# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for tile.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_tile_tests(options): """Make a set of tests to do tile.""" test_parameters = [{ "input_dtype": [tf.float32, tf.int32, tf.bool, tf.string], "input_shape": [[3, 2, 1], [2, 2, 2]], "multiplier_dtype": [tf.int32, tf.int64], "multiplier_shape": [[3]] }, { "input_dtype": [tf.float32, tf.int32], "input_shape": [[]], "multiplier_dtype": [tf.int32, tf.int64], "multiplier_shape": [[0]] }] def build_graph(parameters): """Build the tile op testing graph.""" input_value = tf.compat.v1.placeholder( dtype=parameters["input_dtype"], shape=parameters["input_shape"], name="input") multiplier_value = tf.compat.v1.placeholder( dtype=parameters["multiplier_dtype"], shape=parameters["multiplier_shape"], name="multiplier") out = tf.tile(input_value, multiplier_value) return [input_value, multiplier_value], [out] def build_inputs(parameters, sess, inputs, outputs): input_value = create_tensor_data(parameters["input_dtype"], parameters["input_shape"]) multipliers_value = create_tensor_data( parameters["multiplier_dtype"], parameters["multiplier_shape"], min_value=0) return [input_value, multipliers_value], sess.run( outputs, feed_dict={ inputs[0]: input_value, inputs[1]: multipliers_value }) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)