# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies YUV & JPEG image captures have similar brightness.""" import logging import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils import target_exposure_utils NAME = os.path.splitext(os.path.basename(__file__))[0] PATCH_H = 0.1 # center 10% PATCH_W = 0.1 PATCH_X = 0.5 - PATCH_W/2 PATCH_Y = 0.5 - PATCH_H/2 THRESHOLD_MAX_RMS_DIFF = 0.03 def do_capture_and_extract_rgb_means(req, cam, size, img_type, log_path, debug): """Do capture and extra rgb_means of center patch. Args: req: capture request cam: camera object size: [width, height] img_type: string of 'yuv' or 'jpeg' log_path: location for saving image debug: boolean to flag saving captured images Returns: center patch RGB means """ out_surface = {'width': size[0], 'height': size[1], 'format': img_type} cap = cam.do_capture(req, out_surface) logging.debug('e_cap: %d, s_cap: %d', cap['metadata']['android.sensor.exposureTime'], cap['metadata']['android.sensor.sensitivity']) if img_type == 'jpg': if cap['format'] != 'jpeg': raise AssertionError(f"{cap['format']} != jpeg") img = image_processing_utils.decompress_jpeg_to_rgb_image(cap['data']) else: if cap['format'] != img_type: raise AssertionError(f"{cap['format']} != {img_type}") img = image_processing_utils.convert_capture_to_rgb_image(cap) if cap['width'] != size[0]: raise AssertionError(f"{cap['width']} != {size[0]}") if cap['height'] != size[1]: raise AssertionError(f"{cap['height']} != {size[1]}") if debug: image_processing_utils.write_image(img, '%s_%s_w%d_h%d.jpg'%( os.path.join(log_path, NAME), img_type, size[0], size[1])) if img_type == 'jpg': if img.shape[0] != size[1]: raise AssertionError(f'{img.shape[0]} != {size[1]}') if img.shape[1] != size[0]: raise AssertionError(f'{img.shape[1]} != {size[0]}') if img.shape[2] != 3: raise AssertionError(f'{img.shape[2]} != 3') patch = image_processing_utils.get_image_patch( img, PATCH_X, PATCH_Y, PATCH_W, PATCH_H) rgb = image_processing_utils.compute_image_means(patch) logging.debug('Captured %s %dx%d rgb = %s', img_type, cap['width'], cap['height'], str(rgb)) return rgb class YuvJpegAllTest(its_base_test.ItsBaseTest): """Test reported sizes & fmts for YUV & JPEG caps return similar images.""" def test_yuv_jpeg_all(self): logging.debug('Starting %s', NAME) with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) camera_properties_utils.skip_unless( camera_properties_utils.compute_target_exposure(props) and camera_properties_utils.per_frame_control(props)) log_path = self.log_path debug = self.debug_mode # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, self.chart_distance) # Use a manual request with a linear tonemap so that the YUV and JPEG # should look the same (once converted by the image_processing_utils). e, s = target_exposure_utils.get_target_exposure_combos( log_path, cam)['midExposureTime'] logging.debug('e_req: %d, s_req: %d', e, s) req = capture_request_utils.manual_capture_request(s, e, 0.0, True, props) rgbs = [] for size in capture_request_utils.get_available_output_sizes( 'yuv', props): rgbs.append(do_capture_and_extract_rgb_means( req, cam, size, 'yuv', log_path, debug)) for size in capture_request_utils.get_available_output_sizes( 'jpg', props): rgbs.append(do_capture_and_extract_rgb_means( req, cam, size, 'jpg', log_path, debug)) # Plot means vs format pylab.figure(NAME) pylab.title(NAME) pylab.plot(range(len(rgbs)), [r[0] for r in rgbs], '-ro') pylab.plot(range(len(rgbs)), [g[1] for g in rgbs], '-go') pylab.plot(range(len(rgbs)), [b[2] for b in rgbs], '-bo') pylab.ylim([0, 1]) pylab.xlabel('format number') pylab.ylabel('RGB avg [0, 1]') matplotlib.pyplot.savefig( '%s_plot_means.png' % os.path.join(log_path, NAME)) # Assert all captured images are similar in RBG space max_diff = 0 for rgb_i in rgbs[1:]: rms_diff = image_processing_utils.compute_image_rms_difference_1d( rgbs[0], rgb_i) # use first capture as reference max_diff = max(max_diff, rms_diff) msg = 'Max RMS difference: %.4f' % max_diff logging.debug('%s', msg) if max_diff >= THRESHOLD_MAX_RMS_DIFF: raise AssertionError(f'{msg} spec: {THRESHOLD_MAX_RMS_DIFF}') if __name__ == '__main__': test_runner.main()