/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instruction_builder.h" #include "art_method-inl.h" #include "base/arena_bit_vector.h" #include "base/bit_vector-inl.h" #include "base/logging.h" #include "block_builder.h" #include "class_linker-inl.h" #include "code_generator.h" #include "data_type-inl.h" #include "dex/bytecode_utils.h" #include "dex/dex_instruction-inl.h" #include "driver/dex_compilation_unit.h" #include "driver/compiler_options.h" #include "entrypoints/entrypoint_utils-inl.h" #include "imtable-inl.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "jit/jit.h" #include "mirror/dex_cache.h" #include "oat_file.h" #include "optimizing_compiler_stats.h" #include "reflective_handle_scope-inl.h" #include "scoped_thread_state_change-inl.h" #include "sharpening.h" #include "ssa_builder.h" #include "well_known_classes.h" namespace art { namespace { class SamePackageCompare { public: explicit SamePackageCompare(const DexCompilationUnit& dex_compilation_unit) : dex_compilation_unit_(dex_compilation_unit) {} bool operator()(ObjPtr klass) REQUIRES_SHARED(Locks::mutator_lock_) { if (klass->GetClassLoader() != dex_compilation_unit_.GetClassLoader().Get()) { return false; } if (referrers_descriptor_ == nullptr) { const DexFile* dex_file = dex_compilation_unit_.GetDexFile(); uint32_t referrers_method_idx = dex_compilation_unit_.GetDexMethodIndex(); referrers_descriptor_ = dex_file->StringByTypeIdx(dex_file->GetMethodId(referrers_method_idx).class_idx_); referrers_package_length_ = PackageLength(referrers_descriptor_); } std::string temp; const char* klass_descriptor = klass->GetDescriptor(&temp); size_t klass_package_length = PackageLength(klass_descriptor); return (referrers_package_length_ == klass_package_length) && memcmp(referrers_descriptor_, klass_descriptor, referrers_package_length_) == 0; }; private: static size_t PackageLength(const char* descriptor) { const char* slash_pos = strrchr(descriptor, '/'); return (slash_pos != nullptr) ? static_cast(slash_pos - descriptor) : 0u; } const DexCompilationUnit& dex_compilation_unit_; const char* referrers_descriptor_ = nullptr; size_t referrers_package_length_ = 0u; }; } // anonymous namespace HInstructionBuilder::HInstructionBuilder(HGraph* graph, HBasicBlockBuilder* block_builder, SsaBuilder* ssa_builder, const DexFile* dex_file, const CodeItemDebugInfoAccessor& accessor, DataType::Type return_type, const DexCompilationUnit* dex_compilation_unit, const DexCompilationUnit* outer_compilation_unit, CodeGenerator* code_generator, OptimizingCompilerStats* compiler_stats, ScopedArenaAllocator* local_allocator) : allocator_(graph->GetAllocator()), graph_(graph), dex_file_(dex_file), code_item_accessor_(accessor), return_type_(return_type), block_builder_(block_builder), ssa_builder_(ssa_builder), code_generator_(code_generator), dex_compilation_unit_(dex_compilation_unit), outer_compilation_unit_(outer_compilation_unit), compilation_stats_(compiler_stats), local_allocator_(local_allocator), locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)), current_block_(nullptr), current_locals_(nullptr), latest_result_(nullptr), current_this_parameter_(nullptr), loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)), class_cache_(std::less(), local_allocator->Adapter(kArenaAllocGraphBuilder)) { loop_headers_.reserve(kDefaultNumberOfLoops); } HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { return block_builder_->GetBlockAt(dex_pc); } inline ScopedArenaVector* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { ScopedArenaVector* locals = &locals_for_[block->GetBlockId()]; const size_t vregs = graph_->GetNumberOfVRegs(); if (locals->size() == vregs) { return locals; } return GetLocalsForWithAllocation(block, locals, vregs); } ScopedArenaVector* HInstructionBuilder::GetLocalsForWithAllocation( HBasicBlock* block, ScopedArenaVector* locals, const size_t vregs) { DCHECK_NE(locals->size(), vregs); locals->resize(vregs, nullptr); if (block->IsCatchBlock()) { // We record incoming inputs of catch phis at throwing instructions and // must therefore eagerly create the phis. Phis for undefined vregs will // be deleted when the first throwing instruction with the vreg undefined // is encountered. Unused phis will be removed by dead phi analysis. for (size_t i = 0; i < vregs; ++i) { // No point in creating the catch phi if it is already undefined at // the first throwing instruction. HInstruction* current_local_value = (*current_locals_)[i]; if (current_local_value != nullptr) { HPhi* phi = new (allocator_) HPhi( allocator_, i, 0, current_local_value->GetType()); block->AddPhi(phi); (*locals)[i] = phi; } } } return locals; } inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { ScopedArenaVector* locals = GetLocalsFor(block); return (*locals)[local]; } void HInstructionBuilder::InitializeBlockLocals() { current_locals_ = GetLocalsFor(current_block_); if (current_block_->IsCatchBlock()) { // Catch phis were already created and inputs collected from throwing sites. if (kIsDebugBuild) { // Make sure there was at least one throwing instruction which initialized // locals (guaranteed by HGraphBuilder) and that all try blocks have been // visited already (from HTryBoundary scoping and reverse post order). bool catch_block_visited = false; for (HBasicBlock* current : graph_->GetReversePostOrder()) { if (current == current_block_) { catch_block_visited = true; } else if (current->IsTryBlock()) { const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); if (try_entry.HasExceptionHandler(*current_block_)) { DCHECK(!catch_block_visited) << "Catch block visited before its try block."; } } } DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) << "No instructions throwing into a live catch block."; } } else if (current_block_->IsLoopHeader()) { // If the block is a loop header, we know we only have visited the pre header // because we are visiting in reverse post order. We create phis for all initialized // locals from the pre header. Their inputs will be populated at the end of // the analysis. for (size_t local = 0; local < current_locals_->size(); ++local) { HInstruction* incoming = ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); if (incoming != nullptr) { HPhi* phi = new (allocator_) HPhi( allocator_, local, 0, incoming->GetType()); current_block_->AddPhi(phi); (*current_locals_)[local] = phi; } } // Save the loop header so that the last phase of the analysis knows which // blocks need to be updated. loop_headers_.push_back(current_block_); } else if (current_block_->GetPredecessors().size() > 0) { // All predecessors have already been visited because we are visiting in reverse post order. // We merge the values of all locals, creating phis if those values differ. for (size_t local = 0; local < current_locals_->size(); ++local) { bool one_predecessor_has_no_value = false; bool is_different = false; HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { HInstruction* current = ValueOfLocalAt(predecessor, local); if (current == nullptr) { one_predecessor_has_no_value = true; break; } else if (current != value) { is_different = true; } } if (one_predecessor_has_no_value) { // If one predecessor has no value for this local, we trust the verifier has // successfully checked that there is a store dominating any read after this block. continue; } if (is_different) { HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); HPhi* phi = new (allocator_) HPhi( allocator_, local, current_block_->GetPredecessors().size(), first_input->GetType()); for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); phi->SetRawInputAt(i, pred_value); } current_block_->AddPhi(phi); value = phi; } (*current_locals_)[local] = value; } } } void HInstructionBuilder::PropagateLocalsToCatchBlocks() { const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { ScopedArenaVector* handler_locals = GetLocalsFor(catch_block); DCHECK_EQ(handler_locals->size(), current_locals_->size()); for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { HInstruction* handler_value = (*handler_locals)[vreg]; if (handler_value == nullptr) { // Vreg was undefined at a previously encountered throwing instruction // and the catch phi was deleted. Do not record the local value. continue; } DCHECK(handler_value->IsPhi()); HInstruction* local_value = (*current_locals_)[vreg]; if (local_value == nullptr) { // This is the first instruction throwing into `catch_block` where // `vreg` is undefined. Delete the catch phi. catch_block->RemovePhi(handler_value->AsPhi()); (*handler_locals)[vreg] = nullptr; } else { // Vreg has been defined at all instructions throwing into `catch_block` // encountered so far. Record the local value in the catch phi. handler_value->AsPhi()->AddInput(local_value); } } } } void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { current_block_->AddInstruction(instruction); InitializeInstruction(instruction); } void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { if (current_block_->GetInstructions().IsEmpty()) { current_block_->AddInstruction(instruction); } else { current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); } InitializeInstruction(instruction); } void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { if (instruction->NeedsEnvironment()) { HEnvironment* environment = new (allocator_) HEnvironment( allocator_, current_locals_->size(), graph_->GetArtMethod(), instruction->GetDexPc(), instruction); environment->CopyFrom(ArrayRef(*current_locals_)); instruction->SetRawEnvironment(environment); } } HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) { HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference); if (!ref->CanBeNull()) { return ref; } HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc); AppendInstruction(null_check); return null_check; } void HInstructionBuilder::SetLoopHeaderPhiInputs() { for (size_t i = loop_headers_.size(); i > 0; --i) { HBasicBlock* block = loop_headers_[i - 1]; for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HPhi* phi = it.Current()->AsPhi(); size_t vreg = phi->GetRegNumber(); for (HBasicBlock* predecessor : block->GetPredecessors()) { HInstruction* value = ValueOfLocalAt(predecessor, vreg); if (value == nullptr) { // Vreg is undefined at this predecessor. Mark it dead and leave with // fewer inputs than predecessors. SsaChecker will fail if not removed. phi->SetDead(); break; } else { phi->AddInput(value); } } } } } static bool IsBlockPopulated(HBasicBlock* block) { if (block->IsLoopHeader()) { // Suspend checks were inserted into loop headers during building of dominator tree. DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); return block->GetFirstInstruction() != block->GetLastInstruction(); } else { return !block->GetInstructions().IsEmpty(); } } bool HInstructionBuilder::Build() { DCHECK(code_item_accessor_.HasCodeItem()); locals_for_.resize( graph_->GetBlocks().size(), ScopedArenaVector(local_allocator_->Adapter(kArenaAllocGraphBuilder))); // Find locations where we want to generate extra stackmaps for native debugging. // This allows us to generate the info only at interesting points (for example, // at start of java statement) rather than before every dex instruction. const bool native_debuggable = code_generator_ != nullptr && code_generator_->GetCompilerOptions().GetNativeDebuggable(); ArenaBitVector* native_debug_info_locations = nullptr; if (native_debuggable) { native_debug_info_locations = FindNativeDebugInfoLocations(); } for (HBasicBlock* block : graph_->GetReversePostOrder()) { current_block_ = block; uint32_t block_dex_pc = current_block_->GetDexPc(); InitializeBlockLocals(); if (current_block_->IsEntryBlock()) { InitializeParameters(); AppendInstruction(new (allocator_) HSuspendCheck(0u)); if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { AppendInstruction(new (allocator_) HMethodEntryHook(0u)); } AppendInstruction(new (allocator_) HGoto(0u)); continue; } else if (current_block_->IsExitBlock()) { AppendInstruction(new (allocator_) HExit()); continue; } else if (current_block_->IsLoopHeader()) { HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc()); current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); // This is slightly odd because the loop header might not be empty (TryBoundary). // But we're still creating the environment with locals from the top of the block. InsertInstructionAtTop(suspend_check); } if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { // Synthetic block that does not need to be populated. DCHECK(IsBlockPopulated(current_block_)); continue; } DCHECK(!IsBlockPopulated(current_block_)); for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) { if (current_block_ == nullptr) { // The previous instruction ended this block. break; } const uint32_t dex_pc = pair.DexPc(); if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { // This dex_pc starts a new basic block. break; } if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) { PropagateLocalsToCatchBlocks(); } if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc)); } // Note: There may be no Thread for gtests. DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending()) << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " " << pair.Inst().Name() << "@" << dex_pc; if (!ProcessDexInstruction(pair.Inst(), dex_pc)) { return false; } DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending()) << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " " << pair.Inst().Name() << "@" << dex_pc; } if (current_block_ != nullptr) { // Branching instructions clear current_block, so we know the last // instruction of the current block is not a branching instruction. // We add an unconditional Goto to the next block. DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); AppendInstruction(new (allocator_) HGoto()); } } SetLoopHeaderPhiInputs(); return true; } void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) { DCHECK(!code_item_accessor_.HasCodeItem()); DCHECK(method->IsIntrinsic()); if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); CHECK(!method->IsSignaturePolymorphic()); } locals_for_.resize( graph_->GetBlocks().size(), ScopedArenaVector(local_allocator_->Adapter(kArenaAllocGraphBuilder))); // Fill the entry block. Do not add suspend check, we do not want a suspend // check in intrinsics; intrinsic methods are supposed to be fast. current_block_ = graph_->GetEntryBlock(); InitializeBlockLocals(); InitializeParameters(); AppendInstruction(new (allocator_) HGoto(0u)); // Fill the body. current_block_ = current_block_->GetSingleSuccessor(); InitializeBlockLocals(); DCHECK(!IsBlockPopulated(current_block_)); // Add the intermediate representation, if available, or invoke instruction. size_t in_vregs = graph_->GetNumberOfInVRegs(); size_t number_of_arguments = in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr); uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex(); const char* shorty = dex_file_->GetMethodShorty(method_idx); RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs); if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) { // Some intrinsics without intermediate representation still yield a leaf method, // so build the invoke. Use HInvokeStaticOrDirect even for methods that would // normally use an HInvokeVirtual (sharpen the call). MethodReference target_method(dex_file_, method_idx); HInvokeStaticOrDirect::DispatchInfo dispatch_info = { MethodLoadKind::kRuntimeCall, CodePtrLocation::kCallArtMethod, /* method_load_data= */ 0u }; InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect; HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect( allocator_, number_of_arguments, return_type_, kNoDexPc, target_method, method, dispatch_info, invoke_type, target_method, HInvokeStaticOrDirect::ClinitCheckRequirement::kNone); HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); } // Add the return instruction. if (return_type_ == DataType::Type::kVoid) { AppendInstruction(new (allocator_) HReturnVoid()); } else { AppendInstruction(new (allocator_) HReturn(latest_result_)); } // Fill the exit block. DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock()); current_block_ = graph_->GetExitBlock(); InitializeBlockLocals(); AppendInstruction(new (allocator_) HExit()); } ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() { ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_, code_item_accessor_.InsnsSizeInCodeUnits(), /* expandable= */ false, kArenaAllocGraphBuilder); locations->ClearAllBits(); // The visitor gets called when the line number changes. // In other words, it marks the start of new java statement. code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) { locations->SetBit(entry.address_); return false; }); // Instruction-specific tweaks. for (const DexInstructionPcPair& inst : code_item_accessor_) { switch (inst->Opcode()) { case Instruction::MOVE_EXCEPTION: { // Stop in native debugger after the exception has been moved. // The compiler also expects the move at the start of basic block so // we do not want to interfere by inserting native-debug-info before it. locations->ClearBit(inst.DexPc()); DexInstructionIterator next = std::next(DexInstructionIterator(inst)); DCHECK(next.DexPc() != inst.DexPc()); if (next != code_item_accessor_.end()) { locations->SetBit(next.DexPc()); } break; } default: break; } } return locations; } HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const { HInstruction* value = (*current_locals_)[reg_number]; DCHECK(value != nullptr); // If the operation requests a specific type, we make sure its input is of that type. if (type != value->GetType()) { if (DataType::IsFloatingPointType(type)) { value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type); } else if (type == DataType::Type::kReference) { value = ssa_builder_->GetReferenceTypeEquivalent(value); } DCHECK(value != nullptr); } return value; } void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { DataType::Type stored_type = stored_value->GetType(); DCHECK_NE(stored_type, DataType::Type::kVoid); // Storing into vreg `reg_number` may implicitly invalidate the surrounding // registers. Consider the following cases: // (1) Storing a wide value must overwrite previous values in both `reg_number` // and `reg_number+1`. We store `nullptr` in `reg_number+1`. // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` // must invalidate it. We store `nullptr` in `reg_number-1`. // Consequently, storing a wide value into the high vreg of another wide value // will invalidate both `reg_number-1` and `reg_number+1`. if (reg_number != 0) { HInstruction* local_low = (*current_locals_)[reg_number - 1]; if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) { // The vreg we are storing into was previously the high vreg of a pair. // We need to invalidate its low vreg. DCHECK((*current_locals_)[reg_number] == nullptr); (*current_locals_)[reg_number - 1] = nullptr; } } (*current_locals_)[reg_number] = stored_value; if (DataType::Is64BitType(stored_type)) { // We are storing a pair. Invalidate the instruction in the high vreg. (*current_locals_)[reg_number + 1] = nullptr; } } void HInstructionBuilder::InitializeParameters() { DCHECK(current_block_->IsEntryBlock()); // outer_compilation_unit_ is null only when unit testing. if (outer_compilation_unit_ == nullptr) { return; } const char* shorty = dex_compilation_unit_->GetShorty(); uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); uint16_t parameter_index = 0; const dex::MethodId& referrer_method_id = dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); if (!dex_compilation_unit_->IsStatic()) { // Add the implicit 'this' argument, not expressed in the signature. HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_, referrer_method_id.class_idx_, parameter_index++, DataType::Type::kReference, /* is_this= */ true); AppendInstruction(parameter); UpdateLocal(locals_index++, parameter); number_of_parameters--; current_this_parameter_ = parameter; } else { DCHECK(current_this_parameter_ == nullptr); } const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto); for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { HParameterValue* parameter = new (allocator_) HParameterValue( *dex_file_, arg_types->GetTypeItem(shorty_pos - 1).type_idx_, parameter_index++, DataType::FromShorty(shorty[shorty_pos]), /* is_this= */ false); ++shorty_pos; AppendInstruction(parameter); // Store the parameter value in the local that the dex code will use // to reference that parameter. UpdateLocal(locals_index++, parameter); if (DataType::Is64BitType(parameter->GetType())) { i++; locals_index++; parameter_index++; } } } template void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); T* comparison = new (allocator_) T(first, second, dex_pc); AppendInstruction(comparison); AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); current_block_ = nullptr; } template void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); AppendInstruction(comparison); AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); current_block_ = nullptr; } template void HInstructionBuilder::Unop_12x(const Instruction& instruction, DataType::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); AppendInstruction(new (allocator_) T(type, first, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } void HInstructionBuilder::Conversion_12x(const Instruction& instruction, DataType::Type input_type, DataType::Type result_type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), input_type); AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HInstructionBuilder::Binop_23x(const Instruction& instruction, DataType::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), type); AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, DataType::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32); AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, DataType::Type type, ComparisonBias bias, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), type); AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, DataType::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), type); HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HInstructionBuilder::Binop_12x(const Instruction& instruction, DataType::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), type); HInstruction* second = LoadLocal(instruction.VRegB(), type); AppendInstruction(new (allocator_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); if (reverse) { std::swap(first, second); } AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); if (reverse) { std::swap(first, second); } AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } // Does the method being compiled need any constructor barriers being inserted? // (Always 'false' for methods that aren't .) static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) { // Can be null in unit tests only. if (UNLIKELY(cu == nullptr)) { return false; } // Constructor barriers are applicable only for methods. if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) { return false; } return cu->RequiresConstructorBarrier(); } // Returns true if `block` has only one successor which starts at the next // dex_pc after `instruction` at `dex_pc`. static bool IsFallthroughInstruction(const Instruction& instruction, uint32_t dex_pc, HBasicBlock* block) { uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; } void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32); DexSwitchTable table(instruction, dex_pc); if (table.GetNumEntries() == 0) { // Empty Switch. Code falls through to the next block. DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); AppendInstruction(new (allocator_) HGoto(dex_pc)); } else if (table.ShouldBuildDecisionTree()) { for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc); AppendInstruction(comparison); AppendInstruction(new (allocator_) HIf(comparison, dex_pc)); if (!it.IsLast()) { current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); } } } else { AppendInstruction( new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); } current_block_ = nullptr; } void HInstructionBuilder::BuildReturn(const Instruction& instruction, DataType::Type type, uint32_t dex_pc) { if (type == DataType::Type::kVoid) { // Only (which is a return-void) could possibly have a constructor fence. // This may insert additional redundant constructor fences from the super constructors. // TODO: remove redundant constructor fences (b/36656456). if (RequiresConstructorBarrier(dex_compilation_unit_)) { // Compiling instance constructor. DCHECK_STREQ("", graph_->GetMethodName()); HInstruction* fence_target = current_this_parameter_; DCHECK(fence_target != nullptr); AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_)); MaybeRecordStat( compilation_stats_, MethodCompilationStat::kConstructorFenceGeneratedFinal); } if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { // Return value is not used for void functions. We pass NullConstant to // avoid special cases when generating code. AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), dex_pc)); } AppendInstruction(new (allocator_) HReturnVoid(dex_pc)); } else { DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_)); HInstruction* value = LoadLocal(instruction.VRegA(), type); if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) { AppendInstruction(new (allocator_) HMethodExitHook(value, dex_pc)); } AppendInstruction(new (allocator_) HReturn(value, dex_pc)); } current_block_ = nullptr; } static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { switch (opcode) { case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: return kStatic; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: return kDirect; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_RANGE: return kVirtual; case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: return kInterface; case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_SUPER: return kSuper; default: LOG(FATAL) << "Unexpected invoke opcode: " << opcode; UNREACHABLE(); } } // Try to resolve a method using the class linker. Return null if a method could // not be resolved or the resolved method cannot be used for some reason. // Also retrieve method data needed for creating the invoke intermediate // representation while we hold the mutator lock here. static ArtMethod* ResolveMethod(uint16_t method_idx, ArtMethod* referrer, const DexCompilationUnit& dex_compilation_unit, /*inout*/InvokeType* invoke_type, /*out*/MethodReference* resolved_method_info, /*out*/uint16_t* imt_or_vtable_index, /*out*/bool* is_string_constructor) { ScopedObjectAccess soa(Thread::Current()); ClassLinker* class_linker = dex_compilation_unit.GetClassLinker(); Handle class_loader = dex_compilation_unit.GetClassLoader(); ArtMethod* resolved_method = class_linker->ResolveMethod( method_idx, dex_compilation_unit.GetDexCache(), class_loader, referrer, *invoke_type); if (UNLIKELY(resolved_method == nullptr)) { // Clean up any exception left by type resolution. soa.Self()->ClearException(); return nullptr; } DCHECK(!soa.Self()->IsExceptionPending()); // The referrer may be unresolved for AOT if we're compiling a class that cannot be // resolved because, for example, we don't find a superclass in the classpath. if (referrer == nullptr) { // The class linker cannot check access without a referrer, so we have to do it. // Check if the declaring class or referencing class is accessible. SamePackageCompare same_package(dex_compilation_unit); ObjPtr declaring_class = resolved_method->GetDeclaringClass(); bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class); if (!declaring_class_accessible) { // It is possible to access members from an inaccessible superclass // by referencing them through an accessible subclass. ObjPtr referenced_class = class_linker->LookupResolvedType( dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_, dex_compilation_unit.GetDexCache().Get(), class_loader.Get()); DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the method. if (!referenced_class->IsPublic() && !same_package(referenced_class)) { return nullptr; } } // Check whether the method itself is accessible. // Since the referrer is unresolved but the method is resolved, it cannot be // inside the same class, so a private method is known to be inaccessible. // And without a resolved referrer, we cannot check for protected member access // in superlass, so we handle only access to public member or within the package. if (resolved_method->IsPrivate() || (!resolved_method->IsPublic() && !declaring_class_accessible)) { return nullptr; } } // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. // We need to look at the referrer's super class vtable. We need to do this to know if we need to // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of // which require runtime handling. if (*invoke_type == kSuper) { if (referrer == nullptr) { // We could not determine the method's class we need to wait until runtime. DCHECK(Runtime::Current()->IsAotCompiler()); return nullptr; } ArtMethod* actual_method = FindSuperMethodToCall( method_idx, resolved_method, referrer, soa.Self()); if (actual_method == nullptr) { // Clean up any exception left by method resolution. soa.Self()->ClearException(); return nullptr; } if (!actual_method->IsInvokable()) { // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub // could resolve the callee to the wrong method. return nullptr; } // Call GetCanonicalMethod in case the resolved method is a copy: for super calls, the encoding // of ArtMethod in BSS relies on not having copies there. resolved_method = actual_method->GetCanonicalMethod(class_linker->GetImagePointerSize()); } if (*invoke_type == kInterface) { if (resolved_method->GetDeclaringClass()->IsObjectClass()) { // If the resolved method is from j.l.Object, emit a virtual call instead. // The IMT conflict stub only handles interface methods. *invoke_type = kVirtual; } else { DCHECK(resolved_method->GetDeclaringClass()->IsInterface()); } } *resolved_method_info = MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex()); if (*invoke_type == kVirtual) { // For HInvokeVirtual we need the vtable index. *imt_or_vtable_index = resolved_method->GetVtableIndex(); } else if (*invoke_type == kInterface) { // For HInvokeInterface we need the IMT index. *imt_or_vtable_index = ImTable::GetImtIndex(resolved_method); } *is_string_constructor = resolved_method->IsConstructor() && resolved_method->GetDeclaringClass()->IsStringClass(); return resolved_method; } bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, uint32_t dex_pc, uint32_t method_idx, const InstructionOperands& operands) { InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); const char* shorty = dex_file_->GetMethodShorty(method_idx); DataType::Type return_type = DataType::FromShorty(shorty[0]); // Remove the return type from the 'proto'. size_t number_of_arguments = strlen(shorty) - 1; if (invoke_type != kStatic) { // instance call // One extra argument for 'this'. number_of_arguments++; } MethodReference resolved_method_reference(nullptr, 0u); bool is_string_constructor = false; uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16; ArtMethod* resolved_method = ResolveMethod(method_idx, graph_->GetArtMethod(), *dex_compilation_unit_, &invoke_type, &resolved_method_reference, &imt_or_vtable_index, &is_string_constructor); MethodReference method_reference(&graph_->GetDexFile(), method_idx); if (UNLIKELY(resolved_method == nullptr)) { DCHECK(!Thread::Current()->IsExceptionPending()); MaybeRecordStat(compilation_stats_, MethodCompilationStat::kUnresolvedMethod); HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_, number_of_arguments, return_type, dex_pc, method_reference, invoke_type); return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true); } // Replace calls to String. with StringFactory. if (is_string_constructor) { uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method); HInvokeStaticOrDirect::DispatchInfo dispatch_info = { MethodLoadKind::kStringInit, CodePtrLocation::kCallArtMethod, dchecked_integral_cast(string_init_entry_point) }; // We pass null for the resolved_method to ensure optimizations // don't rely on it. HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect( allocator_, number_of_arguments - 1, /* return_type= */ DataType::Type::kReference, dex_pc, method_reference, /* resolved_method= */ nullptr, dispatch_info, invoke_type, resolved_method_reference, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); return HandleStringInit(invoke, operands, shorty); } // Potential class initialization check, in the case of a static method call. HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; HClinitCheck* clinit_check = nullptr; if (invoke_type == kStatic) { clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement); } // Try to build an HIR replacement for the intrinsic. if (UNLIKELY(resolved_method->IsIntrinsic())) { // All intrinsics are in the primary boot image, so their class can always be referenced // and we do not need to rely on the implicit class initialization check. The class should // be initialized but we do not require that here. DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) { return true; } } HInvoke* invoke = nullptr; if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { // For sharpening, we create another MethodReference, to account for the // kSuper case below where we cannot find a dex method index. bool has_method_id = true; if (invoke_type == kSuper) { uint32_t dex_method_index = method_reference.index; if (IsSameDexFile(*resolved_method_reference.dex_file, *dex_compilation_unit_->GetDexFile())) { // Update the method index to the one resolved. Note that this may be a no-op if // we resolved to the method referenced by the instruction. dex_method_index = resolved_method_reference.index; } else { // Try to find a dex method index in this caller's dex file. ScopedObjectAccess soa(Thread::Current()); dex_method_index = resolved_method->FindDexMethodIndexInOtherDexFile( *dex_compilation_unit_->GetDexFile(), method_idx); } if (dex_method_index == dex::kDexNoIndex) { has_method_id = false; } else { method_reference.index = dex_method_index; } } HInvokeStaticOrDirect::DispatchInfo dispatch_info = HSharpening::SharpenLoadMethod(resolved_method, has_method_id, /* for_interface_call= */ false, code_generator_); if (dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) { graph_->SetHasDirectCriticalNativeCall(true); } invoke = new (allocator_) HInvokeStaticOrDirect(allocator_, number_of_arguments, return_type, dex_pc, method_reference, resolved_method, dispatch_info, invoke_type, resolved_method_reference, clinit_check_requirement); if (clinit_check != nullptr) { // Add the class initialization check as last input of `invoke`. DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); size_t clinit_check_index = invoke->InputCount() - 1u; DCHECK(invoke->InputAt(clinit_check_index) == nullptr); invoke->SetArgumentAt(clinit_check_index, clinit_check); } } else if (invoke_type == kVirtual) { invoke = new (allocator_) HInvokeVirtual(allocator_, number_of_arguments, return_type, dex_pc, method_reference, resolved_method, resolved_method_reference, /*vtable_index=*/ imt_or_vtable_index); } else { DCHECK_EQ(invoke_type, kInterface); if (kIsDebugBuild) { ScopedObjectAccess soa(Thread::Current()); DCHECK(resolved_method->GetDeclaringClass()->IsInterface()); } MethodLoadKind load_kind = HSharpening::SharpenLoadMethod( resolved_method, /* has_method_id= */ true, /* for_interface_call= */ true, code_generator_) .method_load_kind; invoke = new (allocator_) HInvokeInterface(allocator_, number_of_arguments, return_type, dex_pc, method_reference, resolved_method, resolved_method_reference, /*imt_index=*/ imt_or_vtable_index, load_kind); } return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); } static bool VarHandleAccessorNeedsReturnTypeCheck(HInvoke* invoke, DataType::Type return_type) { mirror::VarHandle::AccessModeTemplate access_mode_template = mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); switch (access_mode_template) { case mirror::VarHandle::AccessModeTemplate::kGet: case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: return return_type == DataType::Type::kReference; case mirror::VarHandle::AccessModeTemplate::kSet: case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: return false; } } // This function initializes `VarHandleOptimizations`, does a number of static checks and disables // the intrinsic if some of the checks fail. This is necessary for the code generator to work (for // both the baseline and the optimizing compiler). static void DecideVarHandleIntrinsic(HInvoke* invoke) { switch (invoke->GetIntrinsic()) { case Intrinsics::kVarHandleCompareAndExchange: case Intrinsics::kVarHandleCompareAndExchangeAcquire: case Intrinsics::kVarHandleCompareAndExchangeRelease: case Intrinsics::kVarHandleCompareAndSet: case Intrinsics::kVarHandleGet: case Intrinsics::kVarHandleGetAcquire: case Intrinsics::kVarHandleGetAndAdd: case Intrinsics::kVarHandleGetAndAddAcquire: case Intrinsics::kVarHandleGetAndAddRelease: case Intrinsics::kVarHandleGetAndBitwiseAnd: case Intrinsics::kVarHandleGetAndBitwiseAndAcquire: case Intrinsics::kVarHandleGetAndBitwiseAndRelease: case Intrinsics::kVarHandleGetAndBitwiseOr: case Intrinsics::kVarHandleGetAndBitwiseOrAcquire: case Intrinsics::kVarHandleGetAndBitwiseOrRelease: case Intrinsics::kVarHandleGetAndBitwiseXor: case Intrinsics::kVarHandleGetAndBitwiseXorAcquire: case Intrinsics::kVarHandleGetAndBitwiseXorRelease: case Intrinsics::kVarHandleGetAndSet: case Intrinsics::kVarHandleGetAndSetAcquire: case Intrinsics::kVarHandleGetAndSetRelease: case Intrinsics::kVarHandleGetOpaque: case Intrinsics::kVarHandleGetVolatile: case Intrinsics::kVarHandleSet: case Intrinsics::kVarHandleSetOpaque: case Intrinsics::kVarHandleSetRelease: case Intrinsics::kVarHandleSetVolatile: case Intrinsics::kVarHandleWeakCompareAndSet: case Intrinsics::kVarHandleWeakCompareAndSetAcquire: case Intrinsics::kVarHandleWeakCompareAndSetPlain: case Intrinsics::kVarHandleWeakCompareAndSetRelease: break; default: return; // Not a VarHandle intrinsic, skip. } DCHECK(invoke->IsInvokePolymorphic()); VarHandleOptimizations optimizations(invoke); // Do only simple static checks here (those for which we have enough information). More complex // checks should be done in instruction simplifier, which runs after other optimization passes // that may provide useful information. size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); if (expected_coordinates_count > 2u) { optimizations.SetDoNotIntrinsify(); return; } if (expected_coordinates_count != 0u) { // Except for static fields (no coordinates), the first coordinate must be a reference. // Do not intrinsify if the reference is null as we would always go to slow path anyway. HInstruction* object = invoke->InputAt(1); if (object->GetType() != DataType::Type::kReference || object->IsNullConstant()) { optimizations.SetDoNotIntrinsify(); return; } } if (expected_coordinates_count == 2u) { // For arrays and views, the second coordinate must be convertible to `int`. // In this context, `boolean` is not convertible but we have to look at the shorty // as compiler transformations can give the invoke a valid boolean input. DataType::Type index_type = GetDataTypeFromShorty(invoke, 2); if (index_type == DataType::Type::kBool || DataType::Kind(index_type) != DataType::Type::kInt32) { optimizations.SetDoNotIntrinsify(); return; } } uint32_t number_of_arguments = invoke->GetNumberOfArguments(); DataType::Type return_type = invoke->GetType(); mirror::VarHandle::AccessModeTemplate access_mode_template = mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic()); switch (access_mode_template) { case mirror::VarHandle::AccessModeTemplate::kGet: // The return type should be the same as varType, so it shouldn't be void. if (return_type == DataType::Type::kVoid) { optimizations.SetDoNotIntrinsify(); return; } break; case mirror::VarHandle::AccessModeTemplate::kSet: if (return_type != DataType::Type::kVoid) { optimizations.SetDoNotIntrinsify(); return; } break; case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: { if (return_type != DataType::Type::kBool) { optimizations.SetDoNotIntrinsify(); return; } uint32_t expected_value_index = number_of_arguments - 2; uint32_t new_value_index = number_of_arguments - 1; DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); if (expected_value_type != new_value_type) { optimizations.SetDoNotIntrinsify(); return; } break; } case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: { uint32_t expected_value_index = number_of_arguments - 2; uint32_t new_value_index = number_of_arguments - 1; DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index); DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index); if (expected_value_type != new_value_type || return_type != expected_value_type) { optimizations.SetDoNotIntrinsify(); return; } break; } case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: { DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1); if (IsVarHandleGetAndAdd(invoke) && (value_type == DataType::Type::kReference || value_type == DataType::Type::kBool)) { // We should only add numerical types. // // For byte array views floating-point types are not allowed, see javadoc comments for // java.lang.invoke.MethodHandles.byteArrayViewVarHandle(). But ART treats them as numeric // types in ByteArrayViewVarHandle::Access(). Consequently we do generate intrinsic code, // but it always fails access mode check at runtime. optimizations.SetDoNotIntrinsify(); return; } else if (IsVarHandleGetAndBitwiseOp(invoke) && !DataType::IsIntegralType(value_type)) { // We can only apply operators to bitwise integral types. // Note that bitwise VarHandle operations accept a non-integral boolean type and // perform the appropriate logical operation. However, the result is the same as // using the bitwise operation on our boolean representation and this fits well // with DataType::IsIntegralType() treating the compiler type kBool as integral. optimizations.SetDoNotIntrinsify(); return; } if (value_type != return_type) { optimizations.SetDoNotIntrinsify(); return; } break; } } } bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc, uint32_t method_idx, dex::ProtoIndex proto_idx, const InstructionOperands& operands) { const char* shorty = dex_file_->GetShorty(proto_idx); DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands()); DataType::Type return_type = DataType::FromShorty(shorty[0]); size_t number_of_arguments = strlen(shorty); // We use ResolveMethod which is also used in BuildInvoke in order to // not duplicate code. As such, we need to provide is_string_constructor // even if we don't need it afterwards. InvokeType invoke_type = InvokeType::kPolymorphic; bool is_string_constructor = false; uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16; MethodReference resolved_method_reference(nullptr, 0u); ArtMethod* resolved_method = ResolveMethod(method_idx, graph_->GetArtMethod(), *dex_compilation_unit_, &invoke_type, &resolved_method_reference, &imt_or_vtable_index, &is_string_constructor); MethodReference method_reference(&graph_->GetDexFile(), method_idx); HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_, number_of_arguments, return_type, dex_pc, method_reference, resolved_method, resolved_method_reference, proto_idx); if (!HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false)) { return false; } if (invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvoke && invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvokeExact && VarHandleAccessorNeedsReturnTypeCheck(invoke, return_type)) { // Type check is needed because VarHandle intrinsics do not type check the retrieved reference. ScopedObjectAccess soa(Thread::Current()); ArtMethod* referrer = graph_->GetArtMethod(); dex::TypeIndex return_type_index = referrer->GetDexFile()->GetProtoId(proto_idx).return_type_idx_; BuildTypeCheck(/* is_instance_of= */ false, invoke, return_type_index, dex_pc); latest_result_ = current_block_->GetLastInstruction(); } DecideVarHandleIntrinsic(invoke); return true; } bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc, uint32_t call_site_idx, const InstructionOperands& operands) { dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx); const char* shorty = dex_file_->GetShorty(proto_idx); DataType::Type return_type = DataType::FromShorty(shorty[0]); size_t number_of_arguments = strlen(shorty) - 1; // HInvokeCustom takes a DexNoNoIndex method reference. MethodReference method_reference(&graph_->GetDexFile(), dex::kDexNoIndex); HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_, number_of_arguments, call_site_idx, return_type, dex_pc, method_reference); return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false); } HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) { ScopedObjectAccess soa(Thread::Current()); HLoadClass* load_class = BuildLoadClass(type_index, dex_pc); HInstruction* cls = load_class; Handle klass = load_class->GetClass(); if (!IsInitialized(klass.Get())) { cls = new (allocator_) HClinitCheck(load_class, dex_pc); AppendInstruction(cls); } // Only the access check entrypoint handles the finalizable class case. If we // need access checks, then we haven't resolved the method and the class may // again be finalizable. QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized; if (load_class->NeedsAccessCheck() || klass == nullptr || // Finalizable/instantiable is unknown. klass->IsFinalizable() || klass.Get() == klass->GetClass() || // Classes cannot be allocated in code !klass->IsInstantiable()) { entrypoint = kQuickAllocObjectWithChecks; } // We will always be able to resolve the string class since it is in the BCP. if (!klass.IsNull() && klass->IsStringClass()) { entrypoint = kQuickAllocStringObject; } // Consider classes we haven't resolved as potentially finalizable. bool finalizable = (klass == nullptr) || klass->IsFinalizable(); HNewInstance* new_instance = new (allocator_) HNewInstance( cls, dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), finalizable, entrypoint); AppendInstruction(new_instance); return new_instance; } void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) { DCHECK(allocation != nullptr && (allocation->IsNewInstance() || allocation->IsNewArray())); // corresponding to "new" keyword in JLS. if (allocation->IsNewInstance()) { // STRING SPECIAL HANDLING: // ------------------------------- // Strings have a real HNewInstance node but they end up always having 0 uses. // All uses of a String HNewInstance are always transformed to replace their input // of the HNewInstance with an input of the invoke to StringFactory. // // Do not emit an HConstructorFence here since it can inhibit some String new-instance // optimizations (to pass checker tests that rely on those optimizations). HNewInstance* new_inst = allocation->AsNewInstance(); HLoadClass* load_class = new_inst->GetLoadClass(); Thread* self = Thread::Current(); ScopedObjectAccess soa(self); StackHandleScope<1> hs(self); Handle klass = load_class->GetClass(); if (klass != nullptr && klass->IsStringClass()) { return; // Note: Do not use allocation->IsStringAlloc which requires // a valid ReferenceTypeInfo, but that doesn't get made until after reference type // propagation (and instruction builder is too early). } // (In terms of correctness, the StringFactory needs to provide its own // default initialization barrier, see below.) } // JLS 17.4.5 "Happens-before Order" describes: // // The default initialization of any object happens-before any other actions (other than // default-writes) of a program. // // In our implementation the default initialization of an object to type T means // setting all of its initial data (object[0..size)) to 0, and setting the // object's class header (i.e. object.getClass() == T.class). // // In practice this fence ensures that the writes to the object header // are visible to other threads if this object escapes the current thread. // (and in theory the 0-initializing, but that happens automatically // when new memory pages are mapped in by the OS). HConstructorFence* ctor_fence = new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_); AppendInstruction(ctor_fence); MaybeRecordStat( compilation_stats_, MethodCompilationStat::kConstructorFenceGeneratedNew); } static bool IsInBootImage(ObjPtr cls, const CompilerOptions& compiler_options) REQUIRES_SHARED(Locks::mutator_lock_) { if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) { return true; } if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) { std::string temp; const char* descriptor = cls->GetDescriptor(&temp); return compiler_options.IsImageClass(descriptor); } else { return false; } } static bool IsSubClass(ObjPtr to_test, ObjPtr super_class) REQUIRES_SHARED(Locks::mutator_lock_) { return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); } static bool HasTrivialClinit(ObjPtr klass, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { // Check if the class has encoded fields that trigger bytecode execution. // (Encoded fields are just a different representation of .) if (klass->NumStaticFields() != 0u) { DCHECK(klass->GetClassDef() != nullptr); EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef()); for (; it.HasNext(); it.Next()) { switch (it.GetValueType()) { case EncodedArrayValueIterator::ValueType::kBoolean: case EncodedArrayValueIterator::ValueType::kByte: case EncodedArrayValueIterator::ValueType::kShort: case EncodedArrayValueIterator::ValueType::kChar: case EncodedArrayValueIterator::ValueType::kInt: case EncodedArrayValueIterator::ValueType::kLong: case EncodedArrayValueIterator::ValueType::kFloat: case EncodedArrayValueIterator::ValueType::kDouble: case EncodedArrayValueIterator::ValueType::kNull: case EncodedArrayValueIterator::ValueType::kString: // Primitive, null or j.l.String initialization is permitted. break; case EncodedArrayValueIterator::ValueType::kType: // Type initialization can load classes and execute bytecode through a class loader // which can execute arbitrary bytecode. We do not optimize for known class loaders; // kType is rarely used (if ever). return false; default: // Other types in the encoded static field list are rejected by the DexFileVerifier. LOG(FATAL) << "Unexpected type " << it.GetValueType(); UNREACHABLE(); } } } // Check if the class has that executes arbitrary code. // Initialization of static fields of the class itself with constants is allowed. ArtMethod* clinit = klass->FindClassInitializer(pointer_size); if (clinit != nullptr) { const DexFile& dex_file = *clinit->GetDexFile(); CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem()); for (DexInstructionPcPair it : accessor) { switch (it->Opcode()) { case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: case Instruction::CONST_HIGH16: case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: case Instruction::CONST_WIDE: case Instruction::CONST_WIDE_HIGH16: case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: // Primitive, null or j.l.String initialization is permitted. break; case Instruction::RETURN_VOID: break; case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: // Only initialization of a static field of the same class is permitted. if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) { return false; } break; case Instruction::NEW_ARRAY: // Only primitive arrays are permitted. if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId( dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) { return false; } break; case Instruction::APUT: case Instruction::APUT_WIDE: case Instruction::APUT_BOOLEAN: case Instruction::APUT_BYTE: case Instruction::APUT_CHAR: case Instruction::APUT_SHORT: case Instruction::FILL_ARRAY_DATA: case Instruction::NOP: // Allow initialization of primitive arrays (only constants can be stored). // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs // (even unreferenced switch payloads if they make it through the verifier). break; default: return false; } } } return true; } static bool HasTrivialInitialization(ObjPtr cls, const CompilerOptions& compiler_options) REQUIRES_SHARED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize(); // Check the superclass chain. for (ObjPtr klass = cls; klass != nullptr; klass = klass->GetSuperClass()) { if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) { break; // `klass` and its superclasses are already initialized in the boot image. } if (!HasTrivialClinit(klass, pointer_size)) { return false; } } // Also check interfaces with default methods as they need to be initialized as well. ObjPtr iftable = cls->GetIfTable(); DCHECK(iftable != nullptr); for (int32_t i = 0, count = iftable->Count(); i != count; ++i) { ObjPtr iface = iftable->GetInterface(i); if (!iface->HasDefaultMethods()) { continue; // Initializing `cls` does not initialize this interface. } if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) { continue; // This interface is already initialized in the boot image. } if (!HasTrivialClinit(iface, pointer_size)) { return false; } } return true; } bool HInstructionBuilder::IsInitialized(ObjPtr cls) const { if (cls == nullptr) { return false; } // Check if the class will be initialized at runtime. if (cls->IsInitialized()) { const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions(); if (compiler_options.IsAotCompiler()) { // Assume loaded only if klass is in the boot image. App classes cannot be assumed // loaded because we don't even know what class loader will be used to load them. if (IsInBootImage(cls, compiler_options)) { return true; } } else { DCHECK(compiler_options.IsJitCompiler()); if (Runtime::Current()->GetJit()->CanAssumeInitialized( cls, compiler_options.IsJitCompilerForSharedCode())) { // For JIT, the class cannot revert to an uninitialized state. return true; } } } // We can avoid the class initialization check for `cls` in static methods and constructors // in the very same class; invoking a static method involves a class initialization check // and so does the instance allocation that must be executed before invoking a constructor. // Other instance methods of the same class can run on an escaped instance // of an erroneous class. Even a superclass may need to be checked as the subclass // can be completely initialized while the superclass is initializing and the subclass // remains initialized when the superclass initializer throws afterwards. b/62478025 // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply. auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit) REQUIRES_SHARED(Locks::mutator_lock_) { return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u && compilation_unit.GetCompilingClass().Get() == cls; }; if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) || // Check also the innermost method. Though excessive copies of ClinitCheck can be // eliminated by GVN, that happens only after the decision whether to inline the // graph or not and that may depend on the presence of the ClinitCheck. // TODO: We should walk over the entire inlined method chain, but we don't pass that // information to the builder. is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) { return true; } // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing // before calling any `cls` or subclass methods. Static methods require a clinit check and // instance methods require an instance which cannot be created before doing a clinit check. // When a subclass of `cls` starts initializing, it starts initializing its superclass // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular // initialization weirdness. // // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces // with default methods initialize only their own static fields using constant values), it must // complete, either successfully or by throwing and marking `cls` erroneous, without allocating // any instances of `cls` or subclasses (or any other class) and without calling any methods. // If it completes by throwing, no instances of `cls` shall be created and no subclass method // bytecode shall execute (see above), therefore the instruction we're building shall be // unreachable. By reaching the instruction, we know that `cls` was initialized successfully. // // TODO: We should walk over the entire inlined methods chain, but we don't pass that // information to the builder. (We could also check if we're guaranteed a non-null instance // of `cls` at this location but that's outside the scope of the instruction builder.) bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls); if (dex_compilation_unit_ != outer_compilation_unit_) { is_subclass = is_subclass || IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls); } if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) { return true; } return false; } HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( uint32_t dex_pc, ArtMethod* resolved_method, HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { ScopedObjectAccess soa(Thread::Current()); ObjPtr klass = resolved_method->GetDeclaringClass(); HClinitCheck* clinit_check = nullptr; if (IsInitialized(klass)) { *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; } else { Handle h_klass = graph_->GetHandleCache()->NewHandle(klass); HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(), h_klass->GetDexFile(), h_klass, dex_pc, /* needs_access_check= */ false); if (cls != nullptr) { *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; clinit_check = new (allocator_) HClinitCheck(cls, dex_pc); AppendInstruction(clinit_check); } else { // Let the invoke handle this with an implicit class initialization check. *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; } } return clinit_check; } bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke, const InstructionOperands& operands, const char* shorty, ReceiverArg receiver_arg) { // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke. // In that case, do not log errors, they shall be reported when we try to build the HInvoke. uint32_t shorty_index = 1; // Skip the return type. const size_t number_of_operands = operands.GetNumberOfOperands(); bool argument_length_error = false; size_t start_index = 0u; size_t argument_index = 0u; if (receiver_arg != ReceiverArg::kNone) { if (number_of_operands == 0u) { argument_length_error = true; } else { start_index = 1u; if (receiver_arg != ReceiverArg::kIgnored) { uint32_t obj_reg = operands.GetOperand(0u); HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg) ? LoadLocal(obj_reg, DataType::Type::kReference) : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc()); if (receiver_arg != ReceiverArg::kNullCheckedOnly) { invoke->SetRawInputAt(0u, arg); argument_index = 1u; } } } } for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) { // Make sure we don't go over the expected arguments or over the number of // dex registers given. If the instruction was seen as dead by the verifier, // it hasn't been properly checked. if (UNLIKELY(shorty[shorty_index] == 0)) { argument_length_error = true; break; } DataType::Type type = DataType::FromShorty(shorty[shorty_index++]); bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64); if (is_wide && ((i + 1 == number_of_operands) || (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) { if (invoke->IsInvoke()) { // Longs and doubles should be in pairs, that is, sequential registers. The verifier should // reject any class where this is violated. However, the verifier only does these checks // on non trivially dead instructions, so we just bailout the compilation. VLOG(compiler) << "Did not compile " << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " because of non-sequential dex register pair in wide argument"; MaybeRecordStat(compilation_stats_, MethodCompilationStat::kNotCompiledMalformedOpcode); } return false; } HInstruction* arg = LoadLocal(operands.GetOperand(i), type); DCHECK(invoke->InputAt(argument_index) == nullptr); invoke->SetRawInputAt(argument_index, arg); if (is_wide) { ++i; } } argument_length_error = argument_length_error || shorty[shorty_index] != 0; if (argument_length_error) { if (invoke->IsInvoke()) { VLOG(compiler) << "Did not compile " << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " because of wrong number of arguments in invoke instruction"; MaybeRecordStat(compilation_stats_, MethodCompilationStat::kNotCompiledMalformedOpcode); } return false; } if (invoke->IsInvokeStaticOrDirect() && HInvokeStaticOrDirect::NeedsCurrentMethodInput( invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) { DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex()); DCHECK(invoke->InputAt(argument_index) == nullptr); invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod()); } if (invoke->IsInvokeInterface() && (invoke->AsInvokeInterface()->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive)) { invoke->SetRawInputAt(invoke->AsInvokeInterface()->GetNumberOfArguments() - 1, graph_->GetCurrentMethod()); } return true; } bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, const InstructionOperands& operands, const char* shorty, bool is_unresolved) { DCHECK_IMPLIES(invoke->IsInvokeStaticOrDirect(), !invoke->AsInvokeStaticOrDirect()->IsStringInit()); ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic) ? ReceiverArg::kNone : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg); if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) { return false; } AppendInstruction(invoke); latest_result_ = invoke; return true; } bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method, uint32_t dex_pc, const InstructionOperands& operands, const char* shorty) { Intrinsics intrinsic = static_cast(method->GetIntrinsic()); DCHECK_NE(intrinsic, Intrinsics::kNone); constexpr DataType::Type kInt32 = DataType::Type::kInt32; constexpr DataType::Type kInt64 = DataType::Type::kInt64; constexpr DataType::Type kFloat32 = DataType::Type::kFloat32; constexpr DataType::Type kFloat64 = DataType::Type::kFloat64; ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg; HInstruction* instruction = nullptr; switch (intrinsic) { case Intrinsics::kIntegerRotateRight: case Intrinsics::kIntegerRotateLeft: // For rotate left, we negate the distance below. instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr); break; case Intrinsics::kLongRotateRight: case Intrinsics::kLongRotateLeft: // For rotate left, we negate the distance below. instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr); break; case Intrinsics::kIntegerCompare: instruction = new (allocator_) HCompare( kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc); break; case Intrinsics::kLongCompare: instruction = new (allocator_) HCompare( kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc); break; case Intrinsics::kIntegerSignum: instruction = new (allocator_) HCompare( kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc); break; case Intrinsics::kLongSignum: instruction = new (allocator_) HCompare( kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc); break; case Intrinsics::kFloatIsNaN: case Intrinsics::kDoubleIsNaN: { // IsNaN(x) is the same as x != x. instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc); instruction->AsCondition()->SetBias(ComparisonBias::kLtBias); break; } case Intrinsics::kStringCharAt: // We treat String as an array to allow DCE and BCE to seamlessly work on strings. instruction = new (allocator_) HArrayGet(/*array=*/ nullptr, /*index=*/ nullptr, DataType::Type::kUint16, SideEffects::None(), // Strings are immutable. dex_pc, /*is_string_char_at=*/ true); break; case Intrinsics::kStringIsEmpty: case Intrinsics::kStringLength: // We treat String as an array to allow DCE and BCE to seamlessly work on strings. // For String.isEmpty(), we add a comparison with 0 below. instruction = new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true); break; case Intrinsics::kUnsafeLoadFence: case Intrinsics::kJdkUnsafeLoadFence: receiver_arg = ReceiverArg::kNullCheckedOnly; instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); break; case Intrinsics::kUnsafeStoreFence: case Intrinsics::kJdkUnsafeStoreFence: receiver_arg = ReceiverArg::kNullCheckedOnly; instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc); break; case Intrinsics::kUnsafeFullFence: case Intrinsics::kJdkUnsafeFullFence: receiver_arg = ReceiverArg::kNullCheckedOnly; instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc); break; case Intrinsics::kVarHandleFullFence: instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc); break; case Intrinsics::kVarHandleAcquireFence: instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); break; case Intrinsics::kVarHandleReleaseFence: instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc); break; case Intrinsics::kVarHandleLoadLoadFence: instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc); break; case Intrinsics::kVarHandleStoreStoreFence: instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc); break; case Intrinsics::kMathMinIntInt: instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMinLongLong: instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMinFloatFloat: instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMinDoubleDouble: instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMaxIntInt: instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMaxLongLong: instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMaxFloatFloat: instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathMaxDoubleDouble: instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc); break; case Intrinsics::kMathAbsInt: instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc); break; case Intrinsics::kMathAbsLong: instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc); break; case Intrinsics::kMathAbsFloat: instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc); break; case Intrinsics::kMathAbsDouble: instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc); break; default: // We do not have intermediate representation for other intrinsics. return false; } DCHECK(instruction != nullptr); if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) { return false; } switch (intrinsic) { case Intrinsics::kIntegerRotateLeft: case Intrinsics::kLongRotateLeft: { // Negate the distance value for rotate left. DCHECK(instruction->IsRor()); HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u)); AppendInstruction(neg); instruction->SetRawInputAt(1u, neg); break; } case Intrinsics::kFloatIsNaN: case Intrinsics::kDoubleIsNaN: // Set the second input to be the same as first. DCHECK(instruction->IsNotEqual()); DCHECK(instruction->InputAt(1u) == nullptr); instruction->SetRawInputAt(1u, instruction->InputAt(0u)); break; case Intrinsics::kStringCharAt: { // Add bounds check. HInstruction* array = instruction->InputAt(0u); HInstruction* index = instruction->InputAt(1u); HInstruction* length = new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true); AppendInstruction(length); HBoundsCheck* bounds_check = new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true); AppendInstruction(bounds_check); graph_->SetHasBoundsChecks(true); instruction->SetRawInputAt(1u, bounds_check); break; } case Intrinsics::kStringIsEmpty: { // Compare the length with 0. DCHECK(instruction->IsArrayLength()); AppendInstruction(instruction); HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc); instruction = equal; break; } default: break; } AppendInstruction(instruction); latest_result_ = instruction; return true; } bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, const InstructionOperands& operands, const char* shorty) { DCHECK(invoke->IsInvokeStaticOrDirect()); DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) { return false; } AppendInstruction(invoke); // This is a StringFactory call, not an actual String constructor. Its result // replaces the empty String pre-allocated by NewInstance. uint32_t orig_this_reg = operands.GetOperand(0); HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference); // Replacing the NewInstance might render it redundant. Keep a list of these // to be visited once it is clear whether it has remaining uses. if (arg_this->IsNewInstance()) { ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); } else { DCHECK(arg_this->IsPhi()); // We can get a phi as input of a String. if there is a loop between the // allocation and the String. call. As we don't know which other phis might alias // with `arg_this`, we keep a record of those invocations so we can later replace // the allocation with the invocation. // Add the actual 'this' input so the analysis knows what is the allocation instruction. // The input will be removed during the analysis. invoke->AddInput(arg_this); ssa_builder_->AddUninitializedStringPhi(invoke); } // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { if ((*current_locals_)[vreg] == arg_this) { (*current_locals_)[vreg] = invoke; } } return true; } static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { const dex::FieldId& field_id = dex_file.GetFieldId(field_index); const char* type = dex_file.GetFieldTypeDescriptor(field_id); return DataType::FromShorty(type[0]); } bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_22c(); uint32_t obj_reg = instruction.VRegB_22c(); uint16_t field_index = instruction.VRegC_22c(); ScopedObjectAccess soa(Thread::Current()); ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put); // Generate an explicit null check on the reference, unless the field access // is unresolved. In that case, we rely on the runtime to perform various // checks first, followed by a null check. HInstruction* object = (resolved_field == nullptr) ? LoadLocal(obj_reg, DataType::Type::kReference) : LoadNullCheckedLocal(obj_reg, dex_pc); DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, field_type); HInstruction* field_set = nullptr; if (resolved_field == nullptr) { MaybeRecordStat(compilation_stats_, MethodCompilationStat::kUnresolvedField); field_set = new (allocator_) HUnresolvedInstanceFieldSet(object, value, field_type, field_index, dex_pc); } else { uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); field_set = new (allocator_) HInstanceFieldSet(object, value, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc); } AppendInstruction(field_set); } else { HInstruction* field_get = nullptr; if (resolved_field == nullptr) { MaybeRecordStat(compilation_stats_, MethodCompilationStat::kUnresolvedField); field_get = new (allocator_) HUnresolvedInstanceFieldGet(object, field_type, field_index, dex_pc); } else { uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); field_get = new (allocator_) HInstanceFieldGet(object, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc); } AppendInstruction(field_get); UpdateLocal(source_or_dest_reg, field_get); } return true; } void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put, DataType::Type field_type) { uint32_t source_or_dest_reg = instruction.VRegA_21c(); uint16_t field_index = instruction.VRegB_21c(); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, field_type); AppendInstruction( new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); } else { AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } } ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) { ScopedObjectAccess soa(Thread::Current()); ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); Handle class_loader = dex_compilation_unit_->GetClassLoader(); ArtField* resolved_field = class_linker->ResolveFieldJLS(field_idx, dex_compilation_unit_->GetDexCache(), class_loader); DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending()) << "field=" << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField()) << ", exception=" << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null"); if (UNLIKELY(resolved_field == nullptr)) { // Clean up any exception left by field resolution. soa.Self()->ClearException(); return nullptr; } if (UNLIKELY(resolved_field->IsStatic() != is_static)) { return nullptr; } // Check access. Handle compiling_class = dex_compilation_unit_->GetCompilingClass(); if (compiling_class == nullptr) { // Check if the declaring class or referencing class is accessible. SamePackageCompare same_package(*dex_compilation_unit_); ObjPtr declaring_class = resolved_field->GetDeclaringClass(); bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class); if (!declaring_class_accessible) { // It is possible to access members from an inaccessible superclass // by referencing them through an accessible subclass. ObjPtr referenced_class = class_linker->LookupResolvedType( dex_compilation_unit_->GetDexFile()->GetFieldId(field_idx).class_idx_, dex_compilation_unit_->GetDexCache().Get(), class_loader.Get()); DCHECK(referenced_class != nullptr); // Must have been resolved when resolving the field. if (!referenced_class->IsPublic() && !same_package(referenced_class)) { return nullptr; } } // Check whether the field itself is accessible. // Since the referrer is unresolved but the field is resolved, it cannot be // inside the same class, so a private field is known to be inaccessible. // And without a resolved referrer, we cannot check for protected member access // in superlass, so we handle only access to public member or within the package. if (resolved_field->IsPrivate() || (!resolved_field->IsPublic() && !declaring_class_accessible)) { return nullptr; } } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(), resolved_field, dex_compilation_unit_->GetDexCache().Get(), field_idx)) { return nullptr; } if (is_put) { if (resolved_field->IsFinal() && (compiling_class.Get() != resolved_field->GetDeclaringClass())) { // Final fields can only be updated within their own class. // TODO: Only allow it in constructors. b/34966607. return nullptr; } // Note: We do not need to resolve the field type for `get` opcodes. StackArtFieldHandleScope<1> rhs(soa.Self()); ReflectiveHandle resolved_field_handle(rhs.NewHandle(resolved_field)); if (resolved_field->ResolveType().IsNull()) { // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577). soa.Self()->ClearException(); return nullptr; // Failure } resolved_field = resolved_field_handle.Get(); } return resolved_field; } void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_21c(); uint16_t field_index = instruction.VRegB_21c(); ScopedObjectAccess soa(Thread::Current()); ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put); if (resolved_field == nullptr) { MaybeRecordStat(compilation_stats_, MethodCompilationStat::kUnresolvedField); DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); return; } DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index); Handle klass = graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass()); HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(), klass->GetDexFile(), klass, dex_pc, /* needs_access_check= */ false); if (constant == nullptr) { // The class cannot be referenced from this compiled code. Generate // an unresolved access. MaybeRecordStat(compilation_stats_, MethodCompilationStat::kUnresolvedFieldNotAFastAccess); BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); return; } HInstruction* cls = constant; if (!IsInitialized(klass.Get())) { cls = new (allocator_) HClinitCheck(constant, dex_pc); AppendInstruction(cls); } uint16_t class_def_index = klass->GetDexClassDefIndex(); if (is_put) { // We need to keep the class alive before loading the value. HInstruction* value = LoadLocal(source_or_dest_reg, field_type); DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); AppendInstruction(new (allocator_) HStaticFieldSet(cls, value, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc)); } else { AppendInstruction(new (allocator_) HStaticFieldGet(cls, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } } void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, uint16_t first_vreg, int64_t second_vreg_or_constant, uint32_t dex_pc, DataType::Type type, bool second_is_constant, bool isDiv) { DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); HInstruction* first = LoadLocal(first_vreg, type); HInstruction* second = nullptr; if (second_is_constant) { if (type == DataType::Type::kInt32) { second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); } else { second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); } } else { second = LoadLocal(second_vreg_or_constant, type); } if (!second_is_constant || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0) || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) { second = new (allocator_) HDivZeroCheck(second, dex_pc); AppendInstruction(second); } if (isDiv) { AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc)); } else { AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc)); } UpdateLocal(out_vreg, current_block_->GetLastInstruction()); } void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put, DataType::Type anticipated_type) { uint8_t source_or_dest_reg = instruction.VRegA_23x(); uint8_t array_reg = instruction.VRegB_23x(); uint8_t index_reg = instruction.VRegC_23x(); HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc); HInstruction* length = new (allocator_) HArrayLength(object, dex_pc); AppendInstruction(length); HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32); index = new (allocator_) HBoundsCheck(index, length, dex_pc); AppendInstruction(index); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); // TODO: Insert a type check node if the type is Object. HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } else { HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc); ssa_builder_->MaybeAddAmbiguousArrayGet(aget); AppendInstruction(aget); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } graph_->SetHasBoundsChecks(true); } HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc, dex::TypeIndex type_index, HInstruction* length) { HLoadClass* cls = BuildLoadClass(type_index, dex_pc); const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index)); DCHECK_EQ(descriptor[0], '['); size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1])); HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift); AppendInstruction(new_array); return new_array; } HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, dex::TypeIndex type_index, const InstructionOperands& operands) { const size_t number_of_operands = operands.GetNumberOfOperands(); HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc); HNewArray* new_array = BuildNewArray(dex_pc, type_index, length); const char* descriptor = dex_file_->StringByTypeIdx(type_index); DCHECK_EQ(descriptor[0], '[') << descriptor; char primitive = descriptor[1]; DCHECK(primitive == 'I' || primitive == 'L' || primitive == '[') << descriptor; bool is_reference_array = (primitive == 'L') || (primitive == '['); DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32; for (size_t i = 0; i < number_of_operands; ++i) { HInstruction* value = LoadLocal(operands.GetOperand(i), type); HInstruction* index = graph_->GetIntConstant(i, dex_pc); HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } latest_result_ = new_array; return new_array; } template void HInstructionBuilder::BuildFillArrayData(HInstruction* object, const T* data, uint32_t element_count, DataType::Type anticipated_type, uint32_t dex_pc) { for (uint32_t i = 0; i < element_count; ++i) { HInstruction* index = graph_->GetIntConstant(i, dex_pc); HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } } void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc); int32_t payload_offset = instruction.VRegB_31t() + dex_pc; const Instruction::ArrayDataPayload* payload = reinterpret_cast( code_item_accessor_.Insns() + payload_offset); const uint8_t* data = payload->data; uint32_t element_count = payload->element_count; if (element_count == 0u) { // For empty payload we emit only the null check above. return; } HInstruction* length = new (allocator_) HArrayLength(array, dex_pc); AppendInstruction(length); // Implementation of this DEX instruction seems to be that the bounds check is // done before doing any stores. HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc)); switch (payload->element_width) { case 1: BuildFillArrayData(array, reinterpret_cast(data), element_count, DataType::Type::kInt8, dex_pc); break; case 2: BuildFillArrayData(array, reinterpret_cast(data), element_count, DataType::Type::kInt16, dex_pc); break; case 4: BuildFillArrayData(array, reinterpret_cast(data), element_count, DataType::Type::kInt32, dex_pc); break; case 8: BuildFillWideArrayData(array, reinterpret_cast(data), element_count, dex_pc); break; default: LOG(FATAL) << "Unknown element width for " << payload->element_width; } graph_->SetHasBoundsChecks(true); } void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, const int64_t* data, uint32_t element_count, uint32_t dex_pc) { for (uint32_t i = 0; i < element_count; ++i) { HInstruction* index = graph_->GetIntConstant(i, dex_pc); HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); HArraySet* aset = new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } } void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) { HLoadString* load_string = new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc); HSharpening::ProcessLoadString(load_string, code_generator_, *dex_compilation_unit_, graph_->GetHandleCache()->GetHandles()); AppendInstruction(load_string); } HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) { ScopedObjectAccess soa(Thread::Current()); const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); Handle klass = ResolveClass(soa, type_index); bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get()); return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); } HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, const DexFile& dex_file, Handle klass, uint32_t dex_pc, bool needs_access_check) { // Try to find a reference in the compiling dex file. const DexFile* actual_dex_file = &dex_file; if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) { dex::TypeIndex local_type_index = klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile()); if (local_type_index.IsValid()) { type_index = local_type_index; actual_dex_file = dex_compilation_unit_->GetDexFile(); } } // We cannot use the referrer's class load kind if we need to do an access check. // If the `klass` is unresolved, we need access check with the exception of the referrer's // class, see LoadClassNeedsAccessCheck(), so the `!needs_access_check` check is enough. // Otherwise, also check if the `klass` is the same as the compiling class, which also // conveniently rejects the case of unresolved compiling class. bool is_referrers_class = !needs_access_check && (klass == nullptr || outer_compilation_unit_->GetCompilingClass().Get() == klass.Get()); // Note: `klass` must be from `graph_->GetHandleCache()`. HLoadClass* load_class = new (allocator_) HLoadClass( graph_->GetCurrentMethod(), type_index, *actual_dex_file, klass, is_referrers_class, dex_pc, needs_access_check); HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class, code_generator_, *dex_compilation_unit_); if (load_kind == HLoadClass::LoadKind::kInvalid) { // We actually cannot reference this class, we're forced to bail. return nullptr; } // Load kind must be set before inserting the instruction into the graph. load_class->SetLoadKind(load_kind); AppendInstruction(load_class); return load_class; } Handle HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa, dex::TypeIndex type_index) { auto it = class_cache_.find(type_index); if (it != class_cache_.end()) { return it->second; } ObjPtr klass = dex_compilation_unit_->GetClassLinker()->ResolveType( type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader()); DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending()); soa.Self()->ClearException(); // Clean up the exception left by type resolution if any. Handle h_klass = graph_->GetHandleCache()->NewHandle(klass); class_cache_.Put(type_index, h_klass); return h_klass; } bool HInstructionBuilder::LoadClassNeedsAccessCheck(dex::TypeIndex type_index, ObjPtr klass) { if (klass == nullptr) { // If the class is unresolved, we can avoid access checks only for references to // the compiling class as determined by checking the descriptor and ClassLoader. if (outer_compilation_unit_->GetCompilingClass() != nullptr) { // Compiling class is resolved, so different from the unresolved class. return true; } if (dex_compilation_unit_->GetClassLoader().Get() != outer_compilation_unit_->GetClassLoader().Get()) { // Resolving the same descriptor in a different ClassLoader than the // defining loader of the compiling class shall either fail to find // the class definition, or find a different one. // (Assuming no custom ClassLoader hierarchy with circular delegation.) return true; } // Check if the class is the outer method's class. // For the same dex file compare type indexes, otherwise descriptors. const DexFile* outer_dex_file = outer_compilation_unit_->GetDexFile(); const DexFile* inner_dex_file = dex_compilation_unit_->GetDexFile(); const dex::ClassDef& outer_class_def = outer_dex_file->GetClassDef(outer_compilation_unit_->GetClassDefIndex()); if (IsSameDexFile(*inner_dex_file, *outer_dex_file)) { if (type_index != outer_class_def.class_idx_) { return true; } } else { uint32_t outer_utf16_length; const char* outer_descriptor = outer_dex_file->StringByTypeIdx(outer_class_def.class_idx_, &outer_utf16_length); uint32_t target_utf16_length; const char* target_descriptor = inner_dex_file->StringByTypeIdx(type_index, &target_utf16_length); if (outer_utf16_length != target_utf16_length || strcmp(outer_descriptor, target_descriptor) != 0) { return true; } } // For inlined methods we also need to check if the compiling class // is public or in the same package as the inlined method's class. if (dex_compilation_unit_ != outer_compilation_unit_ && (outer_class_def.access_flags_ & kAccPublic) == 0) { DCHECK(dex_compilation_unit_->GetCompilingClass() != nullptr); SamePackageCompare same_package(*outer_compilation_unit_); if (!same_package(dex_compilation_unit_->GetCompilingClass().Get())) { return true; } } return false; } else if (klass->IsPublic()) { return false; } else if (dex_compilation_unit_->GetCompilingClass() != nullptr) { return !dex_compilation_unit_->GetCompilingClass()->CanAccess(klass); } else { SamePackageCompare same_package(*dex_compilation_unit_); return !same_package(klass); } } void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) { const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle( graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc); AppendInstruction(load_method_handle); } void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) { const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); HLoadMethodType* load_method_type = new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc); AppendInstruction(load_method_type); } void HInstructionBuilder::BuildTypeCheck(bool is_instance_of, HInstruction* object, dex::TypeIndex type_index, uint32_t dex_pc) { ScopedObjectAccess soa(Thread::Current()); const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); Handle klass = ResolveClass(soa, type_index); bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get()); TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind( klass.Get(), code_generator_, needs_access_check); HInstruction* class_or_null = nullptr; HIntConstant* bitstring_path_to_root = nullptr; HIntConstant* bitstring_mask = nullptr; if (check_kind == TypeCheckKind::kBitstringCheck) { // TODO: Allow using the bitstring check also if we need an access check. DCHECK(!needs_access_check); class_or_null = graph_->GetNullConstant(dex_pc); MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_); uint32_t path_to_root = SubtypeCheck>::GetEncodedPathToRootForTarget(klass.Get()); uint32_t mask = SubtypeCheck>::GetEncodedPathToRootMask(klass.Get()); bitstring_path_to_root = graph_->GetIntConstant(static_cast(path_to_root), dex_pc); bitstring_mask = graph_->GetIntConstant(static_cast(mask), dex_pc); } else { class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); } DCHECK(class_or_null != nullptr); if (is_instance_of) { AppendInstruction(new (allocator_) HInstanceOf(object, class_or_null, check_kind, klass, dex_pc, allocator_, bitstring_path_to_root, bitstring_mask)); } else { // We emit a CheckCast followed by a BoundType. CheckCast is a statement // which may throw. If it succeeds BoundType sets the new type of `object` // for all subsequent uses. AppendInstruction( new (allocator_) HCheckCast(object, class_or_null, check_kind, klass, dex_pc, allocator_, bitstring_path_to_root, bitstring_mask)); AppendInstruction(new (allocator_) HBoundType(object, dex_pc)); } } void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, uint8_t destination, uint8_t reference, dex::TypeIndex type_index, uint32_t dex_pc) { HInstruction* object = LoadLocal(reference, DataType::Type::kReference); bool is_instance_of = instruction.Opcode() == Instruction::INSTANCE_OF; BuildTypeCheck(is_instance_of, object, type_index, dex_pc); if (is_instance_of) { UpdateLocal(destination, current_block_->GetLastInstruction()); } else { DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); UpdateLocal(reference, current_block_->GetLastInstruction()); } } bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) { switch (instruction.Opcode()) { case Instruction::CONST_4: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_HIGH16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_16: { int32_t register_index = instruction.VRegA(); // Get 16 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_21s(); value <<= 48; value >>= 48; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_32: { int32_t register_index = instruction.VRegA(); // Get 32 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_31i(); value <<= 32; value >>= 32; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE: { int32_t register_index = instruction.VRegA(); HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_HIGH16: { int32_t register_index = instruction.VRegA(); int64_t value = static_cast(instruction.VRegB_21h()) << 48; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant); break; } // Note that the SSA building will refine the types. case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32); UpdateLocal(instruction.VRegA(), value); break; } // Note that the SSA building will refine the types. case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64); UpdateLocal(instruction.VRegA(), value); break; } case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_OBJECT_FROM16: { // The verifier has no notion of a null type, so a move-object of constant 0 // will lead to the same constant 0 in the destination register. To mimic // this behavior, we just pretend we haven't seen a type change (int to reference) // for the 0 constant and phis. We rely on our type propagation to eventually get the // types correct. uint32_t reg_number = instruction.VRegB(); HInstruction* value = (*current_locals_)[reg_number]; if (value->IsIntConstant()) { DCHECK_EQ(value->AsIntConstant()->GetValue(), 0); } else if (value->IsPhi()) { DCHECK(value->GetType() == DataType::Type::kInt32 || value->GetType() == DataType::Type::kReference); } else { value = LoadLocal(reg_number, DataType::Type::kReference); } UpdateLocal(instruction.VRegA(), value); break; } case Instruction::RETURN_VOID: { BuildReturn(instruction, DataType::Type::kVoid, dex_pc); break; } #define IF_XX(comparison, cond) \ case Instruction::IF_##cond: If_22t(instruction, dex_pc); break; \ case Instruction::IF_##cond##Z: If_21t(instruction, dex_pc); break IF_XX(HEqual, EQ); IF_XX(HNotEqual, NE); IF_XX(HLessThan, LT); IF_XX(HLessThanOrEqual, LE); IF_XX(HGreaterThan, GT); IF_XX(HGreaterThanOrEqual, GE); case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { AppendInstruction(new (allocator_) HGoto(dex_pc)); current_block_ = nullptr; break; } case Instruction::RETURN: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::RETURN_OBJECT: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::RETURN_WIDE: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_STATIC: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_VIRTUAL: { uint16_t method_idx = instruction.VRegB_35c(); uint32_t args[5]; uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); VarArgsInstructionOperands operands(args, number_of_vreg_arguments); if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) { return false; } break; } case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_INTERFACE_RANGE: case Instruction::INVOKE_STATIC_RANGE: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE: { uint16_t method_idx = instruction.VRegB_3rc(); RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc()); if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) { return false; } break; } case Instruction::INVOKE_POLYMORPHIC: { uint16_t method_idx = instruction.VRegB_45cc(); dex::ProtoIndex proto_idx(instruction.VRegH_45cc()); uint32_t args[5]; uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); VarArgsInstructionOperands operands(args, number_of_vreg_arguments); return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands); } case Instruction::INVOKE_POLYMORPHIC_RANGE: { uint16_t method_idx = instruction.VRegB_4rcc(); dex::ProtoIndex proto_idx(instruction.VRegH_4rcc()); RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc()); return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands); } case Instruction::INVOKE_CUSTOM: { uint16_t call_site_idx = instruction.VRegB_35c(); uint32_t args[5]; uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); VarArgsInstructionOperands operands(args, number_of_vreg_arguments); return BuildInvokeCustom(dex_pc, call_site_idx, operands); } case Instruction::INVOKE_CUSTOM_RANGE: { uint16_t call_site_idx = instruction.VRegB_3rc(); RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc()); return BuildInvokeCustom(dex_pc, call_site_idx, operands); } case Instruction::NEG_INT: { Unop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::NEG_LONG: { Unop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::NEG_FLOAT: { Unop_12x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::NEG_DOUBLE: { Unop_12x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::NOT_INT: { Unop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::NOT_LONG: { Unop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::INT_TO_LONG: { Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc); break; } case Instruction::INT_TO_FLOAT: { Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc); break; } case Instruction::INT_TO_DOUBLE: { Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc); break; } case Instruction::LONG_TO_INT: { Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc); break; } case Instruction::LONG_TO_FLOAT: { Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc); break; } case Instruction::LONG_TO_DOUBLE: { Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc); break; } case Instruction::FLOAT_TO_INT: { Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc); break; } case Instruction::FLOAT_TO_LONG: { Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc); break; } case Instruction::FLOAT_TO_DOUBLE: { Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc); break; } case Instruction::DOUBLE_TO_INT: { Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc); break; } case Instruction::DOUBLE_TO_LONG: { Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc); break; } case Instruction::DOUBLE_TO_FLOAT: { Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc); break; } case Instruction::INT_TO_BYTE: { Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc); break; } case Instruction::INT_TO_SHORT: { Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc); break; } case Instruction::INT_TO_CHAR: { Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc); break; } case Instruction::ADD_INT: { Binop_23x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::ADD_LONG: { Binop_23x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::ADD_DOUBLE: { Binop_23x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::ADD_FLOAT: { Binop_23x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::SUB_INT: { Binop_23x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::SUB_LONG: { Binop_23x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::SUB_FLOAT: { Binop_23x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::SUB_DOUBLE: { Binop_23x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::ADD_INT_2ADDR: { Binop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::MUL_INT: { Binop_23x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::MUL_LONG: { Binop_23x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::MUL_FLOAT: { Binop_23x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::MUL_DOUBLE: { Binop_23x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::DIV_INT: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, DataType::Type::kInt32, false, true); break; } case Instruction::DIV_LONG: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, DataType::Type::kInt64, false, true); break; } case Instruction::DIV_FLOAT: { Binop_23x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::DIV_DOUBLE: { Binop_23x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::REM_INT: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, DataType::Type::kInt32, false, false); break; } case Instruction::REM_LONG: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, DataType::Type::kInt64, false, false); break; } case Instruction::REM_FLOAT: { Binop_23x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::REM_DOUBLE: { Binop_23x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::AND_INT: { Binop_23x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::AND_LONG: { Binop_23x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::SHL_INT: { Binop_23x_shift(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::SHL_LONG: { Binop_23x_shift(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::SHR_INT: { Binop_23x_shift(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::SHR_LONG: { Binop_23x_shift(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::USHR_INT: { Binop_23x_shift(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::USHR_LONG: { Binop_23x_shift(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::OR_INT: { Binop_23x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::OR_LONG: { Binop_23x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::XOR_INT: { Binop_23x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::XOR_LONG: { Binop_23x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::ADD_LONG_2ADDR: { Binop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::ADD_DOUBLE_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::ADD_FLOAT_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::SUB_INT_2ADDR: { Binop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::SUB_LONG_2ADDR: { Binop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::SUB_FLOAT_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::SUB_DOUBLE_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::MUL_INT_2ADDR: { Binop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::MUL_LONG_2ADDR: { Binop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::MUL_FLOAT_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::MUL_DOUBLE_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::DIV_INT_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, DataType::Type::kInt32, false, true); break; } case Instruction::DIV_LONG_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, DataType::Type::kInt64, false, true); break; } case Instruction::REM_INT_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, DataType::Type::kInt32, false, false); break; } case Instruction::REM_LONG_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, DataType::Type::kInt64, false, false); break; } case Instruction::REM_FLOAT_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::REM_DOUBLE_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::SHL_INT_2ADDR: { Binop_12x_shift(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::SHL_LONG_2ADDR: { Binop_12x_shift(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::SHR_INT_2ADDR: { Binop_12x_shift(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::SHR_LONG_2ADDR: { Binop_12x_shift(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::USHR_INT_2ADDR: { Binop_12x_shift(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::USHR_LONG_2ADDR: { Binop_12x_shift(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::DIV_FLOAT_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat32, dex_pc); break; } case Instruction::DIV_DOUBLE_2ADDR: { Binop_12x(instruction, DataType::Type::kFloat64, dex_pc); break; } case Instruction::AND_INT_2ADDR: { Binop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::AND_LONG_2ADDR: { Binop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::OR_INT_2ADDR: { Binop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::OR_LONG_2ADDR: { Binop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::XOR_INT_2ADDR: { Binop_12x(instruction, DataType::Type::kInt32, dex_pc); break; } case Instruction::XOR_LONG_2ADDR: { Binop_12x(instruction, DataType::Type::kInt64, dex_pc); break; } case Instruction::ADD_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::AND_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::OR_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::XOR_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::RSUB_INT: { Binop_22s(instruction, true, dex_pc); break; } case Instruction::MUL_INT_LIT16: { Binop_22s(instruction, false, dex_pc); break; } case Instruction::ADD_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::AND_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::OR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::XOR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::RSUB_INT_LIT8: { Binop_22b(instruction, true, dex_pc); break; } case Instruction::MUL_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, DataType::Type::kInt32, true, true); break; } case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, DataType::Type::kInt32, true, false); break; } case Instruction::SHL_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::SHR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::USHR_INT_LIT8: { Binop_22b(instruction, false, dex_pc); break; } case Instruction::NEW_INSTANCE: { HNewInstance* new_instance = BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc); DCHECK(new_instance != nullptr); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); BuildConstructorFenceForAllocation(new_instance); break; } case Instruction::NEW_ARRAY: { dex::TypeIndex type_index(instruction.VRegC_22c()); HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32); HNewArray* new_array = BuildNewArray(dex_pc, type_index, length); UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); BuildConstructorFenceForAllocation(new_array); break; } case Instruction::FILLED_NEW_ARRAY: { dex::TypeIndex type_index(instruction.VRegB_35c()); uint32_t args[5]; uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args); VarArgsInstructionOperands operands(args, number_of_vreg_arguments); HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands); BuildConstructorFenceForAllocation(new_array); break; } case Instruction::FILLED_NEW_ARRAY_RANGE: { dex::TypeIndex type_index(instruction.VRegB_3rc()); RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc()); HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands); BuildConstructorFenceForAllocation(new_array); break; } case Instruction::FILL_ARRAY_DATA: { BuildFillArrayData(instruction, dex_pc); break; } case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT_OBJECT: { DCHECK(latest_result_ != nullptr); UpdateLocal(instruction.VRegA(), latest_result_); latest_result_ = nullptr; break; } case Instruction::CMP_LONG: { Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc); break; } case Instruction::CMPG_FLOAT: { Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc); break; } case Instruction::CMPG_DOUBLE: { Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc); break; } case Instruction::CMPL_FLOAT: { Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc); break; } case Instruction::CMPL_DOUBLE: { Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc); break; } case Instruction::NOP: break; case Instruction::IGET: case Instruction::IGET_WIDE: case Instruction::IGET_OBJECT: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: case Instruction::IGET_CHAR: case Instruction::IGET_SHORT: { if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false)) { return false; } break; } case Instruction::IPUT: case Instruction::IPUT_WIDE: case Instruction::IPUT_OBJECT: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: { if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true)) { return false; } break; } case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_OBJECT: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: { BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false); break; } case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: { BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true); break; } #define ARRAY_XX(kind, anticipated_type) \ case Instruction::AGET##kind: { \ BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ break; \ } \ case Instruction::APUT##kind: { \ BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ break; \ } ARRAY_XX(, DataType::Type::kInt32); ARRAY_XX(_WIDE, DataType::Type::kInt64); ARRAY_XX(_OBJECT, DataType::Type::kReference); ARRAY_XX(_BOOLEAN, DataType::Type::kBool); ARRAY_XX(_BYTE, DataType::Type::kInt8); ARRAY_XX(_CHAR, DataType::Type::kUint16); ARRAY_XX(_SHORT, DataType::Type::kInt16); case Instruction::ARRAY_LENGTH: { HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc); AppendInstruction(new (allocator_) HArrayLength(object, dex_pc)); UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_STRING: { dex::StringIndex string_index(instruction.VRegB_21c()); BuildLoadString(string_index, dex_pc); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_STRING_JUMBO: { dex::StringIndex string_index(instruction.VRegB_31c()); BuildLoadString(string_index, dex_pc); UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_CLASS: { dex::TypeIndex type_index(instruction.VRegB_21c()); BuildLoadClass(type_index, dex_pc); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_METHOD_HANDLE: { uint16_t method_handle_idx = instruction.VRegB_21c(); BuildLoadMethodHandle(method_handle_idx, dex_pc); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_METHOD_TYPE: { dex::ProtoIndex proto_idx(instruction.VRegB_21c()); BuildLoadMethodType(proto_idx, dex_pc); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); break; } case Instruction::MOVE_EXCEPTION: { AppendInstruction(new (allocator_) HLoadException(dex_pc)); UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); AppendInstruction(new (allocator_) HClearException(dex_pc)); break; } case Instruction::THROW: { HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference); AppendInstruction(new (allocator_) HThrow(exception, dex_pc)); // We finished building this block. Set the current block to null to avoid // adding dead instructions to it. current_block_ = nullptr; break; } case Instruction::INSTANCE_OF: { uint8_t destination = instruction.VRegA_22c(); uint8_t reference = instruction.VRegB_22c(); dex::TypeIndex type_index(instruction.VRegC_22c()); BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); break; } case Instruction::CHECK_CAST: { uint8_t reference = instruction.VRegA_21c(); dex::TypeIndex type_index(instruction.VRegB_21c()); BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); break; } case Instruction::MONITOR_ENTER: { AppendInstruction(new (allocator_) HMonitorOperation( LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), HMonitorOperation::OperationKind::kEnter, dex_pc)); graph_->SetHasMonitorOperations(true); break; } case Instruction::MONITOR_EXIT: { AppendInstruction(new (allocator_) HMonitorOperation( LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference), HMonitorOperation::OperationKind::kExit, dex_pc)); graph_->SetHasMonitorOperations(true); break; } case Instruction::SPARSE_SWITCH: case Instruction::PACKED_SWITCH: { BuildSwitch(instruction, dex_pc); break; } case Instruction::UNUSED_3E ... Instruction::UNUSED_43: case Instruction::UNUSED_73: case Instruction::UNUSED_79: case Instruction::UNUSED_7A: case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9: { VLOG(compiler) << "Did not compile " << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " because of unhandled instruction " << instruction.Name(); MaybeRecordStat(compilation_stats_, MethodCompilationStat::kNotCompiledUnhandledInstruction); return false; } } return true; } // NOLINT(readability/fn_size) ObjPtr HInstructionBuilder::LookupResolvedType( dex::TypeIndex type_index, const DexCompilationUnit& compilation_unit) const { return compilation_unit.GetClassLinker()->LookupResolvedType( type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); } ObjPtr HInstructionBuilder::LookupReferrerClass() const { // TODO: Cache the result in a Handle. const dex::MethodId& method_id = dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_); } } // namespace art