Lines Matching refs:output
107 tflite::PoolParams toTfliteParam(const Shape& output) const { in toTfliteParam()
118 if (output.type == OperandType::TENSOR_QUANT8_ASYMM) { in toTfliteParam()
121 CalculateActivationRangeUint8(activation, output, &output_activation_min, in toTfliteParam()
125 } else if (output.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { in toTfliteParam()
128 CalculateActivationRangeInt8(activation, output, &output_activation_min, in toTfliteParam()
260 OutputWithLayout<T> output(param.useNchw); in averagePool() local
262 NN_RET_CHECK(output.initialize(outputData, outputShape)); in averagePool()
264 output.getNhwcBuffer(), output.getNhwcShape())); in averagePool()
265 NN_RET_CHECK(output.commit()); in averagePool()
273 OutputWithLayout<T> output(param.useNchw); in l2Pool() local
275 NN_RET_CHECK(output.initialize(outputData, outputShape)); in l2Pool()
277 output.getNhwcBuffer(), output.getNhwcShape())); in l2Pool()
278 NN_RET_CHECK(output.commit()); in l2Pool()
286 OutputWithLayout<T> output(param.useNchw); in maxPool() local
288 NN_RET_CHECK(output.initialize(outputData, outputShape)); in maxPool()
290 output.getNhwcBuffer(), output.getNhwcShape())); in maxPool()
291 NN_RET_CHECK(output.commit()); in maxPool()
318 Shape output = input; in prepare() local
320 output.dimensions = {batches, channels, outHeight, outWidth}; in prepare()
322 output.dimensions = {batches, outHeight, outWidth, channels}; in prepare()
324 return context->setOutputShape(kOutputTensor, output); in prepare()