// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include static enum xnn_status create_subtract_operator( const struct xnn_node* node, const struct xnn_value* values, size_t num_values, struct xnn_operator_data* opdata) { assert(node->num_inputs == 2); const uint32_t input1_id = node->inputs[0]; assert(input1_id != XNN_INVALID_VALUE_ID); assert(input1_id < num_values); const uint32_t input2_id = node->inputs[1]; assert(input2_id != XNN_INVALID_VALUE_ID); assert(input2_id < num_values); assert(node->num_outputs == 1); const uint32_t output_id = node->outputs[0]; assert(output_id != XNN_INVALID_VALUE_ID); assert(output_id < num_values); enum xnn_status status; switch (node->compute_type) { case xnn_compute_type_fp32: status = xnn_create_subtract_nd_f32( node->activation.output_min, node->activation.output_max, node->flags, &opdata->operator_object); break; #ifndef XNN_NO_QS8_OPERATORS case xnn_compute_type_qs8: { const float output_scale = values[output_id].quantization.scale; const int32_t output_zero_point = values[output_id].quantization.zero_point; const int8_t output_min = (int8_t) lrintf(fminf(fmaxf(node->activation.output_min / output_scale + (float) output_zero_point, -128.0f), 127.0f)); const int8_t output_max = (int8_t) lrintf(fminf(fmaxf(node->activation.output_max / output_scale + (float) output_zero_point, -128.0f), 127.0f)); status = xnn_create_subtract_nd_qs8( (int8_t) values[input1_id].quantization.zero_point, values[input1_id].quantization.scale, (int8_t) values[input2_id].quantization.zero_point, values[input2_id].quantization.scale, (int8_t) output_zero_point, output_scale, output_min, output_max, node->flags, &opdata->operator_object); break; } #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_compute_type_qu8: { const float output_scale = values[output_id].quantization.scale; const int32_t output_zero_point = values[output_id].quantization.zero_point; const uint8_t output_min = (uint8_t) lrintf(fminf(fmaxf(node->activation.output_min / output_scale + (float) output_zero_point, 0.0f), 255.0f)); const uint8_t output_max = (uint8_t) lrintf(fminf(fmaxf(node->activation.output_max / output_scale + (float) output_zero_point, 0.0f), 255.0f)); status = xnn_create_subtract_nd_qu8( (uint8_t) values[input1_id].quantization.zero_point, values[input1_id].quantization.scale, (uint8_t) values[input2_id].quantization.zero_point, values[input2_id].quantization.scale, (uint8_t) output_zero_point, output_scale, output_min, output_max, node->flags, &opdata->operator_object); break; } #endif // !defined(XNN_NO_QU8_OPERATORS) default: XNN_UNREACHABLE; } if (status == xnn_status_success) { opdata->shape1.num_dims = values[input1_id].shape.num_dims; opdata->shape2.num_dims = values[input2_id].shape.num_dims; if (values[output_id].layout == xnn_layout_type_nchw) { assert(values[input1_id].layout == xnn_layout_type_nchw); assert(values[input2_id].layout == xnn_layout_type_nchw); opdata->shape1.dim[0] = values[input1_id].shape.dim[0]; opdata->shape1.dim[1] = values[input1_id].shape.dim[values[input1_id].shape.num_dims - 1]; if (values[input1_id].shape.num_dims > 2) { memcpy(&opdata->shape1.dim[2], &values[input1_id].shape.dim[1], (values[input1_id].shape.num_dims - 2) * sizeof(size_t)); } opdata->shape2.dim[0] = values[input2_id].shape.dim[0]; opdata->shape2.dim[1] = values[input2_id].shape.dim[values[input2_id].shape.num_dims - 1]; if (values[input1_id].shape.num_dims > 2) { memcpy(&opdata->shape2.dim[2], &values[input2_id].shape.dim[1], (values[input2_id].shape.num_dims - 2) * sizeof(size_t)); } } else { assert(values[output_id].layout == xnn_layout_type_nhwc); assert(values[input1_id].layout == xnn_layout_type_nhwc); assert(values[input2_id].layout == xnn_layout_type_nhwc); memcpy(opdata->shape1.dim, values[input1_id].shape.dim, values[input1_id].shape.num_dims * sizeof(size_t)); memcpy(opdata->shape2.dim, values[input2_id].shape.dim, values[input2_id].shape.num_dims * sizeof(size_t)); } opdata->inputs[0] = input1_id; opdata->inputs[1] = input2_id; opdata->outputs[0] = output_id; } return status; } static enum xnn_status setup_subtract_operator( const struct xnn_operator_data* opdata, const struct xnn_blob* blobs, size_t num_blobs, pthreadpool_t threadpool) { const uint32_t input1_id = opdata->inputs[0]; assert(input1_id != XNN_INVALID_VALUE_ID); assert(input1_id < num_blobs); const uint32_t input2_id = opdata->inputs[1]; assert(input2_id != XNN_INVALID_VALUE_ID); assert(input2_id < num_blobs); const uint32_t output_id = opdata->outputs[0]; assert(output_id != XNN_INVALID_VALUE_ID); assert(output_id < num_blobs); const struct xnn_blob* input1_blob = blobs + input1_id; const void* input1_data = input1_blob->data; assert(input1_data != NULL); const struct xnn_blob* input2_blob = blobs + input2_id; const void* input2_data = input2_blob->data; assert(input2_data != NULL); const struct xnn_blob* output_blob = blobs + output_id; void* output_data = output_blob->data; assert(output_data != NULL); switch (opdata->operator_object->type) { case xnn_operator_type_subtract_nd_f32: return xnn_setup_subtract_nd_f32( opdata->operator_object, opdata->shape1.num_dims, opdata->shape1.dim, opdata->shape2.num_dims, opdata->shape2.dim, input1_data, input2_data, output_data, threadpool); break; #ifndef XNN_NO_QS8_OPERATORS case xnn_operator_type_subtract_nd_qs8: return xnn_setup_subtract_nd_qs8( opdata->operator_object, opdata->shape1.num_dims, opdata->shape1.dim, opdata->shape2.num_dims, opdata->shape2.dim, input1_data, input2_data, output_data, threadpool); break; #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_operator_type_subtract_nd_qu8: return xnn_setup_subtract_nd_qu8( opdata->operator_object, opdata->shape1.num_dims, opdata->shape1.dim, opdata->shape2.num_dims, opdata->shape2.dim, input1_data, input2_data, output_data, threadpool); break; #endif // !defined(XNN_NO_QU8_OPERATORS) default: XNN_UNREACHABLE; } } enum xnn_status xnn_define_subtract( xnn_subgraph_t subgraph, float output_min, float output_max, uint32_t input1_id, uint32_t input2_id, uint32_t output_id, uint32_t flags) { if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) { xnn_log_error("failed to define %s operator: XNNPACK is not initialized", xnn_node_type_to_string(xnn_node_type_subtract)); return xnn_status_uninitialized; } if (isnan(output_min)) { xnn_log_error( "failed to define %s operator with NaN output lower bound: lower bound must be non-NaN", xnn_node_type_to_string(xnn_node_type_subtract)); return xnn_status_invalid_parameter; } if (isnan(output_max)) { xnn_log_error( "failed to define %s operator with NaN output upper bound: upper bound must be non-NaN", xnn_node_type_to_string(xnn_node_type_subtract)); return xnn_status_invalid_parameter; } if (output_min >= output_max) { xnn_log_error( "failed to define %s operator with [%.7g, %.7g] output range: lower bound must be below upper bound", xnn_node_type_to_string(xnn_node_type_subtract), output_min, output_max); return xnn_status_invalid_parameter; } if (input1_id >= subgraph->num_values) { xnn_log_error( "failed to define %s operator with the first input ID #%" PRIu32 ": invalid Value ID", xnn_node_type_to_string(xnn_node_type_subtract), input1_id); return xnn_status_invalid_parameter; } const struct xnn_value* input1_value = &subgraph->values[input1_id]; if (input1_value->type != xnn_value_type_dense_tensor) { xnn_log_error( "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)", xnn_node_type_to_string(xnn_node_type_subtract), input1_id, input1_value->type); return xnn_status_invalid_parameter; } switch (input1_value->datatype) { case xnn_datatype_fp32: #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: #endif // !defined(XNN_NO_QU8_OPERATORS) break; default: xnn_log_error( "failed to define %s operator with the first input ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_subtract), input1_id, xnn_datatype_to_string(input1_value->datatype), input1_value->datatype); return xnn_status_invalid_parameter; } if (input2_id >= subgraph->num_values) { xnn_log_error( "failed to define %s operator with the second input ID #%" PRIu32 ": invalid Value ID", xnn_node_type_to_string(xnn_node_type_subtract), input2_id); return xnn_status_invalid_parameter; } const struct xnn_value* input2_value = &subgraph->values[input2_id]; if (input2_value->type != xnn_value_type_dense_tensor) { xnn_log_error( "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)", xnn_node_type_to_string(xnn_node_type_subtract), input2_id, input2_value->type); return xnn_status_invalid_parameter; } switch (input2_value->datatype) { case xnn_datatype_fp32: #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: #endif // !defined(XNN_NO_QU8_OPERATORS) break; default: xnn_log_error( "failed to define %s operator with the second input ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_subtract), input2_id, xnn_datatype_to_string(input2_value->datatype), input2_value->datatype); return xnn_status_invalid_parameter; } if (output_id >= subgraph->num_values) { xnn_log_error( "failed to define %s operator with output ID #%" PRIu32 ": invalid Value ID", xnn_node_type_to_string(xnn_node_type_subtract), output_id); return xnn_status_invalid_parameter; } const struct xnn_value* output_value = &subgraph->values[output_id]; if (output_value->type != xnn_value_type_dense_tensor) { xnn_log_error( "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)", xnn_node_type_to_string(xnn_node_type_subtract), output_id, output_value->type); return xnn_status_invalid_parameter; } enum xnn_compute_type compute_type = xnn_compute_type_invalid; switch (output_value->datatype) { case xnn_datatype_fp32: compute_type = xnn_compute_type_fp32; break; #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: compute_type = xnn_compute_type_qs8; break; #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: compute_type = xnn_compute_type_qu8; break; #endif // !defined(XNN_NO_QU8_OPERATORS) default: xnn_log_error( "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_subtract), output_id, xnn_datatype_to_string(output_value->datatype), output_value->datatype); return xnn_status_invalid_parameter; } if (input1_value->datatype != input2_value->datatype || input1_value->datatype != output_value->datatype) { xnn_log_error( "failed to define %s operator with input IDs #%" PRIu32 " and #%" PRIu32 " and output ID #%" PRIu32 ": mismatching datatypes across the first input (%s), the second input (%s), and output (%s)", xnn_node_type_to_string(xnn_node_type_subtract), input1_id, input2_id, output_id, xnn_datatype_to_string(input1_value->datatype), xnn_datatype_to_string(input2_value->datatype), xnn_datatype_to_string(output_value->datatype)); return xnn_status_invalid_parameter; } struct xnn_node* node = xnn_subgraph_new_node(subgraph); if (node == NULL) { return xnn_status_out_of_memory; } node->type = xnn_node_type_subtract; node->compute_type = compute_type; node->activation.output_min = output_min; node->activation.output_max = output_max; node->num_inputs = 2; node->inputs[0] = input1_id; node->inputs[1] = input2_id; node->num_outputs = 1; node->outputs[0] = output_id; node->flags = flags; node->create = create_subtract_operator; node->setup = setup_subtract_operator; return xnn_status_success; }