/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "debugger_interface.h" #include #include "base/array_ref.h" #include "base/bit_utils.h" #include "base/logging.h" #include "base/mutex.h" #include "base/time_utils.h" #include "base/utils.h" #include "dex/dex_file.h" #include "elf/elf_debug_reader.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jit/jit_memory_region.h" #include "runtime.h" #include "thread-current-inl.h" #include "thread.h" #include #include // // Debug interface for native tools (gdb, lldb, libunwind, simpleperf). // // See http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html // // There are two ways for native tools to access the debug data safely: // // 1) Synchronously, by setting a breakpoint in the __*_debug_register_code // method, which is called after every modification of the linked list. // GDB does this, but it is complex to set up and it stops the process. // // 2) Asynchronously, using the entry seqlocks. // * The seqlock is a monotonically increasing counter, which // is even if the entry is valid and odd if it is invalid. // It is set to even value after all other fields are set, // and it is set to odd value before the entry is deleted. // * This makes it possible to safely read the symfile data: // * The reader should read the value of the seqlock both // before and after reading the symfile. If the seqlock // values match and are even the copy is consistent. // * Entries are recycled, but never freed, which guarantees // that the seqlock is not overwritten by a random value. // * The linked-list is one level higher. The next-pointer // must always point to an entry with even seqlock, which // ensures that entries of a crashed process can be read. // This means the entry must be added after it is created // and it must be removed before it is invalidated (odd). // * When iterating over the linked list the reader can use // the timestamps to ensure that current and next entry // were not deleted using the following steps: // 1) Read next pointer and the next entry's seqlock. // 2) Read the symfile and re-read the next pointer. // 3) Re-read both the current and next seqlock. // 4) Go to step 1 with using new entry and seqlock. // // 3) Asynchronously, using the global seqlock. // * The seqlock is a monotonically increasing counter which is incremented // before and after every modification of the linked list. Odd value of // the counter means the linked list is being modified (it is locked). // * The tool should read the value of the seqlock both before and after // copying the linked list. If the seqlock values match and are even, // the copy is consistent. Otherwise, the reader should try again. // * Note that using the data directly while is it being modified // might crash the tool. Therefore, the only safe way is to make // a copy and use the copy only after the seqlock has been checked. // * Note that the process might even free and munmap the data while // it is being copied, therefore the reader should either handle // SEGV or use OS calls to read the memory (e.g. process_vm_readv). // * The timestamps on the entry record the time when the entry was // created which is relevant if the unwinding is not live and is // postponed until much later. All timestamps must be unique. // * For full conformance with the C++ memory model, all seqlock // protected accesses should be atomic. We currently do this in the // more critical cases. The rest will have to be fixed before // attempting to run TSAN on this code. // namespace art { static Mutex g_jit_debug_lock("JIT native debug entries", kNativeDebugInterfaceLock); static Mutex g_dex_debug_lock("DEX native debug entries", kNativeDebugInterfaceLock); // Most loads and stores need no synchronization since all memory is protected by the global locks. // Some writes are synchronized so libunwindstack can read the memory safely from another process. constexpr std::memory_order kNonRacingRelaxed = std::memory_order_relaxed; // Size of JIT code range covered by each packed JITCodeEntry. constexpr uint32_t kJitRepackGroupSize = 64 * KB; // Automatically call the repack method every 'n' new entries. constexpr uint32_t kJitRepackFrequency = 64; // Public binary interface between ART and native tools (gdb, libunwind, etc). // The fields below need to be exported and have special names as per the gdb api. extern "C" { enum JITAction { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN }; // Public/stable binary interface. struct JITCodeEntryPublic { std::atomic next_; // Atomic to guarantee consistency after crash. const JITCodeEntry* prev_ = nullptr; // For linked list deletion. Unused in readers. const uint8_t* symfile_addr_ = nullptr; // Address of the in-memory ELF file. uint64_t symfile_size_ = 0; // NB: The offset is 12 on x86 but 16 on ARM32. // Android-specific fields: uint64_t timestamp_; // CLOCK_MONOTONIC time of entry registration. std::atomic_uint32_t seqlock_{1}; // Synchronization. Even value if entry is valid. }; // Implementation-specific fields (which can be used only in this file). struct JITCodeEntry : public JITCodeEntryPublic { // Unpacked entries: Code address of the symbol in the ELF file. // Packed entries: The start address of the covered memory range. const void* addr_ = nullptr; // Allow merging of ELF files to save space. // Packing drops advanced DWARF data, so it is not always desirable. bool allow_packing_ = false; // Whether this entry has been LZMA compressed. // Compression is expensive, so we don't always do it. bool is_compressed_ = false; }; // Public/stable binary interface. struct JITDescriptorPublic { uint32_t version_ = 1; // NB: GDB supports only version 1. uint32_t action_flag_ = JIT_NOACTION; // One of the JITAction enum values. const JITCodeEntry* relevant_entry_ = nullptr; // The entry affected by the action. std::atomic head_{nullptr}; // Head of link list of all entries. // Android-specific fields: uint8_t magic_[8] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', '2'}; uint32_t flags_ = 0; // Reserved for future use. Must be 0. uint32_t sizeof_descriptor = sizeof(JITDescriptorPublic); uint32_t sizeof_entry = sizeof(JITCodeEntryPublic); std::atomic_uint32_t seqlock_{0}; // Incremented before and after any modification. uint64_t timestamp_ = 1; // CLOCK_MONOTONIC time of last action. }; // Implementation-specific fields (which can be used only in this file). struct JITDescriptor : public JITDescriptorPublic { const JITCodeEntry* tail_ = nullptr; // Tail of link list of all live entries. const JITCodeEntry* free_entries_ = nullptr; // List of deleted entries ready for reuse. // Used for memory sharing with zygote. See NativeDebugInfoPreFork(). const JITCodeEntry* zygote_head_entry_ = nullptr; JITCodeEntry application_tail_entry_{}; }; // Public interface: Can be used by reader to check the structs have the expected size. uint32_t g_art_sizeof_jit_code_entry = sizeof(JITCodeEntryPublic); uint32_t g_art_sizeof_jit_descriptor = sizeof(JITDescriptorPublic); // Check that std::atomic has the expected layout. static_assert(alignof(std::atomic_uint32_t) == alignof(uint32_t), "Weird alignment"); static_assert(sizeof(std::atomic_uint32_t) == sizeof(uint32_t), "Weird size"); static_assert(std::atomic_uint32_t::is_always_lock_free, "Expected to be lock free"); static_assert(alignof(std::atomic) == alignof(void*), "Weird alignment"); static_assert(sizeof(std::atomic) == sizeof(void*), "Weird size"); static_assert(std::atomic::is_always_lock_free, "Expected to be lock free"); // GDB may set breakpoint here. We must ensure it is not removed or deduplicated. void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } // Alternatively, native tools may overwrite this field to execute custom handler. void (*__jit_debug_register_code_ptr)() = __jit_debug_register_code; // The root data structure describing of all JITed methods. JITDescriptor __jit_debug_descriptor GUARDED_BY(g_jit_debug_lock) {}; // The following globals mirror the ones above, but are used to register dex files. void __attribute__((noinline)) __dex_debug_register_code() { __asm__(""); } void (*__dex_debug_register_code_ptr)() = __dex_debug_register_code; JITDescriptor __dex_debug_descriptor GUARDED_BY(g_dex_debug_lock) {}; } // The fields below are internal, but we keep them here anyway for consistency. // Their state is related to the static state above and it must be kept in sync. // Used only in debug builds to check that we are not adding duplicate entries. static std::unordered_set g_dcheck_all_jit_functions GUARDED_BY(g_jit_debug_lock); // Methods that have been marked for deletion on the next repack pass. static std::vector g_removed_jit_functions GUARDED_BY(g_jit_debug_lock); // Number of small (single symbol) ELF files. Used to trigger repacking. static uint32_t g_jit_num_unpacked_entries = 0; struct DexNativeInfo { static constexpr bool kCopySymfileData = false; // Just reference DEX files. static JITDescriptor& Descriptor() { return __dex_debug_descriptor; } static void NotifyNativeDebugger() { __dex_debug_register_code_ptr(); } static const void* Alloc(size_t size) { return malloc(size); } static void Free(const void* ptr) { free(const_cast(ptr)); } template static T* Writable(const T* v) { return const_cast(v); } }; struct JitNativeInfo { static constexpr bool kCopySymfileData = true; // Copy debug info to JIT memory. static JITDescriptor& Descriptor() { return __jit_debug_descriptor; } static void NotifyNativeDebugger() { __jit_debug_register_code_ptr(); } static const void* Alloc(size_t size) { return Memory()->AllocateData(size); } static void Free(const void* ptr) { Memory()->FreeData(reinterpret_cast(ptr)); } static void Free(void* ptr) = delete; template static T* Writable(const T* v) { // Special case: This entry is in static memory and not allocated in JIT memory. if (v == reinterpret_cast(&Descriptor().application_tail_entry_)) { return const_cast(v); } return const_cast(Memory()->GetWritableDataAddress(v)); } static jit::JitMemoryRegion* Memory() ASSERT_CAPABILITY(Locks::jit_lock_) { Locks::jit_lock_->AssertHeld(Thread::Current()); jit::JitCodeCache* jit_code_cache = Runtime::Current()->GetJitCodeCache(); CHECK(jit_code_cache != nullptr); jit::JitMemoryRegion* memory = jit_code_cache->GetCurrentRegion(); CHECK(memory->IsValid()); return memory; } }; ArrayRef GetJITCodeEntrySymFile(const JITCodeEntry* entry) { return ArrayRef(entry->symfile_addr_, entry->symfile_size_); } // Ensure the timestamp is monotonically increasing even in presence of low // granularity system timer. This ensures each entry has unique timestamp. static uint64_t GetNextTimestamp(JITDescriptor& descriptor) { return std::max(descriptor.timestamp_ + 1, NanoTime()); } // Mark the descriptor as "locked", so native tools know the data is being modified. static void Seqlock(JITDescriptor& descriptor) { DCHECK_EQ(descriptor.seqlock_.load(kNonRacingRelaxed) & 1, 0u) << "Already locked"; descriptor.seqlock_.fetch_add(1, std::memory_order_relaxed); // Ensure that any writes within the locked section cannot be reordered before the increment. std::atomic_thread_fence(std::memory_order_release); } // Mark the descriptor as "unlocked", so native tools know the data is safe to read. static void Sequnlock(JITDescriptor& descriptor) { DCHECK_EQ(descriptor.seqlock_.load(kNonRacingRelaxed) & 1, 1u) << "Already unlocked"; // Ensure that any writes within the locked section cannot be reordered after the increment. std::atomic_thread_fence(std::memory_order_release); descriptor.seqlock_.fetch_add(1, std::memory_order_relaxed); } // Insert 'entry' in the linked list before 'next' and mark it as valid (append if 'next' is null). // This method must be called under global lock (g_jit_debug_lock or g_dex_debug_lock). template static void InsertNewEntry(const JITCodeEntry* entry, const JITCodeEntry* next) { CHECK_EQ(entry->seqlock_.load(kNonRacingRelaxed) & 1, 1u) << "Expected invalid entry"; JITDescriptor& descriptor = NativeInfo::Descriptor(); const JITCodeEntry* prev = (next != nullptr ? next->prev_ : descriptor.tail_); JITCodeEntry* writable = NativeInfo::Writable(entry); writable->next_ = next; writable->prev_ = prev; writable->seqlock_.fetch_add(1, std::memory_order_release); // Mark as valid. // Backward pointers should not be used by readers, so they are non-atomic. if (next != nullptr) { NativeInfo::Writable(next)->prev_ = entry; } else { descriptor.tail_ = entry; } // Forward pointers must be atomic and they must point to a valid entry at all times. if (prev != nullptr) { NativeInfo::Writable(prev)->next_.store(entry, std::memory_order_release); } else { descriptor.head_.store(entry, std::memory_order_release); } } // This must be called with the appropriate lock taken (g_{jit,dex}_debug_lock). template static const JITCodeEntry* CreateJITCodeEntryInternal( ArrayRef symfile = ArrayRef(), const void* addr = nullptr, bool allow_packing = false, bool is_compressed = false) { JITDescriptor& descriptor = NativeInfo::Descriptor(); // Allocate JITCodeEntry if needed. if (descriptor.free_entries_ == nullptr) { const void* memory = NativeInfo::Alloc(sizeof(JITCodeEntry)); if (memory == nullptr) { LOG(ERROR) << "Failed to allocate memory for native debug info"; return nullptr; } new (NativeInfo::Writable(memory)) JITCodeEntry(); descriptor.free_entries_ = reinterpret_cast(memory); } // Make a copy of the buffer to shrink it and to pass ownership to JITCodeEntry. if (NativeInfo::kCopySymfileData && !symfile.empty()) { const uint8_t* copy = reinterpret_cast(NativeInfo::Alloc(symfile.size())); if (copy == nullptr) { LOG(ERROR) << "Failed to allocate memory for native debug info"; return nullptr; } memcpy(NativeInfo::Writable(copy), symfile.data(), symfile.size()); symfile = ArrayRef(copy, symfile.size()); } uint64_t timestamp = GetNextTimestamp(descriptor); // We must insert entries at specific place. See NativeDebugInfoPreFork(). const JITCodeEntry* next = descriptor.head_.load(kNonRacingRelaxed); // Insert at the head. if (descriptor.zygote_head_entry_ != nullptr && Runtime::Current()->IsZygote()) { next = nullptr; // Insert zygote entries at the tail. } // Pop entry from the free list. const JITCodeEntry* entry = descriptor.free_entries_; descriptor.free_entries_ = descriptor.free_entries_->next_.load(kNonRacingRelaxed); // Create the entry and set all its fields. JITCodeEntry* writable_entry = NativeInfo::Writable(entry); writable_entry->symfile_addr_ = symfile.data(); writable_entry->symfile_size_ = symfile.size(); writable_entry->addr_ = addr; writable_entry->allow_packing_ = allow_packing; writable_entry->is_compressed_ = is_compressed; writable_entry->timestamp_ = timestamp; // Add the entry to the main linked list. Seqlock(descriptor); InsertNewEntry(entry, next); descriptor.relevant_entry_ = entry; descriptor.action_flag_ = JIT_REGISTER_FN; descriptor.timestamp_ = timestamp; Sequnlock(descriptor); NativeInfo::NotifyNativeDebugger(); return entry; } template static void DeleteJITCodeEntryInternal(const JITCodeEntry* entry) { CHECK(entry != nullptr); JITDescriptor& descriptor = NativeInfo::Descriptor(); // Remove the entry from the main linked-list. Seqlock(descriptor); const JITCodeEntry* next = entry->next_.load(kNonRacingRelaxed); const JITCodeEntry* prev = entry->prev_; if (next != nullptr) { NativeInfo::Writable(next)->prev_ = prev; } else { descriptor.tail_ = prev; } if (prev != nullptr) { NativeInfo::Writable(prev)->next_.store(next, std::memory_order_relaxed); } else { descriptor.head_.store(next, std::memory_order_relaxed); } descriptor.relevant_entry_ = entry; descriptor.action_flag_ = JIT_UNREGISTER_FN; descriptor.timestamp_ = GetNextTimestamp(descriptor); Sequnlock(descriptor); NativeInfo::NotifyNativeDebugger(); // Delete the entry. JITCodeEntry* writable_entry = NativeInfo::Writable(entry); CHECK_EQ(writable_entry->seqlock_.load(kNonRacingRelaxed) & 1, 0u) << "Expected valid entry"; // Release: Ensures that "next_" points to valid entry at any time in reader. writable_entry->seqlock_.fetch_add(1, std::memory_order_release); // Mark as invalid. // Release: Ensures that the entry is seen as invalid before it's data is freed. std::atomic_thread_fence(std::memory_order_release); const uint8_t* symfile = entry->symfile_addr_; writable_entry->symfile_addr_ = nullptr; if (NativeInfo::kCopySymfileData && symfile != nullptr) { NativeInfo::Free(symfile); } // Push the entry to the free list. writable_entry->next_.store(descriptor.free_entries_, kNonRacingRelaxed); writable_entry->prev_ = nullptr; descriptor.free_entries_ = entry; } void AddNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) { MutexLock mu(self, g_dex_debug_lock); DCHECK(dexfile != nullptr); // Compact dex files may store data past the size defined in the header. const DexFile::Header& header = dexfile->GetHeader(); uint32_t size = std::max(header.file_size_, header.data_off_ + header.data_size_); const ArrayRef symfile(dexfile->Begin(), size); CreateJITCodeEntryInternal(symfile); } void RemoveNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) { MutexLock mu(self, g_dex_debug_lock); DCHECK(dexfile != nullptr); // We register dex files in the class linker and free them in DexFile_closeDexFile, but // there might be cases where we load the dex file without using it in the class linker. // On the other hand, single dex file might also be used with different class-loaders. for (const JITCodeEntry* entry = __dex_debug_descriptor.head_; entry != nullptr; ) { const JITCodeEntry* next = entry->next_; // Save next pointer before we free the memory. if (entry->symfile_addr_ == dexfile->Begin()) { DeleteJITCodeEntryInternal(entry); } entry = next; } } // Splits the linked linked in to two parts: // The first part (including the static head pointer) is owned by the application. // The second part is owned by zygote and might be concurrently modified by it. // // We add two empty entries at the boundary which are never removed (app_tail, zygote_head). // These entries are needed to preserve the next/prev pointers in the linked list, // since zygote can not modify the application's data and vice versa. // // <------- owned by the application memory --------> <--- owned by zygote memory ---> // |----------------------|------------------|-------------|-----------------| // head -> | application_entries* | application_tail | zygote_head | zygote_entries* | // |+---------------------|------------------|-------------|----------------+| // | | // \-(new application entries) (new zygote entries)-/ // // Zygote entries are inserted at the end, which means that repacked zygote entries // will still be seen by single forward iteration of the linked list (avoiding race). // // Application entries are inserted at the start which introduces repacking race, // but that is ok, since it is easy to read new entries from head in further pass. // The benefit is that this makes it fast to read only the new entries. // void NativeDebugInfoPreFork() { CHECK(Runtime::Current()->IsZygote()); JITDescriptor& descriptor = JitNativeInfo::Descriptor(); if (descriptor.zygote_head_entry_ != nullptr) { return; // Already done - we need to do this only on the first fork. } // Create the zygote-owned head entry (with no ELF file). // The data will be allocated from the current JIT memory (owned by zygote). MutexLock mu(Thread::Current(), *Locks::jit_lock_); // Needed to alloc entry. const JITCodeEntry* zygote_head = reinterpret_cast(JitNativeInfo::Alloc(sizeof(JITCodeEntry))); CHECK(zygote_head != nullptr); new (JitNativeInfo::Writable(zygote_head)) JITCodeEntry(); // Initialize. InsertNewEntry(zygote_head, descriptor.head_); descriptor.zygote_head_entry_ = zygote_head; // Create the child-owned tail entry (with no ELF file). // The data is statically allocated since it must be owned by the forked process. InsertNewEntry(&descriptor.application_tail_entry_, descriptor.head_); } void NativeDebugInfoPostFork() { CHECK(!Runtime::Current()->IsZygote()); JITDescriptor& descriptor = JitNativeInfo::Descriptor(); descriptor.free_entries_ = nullptr; // Don't reuse zygote's entries. } // Split the JIT code cache into groups of fixed size and create single JITCodeEntry for each group. // The start address of method's code determines which group it belongs to. The end is irrelevant. // New mini debug infos will be merged if possible, and entries for GCed functions will be removed. static void RepackEntries(bool compress_entries, ArrayRef removed) REQUIRES(g_jit_debug_lock) { DCHECK(std::is_sorted(removed.begin(), removed.end())); jit::Jit* jit = Runtime::Current()->GetJit(); if (jit == nullptr) { return; } JITDescriptor& descriptor = __jit_debug_descriptor; bool is_zygote = Runtime::Current()->IsZygote(); // Collect entries that we want to pack. std::vector entries; entries.reserve(2 * kJitRepackFrequency); for (const JITCodeEntry* it = descriptor.head_; it != nullptr; it = it->next_) { if (it == descriptor.zygote_head_entry_ && !is_zygote) { break; // Memory owned by the zygote process (read-only for an app). } if (it->allow_packing_) { if (!compress_entries && it->is_compressed_ && removed.empty()) { continue; // If we are not compressing, also avoid decompressing. } entries.push_back(it); } } auto cmp = [](const JITCodeEntry* l, const JITCodeEntry* r) { return l->addr_ < r->addr_; }; std::sort(entries.begin(), entries.end(), cmp); // Sort by address. // Process the entries in groups (each spanning memory range of size kJitRepackGroupSize). for (auto group_it = entries.begin(); group_it != entries.end();) { const void* group_ptr = AlignDown((*group_it)->addr_, kJitRepackGroupSize); const void* group_end = reinterpret_cast(group_ptr) + kJitRepackGroupSize; // Find all entries in this group (each entry is an in-memory ELF file). auto begin = group_it; auto end = std::find_if(begin, entries.end(), [=](auto* e) { return e->addr_ >= group_end; }); CHECK(end > begin); ArrayRef elfs(&*begin, end - begin); // Find all symbols that have been removed in this memory range. auto removed_begin = std::lower_bound(removed.begin(), removed.end(), group_ptr); auto removed_end = std::lower_bound(removed.begin(), removed.end(), group_end); CHECK(removed_end >= removed_begin); ArrayRef removed_subset(&*removed_begin, removed_end - removed_begin); // Optimization: Don't compress the last group since it will likely change again soon. bool compress = compress_entries && end != entries.end(); // Bail out early if there is nothing to do for this group. if (elfs.size() == 1 && removed_subset.empty() && (*begin)->is_compressed_ == compress) { group_it = end; // Go to next group. continue; } // Create new single JITCodeEntry that covers this memory range. uint64_t start_time = MicroTime(); size_t live_symbols; std::vector packed = jit->GetJitCompiler()->PackElfFileForJIT( elfs, removed_subset, compress, &live_symbols); VLOG(jit) << "JIT mini-debug-info repacked" << " for " << group_ptr << " in " << MicroTime() - start_time << "us" << " elfs=" << elfs.size() << " dead=" << removed_subset.size() << " live=" << live_symbols << " size=" << packed.size() << (compress ? "(lzma)" : ""); // Replace the old entries with the new one (with their lifetime temporally overlapping). CreateJITCodeEntryInternal(ArrayRef(packed), /*addr_=*/ group_ptr, /*allow_packing_=*/ true, /*is_compressed_=*/ compress); for (auto it : elfs) { DeleteJITCodeEntryInternal(/*entry=*/ it); } group_it = end; // Go to next group. } g_jit_num_unpacked_entries = 0; } void RepackNativeDebugInfoForJitLocked() REQUIRES(g_jit_debug_lock); void AddNativeDebugInfoForJit(const void* code_ptr, const std::vector& symfile, bool allow_packing) { MutexLock mu(Thread::Current(), g_jit_debug_lock); DCHECK_NE(symfile.size(), 0u); if (kIsDebugBuild && code_ptr != nullptr) { DCHECK(g_dcheck_all_jit_functions.insert(code_ptr).second) << code_ptr << " already added"; } // Remove all methods which have been marked for removal. The JIT GC should // force repack, so this should happen only rarely for various corner cases. // Must be done before addition in case the added code_ptr is in the removed set. if (!g_removed_jit_functions.empty()) { RepackNativeDebugInfoForJitLocked(); } CreateJITCodeEntryInternal(ArrayRef(symfile), /*addr=*/ code_ptr, /*allow_packing=*/ allow_packing, /*is_compressed=*/ false); VLOG(jit) << "JIT mini-debug-info added" << " for " << code_ptr << " size=" << PrettySize(symfile.size()); // Automatically repack entries on regular basis to save space. // Pack (but don't compress) recent entries - this is cheap and reduces memory use by ~4x. // We delay compression until after GC since it is more expensive (and saves further ~4x). // Always compress zygote, since it does not GC and we want to keep the high-water mark low. if (++g_jit_num_unpacked_entries >= kJitRepackFrequency) { bool is_zygote = Runtime::Current()->IsZygote(); RepackEntries(/*compress_entries=*/ is_zygote, /*removed=*/ ArrayRef()); } } void RemoveNativeDebugInfoForJit(const void* code_ptr) { MutexLock mu(Thread::Current(), g_jit_debug_lock); g_dcheck_all_jit_functions.erase(code_ptr); // Method removal is very expensive since we need to decompress and read ELF files. // Collet methods to be removed and do the removal in bulk later. g_removed_jit_functions.push_back(code_ptr); VLOG(jit) << "JIT mini-debug-info removed for " << code_ptr; } void RepackNativeDebugInfoForJitLocked() { // Remove entries which are inside packed and compressed ELF files. std::vector& removed = g_removed_jit_functions; std::sort(removed.begin(), removed.end()); RepackEntries(/*compress_entries=*/ true, ArrayRef(removed)); // Remove entries which are not allowed to be packed (containing single method each). for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr;) { const JITCodeEntry* next = it->next_; if (!it->allow_packing_ && std::binary_search(removed.begin(), removed.end(), it->addr_)) { DeleteJITCodeEntryInternal(/*entry=*/ it); } it = next; } removed.clear(); removed.shrink_to_fit(); } void RepackNativeDebugInfoForJit() { MutexLock mu(Thread::Current(), g_jit_debug_lock); RepackNativeDebugInfoForJitLocked(); } size_t GetJitMiniDebugInfoMemUsage() { MutexLock mu(Thread::Current(), g_jit_debug_lock); size_t size = 0; for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr; it = it->next_) { size += sizeof(JITCodeEntry) + it->symfile_size_; } return size; } Mutex* GetNativeDebugInfoLock() { return &g_jit_debug_lock; } void ForEachNativeDebugSymbol(std::function cb) { MutexLock mu(Thread::Current(), g_jit_debug_lock); using ElfRuntimeTypes = std::conditional::type; const JITCodeEntry* end = __jit_debug_descriptor.zygote_head_entry_; for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != end; it = it->next_) { ArrayRef buffer(it->symfile_addr_, it->symfile_size_); if (!buffer.empty()) { ElfDebugReader reader(buffer); reader.VisitFunctionSymbols([&](ElfRuntimeTypes::Sym sym, const char* name) { cb(reinterpret_cast(sym.st_value), sym.st_size, name); }); } } } } // namespace art