// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include enum xnn_status xnn_create_softmax_nc_qu8( size_t channels, size_t input_stride, size_t output_stride, float input_scale, uint8_t output_zero_point, float output_scale, uint32_t flags, xnn_operator_t* softmax_op_out) { xnn_operator_t softmax_op = NULL; enum xnn_status status = xnn_status_uninitialized; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to create %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8)); goto error; } status = xnn_status_invalid_parameter; if (channels == 0) { xnn_log_error( "failed to create %s operator with %zu channels: number of channels must be non-zero", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), channels); goto error; } if (input_stride < channels) { xnn_log_error( "failed to create %s operator with input element stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), input_stride, channels); goto error; } if (output_stride < channels) { xnn_log_error( "failed to create %s operator with output element stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), output_stride, channels); goto error; } if (input_scale <= 0.0f || !isnormal(input_scale)) { xnn_log_error( "failed to create %s operator with %.7g input scale: scale must be finite, normalized, and positive", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), input_scale); goto error; } if (output_scale <= 0.0f || !isnormal(output_scale)) { xnn_log_error( "failed to create %s operator with %.7g output scale: scale must be finite, normalized, and positive", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), output_scale); goto error; } status = xnn_status_unsupported_parameter; if (output_scale != 0x1.0p-8f) { xnn_log_error( "failed to create %s operator with %.7g output scale: only output scale of 1/256 is supported", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), output_scale); goto error; } if (output_zero_point != 0) { xnn_log_error( "failed to create %s operator with %" PRIu8 " output zero point: only output zero point of 0 is supported", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8), output_zero_point); goto error; } status = xnn_status_out_of_memory; softmax_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); if (softmax_op == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator descriptor", sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8)); goto error; } softmax_op->lookup_table = xnn_allocate_simd_memory(256 * sizeof(uint32_t)); if (softmax_op->lookup_table == NULL) { xnn_log_error( "failed to allocate 256 bytes for %s operator lookup table", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8)); goto error; } uint32_t* lookup_table = softmax_op->lookup_table; const double qscale = fmin(((double) UINT32_MAX) / (double) channels, 8388607.0); for (int32_t i = 0; i < 256; i++) { const double scaled_exp_xi = qscale * exp((double) (i - 255) * (double) input_scale); lookup_table[(uint32_t) i] = (uint32_t) lrint(scaled_exp_xi); } softmax_op->channels = channels; softmax_op->input_pixel_stride = input_stride; softmax_op->output_pixel_stride = output_stride; softmax_op->type = xnn_operator_type_softmax_nc_qu8; softmax_op->flags = flags; softmax_op->state = xnn_run_state_invalid; *softmax_op_out = softmax_op; return xnn_status_success; error: xnn_delete_operator(softmax_op); return status; } enum xnn_status xnn_setup_softmax_nc_qu8( xnn_operator_t softmax_op, size_t batch_size, const uint8_t* input, uint8_t* output, pthreadpool_t threadpool) { if (softmax_op->type != xnn_operator_type_softmax_nc_qu8) { xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", xnn_operator_type_to_string(xnn_operator_type_softmax_nc_qu8), xnn_operator_type_to_string(softmax_op->type)); return xnn_status_invalid_parameter; } softmax_op->state = xnn_run_state_invalid; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to setup %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_qu8)); return xnn_status_uninitialized; } if (batch_size == 0) { softmax_op->state = xnn_run_state_skip; return xnn_status_success; } softmax_op->batch_size = batch_size; softmax_op->input = input; softmax_op->output = output; softmax_op->context.u8_softmax = (struct u8_softmax_context) { .n = softmax_op->channels, .x = input, .x_stride = softmax_op->input_pixel_stride * sizeof(uint8_t), .t = softmax_op->lookup_table, .y = output, .y_stride = softmax_op->output_pixel_stride * sizeof(uint8_t), .rmax_ukernel = xnn_params.u8.rmax, .lut_norm_ukernel = xnn_params.u8.lut32norm, }; softmax_op->compute.type = xnn_parallelization_type_1d; softmax_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_u8_softmax; softmax_op->compute.range[0] = batch_size; softmax_op->state = xnn_run_state_ready; return xnn_status_success; } enum xnn_status xnn_create_softmax_nc_f32( size_t channels, size_t input_stride, size_t output_stride, uint32_t flags, xnn_operator_t* softmax_op_out) { xnn_operator_t softmax_op = NULL; enum xnn_status status = xnn_status_uninitialized; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to create %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_f32)); goto error; } status = xnn_status_invalid_parameter; if (channels == 0) { xnn_log_error( "failed to create %s operator with %zu channels: number of channels must be non-zero", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_f32), channels); goto error; } if (input_stride < channels) { xnn_log_error( "failed to create %s operator with input element stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_f32), input_stride, channels); goto error; } if (output_stride < channels) { xnn_log_error( "failed to create %s operator with output element stride of %zu: " "stride must be at least as large as the number of channels (%zu)", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_f32), output_stride, channels); goto error; } status = xnn_status_out_of_memory; softmax_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator)); if (softmax_op == NULL) { xnn_log_error( "failed to allocate %zu bytes for %s operator descriptor", sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_f32)); goto error; } softmax_op->channels = channels; softmax_op->input_pixel_stride = input_stride; softmax_op->output_pixel_stride = output_stride; softmax_op->type = xnn_operator_type_softmax_nc_f32; softmax_op->flags = flags; softmax_op->state = xnn_run_state_invalid; *softmax_op_out = softmax_op; return xnn_status_success; error: xnn_delete_operator(softmax_op); return status; } enum xnn_status xnn_setup_softmax_nc_f32( xnn_operator_t softmax_op, size_t batch_size, const float* input, float* output, pthreadpool_t threadpool) { if (softmax_op->type != xnn_operator_type_softmax_nc_f32) { xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)", xnn_operator_type_to_string(xnn_operator_type_softmax_nc_f32), xnn_operator_type_to_string(softmax_op->type)); return xnn_status_invalid_parameter; } softmax_op->state = xnn_run_state_invalid; if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to setup %s operator: XNNPACK is not initialized", xnn_operator_type_to_string(xnn_operator_type_sigmoid_nc_f32)); return xnn_status_uninitialized; } if (batch_size == 0) { softmax_op->state = xnn_run_state_skip; return xnn_status_success; } softmax_op->batch_size = batch_size; softmax_op->input = input; softmax_op->output = output; softmax_op->context.f32_three_pass_softmax = (struct f32_three_pass_softmax_context) { .n = softmax_op->channels * sizeof(float), .x = input, .x_stride = softmax_op->input_pixel_stride * sizeof(float), .y = output, .y_stride = softmax_op->output_pixel_stride * sizeof(float), .rmax_ukernel = xnn_params.f32.rmax, .raddstoreexpminusmax_ukernel = xnn_params.f32.raddstoreexpminusmax.ukernel, .vmulc_ukernel = xnn_params.f32.vmul.minmax.opc_ukernel, }; if (xnn_params.f32.vmul.linear.opc_ukernel != NULL) { softmax_op->context.f32_three_pass_softmax.vmulc_ukernel = xnn_params.f32.vmul.linear.opc_ukernel; }; xnn_params.f32.vmul.init.f32_minmax(&softmax_op->context.f32_three_pass_softmax.minmax_params, -INFINITY, INFINITY); xnn_params.f32.raddstoreexpminusmax.init(&softmax_op->context.f32_three_pass_softmax.expminus_params); softmax_op->compute.type = xnn_parallelization_type_1d; softmax_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_f32_three_pass_softmax; softmax_op->compute.range[0] = batch_size; softmax_op->state = xnn_run_state_ready; return xnn_status_success; }