1 /*
2 * Copyright 2019 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "test/time_controller/simulated_time_controller.h"
11
12 #include <algorithm>
13 #include <deque>
14 #include <list>
15 #include <memory>
16 #include <string>
17 #include <thread>
18 #include <vector>
19
20 #include "absl/strings/string_view.h"
21 #include "test/time_controller/simulated_process_thread.h"
22 #include "test/time_controller/simulated_task_queue.h"
23 #include "test/time_controller/simulated_thread.h"
24
25 namespace webrtc {
26 namespace {
27 // Helper function to remove from a std container by value.
28 template <class C>
RemoveByValue(C * vec,typename C::value_type val)29 bool RemoveByValue(C* vec, typename C::value_type val) {
30 auto it = std::find(vec->begin(), vec->end(), val);
31 if (it == vec->end())
32 return false;
33 vec->erase(it);
34 return true;
35 }
36 } // namespace
37
38 namespace sim_time_impl {
39
SimulatedTimeControllerImpl(Timestamp start_time)40 SimulatedTimeControllerImpl::SimulatedTimeControllerImpl(Timestamp start_time)
41 : thread_id_(rtc::CurrentThreadId()), current_time_(start_time) {}
42
43 SimulatedTimeControllerImpl::~SimulatedTimeControllerImpl() = default;
44
45 std::unique_ptr<TaskQueueBase, TaskQueueDeleter>
CreateTaskQueue(absl::string_view name,TaskQueueFactory::Priority priority) const46 SimulatedTimeControllerImpl::CreateTaskQueue(
47 absl::string_view name,
48 TaskQueueFactory::Priority priority) const {
49 // TODO(srte): Remove the const cast when the interface is made mutable.
50 auto mutable_this = const_cast<SimulatedTimeControllerImpl*>(this);
51 auto task_queue = std::unique_ptr<SimulatedTaskQueue, TaskQueueDeleter>(
52 new SimulatedTaskQueue(mutable_this, name));
53 ;
54 mutable_this->Register(task_queue.get());
55 return task_queue;
56 }
57
CreateProcessThread(const char * thread_name)58 std::unique_ptr<ProcessThread> SimulatedTimeControllerImpl::CreateProcessThread(
59 const char* thread_name) {
60 auto process_thread =
61 std::make_unique<SimulatedProcessThread>(this, thread_name);
62 Register(process_thread.get());
63 return process_thread;
64 }
65
CreateThread(const std::string & name,std::unique_ptr<rtc::SocketServer> socket_server)66 std::unique_ptr<rtc::Thread> SimulatedTimeControllerImpl::CreateThread(
67 const std::string& name,
68 std::unique_ptr<rtc::SocketServer> socket_server) {
69 auto thread =
70 std::make_unique<SimulatedThread>(this, name, std::move(socket_server));
71 Register(thread.get());
72 return thread;
73 }
74
YieldExecution()75 void SimulatedTimeControllerImpl::YieldExecution() {
76 if (rtc::CurrentThreadId() == thread_id_) {
77 TaskQueueBase* yielding_from = TaskQueueBase::Current();
78 // Since we might continue execution on a process thread, we should reset
79 // the thread local task queue reference. This ensures that thread checkers
80 // won't think we are executing on the yielding task queue. It also ensure
81 // that TaskQueueBase::Current() won't return the yielding task queue.
82 TokenTaskQueue::CurrentTaskQueueSetter reset_queue(nullptr);
83 // When we yield, we don't want to risk executing further tasks on the
84 // currently executing task queue. If there's a ready task that also yields,
85 // it's added to this set as well and only tasks on the remaining task
86 // queues are executed.
87 auto inserted = yielded_.insert(yielding_from);
88 RTC_DCHECK(inserted.second);
89 RunReadyRunners();
90 yielded_.erase(inserted.first);
91 }
92 }
93
RunReadyRunners()94 void SimulatedTimeControllerImpl::RunReadyRunners() {
95 // Using a dummy thread rather than nullptr to avoid implicit thread creation
96 // by Thread::Current().
97 SimulatedThread::CurrentThreadSetter set_current(dummy_thread_.get());
98 MutexLock lock(&lock_);
99 RTC_DCHECK_EQ(rtc::CurrentThreadId(), thread_id_);
100 Timestamp current_time = CurrentTime();
101 // Clearing |ready_runners_| in case this is a recursive call:
102 // RunReadyRunners -> Run -> Event::Wait -> Yield ->RunReadyRunners
103 ready_runners_.clear();
104
105 // We repeat until we have no ready left to handle tasks posted by ready
106 // runners.
107 while (true) {
108 for (auto* runner : runners_) {
109 if (yielded_.find(runner->GetAsTaskQueue()) == yielded_.end() &&
110 runner->GetNextRunTime() <= current_time) {
111 ready_runners_.push_back(runner);
112 }
113 }
114 if (ready_runners_.empty())
115 break;
116 while (!ready_runners_.empty()) {
117 auto* runner = ready_runners_.front();
118 ready_runners_.pop_front();
119 lock_.Unlock();
120 // Note that the RunReady function might indirectly cause a call to
121 // Unregister() which will grab |lock_| again to remove items from
122 // |ready_runners_|.
123 runner->RunReady(current_time);
124 lock_.Lock();
125 }
126 }
127 }
128
CurrentTime() const129 Timestamp SimulatedTimeControllerImpl::CurrentTime() const {
130 MutexLock lock(&time_lock_);
131 return current_time_;
132 }
133
NextRunTime() const134 Timestamp SimulatedTimeControllerImpl::NextRunTime() const {
135 Timestamp current_time = CurrentTime();
136 Timestamp next_time = Timestamp::PlusInfinity();
137 MutexLock lock(&lock_);
138 for (auto* runner : runners_) {
139 Timestamp next_run_time = runner->GetNextRunTime();
140 if (next_run_time <= current_time)
141 return current_time;
142 next_time = std::min(next_time, next_run_time);
143 }
144 return next_time;
145 }
146
AdvanceTime(Timestamp target_time)147 void SimulatedTimeControllerImpl::AdvanceTime(Timestamp target_time) {
148 MutexLock time_lock(&time_lock_);
149 RTC_DCHECK_GE(target_time, current_time_);
150 current_time_ = target_time;
151 }
152
Register(SimulatedSequenceRunner * runner)153 void SimulatedTimeControllerImpl::Register(SimulatedSequenceRunner* runner) {
154 MutexLock lock(&lock_);
155 runners_.push_back(runner);
156 }
157
Unregister(SimulatedSequenceRunner * runner)158 void SimulatedTimeControllerImpl::Unregister(SimulatedSequenceRunner* runner) {
159 MutexLock lock(&lock_);
160 bool removed = RemoveByValue(&runners_, runner);
161 RTC_CHECK(removed);
162 RemoveByValue(&ready_runners_, runner);
163 }
164
StartYield(TaskQueueBase * yielding_from)165 void SimulatedTimeControllerImpl::StartYield(TaskQueueBase* yielding_from) {
166 auto inserted = yielded_.insert(yielding_from);
167 RTC_DCHECK(inserted.second);
168 }
169
StopYield(TaskQueueBase * yielding_from)170 void SimulatedTimeControllerImpl::StopYield(TaskQueueBase* yielding_from) {
171 yielded_.erase(yielding_from);
172 }
173
174 } // namespace sim_time_impl
175
GlobalSimulatedTimeController(Timestamp start_time)176 GlobalSimulatedTimeController::GlobalSimulatedTimeController(
177 Timestamp start_time)
178 : sim_clock_(start_time.us()), impl_(start_time), yield_policy_(&impl_) {
179 global_clock_.SetTime(start_time);
180 auto main_thread = std::make_unique<SimulatedMainThread>(&impl_);
181 impl_.Register(main_thread.get());
182 main_thread_ = std::move(main_thread);
183 }
184
185 GlobalSimulatedTimeController::~GlobalSimulatedTimeController() = default;
186
GetClock()187 Clock* GlobalSimulatedTimeController::GetClock() {
188 return &sim_clock_;
189 }
190
GetTaskQueueFactory()191 TaskQueueFactory* GlobalSimulatedTimeController::GetTaskQueueFactory() {
192 return &impl_;
193 }
194
195 std::unique_ptr<ProcessThread>
CreateProcessThread(const char * thread_name)196 GlobalSimulatedTimeController::CreateProcessThread(const char* thread_name) {
197 return impl_.CreateProcessThread(thread_name);
198 }
199
CreateThread(const std::string & name,std::unique_ptr<rtc::SocketServer> socket_server)200 std::unique_ptr<rtc::Thread> GlobalSimulatedTimeController::CreateThread(
201 const std::string& name,
202 std::unique_ptr<rtc::SocketServer> socket_server) {
203 return impl_.CreateThread(name, std::move(socket_server));
204 }
205
GetMainThread()206 rtc::Thread* GlobalSimulatedTimeController::GetMainThread() {
207 return main_thread_.get();
208 }
209
AdvanceTime(TimeDelta duration)210 void GlobalSimulatedTimeController::AdvanceTime(TimeDelta duration) {
211 rtc::ScopedYieldPolicy yield_policy(&impl_);
212 Timestamp current_time = impl_.CurrentTime();
213 Timestamp target_time = current_time + duration;
214 RTC_DCHECK_EQ(current_time.us(), rtc::TimeMicros());
215 while (current_time < target_time) {
216 impl_.RunReadyRunners();
217 Timestamp next_time = std::min(impl_.NextRunTime(), target_time);
218 impl_.AdvanceTime(next_time);
219 auto delta = next_time - current_time;
220 current_time = next_time;
221 sim_clock_.AdvanceTimeMicroseconds(delta.us());
222 global_clock_.AdvanceTime(delta);
223 }
224 // After time has been simulated up until |target_time| we also need to run
225 // tasks meant to be executed at |target_time|.
226 impl_.RunReadyRunners();
227 }
228
229 } // namespace webrtc
230