# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for not_equal.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_not_equal_tests(options): """Make a set of tests to do not equal.""" test_parameters = [{ "input_dtype": [tf.float32, tf.int32, tf.int64, tf.string], "input_shape_pair": [([1, 1, 1, 3], [1, 1, 1, 3]), ([2, 3, 4, 5], [2, 3, 4, 5]), ([2, 3, 3], [2, 3]), ([5, 5], [1]), ([10], [2, 4, 10])], }] def build_graph(parameters): """Build the not equal op testing graph.""" input_value1 = tf.compat.v1.placeholder( dtype=parameters["input_dtype"], name="input1", shape=parameters["input_shape_pair"][0]) input_value2 = tf.compat.v1.placeholder( dtype=parameters["input_dtype"], name="input2", shape=parameters["input_shape_pair"][1]) out = tf.not_equal(input_value1, input_value2) return [input_value1, input_value2], [out] def build_inputs(parameters, sess, inputs, outputs): input_value1 = create_tensor_data(parameters["input_dtype"], parameters["input_shape_pair"][0]) input_value2 = create_tensor_data(parameters["input_dtype"], parameters["input_shape_pair"][1]) return [input_value1, input_value2], sess.run( outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2]))) make_zip_of_tests( options, test_parameters, build_graph, build_inputs, expected_tf_failures=4)