixelCount = 0;
840     int firstWrongX = 0;
841     int firstWrongY = 0;
842     int idx = 0;
843     for (int y = 0; y < renderSize; ++y) {
844         for (int x = 0; x < renderSize; ++x, ++idx) {
845             if (readData1[idx] != readData2[idx]) {
846                 if (!failedPixelCount) {
847                     firstWrongX = x;
848                     firstWrongY = y;
849                 }
850                 ++failedPixelCount;
851             }
852             if (failedPixelCount > maxAcceptableFailedPixels) {
853                 idx = firstWrongY * renderSize + firstWrongX;
854                 ERRORF(reporter,
855                        "%s produced different output at (%d, %d). "
856                        "Input color: 0x%08x, Original Output Color: 0x%08x, "
857                        "Clone Output Color: 0x%08x.",
858                        processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
859                        readData1[idx], readData2[idx]);
860 
861                 return false;
862             }
863         }
864     }
865 
866     return true;
867 }
868 
log_clone_failure(skiatest::Reporter * reporter,int renderSize,GrDirectContext * context,const GrSurfaceProxyView & inputTexture,GrColor pixelsFP[],GrColor pixelsClone[],GrColor pixelsRegen[])869 static void log_clone_failure(skiatest::Reporter* reporter, int renderSize,
870                               GrDirectContext* context, const GrSurfaceProxyView& inputTexture,
871                               GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) {
872     // Write the images out as data URLs for inspection.
873     SkString inputURL, origURL, cloneURL, regenURL;
874     if (log_texture_view(context, inputTexture, &inputURL) &&
875         log_pixels(pixelsFP, renderSize, &origURL) &&
876         log_pixels(pixelsClone, renderSize, &cloneURL) &&
877         log_pixels(pixelsRegen, renderSize, &regenURL)) {
878         ERRORF(reporter,
879                "\nInput image:\n%s\n\n"
880                "==========================================================="
881                "\n\n"
882                "Orig output image:\n%s\n"
883                "==========================================================="
884                "\n\n"
885                "Clone output image:\n%s\n"
886                "==========================================================="
887                "\n\n"
888                "Regen output image:\n%s\n",
889                inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str());
890     }
891 }
892 
893 // Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its
894 // progenitor.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest,reporter,ctxInfo)895 DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
896     GrDirectContext* context = ctxInfo.directContext();
897     GrResourceProvider* resourceProvider = context->priv().resourceProvider();
898 
899     TestFPGenerator fpGenerator{context, resourceProvider};
900     if (!fpGenerator.init()) {
901         ERRORF(reporter, "Could not initialize TestFPGenerator");
902         return;
903     }
904 
905     // Make the destination context for the test.
906     static constexpr int kRenderSize = 1024;
907     auto rtc = GrSurfaceDrawContext::Make(
908             context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
909             {kRenderSize, kRenderSize}, SkSurfaceProps());
910 
911     std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
912     GrSurfaceProxyView inputTexture =
913             make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data());
914 
915     // On failure we write out images, but just write the first failing set as the print is very
916     // large.
917     bool loggedFirstFailure = false;
918 
919     // Storage for the original frame's readback and the readback of its clone.
920     std::vector<GrColor> readDataFP(kRenderSize * kRenderSize);
921     std::vector<GrColor> readDataClone(kRenderSize * kRenderSize);
922     std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize);
923 
924     // Because processor factories configure themselves in random ways, this is not exhaustive.
925     for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
926         static constexpr int kTimesToInvokeFactory = 10;
927         for (int j = 0; j < kTimesToInvokeFactory; ++j) {
928             fpGenerator.reroll();
929             std::unique_ptr<GrFragmentProcessor> fp =
930                     fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
931             std::unique_ptr<GrFragmentProcessor> regen =
932                     fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
933             std::unique_ptr<GrFragmentProcessor> clone = fp->clone();
934             if (!clone) {
935                 ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str());
936                 continue;
937             }
938             assert_processor_equality(reporter, *fp, *clone);
939 
940             // Draw with original and read back the results.
941             render_fp(context, rtc.get(), std::move(fp), readDataFP.data());
942 
943             // Draw with clone and read back the results.
944             render_fp(context, rtc.get(), std::move(clone), readDataClone.data());
945 
946             // Check that the results are the same.
947             if (!verify_identical_render(reporter, kRenderSize, "Processor clone",
948                                          readDataFP.data(), readDataClone.data())) {
949                 // Dump a description from the regenerated processor (since the original FP has
950                 // already been consumed).
951                 ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str());
952 
953                 // Render and readback output from the regenerated FP. If this also mismatches, the
954                 // FP itself doesn't generate consistent output. This could happen if:
955                 // - the FP's TestCreate() does not always generate the same FP from a given seed
956                 // - the FP's Make() does not always generate the same FP when given the same inputs
957                 // - the FP itself generates inconsistent pixels (shader UB?)
958                 // - the driver has a bug
959                 render_fp(context, rtc.get(), std::move(regen), readDataRegen.data());
960 
961                 if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor",
962                                              readDataFP.data(), readDataRegen.data())) {
963                     ERRORF(reporter, "Output from regen did not match original!\n");
964                 } else {
965                     ERRORF(reporter, "Regenerated processor output matches original results.\n");
966                 }
967 
968                 // If this is the first time we've encountered a cloning failure, log the generated
969                 // images to the reporter as data URLs.
970                 if (!loggedFirstFailure) {
971                     log_clone_failure(reporter, kRenderSize, context, inputTexture,
972                                       readDataFP.data(), readDataClone.data(),
973                                       readDataRegen.data());
974                     loggedFirstFailure = true;
975                 }
976             }
977         }
978     }
979 }
980 
981 #endif  // GR_TEST_UTILS
982