# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for eye.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_scalar_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_eye_tests(options): """Make a set of tests for tf.eye op.""" test_parameters = [{ "num_rows_shape": [[]], "num_cols_shape": [[]], "batch_shape": [[3], [2, 4], [4, 5, 6], None], "use_num_cols": [True, False], "dtype": [tf.float32, tf.int32], }] def build_graph(parameters): """Make a set of tests to do eye.""" input_tensor0 = tf.compat.v1.placeholder( dtype=tf.int32, name="num_rows", shape=parameters["num_rows_shape"]) input_tensor1 = tf.compat.v1.placeholder( dtype=tf.int32, name="num_columns", shape=parameters["num_cols_shape"]) if parameters["use_num_cols"]: outs = tf.eye( num_rows=input_tensor0, num_columns=input_tensor1, batch_shape=parameters["batch_shape"], dtype=parameters["dtype"]) return [input_tensor0, input_tensor1], [outs] else: outs = tf.eye(num_rows=input_tensor0, dtype=parameters["dtype"]) return [input_tensor0], [outs] def build_inputs(parameters, sess, inputs, outputs): input_value0 = create_scalar_data(dtype=np.int32, min_value=1) input_value1 = create_scalar_data(dtype=np.int32, min_value=1) if parameters["use_num_cols"]: return [input_value0, input_value1], sess.run( outputs, feed_dict=dict(zip(inputs, [input_value0, input_value1]))) else: return [input_value0], sess.run( outputs, feed_dict=dict(zip(inputs, [input_value0]))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)