1 /*
2 * Copyright (C) 2019, The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "aidl_language.h"
18 #include "aidl_typenames.h"
19 #include "logging.h"
20
21 #include <stdlib.h>
22 #include <algorithm>
23 #include <iostream>
24 #include <limits>
25 #include <memory>
26
27 #include <android-base/parsedouble.h>
28 #include <android-base/parseint.h>
29 #include <android-base/strings.h>
30
31 using android::base::ConsumeSuffix;
32 using android::base::EndsWith;
33 using android::base::Join;
34 using android::base::StartsWith;
35 using std::string;
36 using std::unique_ptr;
37 using std::vector;
38
39 template <typename T>
CLZ(T x)40 constexpr int CLZ(T x) {
41 // __builtin_clz(0) is undefined
42 if (x == 0) return sizeof(T) * 8;
43 return (sizeof(T) == sizeof(uint64_t)) ? __builtin_clzl(x) : __builtin_clz(x);
44 }
45
46 template <typename T>
47 class OverflowGuard {
48 public:
OverflowGuard(T value)49 OverflowGuard(T value) : mValue(value) {}
Overflowed() const50 bool Overflowed() const { return mOverflowed; }
51
operator +()52 T operator+() { return +mValue; }
operator -()53 T operator-() {
54 if (isMin()) {
55 mOverflowed = true;
56 return 0;
57 }
58 return -mValue;
59 }
operator !()60 T operator!() { return !mValue; }
operator ~()61 T operator~() { return ~mValue; }
62
operator +(T o)63 T operator+(T o) {
64 T out;
65 mOverflowed = __builtin_add_overflow(mValue, o, &out);
66 return out;
67 }
operator -(T o)68 T operator-(T o) {
69 T out;
70 mOverflowed = __builtin_sub_overflow(mValue, o, &out);
71 return out;
72 }
operator *(T o)73 T operator*(T o) {
74 T out;
75 #ifdef _WIN32
76 // ___mulodi4 not on windows https://bugs.llvm.org/show_bug.cgi?id=46669
77 // we should still get an error here from ubsan, but the nice error
78 // is needed on linux for aidl_parser_fuzzer, where we are more
79 // concerned about overflows elsewhere in the compiler in addition to
80 // those in interfaces.
81 out = mValue * o;
82 #else
83 mOverflowed = __builtin_mul_overflow(mValue, o, &out);
84 #endif
85 return out;
86 }
operator /(T o)87 T operator/(T o) {
88 if (o == 0 || (isMin() && o == -1)) {
89 mOverflowed = true;
90 return 0;
91 }
92 return mValue / o;
93 }
operator %(T o)94 T operator%(T o) {
95 if (o == 0 || (isMin() && o == -1)) {
96 mOverflowed = true;
97 return 0;
98 }
99 return mValue % o;
100 }
operator |(T o)101 T operator|(T o) { return mValue | o; }
operator ^(T o)102 T operator^(T o) { return mValue ^ o; }
operator &(T o)103 T operator&(T o) { return mValue & o; }
operator <(T o)104 T operator<(T o) { return mValue < o; }
operator >(T o)105 T operator>(T o) { return mValue > o; }
operator <=(T o)106 T operator<=(T o) { return mValue <= o; }
operator >=(T o)107 T operator>=(T o) { return mValue >= o; }
operator ==(T o)108 T operator==(T o) { return mValue == o; }
operator !=(T o)109 T operator!=(T o) { return mValue != o; }
operator >>(T o)110 T operator>>(T o) {
111 if (o < 0 || o >= static_cast<T>(sizeof(T) * 8) || mValue < 0) {
112 mOverflowed = true;
113 return 0;
114 }
115 return mValue >> o;
116 }
operator <<(T o)117 T operator<<(T o) {
118 if (o < 0 || mValue < 0 || o > CLZ(mValue) || o >= static_cast<T>(sizeof(T) * 8)) {
119 mOverflowed = true;
120 return 0;
121 }
122 return mValue << o;
123 }
operator ||(T o)124 T operator||(T o) { return mValue || o; }
operator &&(T o)125 T operator&&(T o) { return mValue && o; }
126
127 private:
isMin()128 bool isMin() { return mValue == std::numeric_limits<T>::min(); }
129
130 T mValue;
131 bool mOverflowed = false;
132 };
133
134 template <typename T>
processGuard(const OverflowGuard<T> & guard,const AidlConstantValue & context)135 bool processGuard(const OverflowGuard<T>& guard, const AidlConstantValue& context) {
136 if (guard.Overflowed()) {
137 AIDL_ERROR(context) << "Constant expression computation overflows.";
138 return false;
139 }
140 return true;
141 }
142
143 // TODO: factor out all these macros
144 #define SHOULD_NOT_REACH() AIDL_FATAL(AIDL_LOCATION_HERE) << "Should not reach."
145 #define OPEQ(__y__) (string(op_) == string(__y__))
146 #define COMPUTE_UNARY(T, __op__) \
147 if (op == string(#__op__)) { \
148 OverflowGuard<T> guard(val); \
149 *out = __op__ guard; \
150 return processGuard(guard, context); \
151 }
152 #define COMPUTE_BINARY(T, __op__) \
153 if (op == string(#__op__)) { \
154 OverflowGuard<T> guard(lval); \
155 *out = guard __op__ rval; \
156 return processGuard(guard, context); \
157 }
158 #define OP_IS_BIN_ARITHMETIC (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%"))
159 #define OP_IS_BIN_BITFLIP (OPEQ("|") || OPEQ("^") || OPEQ("&"))
160 #define OP_IS_BIN_COMP \
161 (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!="))
162 #define OP_IS_BIN_SHIFT (OPEQ(">>") || OPEQ("<<"))
163 #define OP_IS_BIN_LOGICAL (OPEQ("||") || OPEQ("&&"))
164
165 // NOLINT to suppress missing parentheses warnings about __def__.
166 #define SWITCH_KIND(__cond__, __action__, __def__) \
167 switch (__cond__) { \
168 case Type::BOOLEAN: \
169 __action__(bool); \
170 case Type::INT8: \
171 __action__(int8_t); \
172 case Type::INT32: \
173 __action__(int32_t); \
174 case Type::INT64: \
175 __action__(int64_t); \
176 default: \
177 __def__; /* NOLINT */ \
178 }
179
180 template <class T>
handleUnary(const AidlConstantValue & context,const string & op,T val,int64_t * out)181 bool handleUnary(const AidlConstantValue& context, const string& op, T val, int64_t* out) {
182 COMPUTE_UNARY(T, +)
183 COMPUTE_UNARY(T, -)
184 COMPUTE_UNARY(T, !)
185 COMPUTE_UNARY(T, ~)
186 AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
187 return false;
188 }
189 template <>
handleUnary(const AidlConstantValue & context,const string & op,bool val,int64_t * out)190 bool handleUnary<bool>(const AidlConstantValue& context, const string& op, bool val, int64_t* out) {
191 COMPUTE_UNARY(bool, +)
192 COMPUTE_UNARY(bool, -)
193 COMPUTE_UNARY(bool, !)
194
195 if (op == "~") {
196 AIDL_ERROR(context) << "Bitwise negation of a boolean expression is always true.";
197 return false;
198 }
199 AIDL_FATAL(context) << "Could not handleUnary for " << op << " " << val;
200 return false;
201 }
202
203 template <class T>
handleBinaryCommon(const AidlConstantValue & context,T lval,const string & op,T rval,int64_t * out)204 bool handleBinaryCommon(const AidlConstantValue& context, T lval, const string& op, T rval,
205 int64_t* out) {
206 COMPUTE_BINARY(T, +)
207 COMPUTE_BINARY(T, -)
208 COMPUTE_BINARY(T, *)
209 COMPUTE_BINARY(T, /)
210 COMPUTE_BINARY(T, %)
211 COMPUTE_BINARY(T, |)
212 COMPUTE_BINARY(T, ^)
213 COMPUTE_BINARY(T, &)
214 // comparison operators: return 0 or 1 by nature.
215 COMPUTE_BINARY(T, ==)
216 COMPUTE_BINARY(T, !=)
217 COMPUTE_BINARY(T, <)
218 COMPUTE_BINARY(T, >)
219 COMPUTE_BINARY(T, <=)
220 COMPUTE_BINARY(T, >=)
221
222 AIDL_FATAL(context) << "Could not handleBinaryCommon for " << lval << " " << op << " " << rval;
223 return false;
224 }
225
226 template <class T>
handleShift(const AidlConstantValue & context,T lval,const string & op,T rval,int64_t * out)227 bool handleShift(const AidlConstantValue& context, T lval, const string& op, T rval, int64_t* out) {
228 // just cast rval to int64_t and it should fit.
229 COMPUTE_BINARY(T, >>)
230 COMPUTE_BINARY(T, <<)
231
232 AIDL_FATAL(context) << "Could not handleShift for " << lval << " " << op << " " << rval;
233 return false;
234 }
235
handleLogical(const AidlConstantValue & context,bool lval,const string & op,bool rval,int64_t * out)236 bool handleLogical(const AidlConstantValue& context, bool lval, const string& op, bool rval,
237 int64_t* out) {
238 COMPUTE_BINARY(bool, ||);
239 COMPUTE_BINARY(bool, &&);
240
241 AIDL_FATAL(context) << "Could not handleLogical for " << lval << " " << op << " " << rval;
242 return false;
243 }
244
isValidLiteralChar(char c)245 static bool isValidLiteralChar(char c) {
246 return !(c <= 0x1f || // control characters are < 0x20
247 c >= 0x7f || // DEL is 0x7f
248 c == '\\'); // Disallow backslashes for future proofing.
249 }
250
ParseFloating(std::string_view sv,double * parsed)251 bool ParseFloating(std::string_view sv, double* parsed) {
252 // float literal should be parsed successfully.
253 android::base::ConsumeSuffix(&sv, "f");
254 return android::base::ParseDouble(std::string(sv).data(), parsed);
255 }
256
ParseFloating(std::string_view sv,float * parsed)257 bool ParseFloating(std::string_view sv, float* parsed) {
258 // we only care about float literal (with suffix "f").
259 if (!android::base::ConsumeSuffix(&sv, "f")) {
260 return false;
261 }
262 return android::base::ParseFloat(std::string(sv).data(), parsed);
263 }
264
IsCompatibleType(Type type,const string & op)265 bool AidlUnaryConstExpression::IsCompatibleType(Type type, const string& op) {
266 // Verify the unary type here
267 switch (type) {
268 case Type::BOOLEAN: // fall-through
269 case Type::INT8: // fall-through
270 case Type::INT32: // fall-through
271 case Type::INT64:
272 return true;
273 case Type::FLOATING:
274 return (op == "+" || op == "-");
275 default:
276 return false;
277 }
278 }
279
AreCompatibleTypes(Type t1,Type t2)280 bool AidlBinaryConstExpression::AreCompatibleTypes(Type t1, Type t2) {
281 switch (t1) {
282 case Type::STRING:
283 if (t2 == Type::STRING) {
284 return true;
285 }
286 break;
287 case Type::BOOLEAN: // fall-through
288 case Type::INT8: // fall-through
289 case Type::INT32: // fall-through
290 case Type::INT64:
291 switch (t2) {
292 case Type::BOOLEAN: // fall-through
293 case Type::INT8: // fall-through
294 case Type::INT32: // fall-through
295 case Type::INT64:
296 return true;
297 break;
298 default:
299 break;
300 }
301 break;
302 default:
303 break;
304 }
305
306 return false;
307 }
308
309 // Returns the promoted kind for both operands
UsualArithmeticConversion(Type left,Type right)310 AidlConstantValue::Type AidlBinaryConstExpression::UsualArithmeticConversion(Type left,
311 Type right) {
312 // These are handled as special cases
313 AIDL_FATAL_IF(left == Type::STRING || right == Type::STRING, AIDL_LOCATION_HERE);
314 AIDL_FATAL_IF(left == Type::FLOATING || right == Type::FLOATING, AIDL_LOCATION_HERE);
315
316 // Kinds in concern: bool, (u)int[8|32|64]
317 if (left == right) return left; // easy case
318 if (left == Type::BOOLEAN) return right;
319 if (right == Type::BOOLEAN) return left;
320
321 return left < right ? right : left;
322 }
323
324 // Returns the promoted integral type where INT32 is the smallest type
IntegralPromotion(Type in)325 AidlConstantValue::Type AidlBinaryConstExpression::IntegralPromotion(Type in) {
326 return (Type::INT32 < in) ? in : Type::INT32;
327 }
328
Default(const AidlTypeSpecifier & specifier)329 AidlConstantValue* AidlConstantValue::Default(const AidlTypeSpecifier& specifier) {
330 AidlLocation location = specifier.GetLocation();
331
332 // allocation of int[0] is a bit wasteful in Java
333 if (specifier.IsArray()) {
334 return nullptr;
335 }
336
337 const std::string name = specifier.GetName();
338 if (name == "boolean") {
339 return Boolean(location, false);
340 }
341 if (name == "byte" || name == "int" || name == "long") {
342 return Integral(location, "0");
343 }
344 if (name == "float") {
345 return Floating(location, "0.0f");
346 }
347 if (name == "double") {
348 return Floating(location, "0.0");
349 }
350 return nullptr;
351 }
352
Boolean(const AidlLocation & location,bool value)353 AidlConstantValue* AidlConstantValue::Boolean(const AidlLocation& location, bool value) {
354 return new AidlConstantValue(location, Type::BOOLEAN, value ? "true" : "false");
355 }
356
Character(const AidlLocation & location,char value)357 AidlConstantValue* AidlConstantValue::Character(const AidlLocation& location, char value) {
358 const std::string explicit_value = string("'") + value + "'";
359 if (!isValidLiteralChar(value)) {
360 AIDL_ERROR(location) << "Invalid character literal " << value;
361 return new AidlConstantValue(location, Type::ERROR, explicit_value);
362 }
363 return new AidlConstantValue(location, Type::CHARACTER, explicit_value);
364 }
365
Floating(const AidlLocation & location,const std::string & value)366 AidlConstantValue* AidlConstantValue::Floating(const AidlLocation& location,
367 const std::string& value) {
368 return new AidlConstantValue(location, Type::FLOATING, value);
369 }
370
IsHex(const string & value)371 bool AidlConstantValue::IsHex(const string& value) {
372 return StartsWith(value, "0x") || StartsWith(value, "0X");
373 }
374
ParseIntegral(const string & value,int64_t * parsed_value,Type * parsed_type)375 bool AidlConstantValue::ParseIntegral(const string& value, int64_t* parsed_value,
376 Type* parsed_type) {
377 if (parsed_value == nullptr || parsed_type == nullptr) {
378 return false;
379 }
380
381 const bool isLong = EndsWith(value, 'l') || EndsWith(value, 'L');
382 const std::string value_substr = isLong ? value.substr(0, value.size() - 1) : value;
383
384 if (IsHex(value)) {
385 // AIDL considers 'const int foo = 0xffffffff' as -1, but if we want to
386 // handle that when computing constant expressions, then we need to
387 // represent 0xffffffff as a uint32_t. However, AIDL only has signed types;
388 // so we parse as an unsigned int when possible and then cast to a signed
389 // int. One example of this is in ICameraService.aidl where a constant int
390 // is used for bit manipulations which ideally should be handled with an
391 // unsigned int.
392 //
393 // Note, for historical consistency, we need to consider small hex values
394 // as an integral type. Recognizing them as INT8 could break some files,
395 // even though it would simplify this code.
396 if (uint32_t rawValue32;
397 !isLong && android::base::ParseUint<uint32_t>(value_substr, &rawValue32)) {
398 *parsed_value = static_cast<int32_t>(rawValue32);
399 *parsed_type = Type::INT32;
400 } else if (uint64_t rawValue64; android::base::ParseUint<uint64_t>(value_substr, &rawValue64)) {
401 *parsed_value = static_cast<int64_t>(rawValue64);
402 *parsed_type = Type::INT64;
403 } else {
404 *parsed_value = 0;
405 *parsed_type = Type::ERROR;
406 return false;
407 }
408 return true;
409 }
410
411 if (!android::base::ParseInt<int64_t>(value_substr, parsed_value)) {
412 *parsed_value = 0;
413 *parsed_type = Type::ERROR;
414 return false;
415 }
416
417 if (isLong) {
418 *parsed_type = Type::INT64;
419 } else {
420 // guess literal type.
421 if (*parsed_value <= INT8_MAX && *parsed_value >= INT8_MIN) {
422 *parsed_type = Type::INT8;
423 } else if (*parsed_value <= INT32_MAX && *parsed_value >= INT32_MIN) {
424 *parsed_type = Type::INT32;
425 } else {
426 *parsed_type = Type::INT64;
427 }
428 }
429 return true;
430 }
431
Integral(const AidlLocation & location,const string & value)432 AidlConstantValue* AidlConstantValue::Integral(const AidlLocation& location, const string& value) {
433 AIDL_FATAL_IF(value.empty(), location);
434
435 Type parsed_type;
436 int64_t parsed_value = 0;
437 bool success = ParseIntegral(value, &parsed_value, &parsed_type);
438 if (!success) {
439 return nullptr;
440 }
441
442 return new AidlConstantValue(location, parsed_type, parsed_value, value);
443 }
444
Array(const AidlLocation & location,std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values)445 AidlConstantValue* AidlConstantValue::Array(
446 const AidlLocation& location, std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values) {
447 AIDL_FATAL_IF(values == nullptr, location);
448 std::vector<std::string> str_values;
449 for (const auto& v : *values) {
450 str_values.push_back(v->value_);
451 }
452 return new AidlConstantValue(location, Type::ARRAY, std::move(values), Join(str_values, ", "));
453 }
454
String(const AidlLocation & location,const string & value)455 AidlConstantValue* AidlConstantValue::String(const AidlLocation& location, const string& value) {
456 for (size_t i = 0; i < value.length(); ++i) {
457 if (!isValidLiteralChar(value[i])) {
458 AIDL_ERROR(location) << "Found invalid character at index " << i << " in string constant '"
459 << value << "'";
460 return new AidlConstantValue(location, Type::ERROR, value);
461 }
462 }
463
464 return new AidlConstantValue(location, Type::STRING, value);
465 }
466
ValueString(const AidlTypeSpecifier & type,const ConstantValueDecorator & decorator) const467 string AidlConstantValue::ValueString(const AidlTypeSpecifier& type,
468 const ConstantValueDecorator& decorator) const {
469 if (type.IsGeneric()) {
470 AIDL_ERROR(type) << "Generic type cannot be specified with a constant literal.";
471 return "";
472 }
473 if (!is_evaluated_) {
474 // TODO(b/142722772) CheckValid() should be called before ValueString()
475 bool success = CheckValid();
476 success &= evaluate();
477 if (!success) {
478 // the detailed error message shall be printed in evaluate
479 return "";
480 }
481 }
482 if (!is_valid_) {
483 AIDL_ERROR(this) << "Invalid constant value: " + value_;
484 return "";
485 }
486
487 const AidlDefinedType* defined_type = type.GetDefinedType();
488 if (defined_type && !type.IsArray()) {
489 const AidlEnumDeclaration* enum_type = defined_type->AsEnumDeclaration();
490 if (!enum_type) {
491 AIDL_ERROR(this) << "Invalid type (" << defined_type->GetCanonicalName()
492 << ") for a const value (" << value_ << ")";
493 return "";
494 }
495 if (type_ != Type::REF) {
496 AIDL_ERROR(this) << "Invalid value (" << value_ << ") for enum "
497 << enum_type->GetCanonicalName();
498 return "";
499 }
500 return decorator(type, value_);
501 }
502
503 const string& type_string = type.GetName();
504 int err = 0;
505
506 switch (final_type_) {
507 case Type::CHARACTER:
508 if (type_string == "char") {
509 return decorator(type, final_string_value_);
510 }
511 err = -1;
512 break;
513 case Type::STRING:
514 if (type_string == "String") {
515 return decorator(type, final_string_value_);
516 }
517 err = -1;
518 break;
519 case Type::BOOLEAN: // fall-through
520 case Type::INT8: // fall-through
521 case Type::INT32: // fall-through
522 case Type::INT64:
523 if (type_string == "byte") {
524 if (final_value_ > INT8_MAX || final_value_ < INT8_MIN) {
525 err = -1;
526 break;
527 }
528 return decorator(type, std::to_string(static_cast<int8_t>(final_value_)));
529 } else if (type_string == "int") {
530 if (final_value_ > INT32_MAX || final_value_ < INT32_MIN) {
531 err = -1;
532 break;
533 }
534 return decorator(type, std::to_string(static_cast<int32_t>(final_value_)));
535 } else if (type_string == "long") {
536 return decorator(type, std::to_string(final_value_));
537 } else if (type_string == "boolean") {
538 return decorator(type, final_value_ ? "true" : "false");
539 }
540 err = -1;
541 break;
542 case Type::ARRAY: {
543 if (!type.IsArray()) {
544 err = -1;
545 break;
546 }
547 vector<string> value_strings;
548 value_strings.reserve(values_.size());
549 bool success = true;
550
551 for (const auto& value : values_) {
552 const AidlTypeSpecifier& array_base = type.ArrayBase();
553 const string value_string = value->ValueString(array_base, decorator);
554 if (value_string.empty()) {
555 success = false;
556 break;
557 }
558 value_strings.push_back(value_string);
559 }
560 if (!success) {
561 err = -1;
562 break;
563 }
564
565 return decorator(type, "{" + Join(value_strings, ", ") + "}");
566 }
567 case Type::FLOATING: {
568 if (type_string == "double") {
569 double parsed_value;
570 if (!ParseFloating(value_, &parsed_value)) {
571 AIDL_ERROR(this) << "Could not parse " << value_;
572 err = -1;
573 break;
574 }
575 return decorator(type, std::to_string(parsed_value));
576 }
577 if (type_string == "float") {
578 float parsed_value;
579 if (!ParseFloating(value_, &parsed_value)) {
580 AIDL_ERROR(this) << "Could not parse " << value_;
581 err = -1;
582 break;
583 }
584 return decorator(type, std::to_string(parsed_value) + "f");
585 }
586 err = -1;
587 break;
588 }
589 default:
590 err = -1;
591 break;
592 }
593
594 AIDL_FATAL_IF(err == 0, this);
595 AIDL_ERROR(this) << "Invalid type specifier for " << ToString(final_type_) << ": " << type_string;
596 return "";
597 }
598
CheckValid() const599 bool AidlConstantValue::CheckValid() const {
600 // Nothing needs to be checked here. The constant value will be validated in
601 // the constructor or in the evaluate() function.
602 if (is_evaluated_) return is_valid_;
603
604 switch (type_) {
605 case Type::BOOLEAN: // fall-through
606 case Type::INT8: // fall-through
607 case Type::INT32: // fall-through
608 case Type::INT64: // fall-through
609 case Type::CHARACTER: // fall-through
610 case Type::STRING: // fall-through
611 case Type::REF: // fall-through
612 case Type::FLOATING: // fall-through
613 case Type::UNARY: // fall-through
614 case Type::BINARY:
615 is_valid_ = true;
616 break;
617 case Type::ARRAY:
618 is_valid_ = true;
619 for (const auto& v : values_) is_valid_ &= v->CheckValid();
620 break;
621 case Type::ERROR:
622 return false;
623 default:
624 AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
625 return false;
626 }
627
628 return true;
629 }
630
evaluate() const631 bool AidlConstantValue::evaluate() const {
632 if (is_evaluated_) {
633 return is_valid_;
634 }
635 int err = 0;
636 is_evaluated_ = true;
637
638 switch (type_) {
639 case Type::ARRAY: {
640 Type array_type = Type::ERROR;
641 bool success = true;
642 for (const auto& value : values_) {
643 success = value->CheckValid();
644 if (success) {
645 success = value->evaluate();
646 if (!success) {
647 AIDL_ERROR(this) << "Invalid array element: " << value->value_;
648 break;
649 }
650 if (array_type == Type::ERROR) {
651 array_type = value->final_type_;
652 } else if (!AidlBinaryConstExpression::AreCompatibleTypes(array_type,
653 value->final_type_)) {
654 AIDL_ERROR(this) << "Incompatible array element type: " << ToString(value->final_type_)
655 << ". Expecting type compatible with " << ToString(array_type);
656 success = false;
657 break;
658 }
659 } else {
660 break;
661 }
662 }
663 if (!success) {
664 err = -1;
665 break;
666 }
667 final_type_ = type_;
668 break;
669 }
670 case Type::BOOLEAN:
671 if ((value_ != "true") && (value_ != "false")) {
672 AIDL_ERROR(this) << "Invalid constant boolean value: " << value_;
673 err = -1;
674 break;
675 }
676 final_value_ = (value_ == "true") ? 1 : 0;
677 final_type_ = type_;
678 break;
679 case Type::INT8: // fall-through
680 case Type::INT32: // fall-through
681 case Type::INT64:
682 // Parsing happens in the constructor
683 final_type_ = type_;
684 break;
685 case Type::CHARACTER: // fall-through
686 case Type::STRING:
687 final_string_value_ = value_;
688 final_type_ = type_;
689 break;
690 case Type::FLOATING:
691 // Just parse on the fly in ValueString
692 final_type_ = type_;
693 break;
694 default:
695 AIDL_FATAL(this) << "Unrecognized constant value type: " << ToString(type_);
696 err = -1;
697 }
698
699 return (err == 0) ? true : false;
700 }
701
ToString(Type type)702 string AidlConstantValue::ToString(Type type) {
703 switch (type) {
704 case Type::BOOLEAN:
705 return "a literal boolean";
706 case Type::INT8:
707 return "an int8 literal";
708 case Type::INT32:
709 return "an int32 literal";
710 case Type::INT64:
711 return "an int64 literal";
712 case Type::ARRAY:
713 return "a literal array";
714 case Type::CHARACTER:
715 return "a literal char";
716 case Type::STRING:
717 return "a literal string";
718 case Type::REF:
719 return "a reference";
720 case Type::FLOATING:
721 return "a literal float";
722 case Type::UNARY:
723 return "a unary expression";
724 case Type::BINARY:
725 return "a binary expression";
726 case Type::ERROR:
727 AIDL_FATAL(AIDL_LOCATION_HERE) << "aidl internal error: error type failed to halt program";
728 return "";
729 default:
730 AIDL_FATAL(AIDL_LOCATION_HERE)
731 << "aidl internal error: unknown constant type: " << static_cast<int>(type);
732 return ""; // not reached
733 }
734 }
735
AidlConstantReference(const AidlLocation & location,const std::string & value)736 AidlConstantReference::AidlConstantReference(const AidlLocation& location, const std::string& value)
737 : AidlConstantValue(location, Type::REF, value) {
738 const auto pos = value.find_last_of('.');
739 if (pos == string::npos) {
740 field_name_ = value;
741 } else {
742 ref_type_ = std::make_unique<AidlTypeSpecifier>(location, value.substr(0, pos), false, nullptr,
743 Comments{});
744 field_name_ = value.substr(pos + 1);
745 }
746 }
747
Resolve(const AidlDefinedType * scope) const748 const AidlConstantValue* AidlConstantReference::Resolve(const AidlDefinedType* scope) const {
749 if (resolved_) return resolved_;
750
751 const AidlDefinedType* defined_type;
752 if (ref_type_) {
753 defined_type = ref_type_->GetDefinedType();
754 } else {
755 defined_type = scope;
756 }
757
758 if (!defined_type) {
759 // This can happen when "const reference" is used in an unsupported way,
760 // but missed in checks there. It works as a safety net.
761 AIDL_ERROR(*this) << "Can't resolve the reference (" << value_ << ")";
762 return nullptr;
763 }
764
765 if (auto enum_decl = defined_type->AsEnumDeclaration(); enum_decl) {
766 for (const auto& e : enum_decl->GetEnumerators()) {
767 if (e->GetName() == field_name_) {
768 return resolved_ = e->GetValue();
769 }
770 }
771 } else {
772 for (const auto& c : defined_type->GetConstantDeclarations()) {
773 if (c->GetName() == field_name_) {
774 return resolved_ = &c->GetValue();
775 }
776 }
777 }
778 AIDL_ERROR(*this) << "Can't find " << field_name_ << " in " << defined_type->GetName();
779 return nullptr;
780 }
781
CheckValid() const782 bool AidlConstantReference::CheckValid() const {
783 if (is_evaluated_) return is_valid_;
784 AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
785 is_valid_ = resolved_->CheckValid();
786 return is_valid_;
787 }
788
evaluate() const789 bool AidlConstantReference::evaluate() const {
790 if (is_evaluated_) return is_valid_;
791 AIDL_FATAL_IF(!resolved_, this) << "Should be resolved first: " << value_;
792 is_evaluated_ = true;
793
794 resolved_->evaluate();
795 is_valid_ = resolved_->is_valid_;
796 final_type_ = resolved_->final_type_;
797 if (is_valid_) {
798 if (final_type_ == Type::STRING) {
799 final_string_value_ = resolved_->final_string_value_;
800 } else {
801 final_value_ = resolved_->final_value_;
802 }
803 }
804 return is_valid_;
805 }
806
CheckValid() const807 bool AidlUnaryConstExpression::CheckValid() const {
808 if (is_evaluated_) return is_valid_;
809 AIDL_FATAL_IF(unary_ == nullptr, this);
810
811 is_valid_ = unary_->CheckValid();
812 if (!is_valid_) {
813 final_type_ = Type::ERROR;
814 return false;
815 }
816
817 return AidlConstantValue::CheckValid();
818 }
819
evaluate() const820 bool AidlUnaryConstExpression::evaluate() const {
821 if (is_evaluated_) {
822 return is_valid_;
823 }
824 is_evaluated_ = true;
825
826 // Recursively evaluate the expression tree
827 if (!unary_->is_evaluated_) {
828 // TODO(b/142722772) CheckValid() should be called before ValueString()
829 bool success = CheckValid();
830 success &= unary_->evaluate();
831 if (!success) {
832 is_valid_ = false;
833 return false;
834 }
835 }
836 if (!IsCompatibleType(unary_->final_type_, op_)) {
837 AIDL_ERROR(unary_) << "'" << op_ << "'"
838 << " is not compatible with " << ToString(unary_->final_type_)
839 << ": " + value_;
840 is_valid_ = false;
841 return false;
842 }
843 if (!unary_->is_valid_) {
844 AIDL_ERROR(unary_) << "Invalid constant unary expression: " + value_;
845 is_valid_ = false;
846 return false;
847 }
848 final_type_ = unary_->final_type_;
849
850 if (final_type_ == Type::FLOATING) {
851 // don't do anything here. ValueString() will handle everything.
852 is_valid_ = true;
853 return true;
854 }
855
856 #define CASE_UNARY(__type__) \
857 return is_valid_ = \
858 handleUnary(*this, op_, static_cast<__type__>(unary_->final_value_), &final_value_);
859
860 SWITCH_KIND(final_type_, CASE_UNARY, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
861 is_valid_ = false; return false;)
862 }
863
CheckValid() const864 bool AidlBinaryConstExpression::CheckValid() const {
865 bool success = false;
866 if (is_evaluated_) return is_valid_;
867 AIDL_FATAL_IF(left_val_ == nullptr, this);
868 AIDL_FATAL_IF(right_val_ == nullptr, this);
869
870 success = left_val_->CheckValid();
871 if (!success) {
872 final_type_ = Type::ERROR;
873 AIDL_ERROR(this) << "Invalid left operand in binary expression: " + value_;
874 }
875
876 success = right_val_->CheckValid();
877 if (!success) {
878 AIDL_ERROR(this) << "Invalid right operand in binary expression: " + value_;
879 final_type_ = Type::ERROR;
880 }
881
882 if (final_type_ == Type::ERROR) {
883 is_valid_ = false;
884 return false;
885 }
886
887 is_valid_ = true;
888 return AidlConstantValue::CheckValid();
889 }
890
evaluate() const891 bool AidlBinaryConstExpression::evaluate() const {
892 if (is_evaluated_) {
893 return is_valid_;
894 }
895 is_evaluated_ = true;
896 AIDL_FATAL_IF(left_val_ == nullptr, this);
897 AIDL_FATAL_IF(right_val_ == nullptr, this);
898
899 // Recursively evaluate the binary expression tree
900 if (!left_val_->is_evaluated_ || !right_val_->is_evaluated_) {
901 // TODO(b/142722772) CheckValid() should be called before ValueString()
902 bool success = CheckValid();
903 success &= left_val_->evaluate();
904 success &= right_val_->evaluate();
905 if (!success) {
906 is_valid_ = false;
907 return false;
908 }
909 }
910 if (!left_val_->is_valid_ || !right_val_->is_valid_) {
911 is_valid_ = false;
912 return false;
913 }
914 is_valid_ = AreCompatibleTypes(left_val_->final_type_, right_val_->final_type_);
915 if (!is_valid_) {
916 AIDL_ERROR(this) << "Cannot perform operation '" << op_ << "' on "
917 << ToString(right_val_->GetType()) << " and " << ToString(left_val_->GetType())
918 << ".";
919 return false;
920 }
921
922 bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP;
923
924 // Handle String case first
925 if (left_val_->final_type_ == Type::STRING) {
926 AIDL_FATAL_IF(right_val_->final_type_ != Type::STRING, this);
927 if (!OPEQ("+")) {
928 AIDL_ERROR(this) << "Only '+' is supported for strings, not '" << op_ << "'.";
929 final_type_ = Type::ERROR;
930 is_valid_ = false;
931 return false;
932 }
933
934 // Remove trailing " from lhs
935 const string& lhs = left_val_->final_string_value_;
936 if (lhs.back() != '"') {
937 AIDL_ERROR(this) << "'" << lhs << "' is missing a trailing quote.";
938 final_type_ = Type::ERROR;
939 is_valid_ = false;
940 return false;
941 }
942 const string& rhs = right_val_->final_string_value_;
943 // Remove starting " from rhs
944 if (rhs.front() != '"') {
945 AIDL_ERROR(this) << "'" << rhs << "' is missing a leading quote.";
946 final_type_ = Type::ERROR;
947 is_valid_ = false;
948 return false;
949 }
950
951 final_string_value_ = string(lhs.begin(), lhs.end() - 1).append(rhs.begin() + 1, rhs.end());
952 final_type_ = Type::STRING;
953 return true;
954 }
955
956 // CASE: + - * / % | ^ & < > <= >= == !=
957 if (isArithmeticOrBitflip || OP_IS_BIN_COMP) {
958 // promoted kind for both operands.
959 Type promoted = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
960 IntegralPromotion(right_val_->final_type_));
961 // result kind.
962 final_type_ = isArithmeticOrBitflip
963 ? promoted // arithmetic or bitflip operators generates promoted type
964 : Type::BOOLEAN; // comparison operators generates bool
965
966 #define CASE_BINARY_COMMON(__type__) \
967 return is_valid_ = \
968 handleBinaryCommon(*this, static_cast<__type__>(left_val_->final_value_), op_, \
969 static_cast<__type__>(right_val_->final_value_), &final_value_);
970
971 SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
972 is_valid_ = false; return false;)
973 }
974
975 // CASE: << >>
976 string newOp = op_;
977 if (OP_IS_BIN_SHIFT) {
978 // promoted kind for both operands.
979 final_type_ = UsualArithmeticConversion(IntegralPromotion(left_val_->final_type_),
980 IntegralPromotion(right_val_->final_type_));
981 auto numBits = right_val_->final_value_;
982 if (numBits < 0) {
983 // shifting with negative number of bits is undefined in C. In AIDL it
984 // is defined as shifting into the other direction.
985 newOp = OPEQ("<<") ? ">>" : "<<";
986 numBits = -numBits;
987 }
988
989 #define CASE_SHIFT(__type__) \
990 return is_valid_ = handleShift(*this, static_cast<__type__>(left_val_->final_value_), newOp, \
991 static_cast<__type__>(numBits), &final_value_);
992
993 SWITCH_KIND(final_type_, CASE_SHIFT, SHOULD_NOT_REACH(); final_type_ = Type::ERROR;
994 is_valid_ = false; return false;)
995 }
996
997 // CASE: && ||
998 if (OP_IS_BIN_LOGICAL) {
999 final_type_ = Type::BOOLEAN;
1000 // easy; everything is bool.
1001 return handleLogical(*this, left_val_->final_value_, op_, right_val_->final_value_,
1002 &final_value_);
1003 }
1004
1005 SHOULD_NOT_REACH();
1006 is_valid_ = false;
1007 return false;
1008 }
1009
AidlConstantValue(const AidlLocation & location,Type parsed_type,int64_t parsed_value,const string & checked_value)1010 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type parsed_type,
1011 int64_t parsed_value, const string& checked_value)
1012 : AidlNode(location),
1013 type_(parsed_type),
1014 value_(checked_value),
1015 final_type_(parsed_type),
1016 final_value_(parsed_value) {
1017 AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
1018 AIDL_FATAL_IF(type_ != Type::INT8 && type_ != Type::INT32 && type_ != Type::INT64, location);
1019 }
1020
AidlConstantValue(const AidlLocation & location,Type type,const string & checked_value)1021 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
1022 const string& checked_value)
1023 : AidlNode(location),
1024 type_(type),
1025 value_(checked_value),
1026 final_type_(type) {
1027 AIDL_FATAL_IF(value_.empty() && type_ != Type::ERROR, location);
1028 switch (type_) {
1029 case Type::INT8:
1030 case Type::INT32:
1031 case Type::INT64:
1032 case Type::ARRAY:
1033 AIDL_FATAL(this) << "Invalid type: " << ToString(type_);
1034 break;
1035 default:
1036 break;
1037 }
1038 }
1039
AidlConstantValue(const AidlLocation & location,Type type,std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,const std::string & value)1040 AidlConstantValue::AidlConstantValue(const AidlLocation& location, Type type,
1041 std::unique_ptr<vector<unique_ptr<AidlConstantValue>>> values,
1042 const std::string& value)
1043 : AidlNode(location),
1044 type_(type),
1045 values_(std::move(*values)),
1046 value_(value),
1047 is_valid_(false),
1048 is_evaluated_(false),
1049 final_type_(type) {
1050 AIDL_FATAL_IF(type_ != Type::ARRAY, location);
1051 }
1052
AidlUnaryConstExpression(const AidlLocation & location,const string & op,std::unique_ptr<AidlConstantValue> rval)1053 AidlUnaryConstExpression::AidlUnaryConstExpression(const AidlLocation& location, const string& op,
1054 std::unique_ptr<AidlConstantValue> rval)
1055 : AidlConstantValue(location, Type::UNARY, op + rval->value_),
1056 unary_(std::move(rval)),
1057 op_(op) {
1058 final_type_ = Type::UNARY;
1059 }
1060
AidlBinaryConstExpression(const AidlLocation & location,std::unique_ptr<AidlConstantValue> lval,const string & op,std::unique_ptr<AidlConstantValue> rval)1061 AidlBinaryConstExpression::AidlBinaryConstExpression(const AidlLocation& location,
1062 std::unique_ptr<AidlConstantValue> lval,
1063 const string& op,
1064 std::unique_ptr<AidlConstantValue> rval)
1065 : AidlConstantValue(location, Type::BINARY, lval->value_ + op + rval->value_),
1066 left_val_(std::move(lval)),
1067 right_val_(std::move(rval)),
1068 op_(op) {
1069 final_type_ = Type::BINARY;
1070 }
1071