// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "../testBase.h" struct image_kernel_data { cl_int width; cl_int channelType; cl_int channelOrder; cl_int expectedChannelType; cl_int expectedChannelOrder; }; static const char *methodTest1DImageKernelPattern = "typedef struct {\n" " int width;\n" " int channelType;\n" " int channelOrder;\n" " int expectedChannelType;\n" " int expectedChannelOrder;\n" " } image_kernel_data;\n" "__kernel void sample_kernel( %s image1d_t input, __global " "image_kernel_data *outData )\n" "{\n" " outData->width = get_image_width( input );\n" " outData->channelType = get_image_channel_data_type( input );\n" " outData->channelOrder = get_image_channel_order( input );\n" "\n" " outData->expectedChannelType = %s;\n" " outData->expectedChannelOrder = %s;\n" "}"; static int test_get_1Dimage_info_single(cl_context context, cl_command_queue queue, image_descriptor *imageInfo, MTdata d, cl_mem_flags flags) { int error = 0; clProgramWrapper program; clKernelWrapper kernel; clMemWrapper image, outDataBuffer; char programSrc[ 10240 ]; image_kernel_data outKernelData; // Generate some data to test against BufferOwningPtr imageValues; generate_random_image_data( imageInfo, imageValues, d ); // Construct testing source if( gDebugTrace ) log_info( " - Creating 1D image %d ...\n", (int)imageInfo->width ); image = create_image_1d(context, flags, imageInfo->format, imageInfo->width, 0, NULL, NULL, &error); if( image == NULL ) { log_error( "ERROR: Unable to create 1D image of size %d (%s)", (int)imageInfo->width, IGetErrorString( error ) ); return -1; } char channelTypeConstantString[256] = {0}; char channelOrderConstantString[256] = {0}; const char* channelTypeName = GetChannelTypeName( imageInfo->format->image_channel_data_type ); const char* channelOrderName = GetChannelOrderName( imageInfo->format->image_channel_order ); const char *image_access_qualifier = (flags == CL_MEM_READ_ONLY) ? "read_only" : "write_only"; if(channelTypeName && strlen(channelTypeName)) sprintf(channelTypeConstantString, "CLK_%s", &channelTypeName[3]); // replace CL_* with CLK_* if(channelOrderName && strlen(channelOrderName)) sprintf(channelOrderConstantString, "CLK_%s", &channelOrderName[3]); // replace CL_* with CLK_* // Create a program to run against sprintf(programSrc, methodTest1DImageKernelPattern, image_access_qualifier, channelTypeConstantString, channelOrderConstantString); //log_info("-----------------------------------\n%s\n", programSrc); error = clFinish(queue); if (error) print_error(error, "clFinish failed.\n"); const char *ptr = programSrc; error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr, "sample_kernel"); test_error( error, "Unable to create kernel to test against" ); // Create an output buffer outDataBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(outKernelData), NULL, &error); test_error( error, "Unable to create output buffer" ); // Set up arguments and run error = clSetKernelArg( kernel, 0, sizeof( image ), &image ); test_error( error, "Unable to set kernel argument" ); error = clSetKernelArg( kernel, 1, sizeof( outDataBuffer ), &outDataBuffer ); test_error( error, "Unable to set kernel argument" ); size_t threads[1] = { 1 }, localThreads[1] = { 1 }; error = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, threads, localThreads, 0, NULL, NULL ); test_error( error, "Unable to run kernel" ); error = clEnqueueReadBuffer( queue, outDataBuffer, CL_TRUE, 0, sizeof( outKernelData ), &outKernelData, 0, NULL, NULL ); test_error( error, "Unable to read data buffer" ); // Verify the results now if( outKernelData.width != (cl_int)imageInfo->width ) { log_error( "ERROR: Returned width did not validate (expected %d, got %d)\n", (int)imageInfo->width, (int)outKernelData.width ); error = -1; } if( outKernelData.channelType != (cl_int)outKernelData.expectedChannelType ) { log_error( "ERROR: Returned channel type did not validate (expected %s (%d), got %d)\n", GetChannelTypeName( imageInfo->format->image_channel_data_type ), (int)outKernelData.expectedChannelType, (int)outKernelData.channelType ); error = -1; } if( outKernelData.channelOrder != (cl_int)outKernelData.expectedChannelOrder ) { log_error( "ERROR: Returned channel order did not validate (expected %s (%d), got %d)\n", GetChannelOrderName( imageInfo->format->image_channel_order ), (int)outKernelData.expectedChannelOrder, (int)outKernelData.channelOrder ); error = -1; } if( clFinish(queue) != CL_SUCCESS ) { log_error( "ERROR: CL Finished failed in %s \n", __FUNCTION__); error = -1; } return error; } int test_get_image_info_1D(cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, cl_mem_flags flags) { size_t maxWidth; cl_ulong maxAllocSize, memSize; image_descriptor imageInfo = { 0 }; RandomSeed seed( gRandomSeed ); size_t pixelSize; imageInfo.type = CL_MEM_OBJECT_IMAGE1D; imageInfo.format = format; imageInfo.height = imageInfo.depth = imageInfo.slicePitch = 0; pixelSize = get_pixel_size( imageInfo.format ); int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL ); test_error( error, "Unable to get max image 1D size from device" ); if (memSize > (cl_ulong)SIZE_MAX) { memSize = (cl_ulong)SIZE_MAX; } if( gTestSmallImages ) { for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ ) { imageInfo.rowPitch = imageInfo.width * pixelSize; if( gDebugTrace ) log_info( " at size %d\n", (int)imageInfo.width ); int ret = test_get_1Dimage_info_single(context, queue, &imageInfo, seed, flags); if( ret ) return -1; } } else if( gTestMaxImages ) { // Try a specific set of maximum sizes size_t numbeOfSizes; size_t sizes[100][3]; get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, 1, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE1D, imageInfo.format); for( size_t idx = 0; idx < numbeOfSizes; idx++ ) { imageInfo.width = sizes[ idx ][ 0 ]; imageInfo.rowPitch = imageInfo.width * pixelSize; log_info( "Testing %d\n", (int)sizes[ idx ][ 0 ]); if( gDebugTrace ) log_info( " at max size %d\n", (int)sizes[ idx ][ 0 ] ); if (test_get_1Dimage_info_single(context, queue, &imageInfo, seed, flags)) return -1; } } else { for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ ) { cl_ulong size; // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that // image, the result array, plus offset arrays, will fit in the global ram space do { imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed ); imageInfo.rowPitch = imageInfo.width * pixelSize; size_t extraWidth = (int)random_log_in_range( 0, 64, seed ); imageInfo.rowPitch += extraWidth; do { extraWidth++; imageInfo.rowPitch += extraWidth; } while ((imageInfo.rowPitch % pixelSize) != 0); size = (cl_ulong)imageInfo.rowPitch * (cl_ulong)imageInfo.height * 4; } while( size > maxAllocSize || ( size * 3 ) > memSize ); if( gDebugTrace ) log_info( " at size %d (row pitch %d) out of %d\n", (int)imageInfo.width, (int)imageInfo.rowPitch, (int)maxWidth ); int ret = test_get_1Dimage_info_single(context, queue, &imageInfo, seed, flags); if( ret ) return -1; } } return 0; }