// // Copyright 2019 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // FrameCapture.cpp: // ANGLE Frame capture implementation. // #include "libANGLE/capture/FrameCapture.h" #include #include #include #include #include "sys/stat.h" #include "common/angle_version_info.h" #include "common/mathutil.h" #include "common/serializer/JsonSerializer.h" #include "common/string_utils.h" #include "common/system_utils.h" #include "libANGLE/Config.h" #include "libANGLE/Context.h" #include "libANGLE/Display.h" #include "libANGLE/Fence.h" #include "libANGLE/Framebuffer.h" #include "libANGLE/GLES1Renderer.h" #include "libANGLE/Query.h" #include "libANGLE/ResourceMap.h" #include "libANGLE/Shader.h" #include "libANGLE/Surface.h" #include "libANGLE/VertexArray.h" #include "libANGLE/capture/capture_gles_1_0_autogen.h" #include "libANGLE/capture/capture_gles_2_0_autogen.h" #include "libANGLE/capture/capture_gles_3_0_autogen.h" #include "libANGLE/capture/capture_gles_3_1_autogen.h" #include "libANGLE/capture/capture_gles_3_2_autogen.h" #include "libANGLE/capture/capture_gles_ext_autogen.h" #include "libANGLE/capture/frame_capture_utils.h" #include "libANGLE/capture/gl_enum_utils.h" #include "libANGLE/entry_points_utils.h" #include "libANGLE/queryconversions.h" #include "libANGLE/queryutils.h" #include "third_party/ceval/ceval.h" #define USE_SYSTEM_ZLIB #include "compression_utils_portable.h" #if !ANGLE_CAPTURE_ENABLED # error Frame capture must be enabled to include this file. #endif // !ANGLE_CAPTURE_ENABLED namespace angle { namespace { constexpr char kEnabledVarName[] = "ANGLE_CAPTURE_ENABLED"; constexpr char kOutDirectoryVarName[] = "ANGLE_CAPTURE_OUT_DIR"; constexpr char kFrameStartVarName[] = "ANGLE_CAPTURE_FRAME_START"; constexpr char kFrameEndVarName[] = "ANGLE_CAPTURE_FRAME_END"; constexpr char kTriggerVarName[] = "ANGLE_CAPTURE_TRIGGER"; constexpr char kCaptureLabelVarName[] = "ANGLE_CAPTURE_LABEL"; constexpr char kCompressionVarName[] = "ANGLE_CAPTURE_COMPRESSION"; constexpr char kSerializeStateVarName[] = "ANGLE_CAPTURE_SERIALIZE_STATE"; constexpr char kValidationVarName[] = "ANGLE_CAPTURE_VALIDATION"; constexpr char kValidationExprVarName[] = "ANGLE_CAPTURE_VALIDATION_EXPR"; constexpr char kTrimEnabledVarName[] = "ANGLE_CAPTURE_TRIM_ENABLED"; constexpr char kSourceSizeVarName[] = "ANGLE_CAPTURE_SOURCE_SIZE"; constexpr size_t kBinaryAlignment = 16; constexpr size_t kFunctionSizeLimit = 5000; // Limit based on MSVC Compiler Error C2026 constexpr size_t kStringLengthLimit = 16380; // Default limit to number of bytes in a capture source files. constexpr size_t kDefaultSourceFileSizeThreshold = 400000; // Android debug properties that correspond to the above environment variables constexpr char kAndroidEnabled[] = "debug.angle.capture.enabled"; constexpr char kAndroidOutDir[] = "debug.angle.capture.out_dir"; constexpr char kAndroidFrameStart[] = "debug.angle.capture.frame_start"; constexpr char kAndroidFrameEnd[] = "debug.angle.capture.frame_end"; constexpr char kAndroidTrigger[] = "debug.angle.capture.trigger"; constexpr char kAndroidCaptureLabel[] = "debug.angle.capture.label"; constexpr char kAndroidCompression[] = "debug.angle.capture.compression"; constexpr char kAndroidValidation[] = "debug.angle.capture.validation"; constexpr char kAndroidValidationExpr[] = "debug.angle.capture.validation_expr"; constexpr char kAndroidTrimEnabled[] = "debug.angle.capture.trim_enabled"; constexpr char kAndroidSourceSize[] = "debug.angle.capture.source_size"; struct FramebufferCaptureFuncs { FramebufferCaptureFuncs(bool isGLES1) { if (isGLES1) { framebufferTexture2D = &gl::CaptureFramebufferTexture2DOES; framebufferRenderbuffer = &gl::CaptureFramebufferRenderbufferOES; bindFramebuffer = &gl::CaptureBindFramebufferOES; genFramebuffers = &gl::CaptureGenFramebuffersOES; bindRenderbuffer = &gl::CaptureBindRenderbufferOES; genRenderbuffers = &gl::CaptureGenRenderbuffersOES; renderbufferStorage = &gl::CaptureRenderbufferStorageOES; } else { framebufferTexture2D = &gl::CaptureFramebufferTexture2D; framebufferRenderbuffer = &gl::CaptureFramebufferRenderbuffer; bindFramebuffer = &gl::CaptureBindFramebuffer; genFramebuffers = &gl::CaptureGenFramebuffers; bindRenderbuffer = &gl::CaptureBindRenderbuffer; genRenderbuffers = &gl::CaptureGenRenderbuffers; renderbufferStorage = &gl::CaptureRenderbufferStorage; } } decltype(&gl::CaptureFramebufferTexture2D) framebufferTexture2D; decltype(&gl::CaptureFramebufferRenderbuffer) framebufferRenderbuffer; decltype(&gl::CaptureBindFramebuffer) bindFramebuffer; decltype(&gl::CaptureGenFramebuffers) genFramebuffers; decltype(&gl::CaptureBindRenderbuffer) bindRenderbuffer; decltype(&gl::CaptureGenRenderbuffers) genRenderbuffers; decltype(&gl::CaptureRenderbufferStorage) renderbufferStorage; }; std::string GetDefaultOutDirectory() { #if defined(ANGLE_PLATFORM_ANDROID) std::string path = "/sdcard/Android/data/"; // Linux interface to get application id of the running process FILE *cmdline = fopen("/proc/self/cmdline", "r"); char applicationId[512]; if (cmdline) { fread(applicationId, 1, sizeof(applicationId), cmdline); fclose(cmdline); // Some package may have application id as : char *colonSep = strchr(applicationId, ':'); if (colonSep) { *colonSep = '\0'; } } else { ERR() << "not able to lookup application id"; } constexpr char kAndroidOutputSubdir[] = "/angle_capture/"; path += std::string(applicationId) + kAndroidOutputSubdir; // Check for existence of output path struct stat dir_stat; if (stat(path.c_str(), &dir_stat) == -1) { ERR() << "Output directory '" << path << "' does not exist. Create it over adb using mkdir."; } return path; #else return std::string("./"); #endif // defined(ANGLE_PLATFORM_ANDROID) } std::string GetCaptureTrigger() { // Use the GetAndSet variant to improve future lookup times return GetAndSetEnvironmentVarOrUnCachedAndroidProperty(kTriggerVarName, kAndroidTrigger); } std::ostream &operator<<(std::ostream &os, gl::ContextID contextId) { os << static_cast(contextId.value); return os; } // Used to indicate that "shared" should be used to identify the files. constexpr gl::ContextID kSharedContextId = {0}; // Used to indicate no context ID should be output. constexpr gl::ContextID kNoContextId = {std::numeric_limits::max()}; struct FmtCapturePrefix { FmtCapturePrefix(gl::ContextID contextIdIn, const std::string &captureLabelIn) : contextId(contextIdIn), captureLabel(captureLabelIn) {} gl::ContextID contextId; const std::string &captureLabel; }; std::ostream &operator<<(std::ostream &os, const FmtCapturePrefix &fmt) { if (fmt.captureLabel.empty()) { os << "angle_capture"; } else { os << fmt.captureLabel; } if (fmt.contextId == kSharedContextId) { os << "_shared"; } else if (fmt.contextId != kNoContextId) { os << "_context" << fmt.contextId; } return os; } enum class ReplayFunc { Replay, Setup, Reset, }; constexpr uint32_t kNoPartId = std::numeric_limits::max(); struct FmtReplayFunction { FmtReplayFunction(gl::ContextID contextIdIn, uint32_t frameIndexIn, uint32_t partIdIn = kNoPartId) : contextId(contextIdIn), frameIndex(frameIndexIn), partId(partIdIn) {} gl::ContextID contextId; uint32_t frameIndex; uint32_t partId; }; std::ostream &operator<<(std::ostream &os, const FmtReplayFunction &fmt) { os << "ReplayContext"; if (fmt.contextId == kSharedContextId) { os << "Shared"; } else { os << fmt.contextId; } os << "Frame" << fmt.frameIndex; if (fmt.partId != kNoPartId) { os << "Part" << fmt.partId; } os << "()"; return os; } struct FmtSetupFunction { FmtSetupFunction(uint32_t partIdIn, gl::ContextID contextIdIn) : partId(partIdIn), contextId(contextIdIn) {} uint32_t partId; gl::ContextID contextId; }; std::ostream &operator<<(std::ostream &os, const FmtSetupFunction &fmt) { os << "SetupReplayContext"; if (fmt.contextId == kSharedContextId) { os << "Shared"; } else { os << fmt.contextId; } if (fmt.partId != kNoPartId) { os << "Part" << fmt.partId; } os << "()"; return os; } struct FmtResetFunction { FmtResetFunction() {} }; std::ostream &operator<<(std::ostream &os, const FmtResetFunction &fmt) { os << "ResetReplay()"; return os; } struct FmtFunction { FmtFunction(ReplayFunc funcTypeIn, gl::ContextID contextIdIn, uint32_t frameIndexIn, uint32_t partIdIn) : funcType(funcTypeIn), contextId(contextIdIn), frameIndex(frameIndexIn), partId(partIdIn) {} ReplayFunc funcType; gl::ContextID contextId; uint32_t frameIndex; uint32_t partId; }; std::ostream &operator<<(std::ostream &os, const FmtFunction &fmt) { switch (fmt.funcType) { case ReplayFunc::Replay: os << FmtReplayFunction(fmt.contextId, fmt.frameIndex, fmt.partId); break; case ReplayFunc::Setup: os << FmtSetupFunction(fmt.partId, fmt.contextId); break; case ReplayFunc::Reset: os << FmtResetFunction(); break; default: UNREACHABLE(); break; } return os; } struct FmtGetSerializedContextStateFunction { FmtGetSerializedContextStateFunction(gl::ContextID contextIdIn, uint32_t frameIndexIn) : contextId(contextIdIn), frameIndex(frameIndexIn) {} gl::ContextID contextId; uint32_t frameIndex; }; std::ostream &operator<<(std::ostream &os, const FmtGetSerializedContextStateFunction &fmt) { os << "GetSerializedContext" << fmt.contextId << "StateFrame" << fmt.frameIndex << "Data()"; return os; } void WriteGLFloatValue(std::ostream &out, GLfloat value) { // Check for non-representable values ASSERT(std::numeric_limits::has_infinity); ASSERT(std::numeric_limits::has_quiet_NaN); if (std::isinf(value)) { float negativeInf = -std::numeric_limits::infinity(); if (value == negativeInf) { out << "-"; } out << "std::numeric_limits::infinity()"; } else if (std::isnan(value)) { out << "std::numeric_limits::quiet_NaN()"; } else { out << std::setprecision(16); out << value; } } template void WriteInlineData(const std::vector &vec, std::ostream &out) { const T *data = reinterpret_cast(vec.data()); size_t count = vec.size() / sizeof(T); if (data == nullptr) { return; } out << static_cast(data[0]); for (size_t dataIndex = 1; dataIndex < count; ++dataIndex) { out << ", " << static_cast(data[dataIndex]); } } template <> void WriteInlineData(const std::vector &vec, std::ostream &out) { const GLchar *data = reinterpret_cast(vec.data()); size_t count = vec.size() / sizeof(GLchar); if (data == nullptr || data[0] == '\0') { return; } out << "\""; for (size_t dataIndex = 0; dataIndex < count; ++dataIndex) { if (data[dataIndex] == '\0') break; out << static_cast(data[dataIndex]); } out << "\""; } void WriteStringParamReplay(ReplayWriter &replayWriter, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m, std::vector *binaryData) { const std::vector &data = param.data[0]; // null terminate C style string ASSERT(data.size() > 0 && data.back() == '\0'); std::string str(data.begin(), data.end() - 1); constexpr size_t kMaxInlineStringLength = 20000; if (str.size() > kMaxInlineStringLength) { // Store in binary file if the string is too long. // Round up to 16-byte boundary for cross ABI safety. size_t offset = rx::roundUpPow2(binaryData->size(), kBinaryAlignment); binaryData->resize(offset + str.size() + 1); memcpy(binaryData->data() + offset, str.data(), str.size() + 1); out << "reinterpret_cast(&gBinaryData[" << offset << "])"; } else if (str.find('\n') != std::string::npos) { std::string varName = replayWriter.getInlineVariableName(call.entryPoint, param.name); header << "const char " << varName << "[] = R\"(" << str << ")\";\n"; out << varName; } else { out << "\"" << str << "\""; } } void WriteStringPointerParamReplay(ReplayWriter &replayWriter, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m) { // Concatenate the strings to ensure we get an accurate counter std::vector strings; for (const std::vector &data : param.data) { // null terminate C style string ASSERT(data.size() > 0 && data.back() == '\0'); strings.emplace_back(data.begin(), data.end() - 1); } bool isNewEntry = false; std::string varName = replayWriter.getInlineStringSetVariableName(call.entryPoint, param.name, strings, &isNewEntry); if (isNewEntry) { header << "const char *const " << varName << "[] = { \n"; for (const std::string &str : strings) { // Break up long strings for MSVC size_t copyLength = 0; std::string separator; for (size_t i = 0; i < str.length(); i += kStringLengthLimit) { if ((str.length() - i) <= kStringLengthLimit) { copyLength = str.length() - i; separator = ","; } else { copyLength = kStringLengthLimit; separator = ""; } header << " R\"(" << str.substr(i, copyLength) << ")\"" << separator << "\n"; } } header << "};\n"; } out << varName; } template void WriteResourceIDPointerParamReplay(ReplayWriter &replayWriter, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m) { std::string varName = replayWriter.getInlineVariableName(call.entryPoint, param.name); header << "const GLuint " << varName << "[] = { "; const ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type); ASSERT(resourceIDType != ResourceIDType::InvalidEnum); const char *name = GetResourceIDTypeName(resourceIDType); if (param.dataNElements > 0) { ASSERT(param.data.size() == 1); const ParamT *returnedIDs = reinterpret_cast(param.data[0].data()); for (GLsizei resIndex = 0; resIndex < param.dataNElements; ++resIndex) { ParamT id = returnedIDs[resIndex]; if (resIndex > 0) { header << ", "; } header << "g" << name << "Map[" << id.value << "]"; } } else { header << "0"; } header << " };\n "; out << varName; } void WriteBinaryParamReplay(ReplayWriter &replayWriter, std::ostream &out, std::ostream &header, const CallCapture &call, const ParamCapture ¶m, std::vector *binaryData) { std::string varName = replayWriter.getInlineVariableName(call.entryPoint, param.name); ASSERT(param.data.size() == 1); const std::vector &data = param.data[0]; ParamType overrideType = param.type; if (param.type == ParamType::TGLvoidConstPointer || param.type == ParamType::TvoidConstPointer) { overrideType = ParamType::TGLubyteConstPointer; } if (overrideType == ParamType::TGLenumConstPointer || overrideType == ParamType::TGLcharPointer) { // Inline if data are of type string or enum std::string paramTypeString = ParamTypeToString(param.type); header << paramTypeString.substr(0, paramTypeString.length() - 1) << varName << "[] = { "; if (overrideType == ParamType::TGLenumConstPointer) { WriteInlineData(data, header); } else { ASSERT(overrideType == ParamType::TGLcharPointer); WriteInlineData(data, header); } header << " };\n"; out << varName; } else { // Store in binary file if data are not of type string or enum // Round up to 16-byte boundary for cross ABI safety size_t offset = rx::roundUpPow2(binaryData->size(), kBinaryAlignment); binaryData->resize(offset + data.size()); memcpy(binaryData->data() + offset, data.data(), data.size()); out << "reinterpret_cast<" << ParamTypeToString(overrideType) << ">(&gBinaryData[" << offset << "])"; } } uintptr_t SyncIndexValue(GLsync sync) { return reinterpret_cast(sync); } void WriteCppReplayForCall(const CallCapture &call, ReplayWriter &replayWriter, std::ostream &out, std::ostream &header, std::vector *binaryData) { std::ostringstream callOut; if (call.entryPoint == EntryPoint::GLCreateShader || call.entryPoint == EntryPoint::GLCreateProgram || call.entryPoint == EntryPoint::GLCreateShaderProgramv) { GLuint id = call.params.getReturnValue().value.GLuintVal; callOut << "gShaderProgramMap[" << id << "] = "; } if (call.entryPoint == EntryPoint::GLFenceSync) { GLsync sync = call.params.getReturnValue().value.GLsyncVal; callOut << "gSyncMap[" << SyncIndexValue(sync) << "] = "; } // Depending on how a buffer is mapped, we may need to track its location for readback bool trackBufferPointer = false; if (call.entryPoint == EntryPoint::GLMapBufferRange || call.entryPoint == EntryPoint::GLMapBufferRangeEXT) { GLbitfield access = call.params.getParam("access", ParamType::TGLbitfield, 3).value.GLbitfieldVal; trackBufferPointer = access & GL_MAP_WRITE_BIT; } if (call.entryPoint == EntryPoint::GLMapBuffer || call.entryPoint == EntryPoint::GLMapBufferOES) { GLenum access = call.params.getParam("access", ParamType::TGLenum, 1).value.GLenumVal; trackBufferPointer = access == GL_WRITE_ONLY_OES || access == GL_WRITE_ONLY || access == GL_READ_WRITE; } if (trackBufferPointer) { // Track the returned pointer so we update its data when unmapped gl::BufferID bufferID = call.params.getMappedBufferID(); callOut << "gMappedBufferData["; WriteParamValueReplay(callOut, call, bufferID); callOut << "] = "; } callOut << call.name() << "("; bool first = true; for (const ParamCapture ¶m : call.params.getParamCaptures()) { if (!first) { callOut << ", "; } if (param.arrayClientPointerIndex != -1 && param.value.voidConstPointerVal != nullptr) { callOut << "gClientArrays[" << param.arrayClientPointerIndex << "]"; } else if (param.readBufferSizeBytes > 0) { callOut << "reinterpret_cast<" << ParamTypeToString(param.type) << ">(gReadBuffer)"; } else if (param.data.empty()) { if (param.type == ParamType::TGLenum) { OutputGLenumString(callOut, param.enumGroup, param.value.GLenumVal); } else if (param.type == ParamType::TGLbitfield) { OutputGLbitfieldString(callOut, param.enumGroup, param.value.GLbitfieldVal); } else if (param.type == ParamType::TGLfloat) { WriteGLFloatValue(callOut, param.value.GLfloatVal); } else if (param.type == ParamType::TGLsync) { callOut << "gSyncMap[" << SyncIndexValue(param.value.GLsyncVal) << "]"; } else if (param.type == ParamType::TGLuint64 && param.name == "timeout") { if (param.value.GLuint64Val == GL_TIMEOUT_IGNORED) { callOut << "GL_TIMEOUT_IGNORED"; } else { WriteParamCaptureReplay(callOut, call, param); } } else { WriteParamCaptureReplay(callOut, call, param); } } else { switch (param.type) { case ParamType::TGLcharConstPointer: WriteStringParamReplay(replayWriter, callOut, header, call, param, binaryData); break; case ParamType::TGLcharConstPointerPointer: WriteStringPointerParamReplay(replayWriter, callOut, header, call, param); break; case ParamType::TBufferIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TFenceNVIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TFramebufferIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TMemoryObjectIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TProgramPipelineIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TQueryIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TRenderbufferIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TSamplerIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TSemaphoreIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TTextureIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; case ParamType::TTransformFeedbackIDConstPointer: WriteResourceIDPointerParamReplay( replayWriter, callOut, out, call, param); break; case ParamType::TVertexArrayIDConstPointer: WriteResourceIDPointerParamReplay(replayWriter, callOut, out, call, param); break; default: WriteBinaryParamReplay(replayWriter, callOut, header, call, param, binaryData); break; } } first = false; } callOut << ")"; out << callOut.str(); } size_t MaxClientArraySize(const gl::AttribArray &clientArraySizes) { size_t found = 0; for (size_t size : clientArraySizes) { if (size > found) { found = size; } } return found; } CallCapture CaptureMakeCurrent(EGLDisplay display, EGLSurface draw, EGLSurface read, EGLContext context) { ParamBuffer paramBuffer; paramBuffer.addValueParam("display", ParamType::TEGLDisplay, display); paramBuffer.addValueParam("draw", ParamType::TEGLSurface, draw); paramBuffer.addValueParam("read", ParamType::TEGLSurface, read); paramBuffer.addValueParam("context", ParamType::TEGLContext, context); return CallCapture(angle::EntryPoint::EGLMakeCurrent, std::move(paramBuffer)); } std::string GetBinaryDataFilePath(bool compression, const std::string &captureLabel) { std::stringstream fnameStream; fnameStream << FmtCapturePrefix(kNoContextId, captureLabel) << ".angledata"; if (compression) { fnameStream << ".gz"; } return fnameStream.str(); } void SaveBinaryData(bool compression, const std::string &outDir, gl::ContextID contextId, const std::string &captureLabel, const std::vector &binaryData) { std::string binaryDataFileName = GetBinaryDataFilePath(compression, captureLabel); std::string dataFilepath = outDir + binaryDataFileName; SaveFileHelper saveData(dataFilepath); if (compression) { // Save compressed data. uLong uncompressedSize = static_cast(binaryData.size()); uLong expectedCompressedSize = zlib_internal::GzipExpectedCompressedSize(uncompressedSize); std::vector compressedData(expectedCompressedSize, 0); uLong compressedSize = expectedCompressedSize; int zResult = zlib_internal::GzipCompressHelper(compressedData.data(), &compressedSize, binaryData.data(), uncompressedSize, nullptr, nullptr); if (zResult != Z_OK) { FATAL() << "Error compressing binary data: " << zResult; } saveData.write(compressedData.data(), compressedSize); } else { saveData.write(binaryData.data(), binaryData.size()); } } void WriteInitReplayCall(bool compression, std::ostream &out, gl::ContextID contextId, const std::string &captureLabel, size_t maxClientArraySize, size_t readBufferSize, const PackedEnumMap &maxIDs) { for (ResourceIDType resourceID : AllEnums()) { const char *name = GetResourceIDTypeName(resourceID); out << " uint32_t kMax" << name << " = " << maxIDs[resourceID] << ";\n"; } std::string binaryDataFileName = GetBinaryDataFilePath(compression, captureLabel); out << " InitializeReplay(\"" << binaryDataFileName << "\", " << maxClientArraySize << ", " << readBufferSize; for (ResourceIDType resourceID : AllEnums()) { out << ", kMax" << GetResourceIDTypeName(resourceID); } out << ");\n"; } // TODO (http://anglebug.com/4599): Reset more state on frame loop void MaybeResetResources(ResourceIDType resourceIDType, ReplayWriter &replayWriter, std::stringstream &out, std::stringstream &header, ResourceTracker *resourceTracker, std::vector *binaryData) { // Local helper to get well structured blocks in Delete calls, i.e. // const GLuint deleteTextures[] = { // gTextureMap[1], gTextureMap[2], gTextureMap[3], gTextureMap[4], // gTextureMap[5], gTextureMap[6], gTextureMap[7], gTextureMap[8]}; auto formatResourceIndex = [](std::stringstream &out, size_t i) { if (i > 0) { out << ", "; } if ((i % 4) == 0) { out << "\n "; } }; switch (resourceIDType) { case ResourceIDType::Buffer: { TrackedResource &trackedBuffers = resourceTracker->getTrackedResource(ResourceIDType::Buffer); ResourceSet &newBuffers = trackedBuffers.getNewResources(); ResourceSet &buffersToRegen = trackedBuffers.getResourcesToRegen(); ResourceCalls &bufferRegenCalls = trackedBuffers.getResourceRegenCalls(); ResourceCalls &bufferRestoreCalls = trackedBuffers.getResourceRestoreCalls(); BufferCalls &bufferMapCalls = resourceTracker->getBufferMapCalls(); BufferCalls &bufferUnmapCalls = resourceTracker->getBufferUnmapCalls(); // If we have any new buffers generated and not deleted during the run, or any buffers // that we need to regen, delete them now if (!newBuffers.empty() || !buffersToRegen.empty()) { size_t count = 0; out << " const GLuint deleteBuffers[] = {"; for (auto &oldBuffer : buffersToRegen) { formatResourceIndex(out, count); out << "gBufferMap[" << oldBuffer << "]"; ++count; } for (auto &newBuffer : newBuffers) { formatResourceIndex(out, count); out << "gBufferMap[" << newBuffer << "]"; ++count; } // Delete all the new and old buffers at once out << "};\n"; out << " glDeleteBuffers(" << count << ", deleteBuffers);\n"; } // If any of our starting buffers were deleted during the run, recreate them for (GLuint id : buffersToRegen) { // Emit their regen calls for (CallCapture &call : bufferRegenCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } // If any of our starting buffers were modified during the run, restore their contents ResourceSet &buffersToRestore = trackedBuffers.getResourcesToRestore(); for (GLuint id : buffersToRestore) { if (resourceTracker->getStartingBuffersMappedCurrent(id)) { // Some drivers require the buffer to be unmapped before you can update data, // which violates the spec. See gl::Buffer::bufferDataImpl(). for (CallCapture &call : bufferUnmapCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } // Emit their restore calls for (CallCapture &call : bufferRestoreCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; // Also note that this buffer has been implicitly unmapped by this call resourceTracker->setBufferUnmapped(id); } } // Update the map/unmap of buffers to match the starting state ResourceSet startingBuffers = trackedBuffers.getStartingResources(); for (GLuint id : startingBuffers) { // If the buffer was mapped at the start, but is not mapped now, we need to map if (resourceTracker->getStartingBuffersMappedInitial(id) && !resourceTracker->getStartingBuffersMappedCurrent(id)) { // Emit their map calls for (CallCapture &call : bufferMapCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } // If the buffer was unmapped at the start, but is mapped now, we need to unmap if (!resourceTracker->getStartingBuffersMappedInitial(id) && resourceTracker->getStartingBuffersMappedCurrent(id)) { // Emit their unmap calls for (CallCapture &call : bufferUnmapCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } } // Restore buffer bindings as seen during MEC std::vector &bufferBindingCalls = resourceTracker->getBufferBindingCalls(); for (CallCapture &call : bufferBindingCalls) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } break; } case ResourceIDType::Framebuffer: { TrackedResource &trackedFramebuffers = resourceTracker->getTrackedResource(ResourceIDType::Framebuffer); ResourceSet &newFramebuffers = trackedFramebuffers.getNewResources(); ResourceSet &framebuffersToRegen = trackedFramebuffers.getResourcesToRegen(); ResourceCalls &framebufferRegenCalls = trackedFramebuffers.getResourceRegenCalls(); ResourceCalls &framebufferRestoreCalls = trackedFramebuffers.getResourceRestoreCalls(); // If we have any new framebuffers generated and not deleted during the run, or any // framebuffers that we need to regen, delete them now if (!newFramebuffers.empty() || !framebuffersToRegen.empty()) { size_t count = 0; out << " const GLuint deleteFramebuffers[] = {"; for (auto &oldFb : framebuffersToRegen) { formatResourceIndex(out, count); out << "gFramebufferMap[" << oldFb << "]"; ++count; } for (auto &newFb : newFramebuffers) { formatResourceIndex(out, count); out << "gFramebufferMap[" << newFb << "]"; ++count; } // Delete all the new and old framebuffers at once out << "};\n"; out << " glDeleteFramebuffers(" << count << ", deleteFramebuffers);\n"; } for (GLuint id : framebuffersToRegen) { // Emit their regen calls for (CallCapture &call : framebufferRegenCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } // If any of our starting framebuffers were modified during the run, restore their // contents ResourceSet &framebuffersToRestore = trackedFramebuffers.getResourcesToRestore(); for (GLuint id : framebuffersToRestore) { // Emit their restore calls for (CallCapture &call : framebufferRestoreCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } break; } case ResourceIDType::Renderbuffer: { ResourceSet &newRenderbuffers = resourceTracker->getTrackedResource(ResourceIDType::Renderbuffer).getNewResources(); // Delete any new renderbuffers generated and not deleted during the run if (!newRenderbuffers.empty()) { size_t count = 0; out << " const GLuint deleteRenderbuffers[] = {"; for (auto &newRb : newRenderbuffers) { formatResourceIndex(out, count); out << "gRenderbufferMap[" << newRb << "]"; ++count; } out << "};\n"; out << " glDeleteRenderbuffers(" << count << ", deleteRenderbuffers);\n"; } // TODO (http://anglebug.com/4599): Handle renderbuffers that need regen // This would only happen if a starting renderbuffer was deleted during the run. ASSERT(resourceTracker->getTrackedResource(ResourceIDType::Renderbuffer) .getResourcesToRegen() .empty()); break; } case ResourceIDType::ShaderProgram: { ResourceSet &newPrograms = resourceTracker->getTrackedResource(ResourceIDType::ShaderProgram) .getNewResources(); // If we have any new programs created and not deleted during the run, delete them now for (const GLuint &newProgram : newPrograms) { out << " glDeleteProgram(gShaderProgramMap[" << newProgram << "]);\n"; } // TODO (http://anglebug.com/5968): Handle programs that need regen // This would only happen if a starting program was deleted during the run ASSERT(resourceTracker->getTrackedResource(ResourceIDType::ShaderProgram) .getResourcesToRegen() .empty()); break; } case ResourceIDType::Texture: { TrackedResource &trackedTextures = resourceTracker->getTrackedResource(ResourceIDType::Texture); ResourceSet &newTextures = trackedTextures.getNewResources(); ResourceSet &texturesToRegen = trackedTextures.getResourcesToRegen(); ResourceCalls &textureRegenCalls = trackedTextures.getResourceRegenCalls(); ResourceCalls &textureRestoreCalls = trackedTextures.getResourceRestoreCalls(); // If we have any new textures generated and not deleted during the run, or any textures // modified during the run that we need to regen, delete them now if (!newTextures.empty() || !texturesToRegen.empty()) { size_t count = 0; out << " const GLuint deleteTextures[] = {"; for (auto &oldTex : texturesToRegen) { formatResourceIndex(out, count); out << "gTextureMap[" << oldTex << "]"; ++count; } for (auto &newTex : newTextures) { formatResourceIndex(out, count); out << "gTextureMap[" << newTex << "]"; ++count; } out << "};\n"; out << " glDeleteTextures(" << count << ", deleteTextures);\n"; } // If any of our starting textures were deleted, regen them for (GLuint id : texturesToRegen) { // Emit their regen calls for (CallCapture &call : textureRegenCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } // If any of our starting textures were modified during the run, restore their contents ResourceSet &texturesToRestore = trackedTextures.getResourcesToRestore(); for (GLuint id : texturesToRestore) { // Emit their restore calls for (CallCapture &call : textureRestoreCalls[id]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } break; } case ResourceIDType::VertexArray: { ResourceSet &newVertextArrays = resourceTracker->getTrackedResource(ResourceIDType::VertexArray).getNewResources(); // If we have any new vertex arrays generated and not deleted during the run, delete // them now if (!newVertextArrays.empty()) { size_t count = 0; out << " const GLuint deleteVertexArrays[] = {"; for (auto &newVA : newVertextArrays) { formatResourceIndex(out, count); out << "gVertexArrayMap[" << newVA << "]"; ++count; } out << "};\n"; out << " glDeleteVertexArrays(" << count << ", deleteVertexArrays);\n"; } // TODO (http://anglebug.com/4599): Handle vertex arrays that need regen // This would only happen if a starting vertex array was deleted during the run. ASSERT(resourceTracker->getTrackedResource(ResourceIDType::VertexArray) .getResourcesToRegen() .empty()); break; } default: // TODO (http://anglebug.com/4599): Reset more than just buffers break; } } void MaybeResetFenceSyncObjects(std::stringstream &out, ReplayWriter &replayWriter, std::stringstream &header, ResourceTracker *resourceTracker, std::vector *binaryData) { FenceSyncCalls &fenceSyncRegenCalls = resourceTracker->getFenceSyncRegenCalls(); // If any of our starting fence sync objects were deleted during the run, recreate them FenceSyncSet &fenceSyncsToRegen = resourceTracker->getFenceSyncsToRegen(); for (const GLsync sync : fenceSyncsToRegen) { // Emit their regen calls for (CallCapture &call : fenceSyncRegenCalls[sync]) { out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; } } } void MaybeResetOpaqueTypeObjects(ReplayWriter &replayWriter, std::stringstream &out, std::stringstream &header, ResourceTracker *resourceTracker, std::vector *binaryData) { MaybeResetFenceSyncObjects(out, replayWriter, header, resourceTracker, binaryData); } bool FindShaderProgramIDsInCall(const CallCapture &call, std::vector &idsOut) { for (const ParamCapture ¶m : call.params.getParamCaptures()) { // Only checking for programs right now, but could be expanded to all ResourceTypes if (param.type == ParamType::TShaderProgramID) { idsOut.push_back(param.value.ShaderProgramIDVal); } } return !idsOut.empty(); } void MarkResourceIDActive(ResourceIDType resourceType, GLuint id, std::vector *setupCalls, const ResourceIDToSetupCallsMap *resourceIDToSetupCallsMap) { const std::map> &resourceSetupCalls = (*resourceIDToSetupCallsMap)[resourceType]; const auto iter = resourceSetupCalls.find(id); if (iter == resourceSetupCalls.end()) { return; } // Mark all of the calls that were used to initialize this resource as ACTIVE const gl::Range &calls = iter->second; for (size_t index : calls) { (*setupCalls)[index].isActive = true; } } // Some replay functions can get quite large. If over a certain size, this method breaks up the // function into parts to avoid overflowing the stack and causing slow compilation. void WriteCppReplayFunctionWithParts(const gl::ContextID contextID, ReplayFunc replayFunc, ReplayWriter &replayWriter, uint32_t frameIndex, std::vector *binaryData, const std::vector &calls, std::stringstream &header, std::stringstream &out) { int callCount = 0; int partCount = 0; if (calls.size() > kFunctionSizeLimit) { out << "void " << FmtFunction(replayFunc, contextID, frameIndex, ++partCount) << "\n"; } else { out << "void " << FmtFunction(replayFunc, contextID, frameIndex, kNoPartId) << "\n"; } out << "{\n"; for (const CallCapture &call : calls) { if (!call.isActive) { // Don't write setup calls for inactive resources continue; } out << " "; WriteCppReplayForCall(call, replayWriter, out, header, binaryData); out << ";\n"; if (partCount > 0 && ++callCount % kFunctionSizeLimit == 0) { out << "}\n"; out << "\n"; out << "void " << FmtFunction(replayFunc, contextID, frameIndex, ++partCount) << "\n"; out << "{\n"; } } out << "}\n"; if (partCount > 0) { out << "\n"; out << "void " << FmtFunction(replayFunc, contextID, frameIndex, kNoPartId) << "\n"; out << "{\n"; // Write out the main call which calls all the parts. for (int i = 1; i <= partCount; i++) { out << " " << FmtFunction(replayFunc, contextID, frameIndex, i) << ";\n"; } out << "}\n"; } } // Auxiliary contexts are other contexts in the share group that aren't the context calling // eglSwapBuffers(). void WriteAuxiliaryContextCppSetupReplay(ReplayWriter &replayWriter, bool compression, const std::string &outDir, const gl::Context *context, const std::string &captureLabel, uint32_t frameIndex, const std::vector &setupCalls, std::vector *binaryData, bool serializeStateEnabled, const FrameCaptureShared &frameCaptureShared) { ASSERT(frameCaptureShared.getWindowSurfaceContextID() != context->id()); { std::stringstream filenameStream; filenameStream << outDir << FmtCapturePrefix(context->id(), captureLabel); std::string filenamePattern = filenameStream.str(); replayWriter.setFilenamePattern(filenamePattern); } { std::stringstream include; include << "#include \"" << FmtCapturePrefix(frameCaptureShared.getWindowSurfaceContextID(), captureLabel) << ".h\"\n"; include << "#include \"angle_trace_gl.h\"\n"; std::string frameIncludes = include.str(); replayWriter.setSourcePrologue(frameIncludes); replayWriter.setHeaderPrologue(frameIncludes); } { std::stringstream protoStream; std::stringstream headerStream; std::stringstream bodyStream; protoStream << "void " << FmtSetupFunction(kNoPartId, context->id()); std::string proto = protoStream.str(); WriteCppReplayFunctionWithParts(context->id(), ReplayFunc::Setup, replayWriter, frameIndex, binaryData, setupCalls, headerStream, bodyStream); replayWriter.addPrivateFunction(proto, headerStream, bodyStream); } replayWriter.saveFrame(); } void WriteShareGroupCppSetupReplay(ReplayWriter &replayWriter, bool compression, const std::string &outDir, const std::string &captureLabel, uint32_t frameIndex, uint32_t frameCount, const std::vector &setupCalls, ResourceTracker *resourceTracker, std::vector *binaryData, bool serializeStateEnabled, gl::ContextID windowSurfaceContextID) { { std::stringstream include; include << "#include \"angle_trace_gl.h\"\n"; include << "#include \"" << FmtCapturePrefix(windowSurfaceContextID, captureLabel) << ".h\"\n"; std::string includeString = include.str(); replayWriter.setSourcePrologue(includeString); } { std::stringstream protoStream; std::stringstream headerStream; std::stringstream bodyStream; protoStream << "void " << FmtSetupFunction(kNoPartId, kSharedContextId); std::string proto = protoStream.str(); WriteCppReplayFunctionWithParts(kSharedContextId, ReplayFunc::Setup, replayWriter, frameIndex, binaryData, setupCalls, headerStream, bodyStream); replayWriter.addPrivateFunction(proto, headerStream, bodyStream); } { std::stringstream filenameStream; filenameStream << outDir << FmtCapturePrefix(kSharedContextId, captureLabel); std::string filenamePattern = filenameStream.str(); replayWriter.setFilenamePattern(filenamePattern); } replayWriter.saveSetupFile(); } ProgramSources GetAttachedProgramSources(const gl::Program *program) { ProgramSources sources; for (gl::ShaderType shaderType : gl::AllShaderTypes()) { const gl::Shader *shader = program->getAttachedShader(shaderType); if (shader) { sources[shaderType] = shader->getSourceString(); } } return sources; } template void CaptureUpdateResourceIDs(const CallCapture &call, const ParamCapture ¶m, ResourceTracker *resourceTracker, std::vector *callsOut) { GLsizei n = call.params.getParamFlexName("n", "count", ParamType::TGLsizei, 0).value.GLsizeiVal; ASSERT(param.data.size() == 1); ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type); ASSERT(resourceIDType != ResourceIDType::InvalidEnum && resourceIDType != ResourceIDType::ShaderProgram); const char *resourceName = GetResourceIDTypeName(resourceIDType); std::stringstream updateFuncNameStr; updateFuncNameStr << "Update" << resourceName << "ID"; std::string updateFuncName = updateFuncNameStr.str(); const IDType *returnedIDs = reinterpret_cast(param.data[0].data()); ResourceSet &startingSet = resourceTracker->getTrackedResource(resourceIDType).getStartingResources(); for (GLsizei idIndex = 0; idIndex < n; ++idIndex) { IDType id = returnedIDs[idIndex]; GLsizei readBufferOffset = idIndex * sizeof(gl::RenderbufferID); ParamBuffer params; params.addValueParam("id", ParamType::TGLuint, id.value); params.addValueParam("readBufferOffset", ParamType::TGLsizei, readBufferOffset); callsOut->emplace_back(updateFuncName, std::move(params)); // Add only if not in starting resources. if (startingSet.find(id.value) == startingSet.end()) { resourceTracker->getTrackedResource(resourceIDType).getNewResources().insert(id.value); } } } void CaptureUpdateUniformLocations(const gl::Program *program, std::vector *callsOut) { const std::vector &uniforms = program->getState().getUniforms(); const std::vector &locations = program->getUniformLocations(); for (GLint location = 0; location < static_cast(locations.size()); ++location) { const gl::VariableLocation &locationVar = locations[location]; // This handles the case where the application calls glBindUniformLocationCHROMIUM // on an unused uniform. We must still store a -1 into gUniformLocations in case the // application attempts to call a glUniform* call. To do this we'll pass in a blank name to // force glGetUniformLocation to return -1. std::string name; int count = 1; ParamBuffer params; params.addValueParam("program", ParamType::TGLuint, program->id().value); if (locationVar.index >= uniforms.size()) { name = ""; } else { const gl::LinkedUniform &uniform = uniforms[locationVar.index]; name = uniform.name; if (uniform.isArray()) { if (locationVar.arrayIndex > 0) { // Non-sequential array uniform locations are not currently handled. // In practice array locations shouldn't ever be non-sequential. ASSERT(uniform.location == -1 || location == uniform.location + static_cast(locationVar.arrayIndex)); continue; } if (uniform.isArrayOfArrays()) { UNIMPLEMENTED(); } name = gl::StripLastArrayIndex(name); count = uniform.arraySizes[0]; } } ParamCapture nameParam("name", ParamType::TGLcharConstPointer); CaptureString(name.c_str(), &nameParam); params.addParam(std::move(nameParam)); params.addValueParam("location", ParamType::TGLint, location); params.addValueParam("count", ParamType::TGLint, static_cast(count)); callsOut->emplace_back("UpdateUniformLocation", std::move(params)); } } void CaptureValidateSerializedState(const gl::Context *context, std::vector *callsOut) { INFO() << "Capturing validation checkpoint at position " << callsOut->size(); context->finishImmutable(); std::string serializedState; angle::Result result = angle::SerializeContextToString(context, &serializedState); if (result != angle::Result::Continue) { ERR() << "Internal error serializing context state."; return; } ParamCapture serializedStateParam("serializedState", ParamType::TGLcharConstPointer); CaptureString(serializedState.c_str(), &serializedStateParam); ParamBuffer params; params.addParam(std::move(serializedStateParam)); callsOut->emplace_back("VALIDATE_CHECKPOINT", std::move(params)); } void CaptureUpdateUniformBlockIndexes(const gl::Program *program, std::vector *callsOut) { const std::vector &uniformBlocks = program->getState().getUniformBlocks(); for (GLuint index = 0; index < uniformBlocks.size(); ++index) { ParamBuffer params; std::string name; params.addValueParam("program", ParamType::TShaderProgramID, program->id()); ParamCapture nameParam("name", ParamType::TGLcharConstPointer); CaptureString(uniformBlocks[index].name.c_str(), &nameParam); params.addParam(std::move(nameParam)); params.addValueParam("index", ParamType::TGLuint, index); callsOut->emplace_back("UpdateUniformBlockIndex", std::move(params)); } } void CaptureDeleteUniformLocations(gl::ShaderProgramID program, std::vector *callsOut) { ParamBuffer params; params.addValueParam("program", ParamType::TShaderProgramID, program); callsOut->emplace_back("DeleteUniformLocations", std::move(params)); } void MaybeCaptureUpdateResourceIDs(ResourceTracker *resourceTracker, std::vector *callsOut) { const CallCapture &call = callsOut->back(); switch (call.entryPoint) { case EntryPoint::GLGenBuffers: { const ParamCapture &buffers = call.params.getParam("buffersPacked", ParamType::TBufferIDPointer, 1); CaptureUpdateResourceIDs(call, buffers, resourceTracker, callsOut); break; } case EntryPoint::GLGenFencesNV: { const ParamCapture &fences = call.params.getParam("fencesPacked", ParamType::TFenceNVIDPointer, 1); CaptureUpdateResourceIDs(call, fences, resourceTracker, callsOut); break; } case EntryPoint::GLGenFramebuffers: case EntryPoint::GLGenFramebuffersOES: { const ParamCapture &framebuffers = call.params.getParam("framebuffersPacked", ParamType::TFramebufferIDPointer, 1); CaptureUpdateResourceIDs(call, framebuffers, resourceTracker, callsOut); break; } case EntryPoint::GLGenProgramPipelines: { const ParamCapture &pipelines = call.params.getParam("pipelinesPacked", ParamType::TProgramPipelineIDPointer, 1); CaptureUpdateResourceIDs(call, pipelines, resourceTracker, callsOut); break; } case EntryPoint::GLGenQueries: case EntryPoint::GLGenQueriesEXT: { const ParamCapture &queries = call.params.getParam("idsPacked", ParamType::TQueryIDPointer, 1); CaptureUpdateResourceIDs(call, queries, resourceTracker, callsOut); break; } case EntryPoint::GLGenRenderbuffers: case EntryPoint::GLGenRenderbuffersOES: { const ParamCapture &renderbuffers = call.params.getParam("renderbuffersPacked", ParamType::TRenderbufferIDPointer, 1); CaptureUpdateResourceIDs(call, renderbuffers, resourceTracker, callsOut); break; } case EntryPoint::GLGenSamplers: { const ParamCapture &samplers = call.params.getParam("samplersPacked", ParamType::TSamplerIDPointer, 1); CaptureUpdateResourceIDs(call, samplers, resourceTracker, callsOut); break; } case EntryPoint::GLGenSemaphoresEXT: { const ParamCapture &semaphores = call.params.getParam("semaphoresPacked", ParamType::TSemaphoreIDPointer, 1); CaptureUpdateResourceIDs(call, semaphores, resourceTracker, callsOut); break; } case EntryPoint::GLGenTextures: { const ParamCapture &textures = call.params.getParam("texturesPacked", ParamType::TTextureIDPointer, 1); CaptureUpdateResourceIDs(call, textures, resourceTracker, callsOut); break; } case EntryPoint::GLGenTransformFeedbacks: { const ParamCapture &xfbs = call.params.getParam("idsPacked", ParamType::TTransformFeedbackIDPointer, 1); CaptureUpdateResourceIDs(call, xfbs, resourceTracker, callsOut); break; } case EntryPoint::GLGenVertexArrays: case EntryPoint::GLGenVertexArraysOES: { const ParamCapture &vertexArrays = call.params.getParam("arraysPacked", ParamType::TVertexArrayIDPointer, 1); CaptureUpdateResourceIDs(call, vertexArrays, resourceTracker, callsOut); break; } case EntryPoint::GLCreateMemoryObjectsEXT: { const ParamCapture &memoryObjects = call.params.getParam("memoryObjectsPacked", ParamType::TMemoryObjectIDPointer, 1); CaptureUpdateResourceIDs(call, memoryObjects, resourceTracker, callsOut); break; } default: break; } } void CaptureUpdateCurrentProgram(const CallCapture &call, int programParamPos, std::vector *callsOut) { const ParamCapture ¶m = call.params.getParam("programPacked", ParamType::TShaderProgramID, programParamPos); gl::ShaderProgramID programID = param.value.ShaderProgramIDVal; ParamBuffer paramBuffer; paramBuffer.addValueParam("program", ParamType::TGLuint, programID.value); callsOut->emplace_back("UpdateCurrentProgram", std::move(paramBuffer)); } bool IsDefaultCurrentValue(const gl::VertexAttribCurrentValueData ¤tValue) { if (currentValue.Type != gl::VertexAttribType::Float) return false; return currentValue.Values.FloatValues[0] == 0.0f && currentValue.Values.FloatValues[1] == 0.0f && currentValue.Values.FloatValues[2] == 0.0f && currentValue.Values.FloatValues[3] == 1.0f; } bool IsQueryActive(const gl::State &glState, gl::QueryID &queryID) { const gl::ActiveQueryMap &activeQueries = glState.getActiveQueriesForCapture(); for (const auto &activeQueryIter : activeQueries) { const gl::Query *activeQuery = activeQueryIter.get(); if (activeQuery && activeQuery->id() == queryID) { return true; } } return false; } bool IsTextureUpdate(CallCapture &call) { switch (call.entryPoint) { case EntryPoint::GLCompressedCopyTextureCHROMIUM: case EntryPoint::GLCompressedTexImage1D: case EntryPoint::GLCompressedTexImage2D: case EntryPoint::GLCompressedTexImage2DRobustANGLE: case EntryPoint::GLCompressedTexImage3D: case EntryPoint::GLCompressedTexImage3DOES: case EntryPoint::GLCompressedTexImage3DRobustANGLE: case EntryPoint::GLCompressedTexSubImage1D: case EntryPoint::GLCompressedTexSubImage2D: case EntryPoint::GLCompressedTexSubImage2DRobustANGLE: case EntryPoint::GLCompressedTexSubImage3D: case EntryPoint::GLCompressedTexSubImage3DOES: case EntryPoint::GLCompressedTexSubImage3DRobustANGLE: case EntryPoint::GLCompressedTextureSubImage1D: case EntryPoint::GLCompressedTextureSubImage2D: case EntryPoint::GLCompressedTextureSubImage3D: case EntryPoint::GLCopyTexImage1D: case EntryPoint::GLCopyTexImage2D: case EntryPoint::GLCopyTexSubImage1D: case EntryPoint::GLCopyTexSubImage2D: case EntryPoint::GLCopyTexSubImage3D: case EntryPoint::GLCopyTexSubImage3DOES: case EntryPoint::GLCopyTexture3DANGLE: case EntryPoint::GLCopyTextureCHROMIUM: case EntryPoint::GLCopyTextureSubImage1D: case EntryPoint::GLCopyTextureSubImage2D: case EntryPoint::GLCopyTextureSubImage3D: case EntryPoint::GLTexImage1D: case EntryPoint::GLTexImage2D: case EntryPoint::GLTexImage2DExternalANGLE: case EntryPoint::GLTexImage2DMultisample: case EntryPoint::GLTexImage2DRobustANGLE: case EntryPoint::GLTexImage3D: case EntryPoint::GLTexImage3DMultisample: case EntryPoint::GLTexImage3DOES: case EntryPoint::GLTexImage3DRobustANGLE: case EntryPoint::GLTexSubImage1D: case EntryPoint::GLTexSubImage2D: case EntryPoint::GLTexSubImage2DRobustANGLE: case EntryPoint::GLTexSubImage3D: case EntryPoint::GLTexSubImage3DOES: case EntryPoint::GLTexSubImage3DRobustANGLE: case EntryPoint::GLTextureSubImage1D: case EntryPoint::GLTextureSubImage2D: case EntryPoint::GLTextureSubImage3D: case EntryPoint::GLCopyImageSubData: case EntryPoint::GLCopyImageSubDataEXT: case EntryPoint::GLCopyImageSubDataOES: return true; default: return false; } } void Capture(std::vector *setupCalls, CallCapture &&call) { setupCalls->emplace_back(std::move(call)); } void CaptureFramebufferAttachment(std::vector *setupCalls, const gl::State &replayState, const FramebufferCaptureFuncs &framebufferFuncs, const gl::FramebufferAttachment &attachment) { GLuint resourceID = attachment.getResource()->getId(); if (attachment.type() == GL_TEXTURE) { gl::ImageIndex index = attachment.getTextureImageIndex(); if (index.usesTex3D()) { Capture(setupCalls, CaptureFramebufferTextureLayer( replayState, true, GL_FRAMEBUFFER, attachment.getBinding(), {resourceID}, index.getLevelIndex(), index.getLayerIndex())); } else { Capture(setupCalls, framebufferFuncs.framebufferTexture2D( replayState, true, GL_FRAMEBUFFER, attachment.getBinding(), index.getTarget(), {resourceID}, index.getLevelIndex())); } } else { ASSERT(attachment.type() == GL_RENDERBUFFER); Capture(setupCalls, framebufferFuncs.framebufferRenderbuffer( replayState, true, GL_FRAMEBUFFER, attachment.getBinding(), GL_RENDERBUFFER, {resourceID})); } } void CaptureUpdateUniformValues(const gl::State &replayState, const gl::Context *context, gl::Program *program, std::vector *callsOut) { if (!program->isLinked()) { // We can't populate uniforms if the program hasn't been linked return; } // We need to bind the program and update its uniforms if (!replayState.getProgram() || replayState.getProgram()->id() != program->id()) { Capture(callsOut, CaptureUseProgram(replayState, true, program->id())); CaptureUpdateCurrentProgram(callsOut->back(), 0, callsOut); } const std::vector &uniforms = program->getState().getUniforms(); for (const gl::LinkedUniform &uniform : uniforms) { std::string uniformName = uniform.name; int uniformCount = 1; if (uniform.isArray()) { if (uniform.isArrayOfArrays()) { UNIMPLEMENTED(); continue; } uniformCount = uniform.arraySizes[0]; uniformName = gl::StripLastArrayIndex(uniformName); } gl::UniformLocation uniformLoc = program->getUniformLocation(uniformName); const gl::UniformTypeInfo *typeInfo = uniform.typeInfo; int componentCount = typeInfo->componentCount; int uniformSize = uniformCount * componentCount; // For arrayed uniforms, we'll need to increment a read location gl::UniformLocation readLoc = uniformLoc; // If the uniform is unused, just continue if (readLoc.value == -1) { continue; } // Image uniforms are special and cannot be set this way if (typeInfo->isImageType) { continue; } // Samplers should be populated with GL_INT, regardless of return type if (typeInfo->isSampler) { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformiv(context, readLoc, uniformBuffer.data() + index * componentCount); } Capture(callsOut, CaptureUniform1iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); continue; } switch (typeInfo->componentType) { case GL_FLOAT: { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformfv(context, readLoc, uniformBuffer.data() + index * componentCount); } switch (typeInfo->type) { // Note: All matrix uniforms are populated without transpose case GL_FLOAT_MAT4x3: Capture(callsOut, CaptureUniformMatrix4x3fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT4x2: Capture(callsOut, CaptureUniformMatrix4x2fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT4: Capture(callsOut, CaptureUniformMatrix4fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT3x4: Capture(callsOut, CaptureUniformMatrix3x4fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT3x2: Capture(callsOut, CaptureUniformMatrix3x2fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT3: Capture(callsOut, CaptureUniformMatrix3fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT2x4: Capture(callsOut, CaptureUniformMatrix2x4fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT2x3: Capture(callsOut, CaptureUniformMatrix2x3fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_MAT2: Capture(callsOut, CaptureUniformMatrix2fv(replayState, true, uniformLoc, uniformCount, false, uniformBuffer.data())); break; case GL_FLOAT_VEC4: Capture(callsOut, CaptureUniform4fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case GL_FLOAT_VEC3: Capture(callsOut, CaptureUniform3fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case GL_FLOAT_VEC2: Capture(callsOut, CaptureUniform2fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case GL_FLOAT: Capture(callsOut, CaptureUniform1fv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; default: UNIMPLEMENTED(); break; } break; } case GL_INT: { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformiv(context, readLoc, uniformBuffer.data() + index * componentCount); } switch (componentCount) { case 4: Capture(callsOut, CaptureUniform4iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 3: Capture(callsOut, CaptureUniform3iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 2: Capture(callsOut, CaptureUniform2iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 1: Capture(callsOut, CaptureUniform1iv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; default: UNIMPLEMENTED(); break; } break; } case GL_BOOL: case GL_UNSIGNED_INT: { std::vector uniformBuffer(uniformSize); for (int index = 0; index < uniformCount; index++, readLoc.value++) { program->getUniformuiv(context, readLoc, uniformBuffer.data() + index * componentCount); } switch (componentCount) { case 4: Capture(callsOut, CaptureUniform4uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 3: Capture(callsOut, CaptureUniform3uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 2: Capture(callsOut, CaptureUniform2uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; case 1: Capture(callsOut, CaptureUniform1uiv(replayState, true, uniformLoc, uniformCount, uniformBuffer.data())); break; default: UNIMPLEMENTED(); break; } break; } default: UNIMPLEMENTED(); break; } } } void CaptureVertexPointerES1(std::vector *setupCalls, gl::State *replayState, GLuint attribIndex, const gl::VertexAttribute &attrib, const gl::VertexBinding &binding) { switch (gl::GLES1Renderer::VertexArrayType(attribIndex)) { case gl::ClientVertexArrayType::Vertex: Capture(setupCalls, CaptureVertexPointer(*replayState, true, attrib.format->channelCount, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::Normal: Capture(setupCalls, CaptureNormalPointer(*replayState, true, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::Color: Capture(setupCalls, CaptureColorPointer(*replayState, true, attrib.format->channelCount, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::PointSize: Capture(setupCalls, CapturePointSizePointerOES(*replayState, true, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; case gl::ClientVertexArrayType::TextureCoord: Capture(setupCalls, CaptureTexCoordPointer(*replayState, true, attrib.format->channelCount, attrib.format->vertexAttribType, binding.getStride(), attrib.pointer)); break; default: UNREACHABLE(); } } bool VertexBindingMatchesAttribStride(const gl::VertexAttribute &attrib, const gl::VertexBinding &binding) { if (attrib.vertexAttribArrayStride == 0 && binding.getStride() == ComputeVertexAttributeTypeSize(attrib)) { return true; } return attrib.vertexAttribArrayStride == binding.getStride(); } void CaptureVertexArrayState(std::vector *setupCalls, const gl::Context *context, const gl::VertexArray *vertexArray, gl::State *replayState) { const std::vector &vertexAttribs = vertexArray->getVertexAttributes(); const std::vector &vertexBindings = vertexArray->getVertexBindings(); gl::AttributesMask vertexPointerBindings; ASSERT(vertexAttribs.size() <= vertexBindings.size()); for (GLuint attribIndex = 0; attribIndex < vertexAttribs.size(); ++attribIndex) { const gl::VertexAttribute defaultAttrib(attribIndex); const gl::VertexBinding defaultBinding; const gl::VertexAttribute &attrib = vertexAttribs[attribIndex]; const gl::VertexBinding &binding = vertexBindings[attrib.bindingIndex]; if (attrib.enabled != defaultAttrib.enabled) { if (context->isGLES1()) { Capture(setupCalls, CaptureEnableClientState(*replayState, false, gl::GLES1Renderer::VertexArrayType(attribIndex))); } else { Capture(setupCalls, CaptureEnableVertexAttribArray(*replayState, false, attribIndex)); } } // Don't capture CaptureVertexAttribPointer calls when a non-default VAO is bound, the array // buffer is null and a non-null attrib pointer is used. bool skipInvalidAttrib = vertexArray->id().value != 0 && binding.getBuffer().get() == nullptr && attrib.pointer != nullptr; if (!skipInvalidAttrib && (attrib.format != defaultAttrib.format || attrib.pointer != defaultAttrib.pointer || binding.getStride() != defaultBinding.getStride() || binding.getBuffer().get() != nullptr)) { // Each attribute can pull from a separate buffer, so check the binding gl::Buffer *buffer = binding.getBuffer().get(); if (buffer != replayState->getArrayBuffer()) { replayState->setBufferBinding(context, gl::BufferBinding::Array, buffer); gl::BufferID bufferID = {0}; if (buffer) { bufferID = buffer->id(); } Capture(setupCalls, CaptureBindBuffer(*replayState, true, gl::BufferBinding::Array, bufferID)); } // Establish the relationship between currently bound buffer and the VAO if (context->isGLES1()) { // Track indexes that used ES1 calls vertexPointerBindings.set(attribIndex); CaptureVertexPointerES1(setupCalls, replayState, attribIndex, attrib, binding); } else if (attrib.bindingIndex == attribIndex && VertexBindingMatchesAttribStride(attrib, binding) && (!buffer || binding.getOffset() == reinterpret_cast(attrib.pointer))) { // Check if we can use strictly ES2 semantics, and track indexes that do. vertexPointerBindings.set(attribIndex); if (attrib.format->isPureInt()) { Capture(setupCalls, CaptureVertexAttribIPointer(*replayState, true, attribIndex, attrib.format->channelCount, attrib.format->vertexAttribType, attrib.vertexAttribArrayStride, attrib.pointer)); } else { Capture(setupCalls, CaptureVertexAttribPointer( *replayState, true, attribIndex, attrib.format->channelCount, attrib.format->vertexAttribType, attrib.format->isNorm(), attrib.vertexAttribArrayStride, attrib.pointer)); } if (binding.getDivisor() != 0) { Capture(setupCalls, CaptureVertexAttribDivisor(*replayState, true, attribIndex, binding.getDivisor())); } } else { ASSERT(context->getClientVersion() >= gl::ES_3_1); if (attrib.format->isPureInt()) { Capture(setupCalls, CaptureVertexAttribIFormat(*replayState, true, attribIndex, attrib.format->channelCount, attrib.format->vertexAttribType, attrib.relativeOffset)); } else { Capture(setupCalls, CaptureVertexAttribFormat(*replayState, true, attribIndex, attrib.format->channelCount, attrib.format->vertexAttribType, attrib.format->isNorm(), attrib.relativeOffset)); } Capture(setupCalls, CaptureVertexAttribBinding(*replayState, true, attribIndex, attrib.bindingIndex)); } } } // The loop below expects attribs and bindings to have equal counts static_assert(gl::MAX_VERTEX_ATTRIBS == gl::MAX_VERTEX_ATTRIB_BINDINGS, "Max vertex attribs and bindings count mismatch"); // Loop through binding indices that weren't used by VertexAttribPointer for (size_t bindingIndex : vertexPointerBindings.flip()) { const gl::VertexBinding &binding = vertexBindings[bindingIndex]; if (binding.getBuffer().id().value != 0) { Capture(setupCalls, CaptureBindVertexBuffer(*replayState, true, static_cast(bindingIndex), binding.getBuffer().id(), binding.getOffset(), binding.getStride())); } if (binding.getDivisor() != 0) { Capture(setupCalls, CaptureVertexBindingDivisor(*replayState, true, static_cast(bindingIndex), binding.getDivisor())); } } // The element array buffer is not per attribute, but per VAO gl::Buffer *elementArrayBuffer = vertexArray->getElementArrayBuffer(); if (elementArrayBuffer) { Capture(setupCalls, CaptureBindBuffer(*replayState, true, gl::BufferBinding::ElementArray, elementArrayBuffer->id())); } } void CaptureTextureStorage(std::vector *setupCalls, gl::State *replayState, const gl::Texture *texture) { // Use mip-level 0 for the base dimensions gl::ImageIndex imageIndex = gl::ImageIndex::MakeFromType(texture->getType(), 0); const gl::ImageDesc &desc = texture->getTextureState().getImageDesc(imageIndex); switch (texture->getType()) { case gl::TextureType::_2D: case gl::TextureType::CubeMap: { Capture(setupCalls, CaptureTexStorage2D(*replayState, true, texture->getType(), texture->getImmutableLevels(), desc.format.info->internalFormat, desc.size.width, desc.size.height)); break; } case gl::TextureType::_3D: case gl::TextureType::_2DArray: case gl::TextureType::CubeMapArray: { Capture(setupCalls, CaptureTexStorage3D( *replayState, true, texture->getType(), texture->getImmutableLevels(), desc.format.info->internalFormat, desc.size.width, desc.size.height, desc.size.depth)); break; } case gl::TextureType::Buffer: { // Do nothing. This will already be captured as a buffer. break; } default: UNIMPLEMENTED(); break; } } void CaptureTextureContents(std::vector *setupCalls, gl::State *replayState, const gl::Texture *texture, const gl::ImageIndex &index, const gl::ImageDesc &desc, GLuint size, const void *data) { const gl::InternalFormat &format = *desc.format.info; if (index.getType() == gl::TextureType::Buffer) { // Zero binding size indicates full buffer bound if (texture->getBuffer().getSize() == 0) { Capture(setupCalls, CaptureTexBufferEXT(*replayState, true, index.getType(), format.internalFormat, texture->getBuffer().get()->id())); } else { Capture(setupCalls, CaptureTexBufferRangeEXT(*replayState, true, index.getType(), format.internalFormat, texture->getBuffer().get()->id(), texture->getBuffer().getOffset(), texture->getBuffer().getSize())); } // For buffers, we're done return; } bool is3D = (index.getType() == gl::TextureType::_3D || index.getType() == gl::TextureType::_2DArray || index.getType() == gl::TextureType::CubeMapArray); if (format.compressed) { if (is3D) { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureCompressedTexSubImage3D( *replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, 0, desc.size.width, desc.size.height, desc.size.depth, format.internalFormat, size, data)); } else { Capture(setupCalls, CaptureCompressedTexImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, desc.size.depth, 0, size, data)); } } else { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureCompressedTexSubImage2D( *replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, desc.size.width, desc.size.height, format.internalFormat, size, data)); } else { Capture(setupCalls, CaptureCompressedTexImage2D( *replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, 0, size, data)); } } } else { if (is3D) { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureTexSubImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, 0, desc.size.width, desc.size.height, desc.size.depth, format.format, format.type, data)); } else { Capture( setupCalls, CaptureTexImage3D(*replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, desc.size.depth, 0, format.format, format.type, data)); } } else { if (texture->getImmutableFormat()) { Capture(setupCalls, CaptureTexSubImage2D(*replayState, true, index.getTarget(), index.getLevelIndex(), 0, 0, desc.size.width, desc.size.height, format.format, format.type, data)); } else { Capture(setupCalls, CaptureTexImage2D(*replayState, true, index.getTarget(), index.getLevelIndex(), format.internalFormat, desc.size.width, desc.size.height, 0, format.format, format.type, data)); } } } } void GenerateLinkedProgram(const gl::Context *context, const gl::State &replayState, ResourceTracker *resourceTracker, std::vector *setupCalls, gl::Program *program, gl::ShaderProgramID id, gl::ShaderProgramID tempIDStart, const ProgramSources &linkedSources) { // A map to store the gShaderProgram map lookup index of the temp shaders we attached below. We // need this map to retrieve the lookup index to pass to CaptureDetachShader calls at the end of // GenerateLinkedProgram. PackedEnumMap tempShaderIDTracker; // Compile with last linked sources. for (gl::ShaderType shaderType : program->getExecutable().getLinkedShaderStages()) { // Bump the max shader program id for each new tempIDStart we use to create, compile, and // attach the temp shader object. resourceTracker->onShaderProgramAccess(tempIDStart); // Store the tempIDStart in the tempShaderIDTracker to retrieve for CaptureDetachShader // calls later. tempShaderIDTracker[shaderType] = tempIDStart; const std::string &sourceString = linkedSources[shaderType]; const char *sourcePointer = sourceString.c_str(); if (sourceString.empty()) { // If we don't have source for this shader, that means it was populated by the app // using glProgramBinary. We need to look it up from our cached copy. const ProgramSources &cachedLinkedSources = context->getShareGroup()->getFrameCaptureShared()->getProgramSources(id); const std::string &cachedSourceString = cachedLinkedSources[shaderType]; sourcePointer = cachedSourceString.c_str(); ASSERT(!cachedSourceString.empty()); } // Compile and attach the temporary shader. Then free it immediately. Capture(setupCalls, CaptureCreateShader(replayState, true, shaderType, tempIDStart.value)); Capture(setupCalls, CaptureShaderSource(replayState, true, tempIDStart, 1, &sourcePointer, nullptr)); Capture(setupCalls, CaptureCompileShader(replayState, true, tempIDStart)); Capture(setupCalls, CaptureAttachShader(replayState, true, id, tempIDStart)); // Increment tempIDStart to get a new gShaderProgram map index for the next linked stage // shader object. We can't reuse the same tempIDStart as we need to retrieve the index of // each attached shader object later to pass to CaptureDetachShader calls. tempIDStart.value += 1; } // Gather XFB varyings std::vector xfbVaryings; for (const gl::TransformFeedbackVarying &xfbVarying : program->getState().getLinkedTransformFeedbackVaryings()) { xfbVaryings.push_back(xfbVarying.nameWithArrayIndex()); } if (!xfbVaryings.empty()) { std::vector varyingsStrings; for (const std::string &varyingString : xfbVaryings) { varyingsStrings.push_back(varyingString.data()); } GLenum xfbMode = program->getState().getTransformFeedbackBufferMode(); Capture(setupCalls, CaptureTransformFeedbackVaryings(replayState, true, id, static_cast(xfbVaryings.size()), varyingsStrings.data(), xfbMode)); } // Force the attributes to be bound the same way as in the existing program. // This can affect attributes that are optimized out in some implementations. for (const sh::ShaderVariable &attrib : program->getState().getProgramInputs()) { if (gl::IsBuiltInName(attrib.name)) { // Don't try to bind built-in attributes continue; } // Separable programs may not have a VS, meaning it may not have attributes. if (program->getExecutable().hasLinkedShaderStage(gl::ShaderType::Vertex)) { ASSERT(attrib.location != -1); Capture(setupCalls, CaptureBindAttribLocation(replayState, true, id, static_cast(attrib.location), attrib.name.c_str())); } } if (program->isSeparable()) { // MEC manually recreates separable programs, rather than attempting to recreate a call // to glCreateShaderProgramv(), so insert a call to mark it separable. Capture(setupCalls, CaptureProgramParameteri(replayState, true, id, GL_PROGRAM_SEPARABLE, GL_TRUE)); } Capture(setupCalls, CaptureLinkProgram(replayState, true, id)); CaptureUpdateUniformLocations(program, setupCalls); CaptureUpdateUniformValues(replayState, context, program, setupCalls); CaptureUpdateUniformBlockIndexes(program, setupCalls); // Capture uniform block bindings for each program for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < program->getActiveUniformBlockCount(); uniformBlockIndex++) { GLuint blockBinding = program->getUniformBlockBinding(uniformBlockIndex); Capture(setupCalls, CaptureUniformBlockBinding(replayState, true, id, {uniformBlockIndex}, blockBinding)); } // Add DetachShader call if that's what the app does, so that the // ResourceManagerBase::mHandleAllocator can release the ShaderProgramID handle assigned to the // shader object when glDeleteShader is called. This ensures the ShaderProgramID handles used in // SetupReplayContextShared() are consistent with the ShaderProgramID handles used by the app. for (gl::ShaderType shaderType : program->getExecutable().getLinkedShaderStages()) { gl::Shader *attachedShader = program->getAttachedShader(shaderType); if (attachedShader == nullptr) { Capture(setupCalls, CaptureDetachShader(replayState, true, id, tempShaderIDTracker[shaderType])); } Capture(setupCalls, CaptureDeleteShader(replayState, true, tempShaderIDTracker[shaderType])); } } // TODO(http://anglebug.com/4599): Improve reset/restore call generation // There are multiple ways to track reset calls for individual resources. For now, we are tracking // separate lists of instructions that mirror the calls created during mid-execution setup. Other // methods could involve passing the original CallCaptures to this function, or tracking the // indices of original setup calls. void CaptureBufferResetCalls(const gl::State &replayState, ResourceTracker *resourceTracker, gl::BufferID *id, const gl::Buffer *buffer) { GLuint bufferID = (*id).value; // Track this as a starting resource that may need to be restored. TrackedResource &trackedBuffers = resourceTracker->getTrackedResource(ResourceIDType::Buffer); // Track calls to regenerate a given buffer ResourceCalls &bufferRegenCalls = trackedBuffers.getResourceRegenCalls(); Capture(&bufferRegenCalls[bufferID], CaptureGenBuffers(replayState, true, 1, id)); MaybeCaptureUpdateResourceIDs(resourceTracker, &bufferRegenCalls[bufferID]); // Call glBufferStorageEXT when regenerating immutable buffers, // as we can't call glBufferData on restore. if (buffer->isImmutable()) { Capture(&bufferRegenCalls[bufferID], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); Capture( &bufferRegenCalls[bufferID], CaptureBufferStorageEXT(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getStorageExtUsageFlags())); } // Track calls to restore a given buffer's contents ResourceCalls &bufferRestoreCalls = trackedBuffers.getResourceRestoreCalls(); Capture(&bufferRestoreCalls[bufferID], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); // Mutable buffers will be restored here using glBufferData. // Immutable buffers need to be restored below, after maping. if (!buffer->isImmutable()) { Capture(&bufferRestoreCalls[bufferID], CaptureBufferData(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getUsage())); } if (buffer->isMapped()) { // Track calls to remap a buffer that started as mapped BufferCalls &bufferMapCalls = resourceTracker->getBufferMapCalls(); Capture(&bufferMapCalls[bufferID], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); void *dontCare = nullptr; Capture(&bufferMapCalls[bufferID], CaptureMapBufferRange(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getMapOffset()), static_cast(buffer->getMapLength()), buffer->getAccessFlags(), dontCare)); // Track the bufferID that was just mapped bufferMapCalls[bufferID].back().params.setMappedBufferID(buffer->id()); // Restore immutable mapped buffers. Needs to happen after mapping. if (buffer->isImmutable()) { ParamBuffer dataParamBuffer; dataParamBuffer.addValueParam("dest", ParamType::TGLuint, buffer->id().value); ParamCapture captureData("source", ParamType::TvoidConstPointer); CaptureMemory(buffer->getMapPointer(), static_cast(buffer->getSize()), &captureData); dataParamBuffer.addParam(std::move(captureData)); dataParamBuffer.addValueParam("size", ParamType::TGLsizeiptr, static_cast(buffer->getSize())); bufferMapCalls[bufferID].emplace_back("UpdateClientBufferData", std::move(dataParamBuffer)); } } // Track calls unmap a buffer that started as unmapped BufferCalls &bufferUnmapCalls = resourceTracker->getBufferUnmapCalls(); Capture(&bufferUnmapCalls[bufferID], CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, *id)); Capture(&bufferUnmapCalls[bufferID], CaptureUnmapBuffer(replayState, true, gl::BufferBinding::Array, GL_TRUE)); } void CaptureFenceSyncResetCalls(const gl::State &replayState, ResourceTracker *resourceTracker, GLsync syncID, const gl::Sync *sync) { // Track calls to regenerate a given fence sync FenceSyncCalls &fenceSyncRegenCalls = resourceTracker->getFenceSyncRegenCalls(); Capture(&fenceSyncRegenCalls[syncID], CaptureFenceSync(replayState, true, sync->getCondition(), sync->getFlags(), syncID)); MaybeCaptureUpdateResourceIDs(resourceTracker, &fenceSyncRegenCalls[syncID]); } void CaptureBufferBindingResetCalls(const gl::State &replayState, ResourceTracker *resourceTracker, gl::BufferBinding binding, gl::BufferID id) { std::vector &bufferBindingCalls = resourceTracker->getBufferBindingCalls(); Capture(&bufferBindingCalls, CaptureBindBuffer(replayState, true, binding, id)); } void CaptureIndexedBuffers(const gl::State &glState, const gl::BufferVector &indexedBuffers, gl::BufferBinding binding, std::vector *setupCalls) { for (unsigned int index = 0; index < indexedBuffers.size(); ++index) { const gl::OffsetBindingPointer &buffer = indexedBuffers[index]; if (buffer.get() == nullptr) { continue; } GLintptr offset = buffer.getOffset(); GLsizeiptr size = buffer.getSize(); gl::BufferID bufferID = buffer.get()->id(); // Context::bindBufferBase() calls Context::bindBufferRange() with size and offset = 0. if ((offset == 0) && (size == 0)) { Capture(setupCalls, CaptureBindBufferBase(glState, true, binding, index, bufferID)); } else { Capture(setupCalls, CaptureBindBufferRange(glState, true, binding, index, bufferID, offset, size)); } } } void CaptureDefaultVertexAttribs(const gl::State &replayState, const gl::State &apiState, std::vector *setupCalls) { const std::vector ¤tValues = apiState.getVertexAttribCurrentValues(); for (GLuint attribIndex = 0; attribIndex < currentValues.size(); ++attribIndex) { const gl::VertexAttribCurrentValueData &defaultValue = currentValues[attribIndex]; if (!IsDefaultCurrentValue(defaultValue)) { Capture(setupCalls, CaptureVertexAttrib4fv(replayState, true, attribIndex, defaultValue.Values.FloatValues)); } } } // Capture the setup of the state that's shared by all of the contexts in the share group: // OpenGL ES Version 3.2 (October 22, 2019) // Chapter 5 Shared Objects and Multiple Contexts // Objects that can be shared between contexts include buffer objects, program // and shader objects, renderbuffer objects, sampler objects, sync objects, and texture // objects (except for the texture objects named zero). // Objects which contain references to other objects include framebuffer, program // pipeline, transform feedback, and vertex array objects. Such objects are called // container objects and are not shared. void CaptureShareGroupMidExecutionSetup(const gl::Context *context, std::vector *setupCalls, ResourceTracker *resourceTracker, gl::State &replayState) { FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); const gl::State &apiState = context->getState(); // Small helper function to make the code more readable. auto cap = [setupCalls](CallCapture &&call) { setupCalls->emplace_back(std::move(call)); }; // Capture Buffer data. const gl::BufferManager &buffers = apiState.getBufferManagerForCapture(); for (const auto &bufferIter : buffers) { gl::BufferID id = {bufferIter.first}; gl::Buffer *buffer = bufferIter.second; if (id.value == 0) { continue; } // Generate binding. cap(CaptureGenBuffers(replayState, true, 1, &id)); resourceTracker->getTrackedResource(ResourceIDType::Buffer) .getStartingResources() .insert(id.value); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); // glBufferData. Would possibly be better implemented using a getData impl method. // Saving buffers that are mapped during a swap is not yet handled. if (buffer->getSize() == 0) { resourceTracker->setStartingBufferMapped(buffer->id().value, false); continue; } // Remember if the buffer was already mapped GLboolean bufferMapped = buffer->isMapped(); // If needed, map the buffer so we can capture its contents if (!bufferMapped) { (void)buffer->mapRange(context, 0, static_cast(buffer->getSize()), GL_MAP_READ_BIT); } // Always use the array buffer binding point to upload data to keep things simple. if (buffer != replayState.getArrayBuffer()) { replayState.setBufferBinding(context, gl::BufferBinding::Array, buffer); cap(CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, id)); } if (buffer->isImmutable()) { cap(CaptureBufferStorageEXT(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getStorageExtUsageFlags())); } else { cap(CaptureBufferData(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getSize()), buffer->getMapPointer(), buffer->getUsage())); } if (bufferMapped) { void *dontCare = nullptr; Capture(setupCalls, CaptureMapBufferRange(replayState, true, gl::BufferBinding::Array, static_cast(buffer->getMapOffset()), static_cast(buffer->getMapLength()), buffer->getAccessFlags(), dontCare)); resourceTracker->setStartingBufferMapped(buffer->id().value, true); frameCaptureShared->trackBufferMapping( &setupCalls->back(), buffer->id(), buffer, static_cast(buffer->getMapOffset()), static_cast(buffer->getMapLength()), (buffer->getAccessFlags() & GL_MAP_WRITE_BIT) != 0, (buffer->getStorageExtUsageFlags() & GL_MAP_COHERENT_BIT_EXT) != 0); } else { resourceTracker->setStartingBufferMapped(buffer->id().value, false); } // Generate the calls needed to restore this buffer to original state for frame looping CaptureBufferResetCalls(replayState, resourceTracker, &id, buffer); // Unmap the buffer if it wasn't already mapped if (!bufferMapped) { GLboolean dontCare; (void)buffer->unmap(context, &dontCare); } } // Clear the array buffer binding. if (replayState.getTargetBuffer(gl::BufferBinding::Array)) { cap(CaptureBindBuffer(replayState, true, gl::BufferBinding::Array, {0})); replayState.setBufferBinding(context, gl::BufferBinding::Array, nullptr); } // Set a unpack alignment of 1. Otherwise, computeRowPitch() will compute the wrong value, // leading to a crash in memcpy() when capturing the texture contents. gl::PixelUnpackState ¤tUnpackState = replayState.getUnpackState(); if (currentUnpackState.alignment != 1) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_ALIGNMENT, 1)); currentUnpackState.alignment = 1; } // Capture Texture setup and data. const gl::TextureManager &textures = apiState.getTextureManagerForCapture(); for (const auto &textureIter : textures) { gl::TextureID id = {textureIter.first}; gl::Texture *texture = textureIter.second; if (id.value == 0) { continue; } // Track this as a starting resource that may need to be restored. TrackedResource &trackedTextures = resourceTracker->getTrackedResource(ResourceIDType::Texture); ResourceSet &startingTextures = trackedTextures.getStartingResources(); startingTextures.insert(id.value); // For the initial texture creation calls, track in the generate list ResourceCalls &textureRegenCalls = trackedTextures.getResourceRegenCalls(); CallVector texGenCalls({setupCalls, &textureRegenCalls[id.value]}); // Gen the Texture. for (std::vector *calls : texGenCalls) { Capture(calls, CaptureGenTextures(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(resourceTracker, calls); } // For the remaining texture setup calls, track in the restore list ResourceCalls &textureRestoreCalls = trackedTextures.getResourceRestoreCalls(); CallVector texSetupCalls({setupCalls, &textureRestoreCalls[id.value]}); for (std::vector *calls : texSetupCalls) { Capture(calls, CaptureBindTexture(replayState, true, texture->getType(), id)); } replayState.setSamplerTexture(context, texture->getType(), texture); // Capture sampler parameter states. // TODO(jmadill): More sampler / texture states. http://anglebug.com/3662 gl::SamplerState defaultSamplerState = gl::SamplerState::CreateDefaultForTarget(texture->getType()); const gl::SamplerState &textureSamplerState = texture->getSamplerState(); auto capTexParam = [&replayState, texture, &texSetupCalls](GLenum pname, GLint param) { for (std::vector *calls : texSetupCalls) { Capture(calls, CaptureTexParameteri(replayState, true, texture->getType(), pname, param)); } }; auto capTexParamf = [&replayState, texture, &texSetupCalls](GLenum pname, GLfloat param) { for (std::vector *calls : texSetupCalls) { Capture(calls, CaptureTexParameterf(replayState, true, texture->getType(), pname, param)); } }; if (textureSamplerState.getMinFilter() != defaultSamplerState.getMinFilter()) { capTexParam(GL_TEXTURE_MIN_FILTER, textureSamplerState.getMinFilter()); } if (textureSamplerState.getMagFilter() != defaultSamplerState.getMagFilter()) { capTexParam(GL_TEXTURE_MAG_FILTER, textureSamplerState.getMagFilter()); } if (textureSamplerState.getWrapR() != defaultSamplerState.getWrapR()) { capTexParam(GL_TEXTURE_WRAP_R, textureSamplerState.getWrapR()); } if (textureSamplerState.getWrapS() != defaultSamplerState.getWrapS()) { capTexParam(GL_TEXTURE_WRAP_S, textureSamplerState.getWrapS()); } if (textureSamplerState.getWrapT() != defaultSamplerState.getWrapT()) { capTexParam(GL_TEXTURE_WRAP_T, textureSamplerState.getWrapT()); } if (textureSamplerState.getMinLod() != defaultSamplerState.getMinLod()) { capTexParamf(GL_TEXTURE_MIN_LOD, textureSamplerState.getMinLod()); } if (textureSamplerState.getMaxLod() != defaultSamplerState.getMaxLod()) { capTexParamf(GL_TEXTURE_MAX_LOD, textureSamplerState.getMaxLod()); } if (textureSamplerState.getCompareMode() != defaultSamplerState.getCompareMode()) { capTexParam(GL_TEXTURE_COMPARE_MODE, textureSamplerState.getCompareMode()); } if (textureSamplerState.getCompareFunc() != defaultSamplerState.getCompareFunc()) { capTexParam(GL_TEXTURE_COMPARE_FUNC, textureSamplerState.getCompareFunc()); } // Texture parameters if (texture->getSwizzleRed() != GL_RED) { capTexParam(GL_TEXTURE_SWIZZLE_R, texture->getSwizzleRed()); } if (texture->getSwizzleGreen() != GL_GREEN) { capTexParam(GL_TEXTURE_SWIZZLE_G, texture->getSwizzleGreen()); } if (texture->getSwizzleBlue() != GL_BLUE) { capTexParam(GL_TEXTURE_SWIZZLE_B, texture->getSwizzleBlue()); } if (texture->getSwizzleAlpha() != GL_ALPHA) { capTexParam(GL_TEXTURE_SWIZZLE_A, texture->getSwizzleAlpha()); } if (texture->getBaseLevel() != 0) { capTexParam(GL_TEXTURE_BASE_LEVEL, texture->getBaseLevel()); } if (texture->getMaxLevel() != 1000) { capTexParam(GL_TEXTURE_MAX_LEVEL, texture->getMaxLevel()); } // If the texture is immutable, initialize it with TexStorage if (texture->getImmutableFormat()) { // We can only call TexStorage *once* on an immutable texture, so it needs special // handling. To solve this, immutable textures will have a BindTexture and TexStorage as // part of their textureRegenCalls. The resulting regen sequence will be: // // const GLuint glDeleteTextures_texturesPacked_0[] = { gTextureMap[52] }; // glDeleteTextures(1, glDeleteTextures_texturesPacked_0); // glGenTextures(1, reinterpret_cast(gReadBuffer)); // UpdateTextureID(52, 0); // glBindTexture(GL_TEXTURE_2D, gTextureMap[52]); // glTexStorage2D(GL_TEXTURE_2D, 1, GL_R8, 256, 512); // Bind the texture first just for textureRegenCalls Capture(&textureRegenCalls[id.value], CaptureBindTexture(replayState, true, texture->getType(), id)); // Then add TexStorage to texGenCalls instead of texSetupCalls for (std::vector *calls : texGenCalls) { CaptureTextureStorage(calls, &replayState, texture); } } // Iterate texture levels and layers. gl::ImageIndexIterator imageIter = gl::ImageIndexIterator::MakeGeneric( texture->getType(), 0, texture->getMipmapMaxLevel() + 1, gl::ImageIndex::kEntireLevel, gl::ImageIndex::kEntireLevel); while (imageIter.hasNext()) { gl::ImageIndex index = imageIter.next(); const gl::ImageDesc &desc = texture->getTextureState().getImageDesc(index); if (desc.size.empty()) { continue; } const gl::InternalFormat &format = *desc.format.info; bool supportedType = (index.getType() == gl::TextureType::_2D || index.getType() == gl::TextureType::_3D || index.getType() == gl::TextureType::_2DArray || index.getType() == gl::TextureType::Buffer || index.getType() == gl::TextureType::CubeMap || index.getType() == gl::TextureType::CubeMapArray); // Check for supported textures if (!supportedType) { ERR() << "Unsupported texture type: " << index.getType(); UNREACHABLE(); } if (index.getType() == gl::TextureType::Buffer) { // The buffer contents are already backed up, but we need to emit the TexBuffer // binding calls for (std::vector *calls : texSetupCalls) { CaptureTextureContents(calls, &replayState, texture, index, desc, 0, 0); } continue; } if (context->getExtensions().getImageANGLE) { // Use ANGLE_get_image to read back pixel data. angle::MemoryBuffer data; const gl::Extents extents(desc.size.width, desc.size.height, desc.size.depth); gl::PixelPackState packState; packState.alignment = 1; if (format.compressed) { // Calculate the size needed to store the compressed level GLuint sizeInBytes; bool result = format.computeCompressedImageSize(extents, &sizeInBytes); ASSERT(result); result = data.resize(sizeInBytes); ASSERT(result); (void)texture->getCompressedTexImage(context, packState, nullptr, index.getTarget(), index.getLevelIndex(), data.data()); } else { GLenum getFormat = format.format; GLenum getType = format.type; const gl::PixelUnpackState &unpack = apiState.getUnpackState(); GLuint endByte = 0; bool unpackSize = format.computePackUnpackEndByte(getType, extents, unpack, true, &endByte); ASSERT(unpackSize); bool result = data.resize(endByte); ASSERT(result); (void)texture->getTexImage(context, packState, nullptr, index.getTarget(), index.getLevelIndex(), getFormat, getType, data.data()); } for (std::vector *calls : texSetupCalls) { CaptureTextureContents(calls, &replayState, texture, index, desc, static_cast(data.size()), data.data()); } } else { for (std::vector *calls : texSetupCalls) { CaptureTextureContents(calls, &replayState, texture, index, desc, 0, nullptr); } } } } // Capture Renderbuffers. const gl::RenderbufferManager &renderbuffers = apiState.getRenderbufferManagerForCapture(); FramebufferCaptureFuncs framebufferFuncs(context->isGLES1()); for (const auto &renderbufIter : renderbuffers) { gl::RenderbufferID id = {renderbufIter.first}; const gl::Renderbuffer *renderbuffer = renderbufIter.second; // Generate renderbuffer id. cap(framebufferFuncs.genRenderbuffers(replayState, true, 1, &id)); resourceTracker->getTrackedResource(ResourceIDType::Renderbuffer) .getStartingResources() .insert(id.value); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); cap(framebufferFuncs.bindRenderbuffer(replayState, true, GL_RENDERBUFFER, id)); GLenum internalformat = renderbuffer->getFormat().info->internalFormat; if (renderbuffer->getSamples() > 0) { // Note: We could also use extensions if available. cap(CaptureRenderbufferStorageMultisample( replayState, true, GL_RENDERBUFFER, renderbuffer->getSamples(), internalformat, renderbuffer->getWidth(), renderbuffer->getHeight())); } else { cap(framebufferFuncs.renderbufferStorage(replayState, true, GL_RENDERBUFFER, internalformat, renderbuffer->getWidth(), renderbuffer->getHeight())); } // TODO(jmadill): Capture renderbuffer contents. http://anglebug.com/3662 } // Capture Shaders and Programs. const gl::ShaderProgramManager &shadersAndPrograms = apiState.getShaderProgramManagerForCapture(); const gl::ResourceMap &shaders = shadersAndPrograms.getShadersForCapture(); const gl::ResourceMap &programs = shadersAndPrograms.getProgramsForCaptureAndPerf(); // Capture Program binary state. gl::ShaderProgramID tempShaderStartID = {resourceTracker->getMaxShaderPrograms()}; for (const auto &programIter : programs) { gl::ShaderProgramID id = {programIter.first}; gl::Program *program = programIter.second; // Unlinked programs don't have an executable. Thus they don't need to be captured. // Programs are shared by contexts in the share group and only need to be captured once. if (!program->isLinked()) { continue; } size_t programSetupStart = setupCalls->size(); // Get last linked shader source. const ProgramSources &linkedSources = context->getShareGroup()->getFrameCaptureShared()->getProgramSources(id); cap(CaptureCreateProgram(replayState, true, id.value)); GenerateLinkedProgram(context, replayState, resourceTracker, setupCalls, program, id, tempShaderStartID, linkedSources); // Update the program in replayState if (!replayState.getProgram() || replayState.getProgram()->id() != program->id()) { // Note: We don't do this in GenerateLinkedProgram because it can't modify state (void)replayState.setProgram(context, program); } resourceTracker->getTrackedResource(ResourceIDType::ShaderProgram) .getStartingResources() .insert(id.value); size_t programSetupEnd = setupCalls->size(); // Mark the range of calls used to setup this program frameCaptureShared->markResourceSetupCallsInactive( setupCalls, ResourceIDType::ShaderProgram, id.value, gl::Range(programSetupStart, programSetupEnd)); } // Handle shaders. for (const auto &shaderIter : shaders) { gl::ShaderProgramID id = {shaderIter.first}; gl::Shader *shader = shaderIter.second; // Skip shaders scheduled for deletion. // Shaders are shared by contexts in the share group and only need to be captured once. if (shader->hasBeenDeleted()) { continue; } size_t shaderSetupStart = setupCalls->size(); cap(CaptureCreateShader(replayState, true, shader->getType(), id.value)); std::string shaderSource = shader->getSourceString(); const char *sourcePointer = shaderSource.empty() ? nullptr : shaderSource.c_str(); // This does not handle some more tricky situations like attaching shaders to a non-linked // program. Or attaching uncompiled shaders. Or attaching and then deleting a shader. // TODO(jmadill): Handle trickier program uses. http://anglebug.com/3662 if (shader->isCompiled()) { const std::string &capturedSource = context->getShareGroup()->getFrameCaptureShared()->getShaderSource(id); if (capturedSource != shaderSource) { ASSERT(!capturedSource.empty()); sourcePointer = capturedSource.c_str(); } cap(CaptureShaderSource(replayState, true, id, 1, &sourcePointer, nullptr)); cap(CaptureCompileShader(replayState, true, id)); } if (sourcePointer && (!shader->isCompiled() || sourcePointer != shaderSource.c_str())) { cap(CaptureShaderSource(replayState, true, id, 1, &sourcePointer, nullptr)); } size_t shaderSetupEnd = setupCalls->size(); // Mark the range of calls used to setup this shader frameCaptureShared->markResourceSetupCallsInactive( setupCalls, ResourceIDType::ShaderProgram, id.value, gl::Range(shaderSetupStart, shaderSetupEnd)); } // Capture Sampler Objects const gl::SamplerManager &samplers = apiState.getSamplerManagerForCapture(); for (const auto &samplerIter : samplers) { gl::SamplerID samplerID = {samplerIter.first}; // Don't gen the sampler if we've seen it before, since they are shared across the context // share group. cap(CaptureGenSamplers(replayState, true, 1, &samplerID)); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); gl::Sampler *sampler = samplerIter.second; if (!sampler) { continue; } gl::SamplerState defaultSamplerState; if (sampler->getMinFilter() != defaultSamplerState.getMinFilter()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_MIN_FILTER, sampler->getMinFilter())); } if (sampler->getMagFilter() != defaultSamplerState.getMagFilter()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_MAG_FILTER, sampler->getMagFilter())); } if (sampler->getWrapS() != defaultSamplerState.getWrapS()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_S, sampler->getWrapS())); } if (sampler->getWrapR() != defaultSamplerState.getWrapR()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_R, sampler->getWrapR())); } if (sampler->getWrapT() != defaultSamplerState.getWrapT()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_WRAP_T, sampler->getWrapT())); } if (sampler->getMinLod() != defaultSamplerState.getMinLod()) { cap(CaptureSamplerParameterf(replayState, true, samplerID, GL_TEXTURE_MIN_LOD, sampler->getMinLod())); } if (sampler->getMaxLod() != defaultSamplerState.getMaxLod()) { cap(CaptureSamplerParameterf(replayState, true, samplerID, GL_TEXTURE_MAX_LOD, sampler->getMaxLod())); } if (sampler->getCompareMode() != defaultSamplerState.getCompareMode()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_COMPARE_MODE, sampler->getCompareMode())); } if (sampler->getCompareFunc() != defaultSamplerState.getCompareFunc()) { cap(CaptureSamplerParameteri(replayState, true, samplerID, GL_TEXTURE_COMPARE_FUNC, sampler->getCompareFunc())); } } // Capture Sync Objects const gl::SyncManager &syncs = apiState.getSyncManagerForCapture(); for (const auto &syncIter : syncs) { GLsync syncID = gl::bitCast(static_cast(syncIter.first)); const gl::Sync *sync = syncIter.second; if (!sync) { continue; } cap(CaptureFenceSync(replayState, true, sync->getCondition(), sync->getFlags(), syncID)); CaptureFenceSyncResetCalls(replayState, resourceTracker, syncID, sync); resourceTracker->getStartingFenceSyncs().insert(syncID); } } void CaptureMidExecutionSetup(const gl::Context *context, std::vector *setupCalls, std::vector *shareGroupSetupCalls, ResourceIDToSetupCallsMap *resourceIDToSetupCalls, ResourceTracker *resourceTracker, gl::State &replayState, bool validationEnabled) { const gl::State &apiState = context->getState(); // Small helper function to make the code more readable. auto cap = [setupCalls](CallCapture &&call) { setupCalls->emplace_back(std::move(call)); }; // Need to go from uint32 -> uint64 -> EGLContext (void*) to handle MSVC compiler // warning on 64b systems: // error C4312: 'reinterpret_cast': conversion from 'uint32_t' to 'EGLContext' of // greater size uint64_t contextID = static_cast(context->id().value); EGLContext eglContext = reinterpret_cast(contextID); cap(CaptureMakeCurrent(EGL_NO_DISPLAY, EGL_NO_SURFACE, EGL_NO_SURFACE, eglContext)); // Vertex input states. Must happen after buffer data initialization. Do not capture on GLES1. if (!context->isGLES1()) { CaptureDefaultVertexAttribs(replayState, apiState, setupCalls); } // Capture vertex array objects const gl::VertexArrayMap &vertexArrayMap = context->getVertexArraysForCapture(); gl::VertexArrayID boundVertexArrayID = {0}; for (const auto &vertexArrayIter : vertexArrayMap) { gl::VertexArrayID vertexArrayID = {vertexArrayIter.first}; if (vertexArrayID.value != 0) { cap(CaptureGenVertexArrays(replayState, true, 1, &vertexArrayID)); resourceTracker->getTrackedResource(ResourceIDType::VertexArray) .getStartingResources() .insert(vertexArrayID.value); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); } if (vertexArrayIter.second) { const gl::VertexArray *vertexArray = vertexArrayIter.second; // Bind the vertexArray (unless default) and populate it if (vertexArrayID.value != 0) { cap(CaptureBindVertexArray(replayState, true, vertexArrayID)); boundVertexArrayID = vertexArrayID; } CaptureVertexArrayState(setupCalls, context, vertexArray, &replayState); } } // Bind the current vertex array const gl::VertexArray *currentVertexArray = apiState.getVertexArray(); if (currentVertexArray->id() != boundVertexArrayID) { cap(CaptureBindVertexArray(replayState, true, currentVertexArray->id())); } // Capture indexed buffer bindings. const gl::BufferVector &uniformIndexedBuffers = apiState.getOffsetBindingPointerUniformBuffers(); const gl::BufferVector &atomicCounterIndexedBuffers = apiState.getOffsetBindingPointerAtomicCounterBuffers(); const gl::BufferVector &shaderStorageIndexedBuffers = apiState.getOffsetBindingPointerShaderStorageBuffers(); CaptureIndexedBuffers(replayState, uniformIndexedBuffers, gl::BufferBinding::Uniform, setupCalls); CaptureIndexedBuffers(replayState, atomicCounterIndexedBuffers, gl::BufferBinding::AtomicCounter, setupCalls); CaptureIndexedBuffers(replayState, shaderStorageIndexedBuffers, gl::BufferBinding::ShaderStorage, setupCalls); // Capture Buffer bindings. const gl::BoundBufferMap &boundBuffers = apiState.getBoundBuffersForCapture(); for (gl::BufferBinding binding : angle::AllEnums()) { gl::BufferID bufferID = boundBuffers[binding].id(); // Filter out redundant buffer binding commands. Note that the code in the previous section // only binds to ARRAY_BUFFER. Therefore we only check the array binding against the binding // we set earlier. bool isArray = binding == gl::BufferBinding::Array; const gl::Buffer *arrayBuffer = replayState.getArrayBuffer(); if ((isArray && arrayBuffer && arrayBuffer->id() != bufferID) || (!isArray && bufferID.value != 0)) { cap(CaptureBindBuffer(replayState, true, binding, bufferID)); replayState.setBufferBinding(context, binding, boundBuffers[binding].get()); } // Restore all buffer bindings for Reset if (bufferID.value != 0) { CaptureBufferBindingResetCalls(replayState, resourceTracker, binding, bufferID); } } // Set a unpack alignment of 1. Otherwise, computeRowPitch() will compute the wrong value, // leading to a crash in memcpy() when capturing the texture contents. gl::PixelUnpackState ¤tUnpackState = replayState.getUnpackState(); if (currentUnpackState.alignment != 1) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_ALIGNMENT, 1)); currentUnpackState.alignment = 1; } // Capture Texture setup and data. const gl::TextureBindingMap &apiBoundTextures = apiState.getBoundTexturesForCapture(); // Set Texture bindings. for (gl::TextureType textureType : angle::AllEnums()) { const gl::TextureBindingVector &apiBindings = apiBoundTextures[textureType]; const gl::TextureBindingVector &replayBindings = replayState.getBoundTexturesForCapture()[textureType]; ASSERT(apiBindings.size() == replayBindings.size()); for (size_t bindingIndex = 0; bindingIndex < apiBindings.size(); ++bindingIndex) { gl::TextureID apiTextureID = apiBindings[bindingIndex].id(); gl::TextureID replayTextureID = replayBindings[bindingIndex].id(); if (apiTextureID != replayTextureID) { if (replayState.getActiveSampler() != bindingIndex) { cap(CaptureActiveTexture(replayState, true, GL_TEXTURE0 + static_cast(bindingIndex))); replayState.setActiveSampler(static_cast(bindingIndex)); } cap(CaptureBindTexture(replayState, true, textureType, apiTextureID)); replayState.setSamplerTexture(context, textureType, apiBindings[bindingIndex].get()); } } } // Set active Texture. if (replayState.getActiveSampler() != apiState.getActiveSampler()) { cap(CaptureActiveTexture(replayState, true, GL_TEXTURE0 + static_cast(apiState.getActiveSampler()))); replayState.setActiveSampler(apiState.getActiveSampler()); } // Set Renderbuffer binding. const gl::RenderbufferManager &renderbuffers = apiState.getRenderbufferManagerForCapture(); gl::RenderbufferID currentRenderbuffer = {0}; for (const auto &renderbufIter : renderbuffers) { currentRenderbuffer = renderbufIter.second->id(); } if (currentRenderbuffer != apiState.getRenderbufferId()) { cap(CaptureBindRenderbuffer(replayState, true, GL_RENDERBUFFER, apiState.getRenderbufferId())); } // Capture Framebuffers. const gl::FramebufferManager &framebuffers = apiState.getFramebufferManagerForCapture(); FramebufferCaptureFuncs framebufferFuncs(context->isGLES1()); gl::FramebufferID currentDrawFramebuffer = {0}; gl::FramebufferID currentReadFramebuffer = {0}; for (const auto &framebufferIter : framebuffers) { gl::FramebufferID id = {framebufferIter.first}; const gl::Framebuffer *framebuffer = framebufferIter.second; // The default Framebuffer exists (by default). if (framebuffer->isDefault()) { continue; } // Track this as a starting resource that may need to be restored TrackedResource &trackedFramebuffers = resourceTracker->getTrackedResource(ResourceIDType::Framebuffer); ResourceSet &startingFramebuffers = trackedFramebuffers.getStartingResources(); startingFramebuffers.insert(id.value); // Create two lists of calls for initial setup ResourceCalls &framebufferRegenCalls = trackedFramebuffers.getResourceRegenCalls(); CallVector framebufferGenCalls({setupCalls, &framebufferRegenCalls[id.value]}); // Gen the framebuffer for (std::vector *calls : framebufferGenCalls) { Capture(calls, framebufferFuncs.genFramebuffers(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(resourceTracker, calls); } // Create two lists of calls for remaining setup calls. One for setup, and one for restore // during reset. ResourceCalls &framebufferRestoreCalls = trackedFramebuffers.getResourceRestoreCalls(); CallVector framebufferSetupCalls({setupCalls, &framebufferRestoreCalls[id.value]}); for (std::vector *calls : framebufferSetupCalls) { Capture(calls, framebufferFuncs.bindFramebuffer(replayState, true, GL_FRAMEBUFFER, id)); } currentDrawFramebuffer = currentReadFramebuffer = id; // Color Attachments. for (const gl::FramebufferAttachment &colorAttachment : framebuffer->getColorAttachments()) { if (!colorAttachment.isAttached()) { continue; } for (std::vector *calls : framebufferSetupCalls) { CaptureFramebufferAttachment(calls, replayState, framebufferFuncs, colorAttachment); } } const gl::FramebufferAttachment *depthAttachment = framebuffer->getDepthAttachment(); if (depthAttachment) { ASSERT(depthAttachment->getBinding() == GL_DEPTH_ATTACHMENT || depthAttachment->getBinding() == GL_DEPTH_STENCIL_ATTACHMENT); for (std::vector *calls : framebufferSetupCalls) { CaptureFramebufferAttachment(calls, replayState, framebufferFuncs, *depthAttachment); } } const gl::FramebufferAttachment *stencilAttachment = framebuffer->getStencilAttachment(); if (stencilAttachment) { ASSERT(stencilAttachment->getBinding() == GL_STENCIL_ATTACHMENT || depthAttachment->getBinding() == GL_DEPTH_STENCIL_ATTACHMENT); for (std::vector *calls : framebufferSetupCalls) { CaptureFramebufferAttachment(calls, replayState, framebufferFuncs, *stencilAttachment); } } gl::FramebufferState defaultFramebufferState( context->getCaps(), framebuffer->getState().id(), framebuffer->getState().getFramebufferSerial()); const std::vector &defaultDrawBufferStates = defaultFramebufferState.getDrawBufferStates(); const std::vector &drawBufferStates = framebuffer->getDrawBufferStates(); if (drawBufferStates != defaultDrawBufferStates) { for (std::vector *calls : framebufferSetupCalls) { Capture(calls, CaptureDrawBuffers(replayState, true, static_cast(drawBufferStates.size()), drawBufferStates.data())); } } } // Capture framebuffer bindings. if (apiState.getDrawFramebuffer()) { ASSERT(apiState.getReadFramebuffer()); gl::FramebufferID stateReadFramebuffer = apiState.getReadFramebuffer()->id(); gl::FramebufferID stateDrawFramebuffer = apiState.getDrawFramebuffer()->id(); if (stateDrawFramebuffer == stateReadFramebuffer) { if (currentDrawFramebuffer != stateDrawFramebuffer || currentReadFramebuffer != stateReadFramebuffer) { cap(framebufferFuncs.bindFramebuffer(replayState, true, GL_FRAMEBUFFER, stateDrawFramebuffer)); currentDrawFramebuffer = currentReadFramebuffer = stateDrawFramebuffer; } } else { if (currentDrawFramebuffer != stateDrawFramebuffer) { cap(framebufferFuncs.bindFramebuffer(replayState, true, GL_DRAW_FRAMEBUFFER, currentDrawFramebuffer)); currentDrawFramebuffer = stateDrawFramebuffer; } if (currentReadFramebuffer != stateReadFramebuffer) { cap(framebufferFuncs.bindFramebuffer(replayState, true, GL_READ_FRAMEBUFFER, replayState.getReadFramebuffer()->id())); currentReadFramebuffer = stateReadFramebuffer; } } } // Capture Program Pipelines const gl::ProgramPipelineManager *programPipelineManager = apiState.getProgramPipelineManagerForCapture(); for (const auto &ppoIterator : *programPipelineManager) { gl::ProgramPipeline *pipeline = ppoIterator.second; gl::ProgramPipelineID id = {ppoIterator.first}; cap(CaptureGenProgramPipelines(replayState, true, 1, &id)); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); // PPOs can contain graphics and compute programs, so loop through all shader types rather // than just the linked ones since getLinkedShaderStages() will return either only graphics // or compute stages. for (gl::ShaderType shaderType : gl::AllShaderTypes()) { gl::Program *program = pipeline->getShaderProgram(shaderType); if (!program) { continue; } ASSERT(program->isLinked()); GLbitfield gLbitfield = GetBitfieldFromShaderType(shaderType); cap(CaptureUseProgramStages(replayState, true, pipeline->id(), gLbitfield, program->id())); // Set this program as active so it will be generated in Setup // Note: We aren't filtering ProgramPipelines, so this could be setting programs // active that aren't actually used. MarkResourceIDActive(ResourceIDType::ShaderProgram, program->id().value, shareGroupSetupCalls, resourceIDToSetupCalls); } gl::Program *program = pipeline->getActiveShaderProgram(); if (program) { cap(CaptureActiveShaderProgram(replayState, true, id, program->id())); } } // For now we assume the installed program executable is the same as the current program. // TODO(jmadill): Handle installed program executable. http://anglebug.com/3662 if (!context->isGLES1()) { // If we have a program bound in the API, or if there is no program bound to the API at // time of capture and we bound a program for uniform updates during MEC, we must add // a set program call to replay the correct states. if (apiState.getProgram()) { cap(CaptureUseProgram(replayState, true, apiState.getProgram()->id())); CaptureUpdateCurrentProgram(setupCalls->back(), 0, setupCalls); (void)replayState.setProgram(context, apiState.getProgram()); // Set this program as active so it will be generated in Setup MarkResourceIDActive(ResourceIDType::ShaderProgram, apiState.getProgram()->id().value, shareGroupSetupCalls, resourceIDToSetupCalls); } else if (replayState.getProgram()) { cap(CaptureUseProgram(replayState, true, {0})); CaptureUpdateCurrentProgram(setupCalls->back(), 0, setupCalls); (void)replayState.setProgram(context, nullptr); } // Same for program pipelines as for programs, see comment above. if (apiState.getProgramPipeline()) { cap(CaptureBindProgramPipeline(replayState, true, apiState.getProgramPipeline()->id())); } else if (replayState.getProgramPipeline()) { cap(CaptureBindProgramPipeline(replayState, true, {0})); } } // Create existing queries. Note that queries may be genned and not yet started. In that // case the queries will exist in the query map as nullptr entries. const gl::QueryMap &queryMap = context->getQueriesForCapture(); for (gl::QueryMap::Iterator queryIter = queryMap.beginWithNull(); queryIter != queryMap.endWithNull(); ++queryIter) { ASSERT(queryIter->first); gl::QueryID queryID = {queryIter->first}; cap(CaptureGenQueries(replayState, true, 1, &queryID)); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); gl::Query *query = queryIter->second; if (query) { gl::QueryType queryType = query->getType(); // Begin the query to generate the object cap(CaptureBeginQuery(replayState, true, queryType, queryID)); // End the query if it was not active if (!IsQueryActive(apiState, queryID)) { cap(CaptureEndQuery(replayState, true, queryType)); } } } // Transform Feedback const gl::TransformFeedbackMap &xfbMap = context->getTransformFeedbacksForCapture(); for (const auto &xfbIter : xfbMap) { gl::TransformFeedbackID xfbID = {xfbIter.first}; // Do not capture the default XFB object. if (xfbID.value == 0) { continue; } cap(CaptureGenTransformFeedbacks(replayState, true, 1, &xfbID)); MaybeCaptureUpdateResourceIDs(resourceTracker, setupCalls); gl::TransformFeedback *xfb = xfbIter.second; if (!xfb) { // The object was never created continue; } // Bind XFB to create the object cap(CaptureBindTransformFeedback(replayState, true, GL_TRANSFORM_FEEDBACK, xfbID)); // Bind the buffers associated with this XFB object for (size_t i = 0; i < xfb->getIndexedBufferCount(); ++i) { const gl::OffsetBindingPointer &xfbBuffer = xfb->getIndexedBuffer(i); // Note: Buffers bound with BindBufferBase can be used with BindBuffer cap(CaptureBindBufferRange(replayState, true, gl::BufferBinding::TransformFeedback, 0, xfbBuffer.id(), xfbBuffer.getOffset(), xfbBuffer.getSize())); } if (xfb->isActive() || xfb->isPaused()) { // We don't support active XFB in MEC yet UNIMPLEMENTED(); } } // Bind the current XFB buffer after populating XFB objects gl::TransformFeedback *currentXFB = apiState.getCurrentTransformFeedback(); if (currentXFB) { cap(CaptureBindTransformFeedback(replayState, true, GL_TRANSFORM_FEEDBACK, currentXFB->id())); } // Bind samplers const gl::SamplerBindingVector &samplerBindings = apiState.getSamplers(); for (GLuint bindingIndex = 0; bindingIndex < static_cast(samplerBindings.size()); ++bindingIndex) { gl::SamplerID samplerID = samplerBindings[bindingIndex].id(); if (samplerID.value != 0) { cap(CaptureBindSampler(replayState, true, bindingIndex, samplerID)); } } // Capture Image Texture bindings const std::vector &imageUnits = apiState.getImageUnits(); for (GLuint bindingIndex = 0; bindingIndex < static_cast(imageUnits.size()); ++bindingIndex) { const gl::ImageUnit &imageUnit = imageUnits[bindingIndex]; if (imageUnit.texture == 0) { continue; } cap(CaptureBindImageTexture(replayState, true, bindingIndex, imageUnit.texture.id(), imageUnit.level, imageUnit.layered, imageUnit.layer, imageUnit.access, imageUnit.format)); } // Capture GL Context states. auto capCap = [cap, &replayState](GLenum capEnum, bool capValue) { if (capValue) { cap(CaptureEnable(replayState, true, capEnum)); } else { cap(CaptureDisable(replayState, true, capEnum)); } }; // Capture GLES1 context states. if (context->isGLES1()) { const bool currentTextureState = apiState.getEnableFeature(GL_TEXTURE_2D); const bool defaultTextureState = replayState.getEnableFeature(GL_TEXTURE_2D); if (currentTextureState != defaultTextureState) { capCap(GL_TEXTURE_2D, currentTextureState); } cap(CaptureMatrixMode(replayState, true, gl::MatrixType::Projection)); for (angle::Mat4 projectionMatrix : apiState.gles1().getMatrixStack(gl::MatrixType::Projection)) { cap(CapturePushMatrix(replayState, true)); cap(CaptureLoadMatrixf(replayState, true, projectionMatrix.elements().data())); } cap(CaptureMatrixMode(replayState, true, gl::MatrixType::Modelview)); for (angle::Mat4 modelViewMatrix : apiState.gles1().getMatrixStack(gl::MatrixType::Modelview)) { cap(CapturePushMatrix(replayState, true)); cap(CaptureLoadMatrixf(replayState, true, modelViewMatrix.elements().data())); } gl::MatrixType currentMatrixMode = apiState.gles1().getMatrixMode(); if (currentMatrixMode != gl::MatrixType::Modelview) { cap(CaptureMatrixMode(replayState, true, currentMatrixMode)); } } // Rasterizer state. Missing ES 3.x features. const gl::RasterizerState &defaultRasterState = replayState.getRasterizerState(); const gl::RasterizerState ¤tRasterState = apiState.getRasterizerState(); if (currentRasterState.cullFace != defaultRasterState.cullFace) { capCap(GL_CULL_FACE, currentRasterState.cullFace); } if (currentRasterState.cullMode != defaultRasterState.cullMode) { cap(CaptureCullFace(replayState, true, currentRasterState.cullMode)); } if (currentRasterState.frontFace != defaultRasterState.frontFace) { cap(CaptureFrontFace(replayState, true, currentRasterState.frontFace)); } if (currentRasterState.polygonOffsetFill != defaultRasterState.polygonOffsetFill) { capCap(GL_POLYGON_OFFSET_FILL, currentRasterState.polygonOffsetFill); } if (currentRasterState.polygonOffsetFactor != defaultRasterState.polygonOffsetFactor || currentRasterState.polygonOffsetUnits != defaultRasterState.polygonOffsetUnits) { cap(CapturePolygonOffset(replayState, true, currentRasterState.polygonOffsetFactor, currentRasterState.polygonOffsetUnits)); } // pointDrawMode/multiSample are only used in the D3D back-end right now. if (currentRasterState.rasterizerDiscard != defaultRasterState.rasterizerDiscard) { capCap(GL_RASTERIZER_DISCARD, currentRasterState.rasterizerDiscard); } if (currentRasterState.dither != defaultRasterState.dither) { capCap(GL_DITHER, currentRasterState.dither); } // Depth/stencil state. const gl::DepthStencilState &defaultDSState = replayState.getDepthStencilState(); const gl::DepthStencilState ¤tDSState = apiState.getDepthStencilState(); if (defaultDSState.depthFunc != currentDSState.depthFunc) { cap(CaptureDepthFunc(replayState, true, currentDSState.depthFunc)); } if (defaultDSState.depthMask != currentDSState.depthMask) { cap(CaptureDepthMask(replayState, true, gl::ConvertToGLBoolean(currentDSState.depthMask))); } if (defaultDSState.depthTest != currentDSState.depthTest) { capCap(GL_DEPTH_TEST, currentDSState.depthTest); } if (defaultDSState.stencilTest != currentDSState.stencilTest) { capCap(GL_STENCIL_TEST, currentDSState.stencilTest); } if (currentDSState.stencilFunc == currentDSState.stencilBackFunc && currentDSState.stencilMask == currentDSState.stencilBackMask) { // Front and back are equal if (defaultDSState.stencilFunc != currentDSState.stencilFunc || defaultDSState.stencilMask != currentDSState.stencilMask || apiState.getStencilRef() != 0) { cap(CaptureStencilFunc(replayState, true, currentDSState.stencilFunc, apiState.getStencilRef(), currentDSState.stencilMask)); } } else { // Front and back are separate if (defaultDSState.stencilFunc != currentDSState.stencilFunc || defaultDSState.stencilMask != currentDSState.stencilMask || apiState.getStencilRef() != 0) { cap(CaptureStencilFuncSeparate(replayState, true, GL_FRONT, currentDSState.stencilFunc, apiState.getStencilRef(), currentDSState.stencilMask)); } if (defaultDSState.stencilBackFunc != currentDSState.stencilBackFunc || defaultDSState.stencilBackMask != currentDSState.stencilBackMask || apiState.getStencilBackRef() != 0) { cap(CaptureStencilFuncSeparate( replayState, true, GL_BACK, currentDSState.stencilBackFunc, apiState.getStencilBackRef(), currentDSState.stencilBackMask)); } } if (currentDSState.stencilFail == currentDSState.stencilBackFail && currentDSState.stencilPassDepthFail == currentDSState.stencilBackPassDepthFail && currentDSState.stencilPassDepthPass == currentDSState.stencilBackPassDepthPass) { // Front and back are equal if (defaultDSState.stencilFail != currentDSState.stencilFail || defaultDSState.stencilPassDepthFail != currentDSState.stencilPassDepthFail || defaultDSState.stencilPassDepthPass != currentDSState.stencilPassDepthPass) { cap(CaptureStencilOp(replayState, true, currentDSState.stencilFail, currentDSState.stencilPassDepthFail, currentDSState.stencilPassDepthPass)); } } else { // Front and back are separate if (defaultDSState.stencilFail != currentDSState.stencilFail || defaultDSState.stencilPassDepthFail != currentDSState.stencilPassDepthFail || defaultDSState.stencilPassDepthPass != currentDSState.stencilPassDepthPass) { cap(CaptureStencilOpSeparate(replayState, true, GL_FRONT, currentDSState.stencilFail, currentDSState.stencilPassDepthFail, currentDSState.stencilPassDepthPass)); } if (defaultDSState.stencilBackFail != currentDSState.stencilBackFail || defaultDSState.stencilBackPassDepthFail != currentDSState.stencilBackPassDepthFail || defaultDSState.stencilBackPassDepthPass != currentDSState.stencilBackPassDepthPass) { cap(CaptureStencilOpSeparate(replayState, true, GL_BACK, currentDSState.stencilBackFail, currentDSState.stencilBackPassDepthFail, currentDSState.stencilBackPassDepthPass)); } } if (currentDSState.stencilWritemask == currentDSState.stencilBackWritemask) { // Front and back are equal if (defaultDSState.stencilWritemask != currentDSState.stencilWritemask) { cap(CaptureStencilMask(replayState, true, currentDSState.stencilWritemask)); } } else { // Front and back are separate if (defaultDSState.stencilWritemask != currentDSState.stencilWritemask) { cap(CaptureStencilMaskSeparate(replayState, true, GL_FRONT, currentDSState.stencilWritemask)); } if (defaultDSState.stencilBackWritemask != currentDSState.stencilBackWritemask) { cap(CaptureStencilMaskSeparate(replayState, true, GL_BACK, currentDSState.stencilBackWritemask)); } } // Blend state. const gl::BlendState &defaultBlendState = replayState.getBlendState(); const gl::BlendState ¤tBlendState = apiState.getBlendState(); if (currentBlendState.blend != defaultBlendState.blend) { capCap(GL_BLEND, currentBlendState.blend); } if (currentBlendState.sourceBlendRGB != defaultBlendState.sourceBlendRGB || currentBlendState.destBlendRGB != defaultBlendState.destBlendRGB || currentBlendState.sourceBlendAlpha != defaultBlendState.sourceBlendAlpha || currentBlendState.destBlendAlpha != defaultBlendState.destBlendAlpha) { if (currentBlendState.sourceBlendRGB == currentBlendState.sourceBlendAlpha && currentBlendState.destBlendRGB == currentBlendState.destBlendAlpha) { // Color and alpha are equal cap(CaptureBlendFunc(replayState, true, currentBlendState.sourceBlendRGB, currentBlendState.destBlendRGB)); } else { // Color and alpha are separate cap(CaptureBlendFuncSeparate( replayState, true, currentBlendState.sourceBlendRGB, currentBlendState.destBlendRGB, currentBlendState.sourceBlendAlpha, currentBlendState.destBlendAlpha)); } } if (currentBlendState.blendEquationRGB != defaultBlendState.blendEquationRGB || currentBlendState.blendEquationAlpha != defaultBlendState.blendEquationAlpha) { cap(CaptureBlendEquationSeparate(replayState, true, currentBlendState.blendEquationRGB, currentBlendState.blendEquationAlpha)); } if (currentBlendState.colorMaskRed != defaultBlendState.colorMaskRed || currentBlendState.colorMaskGreen != defaultBlendState.colorMaskGreen || currentBlendState.colorMaskBlue != defaultBlendState.colorMaskBlue || currentBlendState.colorMaskAlpha != defaultBlendState.colorMaskAlpha) { cap(CaptureColorMask(replayState, true, gl::ConvertToGLBoolean(currentBlendState.colorMaskRed), gl::ConvertToGLBoolean(currentBlendState.colorMaskGreen), gl::ConvertToGLBoolean(currentBlendState.colorMaskBlue), gl::ConvertToGLBoolean(currentBlendState.colorMaskAlpha))); } const gl::ColorF ¤tBlendColor = apiState.getBlendColor(); if (currentBlendColor != gl::ColorF()) { cap(CaptureBlendColor(replayState, true, currentBlendColor.red, currentBlendColor.green, currentBlendColor.blue, currentBlendColor.alpha)); } // Pixel storage states. gl::PixelPackState ¤tPackState = replayState.getPackState(); if (currentPackState.alignment != apiState.getPackAlignment()) { cap(CapturePixelStorei(replayState, true, GL_PACK_ALIGNMENT, apiState.getPackAlignment())); currentPackState.alignment = apiState.getPackAlignment(); } if (currentPackState.rowLength != apiState.getPackRowLength()) { cap(CapturePixelStorei(replayState, true, GL_PACK_ROW_LENGTH, apiState.getPackRowLength())); currentPackState.rowLength = apiState.getPackRowLength(); } if (currentPackState.skipRows != apiState.getPackSkipRows()) { cap(CapturePixelStorei(replayState, true, GL_PACK_SKIP_ROWS, apiState.getPackSkipRows())); currentPackState.skipRows = apiState.getPackSkipRows(); } if (currentPackState.skipPixels != apiState.getPackSkipPixels()) { cap(CapturePixelStorei(replayState, true, GL_PACK_SKIP_PIXELS, apiState.getPackSkipPixels())); currentPackState.skipPixels = apiState.getPackSkipPixels(); } // We set unpack alignment above, no need to change it here ASSERT(currentUnpackState.alignment == 1); if (currentUnpackState.rowLength != apiState.getUnpackRowLength()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_ROW_LENGTH, apiState.getUnpackRowLength())); currentUnpackState.rowLength = apiState.getUnpackRowLength(); } if (currentUnpackState.skipRows != apiState.getUnpackSkipRows()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_ROWS, apiState.getUnpackSkipRows())); currentUnpackState.skipRows = apiState.getUnpackSkipRows(); } if (currentUnpackState.skipPixels != apiState.getUnpackSkipPixels()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_PIXELS, apiState.getUnpackSkipPixels())); currentUnpackState.skipPixels = apiState.getUnpackSkipPixels(); } if (currentUnpackState.imageHeight != apiState.getUnpackImageHeight()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_IMAGE_HEIGHT, apiState.getUnpackImageHeight())); currentUnpackState.imageHeight = apiState.getUnpackImageHeight(); } if (currentUnpackState.skipImages != apiState.getUnpackSkipImages()) { cap(CapturePixelStorei(replayState, true, GL_UNPACK_SKIP_IMAGES, apiState.getUnpackSkipImages())); currentUnpackState.skipImages = apiState.getUnpackSkipImages(); } // Clear state. Missing ES 3.x features. // TODO(http://anglebug.com/3662): Complete state capture. const gl::ColorF ¤tClearColor = apiState.getColorClearValue(); if (currentClearColor != gl::ColorF()) { cap(CaptureClearColor(replayState, true, currentClearColor.red, currentClearColor.green, currentClearColor.blue, currentClearColor.alpha)); } if (apiState.getDepthClearValue() != 1.0f) { cap(CaptureClearDepthf(replayState, true, apiState.getDepthClearValue())); } if (apiState.getStencilClearValue() != 0) { cap(CaptureClearStencil(replayState, true, apiState.getStencilClearValue())); } // Viewport / scissor / clipping planes. const gl::Rectangle ¤tViewport = apiState.getViewport(); if (currentViewport != gl::Rectangle()) { cap(CaptureViewport(replayState, true, currentViewport.x, currentViewport.y, currentViewport.width, currentViewport.height)); } if (apiState.getNearPlane() != 0.0f || apiState.getFarPlane() != 1.0f) { cap(CaptureDepthRangef(replayState, true, apiState.getNearPlane(), apiState.getFarPlane())); } if (apiState.isScissorTestEnabled()) { capCap(GL_SCISSOR_TEST, apiState.isScissorTestEnabled()); } const gl::Rectangle ¤tScissor = apiState.getScissor(); if (currentScissor != gl::Rectangle()) { cap(CaptureScissor(replayState, true, currentScissor.x, currentScissor.y, currentScissor.width, currentScissor.height)); } // Allow the replayState object to be destroyed conveniently. replayState.setBufferBinding(context, gl::BufferBinding::Array, nullptr); // Clean up the replay state. replayState.reset(context); if (validationEnabled) { CaptureValidateSerializedState(context, setupCalls); } } bool SkipCall(EntryPoint entryPoint) { switch (entryPoint) { case EntryPoint::GLDebugMessageCallback: case EntryPoint::GLDebugMessageCallbackKHR: case EntryPoint::GLDebugMessageControl: case EntryPoint::GLDebugMessageControlKHR: case EntryPoint::GLDebugMessageInsert: case EntryPoint::GLDebugMessageInsertKHR: case EntryPoint::GLGetDebugMessageLog: case EntryPoint::GLGetDebugMessageLogKHR: case EntryPoint::GLGetObjectLabelEXT: case EntryPoint::GLGetObjectLabelKHR: case EntryPoint::GLGetObjectPtrLabelKHR: case EntryPoint::GLGetPointervKHR: case EntryPoint::GLInsertEventMarkerEXT: case EntryPoint::GLLabelObjectEXT: case EntryPoint::GLObjectLabelKHR: case EntryPoint::GLObjectPtrLabelKHR: case EntryPoint::GLPopDebugGroupKHR: case EntryPoint::GLPopGroupMarkerEXT: case EntryPoint::GLPushDebugGroupKHR: case EntryPoint::GLPushGroupMarkerEXT: // Purposefully skip entry points from: // - KHR_debug // - EXT_debug_label // - EXT_debug_marker // There is no need to capture these for replaying a trace in our harness return true; case EntryPoint::GLGetActiveUniform: case EntryPoint::GLGetActiveUniformsiv: // Skip these calls because: // - We don't use the return values. // - Active uniform counts can vary between platforms due to cross stage optimizations // and asking about uniforms above GL_ACTIVE_UNIFORMS triggers errors. return true; default: break; } return false; } template struct ParamValueTrait { static_assert(sizeof(ParamValueType) == 0, "invalid ParamValueType"); }; template <> struct ParamValueTrait { static constexpr const char *name = "framebufferPacked"; static const ParamType typeID = ParamType::TFramebufferID; }; std::string GetBaseName(const std::string &nameWithPath) { std::vector result = angle::SplitString( nameWithPath, "/\\", WhitespaceHandling::TRIM_WHITESPACE, SplitResult::SPLIT_WANT_NONEMPTY); ASSERT(!result.empty()); return result.back(); } template <> struct ParamValueTrait { static constexpr const char *name = "bufferPacked"; static const ParamType typeID = ParamType::TBufferID; }; template <> struct ParamValueTrait { static constexpr const char *name = "renderbufferPacked"; static const ParamType typeID = ParamType::TRenderbufferID; }; template <> struct ParamValueTrait { static constexpr const char *name = "texturePacked"; static const ParamType typeID = ParamType::TTextureID; }; } // namespace ParamCapture::ParamCapture() : type(ParamType::TGLenum), enumGroup(gl::GLenumGroup::DefaultGroup) {} ParamCapture::ParamCapture(const char *nameIn, ParamType typeIn) : name(nameIn), type(typeIn), enumGroup(gl::GLenumGroup::DefaultGroup) {} ParamCapture::~ParamCapture() = default; ParamCapture::ParamCapture(ParamCapture &&other) : type(ParamType::TGLenum), enumGroup(gl::GLenumGroup::DefaultGroup) { *this = std::move(other); } ParamCapture &ParamCapture::operator=(ParamCapture &&other) { std::swap(name, other.name); std::swap(type, other.type); std::swap(value, other.value); std::swap(enumGroup, other.enumGroup); std::swap(data, other.data); std::swap(arrayClientPointerIndex, other.arrayClientPointerIndex); std::swap(readBufferSizeBytes, other.readBufferSizeBytes); std::swap(dataNElements, other.dataNElements); return *this; } ParamBuffer::ParamBuffer() {} ParamBuffer::~ParamBuffer() = default; ParamBuffer::ParamBuffer(ParamBuffer &&other) { *this = std::move(other); } ParamBuffer &ParamBuffer::operator=(ParamBuffer &&other) { std::swap(mParamCaptures, other.mParamCaptures); std::swap(mClientArrayDataParam, other.mClientArrayDataParam); std::swap(mReadBufferSize, other.mReadBufferSize); std::swap(mReturnValueCapture, other.mReturnValueCapture); std::swap(mMappedBufferID, other.mMappedBufferID); return *this; } ParamCapture &ParamBuffer::getParam(const char *paramName, ParamType paramType, int index) { ParamCapture &capture = mParamCaptures[index]; ASSERT(capture.name == paramName); ASSERT(capture.type == paramType); return capture; } const ParamCapture &ParamBuffer::getParam(const char *paramName, ParamType paramType, int index) const { return const_cast(this)->getParam(paramName, paramType, index); } ParamCapture &ParamBuffer::getParamFlexName(const char *paramName1, const char *paramName2, ParamType paramType, int index) { ParamCapture &capture = mParamCaptures[index]; ASSERT(capture.name == paramName1 || capture.name == paramName2); ASSERT(capture.type == paramType); return capture; } const ParamCapture &ParamBuffer::getParamFlexName(const char *paramName1, const char *paramName2, ParamType paramType, int index) const { return const_cast(this)->getParamFlexName(paramName1, paramName2, paramType, index); } void ParamBuffer::addParam(ParamCapture &¶m) { if (param.arrayClientPointerIndex != -1) { ASSERT(mClientArrayDataParam == -1); mClientArrayDataParam = static_cast(mParamCaptures.size()); } mReadBufferSize = std::max(param.readBufferSizeBytes, mReadBufferSize); mParamCaptures.emplace_back(std::move(param)); } void ParamBuffer::addReturnValue(ParamCapture &&returnValue) { mReturnValueCapture = std::move(returnValue); } ParamCapture &ParamBuffer::getClientArrayPointerParameter() { ASSERT(hasClientArrayData()); return mParamCaptures[mClientArrayDataParam]; } CallCapture::CallCapture(EntryPoint entryPointIn, ParamBuffer &¶msIn) : entryPoint(entryPointIn), params(std::move(paramsIn)) {} CallCapture::CallCapture(const std::string &customFunctionNameIn, ParamBuffer &¶msIn) : entryPoint(EntryPoint::GLInvalid), customFunctionName(customFunctionNameIn), params(std::move(paramsIn)) {} CallCapture::~CallCapture() = default; CallCapture::CallCapture(CallCapture &&other) { *this = std::move(other); } CallCapture &CallCapture::operator=(CallCapture &&other) { std::swap(entryPoint, other.entryPoint); std::swap(customFunctionName, other.customFunctionName); std::swap(params, other.params); std::swap(isActive, other.isActive); return *this; } const char *CallCapture::name() const { if (entryPoint == EntryPoint::GLInvalid) { ASSERT(!customFunctionName.empty()); return customFunctionName.c_str(); } return angle::GetEntryPointName(entryPoint); } ReplayContext::ReplayContext(size_t readBufferSizebytes, const gl::AttribArray &clientArraysSizebytes) { mReadBuffer.resize(readBufferSizebytes); for (uint32_t i = 0; i < clientArraysSizebytes.size(); i++) { mClientArraysBuffer[i].resize(clientArraysSizebytes[i]); } } ReplayContext::~ReplayContext() {} FrameCapture::FrameCapture() = default; FrameCapture::~FrameCapture() = default; void FrameCapture::reset() { mSetupCalls.clear(); } FrameCaptureShared::FrameCaptureShared() : mLastContextId{0}, mEnabled(true), mSerializeStateEnabled(false), mCompression(true), mClientVertexArrayMap{}, mFrameIndex(1), mCaptureStartFrame(1), mCaptureEndFrame(0), mClientArraySizes{}, mReadBufferSize(0), mHasResourceType{}, mResourceIDToSetupCalls{}, mMaxAccessedResourceIDs{}, mCaptureTrigger(0), mCaptureActive(false), mMidExecutionCaptureActive(false), mWindowSurfaceContextID({0}) { reset(); std::string enabledFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kEnabledVarName, kAndroidEnabled); if (enabledFromEnv == "0") { mEnabled = false; } std::string pathFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kOutDirectoryVarName, kAndroidOutDir); if (pathFromEnv.empty()) { mOutDirectory = GetDefaultOutDirectory(); } else { mOutDirectory = pathFromEnv; } // Ensure the capture path ends with a slash. if (mOutDirectory.back() != '\\' && mOutDirectory.back() != '/') { mOutDirectory += '/'; } std::string startFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kFrameStartVarName, kAndroidFrameStart); if (!startFromEnv.empty()) { mCaptureStartFrame = atoi(startFromEnv.c_str()); } if (mCaptureStartFrame < 1) { WARN() << "Cannot use a capture start frame less than 1."; mCaptureStartFrame = 1; } std::string endFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kFrameEndVarName, kAndroidFrameEnd); if (!endFromEnv.empty()) { mCaptureEndFrame = atoi(endFromEnv.c_str()); } std::string captureTriggerFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kTriggerVarName, kAndroidTrigger); if (!captureTriggerFromEnv.empty()) { mCaptureTrigger = atoi(captureTriggerFromEnv.c_str()); // If the trigger has been populated, ignore the other frame range variables by setting them // to unreasonable values. This isn't perfect, but it is effective. mCaptureStartFrame = mCaptureEndFrame = std::numeric_limits::max(); INFO() << "Capture trigger detected, disabling capture start/end frame."; } std::string labelFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kCaptureLabelVarName, kAndroidCaptureLabel); if (!labelFromEnv.empty()) { // Optional label to provide unique file names and namespaces mCaptureLabel = labelFromEnv; } std::string compressionFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kCompressionVarName, kAndroidCompression); if (compressionFromEnv == "0") { mCompression = false; } std::string serializeStateFromEnv = angle::GetEnvironmentVar(kSerializeStateVarName); if (serializeStateFromEnv == "1") { mSerializeStateEnabled = true; } std::string validateSerialiedStateFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kValidationVarName, kAndroidValidation); if (validateSerialiedStateFromEnv == "1") { mValidateSerializedState = true; } mValidationExpression = GetEnvironmentVarOrUnCachedAndroidProperty(kValidationExprVarName, kAndroidValidationExpr); if (!mValidationExpression.empty()) { INFO() << "Validation expression is " << kValidationExprVarName; } std::string trimEnabledFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kTrimEnabledVarName, kAndroidTrimEnabled); if (trimEnabledFromEnv == "0") { mTrimEnabled = false; } std::string sourceSizeFromEnv = GetEnvironmentVarOrUnCachedAndroidProperty(kSourceSizeVarName, kAndroidSourceSize); if (!sourceSizeFromEnv.empty()) { int sourceSize = atoi(sourceSizeFromEnv.c_str()); if (sourceSize < 0) { WARN() << "Invalid capture source size: " << sourceSize; } else { mReplayWriter.setSourceFileSizeThreshold(sourceSize); } } if (mFrameIndex == mCaptureStartFrame) { // Capture is starting from the first frame, so set the capture active to ensure all GLES // commands issued are handled correctly by maybeCapturePreCallUpdates() and // maybeCapturePostCallUpdates(). setCaptureActive(); } if (mCaptureEndFrame < mCaptureStartFrame) { mEnabled = false; } mReplayWriter.setCaptureLabel(mCaptureLabel); } FrameCaptureShared::~FrameCaptureShared() = default; PageRange::PageRange(size_t start, size_t end) : start(start), end(end) {} PageRange::~PageRange() = default; AddressRange::AddressRange() {} AddressRange::AddressRange(uintptr_t start, size_t size) : start(start), size(size) {} AddressRange::~AddressRange() = default; uintptr_t AddressRange::end() { return start + size; } CoherentBuffer::CoherentBuffer(uintptr_t start, size_t size, size_t pageSize) : mPageSize(pageSize) { mRange.start = start; mRange.size = size; mProtectionRange.start = rx::roundDownPow2(start, pageSize); uintptr_t protectionEnd = rx::roundUpPow2(start + size, pageSize); mProtectionRange.size = protectionEnd - mProtectionRange.start; mPageCount = mProtectionRange.size / pageSize; mProtectionStartPage = mProtectionRange.start / mPageSize; mProtectionEndPage = mProtectionStartPage + mPageCount; mDirtyPages = std::vector(mPageCount); mDirtyPages.assign(mPageCount, true); } std::vector CoherentBuffer::getDirtyPageRanges() { std::vector dirtyPageRanges; bool inDirty = false; for (size_t i = 0; i < mPageCount; i++) { if (!inDirty && mDirtyPages[i]) { // Found start of a dirty range inDirty = true; // Set end page as last page initially dirtyPageRanges.push_back(PageRange(i, mPageCount)); } else if (inDirty && !mDirtyPages[i]) { // Found end of a dirty range inDirty = false; dirtyPageRanges.back().end = i; } } return dirtyPageRanges; } AddressRange CoherentBuffer::getRange() { return mRange; } AddressRange CoherentBuffer::getDirtyAddressRange(const PageRange &dirtyPageRange) { AddressRange range; if (dirtyPageRange.start == 0) { // First page, use non page aligned buffer start. range.start = mRange.start; } else { range.start = mProtectionRange.start + dirtyPageRange.start * mPageSize; } if (dirtyPageRange.end == mPageCount) { // Last page, use non page aligned buffer end. range.size = mRange.end() - range.start; } else { range.size = (dirtyPageRange.end - dirtyPageRange.start) * mPageSize; // This occurs when a buffer occupies 2 pages, but is smaller than a page. if (mRange.end() < range.end()) { range.size = mRange.end() - range.start; } } // Dirty range must be in buffer ASSERT(range.start >= mRange.start && mRange.end() >= range.end()); return range; } CoherentBuffer::~CoherentBuffer() {} bool CoherentBuffer::isDirty() { return std::find(mDirtyPages.begin(), mDirtyPages.end(), true) != mDirtyPages.end(); } bool CoherentBuffer::contains(size_t page, size_t *relativePage) { bool isInProtectionRange = page >= mProtectionStartPage && page < mProtectionEndPage; if (!isInProtectionRange) { return false; } *relativePage = page - mProtectionStartPage; ASSERT(page >= mProtectionStartPage); return true; } void CoherentBuffer::protectPageRange(const PageRange &pageRange) { for (size_t i = pageRange.start; i < pageRange.end; i++) { setDirty(i, false); } } void CoherentBuffer::setDirty(size_t relativePage, bool dirty) { if (mDirtyPages[relativePage] == dirty) { // The page is already set. // This can happen when tracked buffers overlap in a page. return; } uintptr_t pageStart = mProtectionRange.start + relativePage * mPageSize; // Last page end must be the same as protection end if (relativePage + 1 == mPageCount) { ASSERT(mProtectionRange.end() == pageStart + mPageSize); } bool ret; if (dirty) { ret = UnprotectMemory(pageStart, mPageSize); } else { ret = ProtectMemory(pageStart, mPageSize); } if (!ret) { ERR() << "Could not set protection for buffer page " << relativePage << " at " << reinterpret_cast(pageStart) << " with size " << mPageSize; } mDirtyPages[relativePage] = dirty; } void CoherentBuffer::removeProtection(PageSharingType sharingType) { uintptr_t start = mProtectionRange.start; size_t size = mProtectionRange.size; switch (sharingType) { case PageSharingType::FirstShared: case PageSharingType::FirstAndLastShared: start += mPageSize; break; default: break; } switch (sharingType) { case PageSharingType::FirstShared: case PageSharingType::LastShared: size -= mPageSize; break; case PageSharingType::FirstAndLastShared: size -= (2 * mPageSize); break; default: break; } if (size == 0) { return; } if (!UnprotectMemory(start, size)) { ERR() << "Could not remove protection for buffer at " << start << " with size " << size; } } CoherentBufferTracker::CoherentBufferTracker() { mPageSize = GetPageSize(); PageFaultCallback callback = [this](uintptr_t address) { return handleWrite(address); }; mPageFaultHandler = std::unique_ptr(CreatePageFaultHandler(callback)); } CoherentBufferTracker::~CoherentBufferTracker() { disable(); } PageFaultHandlerRangeType CoherentBufferTracker::handleWrite(uintptr_t address) { std::lock_guard lock(mMutex); auto pagesInBuffers = getBufferPagesForAddress(address); if (pagesInBuffers.empty()) { ERR() << "Didn't find a tracked buffer containing " << reinterpret_cast(address); } for (const auto &page : pagesInBuffers) { std::shared_ptr buffer = page.first; size_t relativePage = page.second; buffer->setDirty(relativePage, true); } return pagesInBuffers.empty() ? PageFaultHandlerRangeType::OutOfRange : PageFaultHandlerRangeType::InRange; } HashMap, size_t> CoherentBufferTracker::getBufferPagesForAddress( uintptr_t address) { HashMap, size_t> foundPages; size_t page = address / mPageSize; for (const auto &pair : mBuffers) { std::shared_ptr buffer = pair.second; size_t relativePage; if (buffer->contains(page, &relativePage)) { foundPages.insert(std::make_pair(buffer, relativePage)); } } return foundPages; } bool CoherentBufferTracker::isDirty(gl::BufferID id) { return mBuffers[id.value]->isDirty(); } void CoherentBufferTracker::enable() { if (mEnabled) { return; } bool ret = mPageFaultHandler->enable(); if (ret) { mEnabled = true; } else { ERR() << "Could not enable page fault handler."; } } bool CoherentBufferTracker::haveBuffer(gl::BufferID id) { return mBuffers.find(id.value) != mBuffers.end(); } void CoherentBufferTracker::onEndFrame() { std::lock_guard lock(mMutex); if (!mEnabled) { return; } // Remove protection from all buffers for (const auto &pair : mBuffers) { std::shared_ptr buffer = pair.second; buffer->removeProtection(PageSharingType::NoneShared); } disable(); } void CoherentBufferTracker::disable() { if (!mEnabled) { return; } if (mPageFaultHandler->disable()) { mEnabled = false; } else { ERR() << "Could not disable page fault handler."; } } void CoherentBufferTracker::addBuffer(gl::BufferID id, uintptr_t start, size_t size) { std::lock_guard lock(mMutex); if (haveBuffer(id)) { return; } auto buffer = std::make_shared(start, size, mPageSize); mBuffers.insert(std::make_pair(id.value, std::move(buffer))); } PageSharingType CoherentBufferTracker::doesBufferSharePage(gl::BufferID id) { bool firstPageShared = false; bool lastPageShared = false; std::shared_ptr buffer = mBuffers[id.value]; AddressRange range = buffer->getRange(); size_t firstPage = range.start / mPageSize; size_t lastPage = range.end() / mPageSize; for (const auto &pair : mBuffers) { gl::BufferID otherId = {pair.first}; if (otherId != id) { std::shared_ptr otherBuffer = pair.second; size_t relativePage; if (otherBuffer->contains(firstPage, &relativePage)) { firstPageShared = true; } else if (otherBuffer->contains(lastPage, &relativePage)) { lastPageShared = true; } } } if (firstPageShared && !lastPageShared) { return PageSharingType::FirstShared; } else if (!firstPageShared && lastPageShared) { return PageSharingType::LastShared; } else if (firstPageShared && lastPageShared) { return PageSharingType::FirstAndLastShared; } else { return PageSharingType::NoneShared; } } void CoherentBufferTracker::removeBuffer(gl::BufferID id) { std::lock_guard lock(mMutex); if (!haveBuffer(id)) { return; } // If the buffer shares pages with other tracked buffers, // don't unprotect the overlapping pages. PageSharingType sharingType = doesBufferSharePage(id); mBuffers[id.value]->removeProtection(sharingType); mBuffers.erase(id.value); } void FrameCaptureShared::trackBufferMapping(CallCapture *call, gl::BufferID id, gl::Buffer *buffer, GLintptr offset, GLsizeiptr length, bool writable, bool coherent) { // Track that the buffer was mapped mResourceTracker.setBufferMapped(id.value); if (writable) { // If this buffer was mapped writable, we don't have any visibility into what // happens to it. Therefore, remember the details about it, and we'll read it back // on Unmap to repopulate it during replay. mBufferDataMap[id] = std::make_pair(offset, length); // Track that this buffer was potentially modified mResourceTracker.getTrackedResource(ResourceIDType::Buffer).setModifiedResource(id.value); // Track the bufferID that was just mapped for use when writing return value call->params.setMappedBufferID(id); // Track coherent buffer // Check if capture is active to not initialize the coherent buffer tracker on the // first coherent glMapBufferRange call. if (coherent && (isCaptureActive() || mMidExecutionCaptureActive)) { mCoherentBufferTracker.enable(); uintptr_t data = reinterpret_cast(buffer->getMapPointer()); mCoherentBufferTracker.addBuffer(id, data, length); } } } void FrameCaptureShared::trackTextureUpdate(const gl::Context *context, const CallCapture &call) { int index = 0; std::string paramName = "targetPacked"; ParamType paramType = ParamType::TTextureTarget; // Some calls provide the textureID directly // For the rest, look it up based on the currently bound texture switch (call.entryPoint) { case EntryPoint::GLCompressedCopyTextureCHROMIUM: index = 1; paramName = "destIdPacked"; paramType = ParamType::TTextureID; break; case EntryPoint::GLCopyTextureCHROMIUM: case EntryPoint::GLCopySubTextureCHROMIUM: case EntryPoint::GLCopyTexture3DANGLE: index = 3; paramName = "destIdPacked"; paramType = ParamType::TTextureID; break; case EntryPoint::GLCopyImageSubData: case EntryPoint::GLCopyImageSubDataEXT: case EntryPoint::GLCopyImageSubDataOES: index = 7; paramName = "dstTarget"; paramType = ParamType::TGLenum; break; default: break; } GLuint id = 0; switch (paramType) { case ParamType::TTextureTarget: { gl::TextureTarget targetPacked = call.params.getParam(paramName.c_str(), ParamType::TTextureTarget, index) .value.TextureTargetVal; gl::TextureType textureType = gl::TextureTargetToType(targetPacked); gl::Texture *texture = context->getState().getTargetTexture(textureType); id = texture->id().value; break; } case ParamType::TTextureID: { gl::TextureID destIDPacked = call.params.getParam(paramName.c_str(), ParamType::TTextureID, index) .value.TextureIDVal; id = destIDPacked.value; break; } case ParamType::TGLenum: { GLenum target = call.params.getParam(paramName.c_str(), ParamType::TGLenum, index).value.GLenumVal; gl::TextureTarget targetPacked = gl::PackParam(target); gl::TextureType textureType = gl::TextureTargetToType(targetPacked); gl::Texture *texture = context->getState().getTargetTexture(textureType); id = texture->id().value; break; } default: ERR() << "Unhandled paramType= " << static_cast(paramType); UNREACHABLE(); break; } // Mark it as modified mResourceTracker.getTrackedResource(ResourceIDType::Texture).setModifiedResource(id); } void FrameCaptureShared::updateCopyImageSubData(CallCapture &call) { // This call modifies srcName and dstName to no longer be object IDs (GLuint), but actual // packed types that can remapped using gTextureMap and gRenderbufferMap GLint srcName = call.params.getParam("srcName", ParamType::TGLuint, 0).value.GLuintVal; GLenum srcTarget = call.params.getParam("srcTarget", ParamType::TGLenum, 1).value.GLenumVal; switch (srcTarget) { case GL_RENDERBUFFER: { // Convert the GLuint to RenderbufferID gl::RenderbufferID srcRenderbufferID = {static_cast(srcName)}; call.params.setValueParamAtIndex("srcName", ParamType::TRenderbufferID, srcRenderbufferID, 0); break; } case GL_TEXTURE_2D: case GL_TEXTURE_2D_ARRAY: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP: { // Convert the GLuint to TextureID gl::TextureID srcTextureID = {static_cast(srcName)}; call.params.setValueParamAtIndex("srcName", ParamType::TTextureID, srcTextureID, 0); break; } default: ERR() << "Unhandled srcTarget = " << srcTarget; UNREACHABLE(); break; } // Change dstName to the appropriate type based on dstTarget GLint dstName = call.params.getParam("dstName", ParamType::TGLuint, 6).value.GLuintVal; GLenum dstTarget = call.params.getParam("dstTarget", ParamType::TGLenum, 7).value.GLenumVal; switch (dstTarget) { case GL_RENDERBUFFER: { // Convert the GLuint to RenderbufferID gl::RenderbufferID dstRenderbufferID = {static_cast(dstName)}; call.params.setValueParamAtIndex("dstName", ParamType::TRenderbufferID, dstRenderbufferID, 6); break; } case GL_TEXTURE_2D: case GL_TEXTURE_2D_ARRAY: case GL_TEXTURE_3D: case GL_TEXTURE_CUBE_MAP: { // Convert the GLuint to TextureID gl::TextureID dstTextureID = {static_cast(dstName)}; call.params.setValueParamAtIndex("dstName", ParamType::TTextureID, dstTextureID, 6); break; } default: ERR() << "Unhandled dstTarget = " << dstTarget; UNREACHABLE(); break; } } void FrameCaptureShared::overrideProgramBinary(const gl::Context *context, CallCapture &inCall, std::vector &outCalls) { // Program binaries are inherently non-portable, even between two ANGLE builds. // If an application is using glProgramBinary in the middle of a trace, we need to replace // those calls with an equivalent sequence of portable calls. // // For example, here is a sequence an app could use for glProgramBinary: // // gShaderProgramMap[42] = glCreateProgram(); // glProgramBinary(gShaderProgramMap[42], GL_PROGRAM_BINARY_ANGLE, gBinaryData[x], 1000); // glGetProgramiv(gShaderProgramMap[42], GL_LINK_STATUS, gReadBuffer); // glGetProgramiv(gShaderProgramMap[42], GL_PROGRAM_BINARY_LENGTH, gReadBuffer); // // With this override, the glProgramBinary call will be replaced like so: // // gShaderProgramMap[42] = glCreateProgram(); // === Begin override === // gShaderProgramMap[43] = glCreateShader(GL_VERTEX_SHADER); // glShaderSource(gShaderProgramMap[43], 1, string_0, &gBinaryData[100]); // glCompileShader(gShaderProgramMap[43]); // glAttachShader(gShaderProgramMap[42], gShaderProgramMap[43]); // glDeleteShader(gShaderProgramMap[43]); // gShaderProgramMap[43] = glCreateShader(GL_FRAGMENT_SHADER); // glShaderSource(gShaderProgramMap[43], 1, string_1, &gBinaryData[200]); // glCompileShader(gShaderProgramMap[43]); // glAttachShader(gShaderProgramMap[42], gShaderProgramMap[43]); // glDeleteShader(gShaderProgramMap[43]); // glBindAttribLocation(gShaderProgramMap[42], 0, "attrib1"); // glBindAttribLocation(gShaderProgramMap[42], 1, "attrib2"); // glLinkProgram(gShaderProgramMap[42]); // UpdateUniformLocation(gShaderProgramMap[42], "foo", 0, 20); // UpdateUniformLocation(gShaderProgramMap[42], "bar", 72, 1); // glUseProgram(gShaderProgramMap[42]); // UpdateCurrentProgram(gShaderProgramMap[42]); // glUniform4fv(gUniformLocations[gCurrentProgram][0], 20, &gBinaryData[300]); // glUniform1iv(gUniformLocations[gCurrentProgram][72], 1, &gBinaryData[400]); // === End override === // glGetProgramiv(gShaderProgramMap[42], GL_LINK_STATUS, gReadBuffer); // glGetProgramiv(gShaderProgramMap[42], GL_PROGRAM_BINARY_LENGTH, gReadBuffer); // // To facilitate this override, we are serializing each shader stage source into the binary // itself. See Program::serialize and Program::deserialize. Once extracted from the binary, // they will be available via getProgramSources. gl::ShaderProgramID id = inCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0) .value.ShaderProgramIDVal; gl::Program *program = context->getProgramResolveLink(id); ASSERT(program); mResourceTracker.onShaderProgramAccess(id); gl::ShaderProgramID tempShaderStartID = {mResourceTracker.getMaxShaderPrograms()}; GenerateLinkedProgram(context, context->getState(), &mResourceTracker, &outCalls, program, id, tempShaderStartID, getProgramSources(id)); } void FrameCaptureShared::maybeOverrideEntryPoint(const gl::Context *context, CallCapture &inCall, std::vector &outCalls) { switch (inCall.entryPoint) { case EntryPoint::GLEGLImageTargetTexture2DOES: { // We don't support reading EGLImages. Instead, just pull from a tiny null texture. // TODO (anglebug.com/4964): Read back the image data and populate the texture. std::vector pixelData = {0, 0, 0, 0}; outCalls.emplace_back( CaptureTexSubImage2D(context->getState(), true, gl::TextureTarget::_2D, 0, 0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, pixelData.data())); break; } case EntryPoint::GLEGLImageTargetRenderbufferStorageOES: { UNIMPLEMENTED(); break; } case EntryPoint::GLCopyImageSubData: case EntryPoint::GLCopyImageSubDataEXT: case EntryPoint::GLCopyImageSubDataOES: { // We must look at the src and dst target types to determine which remap table to use updateCopyImageSubData(inCall); outCalls.emplace_back(std::move(inCall)); break; } case EntryPoint::GLProgramBinary: case EntryPoint::GLProgramBinaryOES: { // Binary formats are not portable at all, so replace the calls with full linking // sequence overrideProgramBinary(context, inCall, outCalls); break; } default: { // Pass the single call through outCalls.emplace_back(std::move(inCall)); break; } } } void FrameCaptureShared::maybeCaptureCoherentBuffers(const gl::Context *context) { if (!isCaptureActive()) { return; } std::lock_guard lock(mCoherentBufferTracker.mMutex); for (const auto &pair : mCoherentBufferTracker.mBuffers) { gl::BufferID id = {pair.first}; if (mCoherentBufferTracker.isDirty(id)) { captureCoherentBufferSnapshot(context, id); } } } void FrameCaptureShared::maybeCaptureDrawArraysClientData(const gl::Context *context, CallCapture &call, size_t instanceCount) { if (!context->getStateCache().hasAnyActiveClientAttrib()) { return; } // Get counts from paramBuffer. GLint firstVertex = call.params.getParamFlexName("first", "start", ParamType::TGLint, 1).value.GLintVal; GLsizei drawCount = call.params.getParam("count", ParamType::TGLsizei, 2).value.GLsizeiVal; captureClientArraySnapshot(context, firstVertex + drawCount, instanceCount); } void FrameCaptureShared::maybeCaptureDrawElementsClientData(const gl::Context *context, CallCapture &call, size_t instanceCount) { if (!context->getStateCache().hasAnyActiveClientAttrib()) { return; } // if the count is zero then the index evaluation is not valid and we wouldn't be drawing // anything anyway, so skip capturing GLsizei count = call.params.getParam("count", ParamType::TGLsizei, 1).value.GLsizeiVal; if (count == 0) { return; } gl::DrawElementsType drawElementsType = call.params.getParam("typePacked", ParamType::TDrawElementsType, 2) .value.DrawElementsTypeVal; const void *indices = call.params.getParam("indices", ParamType::TvoidConstPointer, 3).value.voidConstPointerVal; gl::IndexRange indexRange; bool restart = context->getState().isPrimitiveRestartEnabled(); gl::Buffer *elementArrayBuffer = context->getState().getVertexArray()->getElementArrayBuffer(); if (elementArrayBuffer) { size_t offset = reinterpret_cast(indices); (void)elementArrayBuffer->getIndexRange(context, drawElementsType, offset, count, restart, &indexRange); } else { ASSERT(indices); indexRange = gl::ComputeIndexRange(drawElementsType, indices, count, restart); } // index starts from 0 captureClientArraySnapshot(context, indexRange.end + 1, instanceCount); } void FrameCaptureShared::maybeCapturePreCallUpdates( const gl::Context *context, CallCapture &call, std::vector *shareGroupSetupCalls, ResourceIDToSetupCallsMap *resourceIDToSetupCalls) { switch (call.entryPoint) { case EntryPoint::GLVertexAttribPointer: case EntryPoint::GLVertexPointer: case EntryPoint::GLColorPointer: case EntryPoint::GLTexCoordPointer: case EntryPoint::GLNormalPointer: case EntryPoint::GLPointSizePointerOES: { // Get array location GLuint index = 0; if (call.entryPoint == EntryPoint::GLVertexAttribPointer) { index = call.params.getParam("index", ParamType::TGLuint, 0).value.GLuintVal; } else { gl::ClientVertexArrayType type; switch (call.entryPoint) { case EntryPoint::GLVertexPointer: type = gl::ClientVertexArrayType::Vertex; break; case EntryPoint::GLColorPointer: type = gl::ClientVertexArrayType::Color; break; case EntryPoint::GLTexCoordPointer: type = gl::ClientVertexArrayType::TextureCoord; break; case EntryPoint::GLNormalPointer: type = gl::ClientVertexArrayType::Normal; break; case EntryPoint::GLPointSizePointerOES: type = gl::ClientVertexArrayType::PointSize; break; default: UNREACHABLE(); type = gl::ClientVertexArrayType::InvalidEnum; } index = gl::GLES1Renderer::VertexArrayIndex(type, context->getState().gles1()); } if (call.params.hasClientArrayData()) { mClientVertexArrayMap[index] = static_cast(mFrameCalls.size()); } else { mClientVertexArrayMap[index] = -1; } break; } case EntryPoint::GLGenFramebuffers: case EntryPoint::GLGenFramebuffersOES: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::FramebufferID *framebufferIDs = call.params.getParam("framebuffersPacked", ParamType::TFramebufferIDPointer, 1) .value.FramebufferIDPointerVal; for (GLsizei i = 0; i < count; i++) { handleGennedResource(framebufferIDs[i]); } break; } case EntryPoint::GLBindFramebuffer: case EntryPoint::GLBindFramebufferOES: maybeGenResourceOnBind(call); break; case EntryPoint::GLGenRenderbuffers: case EntryPoint::GLGenRenderbuffersOES: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::RenderbufferID *renderbufferIDs = call.params.getParam("renderbuffersPacked", ParamType::TRenderbufferIDPointer, 1) .value.RenderbufferIDPointerVal; for (GLsizei i = 0; i < count; i++) { handleGennedResource(renderbufferIDs[i]); } break; } case EntryPoint::GLBindRenderbuffer: case EntryPoint::GLBindRenderbufferOES: maybeGenResourceOnBind(call); break; case EntryPoint::GLGenTextures: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::TextureID *textureIDs = call.params.getParam("texturesPacked", ParamType::TTextureIDPointer, 1) .value.TextureIDPointerVal; for (GLsizei i = 0; i < count; i++) { // If we're capturing, track what new textures have been genned handleGennedResource(textureIDs[i]); } break; } case EntryPoint::GLBindTexture: maybeGenResourceOnBind(call); break; case EntryPoint::GLDeleteBuffers: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::BufferID *bufferIDs = call.params.getParam("buffersPacked", ParamType::TBufferIDConstPointer, 1) .value.BufferIDConstPointerVal; for (GLsizei i = 0; i < count; i++) { // For each buffer being deleted, check our backup of data and remove it const auto &bufferDataInfo = mBufferDataMap.find(bufferIDs[i]); if (bufferDataInfo != mBufferDataMap.end()) { mBufferDataMap.erase(bufferDataInfo); } // If we're capturing, track what buffers have been deleted handleDeletedResource(bufferIDs[i]); } break; } case EntryPoint::GLGenBuffers: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::BufferID *bufferIDs = call.params.getParam("buffersPacked", ParamType::TBufferIDPointer, 1) .value.BufferIDPointerVal; for (GLsizei i = 0; i < count; i++) { handleGennedResource(bufferIDs[i]); } break; } case EntryPoint::GLBindBuffer: maybeGenResourceOnBind(call); break; case EntryPoint::GLDeleteProgramPipelines: case EntryPoint::GLDeleteProgramPipelinesEXT: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::ProgramPipelineID *pipelineIDs = call.params .getParam("pipelinesPacked", ParamType::TProgramPipelineIDConstPointer, 1) .value.ProgramPipelineIDPointerVal; for (GLsizei i = 0; i < count; i++) { handleDeletedResource(pipelineIDs[i]); } break; } case EntryPoint::GLGenProgramPipelines: case EntryPoint::GLGenProgramPipelinesEXT: { GLsizei count = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; const gl::ProgramPipelineID *pipelineIDs = call.params.getParam("pipelinesPacked", ParamType::TProgramPipelineIDPointer, 1) .value.ProgramPipelineIDPointerVal; for (GLsizei i = 0; i < count; i++) { handleGennedResource(pipelineIDs[i]); } break; } case EntryPoint::GLDeleteSync: { GLsync sync = call.params.getParam("sync", ParamType::TGLsync, 0).value.GLsyncVal; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); // If we're capturing, track which fence sync has been deleted if (frameCaptureShared->isCaptureActive()) { mResourceTracker.setDeletedFenceSync(sync); } break; } case EntryPoint::GLDrawArrays: { maybeCaptureDrawArraysClientData(context, call, 1); maybeCaptureCoherentBuffers(context); break; } case EntryPoint::GLDrawArraysInstanced: case EntryPoint::GLDrawArraysInstancedANGLE: case EntryPoint::GLDrawArraysInstancedEXT: { GLsizei instancecount = call.params.getParamFlexName("instancecount", "primcount", ParamType::TGLsizei, 3) .value.GLsizeiVal; maybeCaptureDrawArraysClientData(context, call, instancecount); maybeCaptureCoherentBuffers(context); break; } case EntryPoint::GLDrawElements: { maybeCaptureDrawElementsClientData(context, call, 1); maybeCaptureCoherentBuffers(context); break; } case EntryPoint::GLDrawElementsInstanced: case EntryPoint::GLDrawElementsInstancedANGLE: case EntryPoint::GLDrawElementsInstancedEXT: { GLsizei instancecount = call.params.getParamFlexName("instancecount", "primcount", ParamType::TGLsizei, 4) .value.GLsizeiVal; maybeCaptureDrawElementsClientData(context, call, instancecount); maybeCaptureCoherentBuffers(context); break; } case EntryPoint::GLCreateShaderProgramv: { // Refresh the cached shader sources. // The command CreateShaderProgramv() creates a stand-alone program from an array of // null-terminated source code strings for a single shader type, so we need update the // Shader and Program sources, similar to GLCompileShader + GLLinkProgram handling. gl::ShaderProgramID programID = {call.params.getReturnValue().value.GLuintVal}; const ParamCapture ¶mCapture = call.params.getParam("typePacked", ParamType::TShaderType, 0); const ParamCapture &lineCount = call.params.getParam("count", ParamType::TGLsizei, 1); const ParamCapture &strings = call.params.getParam("strings", ParamType::TGLcharConstPointerPointer, 2); std::ostringstream sourceString; for (int i = 0; i < lineCount.value.GLsizeiVal; ++i) { sourceString << strings.value.GLcharConstPointerPointerVal[i]; } gl::ShaderType shaderType = paramCapture.value.ShaderTypeVal; ProgramSources source; source[shaderType] = sourceString.str(); setProgramSources(programID, source); handleGennedResource(programID); break; } case EntryPoint::GLCreateProgram: { // If we're capturing, track which programs have been created gl::ShaderProgramID programID = {call.params.getReturnValue().value.GLuintVal}; handleGennedResource(programID); break; } case EntryPoint::GLDeleteProgram: { // If we're capturing, track which programs have been deleted const ParamCapture ¶m = call.params.getParam("programPacked", ParamType::TShaderProgramID, 0); handleDeletedResource(param.value.ShaderProgramIDVal); break; } case EntryPoint::GLCompileShader: { // Refresh the cached shader sources. gl::ShaderProgramID shaderID = call.params.getParam("shaderPacked", ParamType::TShaderProgramID, 0) .value.ShaderProgramIDVal; const gl::Shader *shader = context->getShader(shaderID); // Shaders compiled for ProgramBinary will not have a shader created if (shader) { setShaderSource(shaderID, shader->getSourceString()); } break; } case EntryPoint::GLLinkProgram: { // Refresh the cached program sources. gl::ShaderProgramID programID = call.params.getParam("programPacked", ParamType::TShaderProgramID, 0) .value.ShaderProgramIDVal; const gl::Program *program = context->getProgramResolveLink(programID); // Programs linked in support of ProgramBinary will not have attached shaders if (program->getState().hasAttachedShader()) { setProgramSources(programID, GetAttachedProgramSources(program)); } break; } case EntryPoint::GLCompressedTexImage1D: case EntryPoint::GLCompressedTexSubImage1D: { UNIMPLEMENTED(); break; } case EntryPoint::GLDeleteTextures: { // Free any TextureLevelDataMap entries being tracked for this texture // This is to cover the scenario where a texture has been created, its // levels cached, then texture deleted and recreated, receiving the same ID // Look up how many textures are being deleted GLsizei n = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; // Look up the pointer to list of textures const gl::TextureID *textureIDs = call.params.getParam("texturesPacked", ParamType::TTextureIDConstPointer, 1) .value.TextureIDConstPointerVal; // For each texture listed for deletion for (int32_t i = 0; i < n; ++i) { // If we're capturing, track what textures have been deleted handleDeletedResource(textureIDs[i]); } break; } case EntryPoint::GLMapBuffer: case EntryPoint::GLMapBufferOES: { gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; GLbitfield access = call.params.getParam("access", ParamType::TGLenum, 1).value.GLenumVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); GLintptr offset = 0; GLsizeiptr length = static_cast(buffer->getSize()); bool writable = access == GL_WRITE_ONLY_OES || access == GL_WRITE_ONLY || access == GL_READ_WRITE; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); frameCaptureShared->trackBufferMapping(&call, buffer->id(), buffer, offset, length, writable, false); break; } case EntryPoint::GLUnmapNamedBuffer: { UNIMPLEMENTED(); break; } case EntryPoint::GLMapBufferRange: case EntryPoint::GLMapBufferRangeEXT: { GLintptr offset = call.params.getParam("offset", ParamType::TGLintptr, 1).value.GLintptrVal; GLsizeiptr length = call.params.getParam("length", ParamType::TGLsizeiptr, 2).value.GLsizeiptrVal; GLbitfield access = call.params.getParam("access", ParamType::TGLbitfield, 3).value.GLbitfieldVal; gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); frameCaptureShared->trackBufferMapping(&call, buffer->id(), buffer, offset, length, access & GL_MAP_WRITE_BIT, access & GL_MAP_COHERENT_BIT_EXT); break; } case EntryPoint::GLUnmapBuffer: case EntryPoint::GLUnmapBufferOES: { // See if we need to capture the buffer contents captureMappedBufferSnapshot(context, call); // Track that the buffer was unmapped, for use during state reset gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); mResourceTracker.setBufferUnmapped(buffer->id().value); // Remove from CoherentBufferTracker mCoherentBufferTracker.removeBuffer(buffer->id()); break; } case EntryPoint::GLBufferData: case EntryPoint::GLBufferSubData: { gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0) .value.BufferBindingVal; gl::Buffer *buffer = context->getState().getTargetBuffer(target); // Track that this buffer's contents have been modified mResourceTracker.getTrackedResource(ResourceIDType::Buffer) .setModifiedResource(buffer->id().value); // BufferData is equivalent to UnmapBuffer, for what we're tracking. // From the ES 3.1 spec in BufferData section: // If any portion of the buffer object is mapped in the current context or any // context current to another thread, it is as though UnmapBuffer (see section // 6.3.1) is executed in each such context prior to deleting the existing data // store. // Track that the buffer was unmapped, for use during state reset mResourceTracker.setBufferUnmapped(buffer->id().value); break; } case EntryPoint::GLCopyBufferSubData: { maybeCaptureCoherentBuffers(context); break; } case EntryPoint::GLDeleteFramebuffers: case EntryPoint::GLDeleteFramebuffersOES: { // Look up how many framebuffers are being deleted GLsizei n = call.params.getParam("n", ParamType::TGLsizei, 0).value.GLsizeiVal; // Look up the pointer to list of framebuffers const gl::FramebufferID *framebufferIDs = call.params.getParam("framebuffersPacked", ParamType::TFramebufferIDConstPointer, 1) .value.FramebufferIDConstPointerVal; // For each framebuffer listed for deletion for (int32_t i = 0; i < n; ++i) { // If we're capturing, track what framebuffers have been deleted handleDeletedResource(framebufferIDs[i]); } break; } default: break; } if (IsTextureUpdate(call)) { // If this call modified texture contents, track it for possible reset trackTextureUpdate(context, call); } updateReadBufferSize(call.params.getReadBufferSize()); std::vector shaderProgramIDs; if (FindShaderProgramIDsInCall(call, shaderProgramIDs)) { for (gl::ShaderProgramID shaderProgramID : shaderProgramIDs) { mResourceTracker.onShaderProgramAccess(shaderProgramID); if (isCaptureActive()) { // Track that this call referenced a ShaderProgram, setting it active for Setup MarkResourceIDActive(ResourceIDType::ShaderProgram, shaderProgramID.value, shareGroupSetupCalls, resourceIDToSetupCalls); } } } updateResourceCountsFromCallCapture(call); } template void FrameCaptureShared::maybeGenResourceOnBind(CallCapture &call) { const char *paramName = ParamValueTrait::name; const ParamType paramType = ParamValueTrait::typeID; const ParamCapture ¶m = call.params.getParam(paramName, paramType, 1); const ParamValueType id = AccessParamValue(paramType, param.value); // Don't inject the default resource or resources that are already generated if (id.value != 0 && !resourceIsGenerated(id)) { handleGennedResource(id); ResourceIDType resourceIDType = GetResourceIDTypeFromParamType(param.type); const char *resourceName = GetResourceIDTypeName(resourceIDType); std::stringstream updateFuncNameStr; updateFuncNameStr << "Set" << resourceName << "ID"; std::string updateFuncName = updateFuncNameStr.str(); ParamBuffer params; params.addValueParam("id", ParamType::TGLuint, id.value); mFrameCalls.emplace_back(updateFuncName, std::move(params)); } } void FrameCaptureShared::updateResourceCountsFromParamCapture(const ParamCapture ¶m, ResourceIDType idType) { if (idType != ResourceIDType::InvalidEnum) { mHasResourceType.set(idType); // Capture resource IDs for non-pointer types. if (strcmp(ParamTypeToString(param.type), "GLuint") == 0) { mMaxAccessedResourceIDs[idType] = std::max(mMaxAccessedResourceIDs[idType], param.value.GLuintVal); } // Capture resource IDs for pointer types. if (strstr(ParamTypeToString(param.type), "GLuint *") != nullptr) { if (param.data.size() == 1u) { const GLuint *dataPtr = reinterpret_cast(param.data[0].data()); size_t numHandles = param.data[0].size() / sizeof(GLuint); for (size_t handleIndex = 0; handleIndex < numHandles; ++handleIndex) { mMaxAccessedResourceIDs[idType] = std::max(mMaxAccessedResourceIDs[idType], dataPtr[handleIndex]); } } } } } void FrameCaptureShared::updateResourceCountsFromCallCapture(const CallCapture &call) { for (const ParamCapture ¶m : call.params.getParamCaptures()) { ResourceIDType idType = GetResourceIDTypeFromParamType(param.type); updateResourceCountsFromParamCapture(param, idType); } // Update resource IDs in the return value. Return values types are not stored as resource IDs, // but instead are stored as GLuints. Therefore we need to explicitly label the resource ID type // when we call update. Currently only shader and program creation are explicitly tracked. switch (call.entryPoint) { case EntryPoint::GLCreateShader: case EntryPoint::GLCreateProgram: updateResourceCountsFromParamCapture(call.params.getReturnValue(), ResourceIDType::ShaderProgram); break; default: break; } } void FrameCaptureShared::captureCall(const gl::Context *context, CallCapture &&inCall, bool isCallValid) { if (SkipCall(inCall.entryPoint)) { return; } if (isCallValid) { // If the context ID has changed, then we need to inject an eglMakeCurrent() call. Only do // this if there is more than 1 context in the share group to avoid unnecessary // eglMakeCurrent() calls. size_t contextCount = context->getShareGroup()->getShareGroupContextCount(); if (contextCount > 1 && mLastContextId != context->id()) { // Inject the eglMakeCurrent() call. // The EGLDisplay and EGLSurface values can't be known here, since we may not even be // running the trace with ANGLE. // The EGLContext value is actually the context ID, so we can look it up in // 'gContextMap'. // Need to go from uint32 -> uint64 -> EGLContext (void*) to handle MSVC compiler // warning on 64b systems: // error C4312: 'reinterpret_cast': conversion from 'uint32_t' to 'EGLContext' of // greater size uint64_t contextID = static_cast(context->id().value); EGLContext eglContext = reinterpret_cast(contextID); CallCapture makeCurrentCall = CaptureMakeCurrent(EGL_NO_DISPLAY, EGL_NO_SURFACE, EGL_NO_SURFACE, eglContext); mFrameCalls.emplace_back(std::move(makeCurrentCall)); mLastContextId = context->id(); } std::vector outCalls; maybeOverrideEntryPoint(context, inCall, outCalls); // Need to loop on any new calls we added during override for (CallCapture &call : outCalls) { // During capture, consider all frame calls active if (isCaptureActive()) { call.isActive = true; } maybeCapturePreCallUpdates(context, call, &mShareGroupSetupCalls, &mResourceIDToSetupCalls); mFrameCalls.emplace_back(std::move(call)); maybeCapturePostCallUpdates(context); } // Evaluate the validation expression to determine if we insert a validation checkpoint. // This lets the user pick a subset of calls to check instead of checking every call. if (mValidateSerializedState && !mValidationExpression.empty()) { // Example substitution for frame #2, call #110: // Before: (call == 2) && (frame >= 100) && (frame <= 120) && ((frame % 10) == 0) // After: (2 == 2) && (110 >= 100) && (110 <= 120) && ((110 % 10) == 0) // Evaluates to 1.0. std::string expression = mValidationExpression; angle::ReplaceAllSubstrings(&expression, "frame", std::to_string(mFrameIndex)); angle::ReplaceAllSubstrings(&expression, "call", std::to_string(mFrameCalls.size())); double result = ceval_result(expression); if (result > 0) { CaptureValidateSerializedState(context, &mFrameCalls); } } } else { INFO() << "FrameCapture: Not capturing invalid call to " << GetEntryPointName(inCall.entryPoint); } } void FrameCaptureShared::maybeCapturePostCallUpdates(const gl::Context *context) { // Process resource ID updates. if (isCaptureActive()) { MaybeCaptureUpdateResourceIDs(&mResourceTracker, &mFrameCalls); } CallCapture &lastCall = mFrameCalls.back(); switch (lastCall.entryPoint) { case EntryPoint::GLCreateShaderProgramv: { gl::ShaderProgramID programId; programId.value = lastCall.params.getReturnValue().value.GLuintVal; const gl::Program *program = context->getProgramResolveLink(programId); CaptureUpdateUniformLocations(program, &mFrameCalls); CaptureUpdateUniformBlockIndexes(program, &mFrameCalls); break; } case EntryPoint::GLLinkProgram: { const ParamCapture ¶m = lastCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0); const gl::Program *program = context->getProgramResolveLink(param.value.ShaderProgramIDVal); CaptureUpdateUniformLocations(program, &mFrameCalls); CaptureUpdateUniformBlockIndexes(program, &mFrameCalls); break; } case EntryPoint::GLUseProgram: CaptureUpdateCurrentProgram(lastCall, 0, &mFrameCalls); break; case EntryPoint::GLActiveShaderProgram: CaptureUpdateCurrentProgram(lastCall, 1, &mFrameCalls); break; case EntryPoint::GLDeleteProgram: { const ParamCapture ¶m = lastCall.params.getParam("programPacked", ParamType::TShaderProgramID, 0); CaptureDeleteUniformLocations(param.value.ShaderProgramIDVal, &mFrameCalls); break; } case EntryPoint::GLShaderSource: { lastCall.params.setValueParamAtIndex("count", ParamType::TGLsizei, 1, 1); ParamCapture ¶mLength = lastCall.params.getParam("length", ParamType::TGLintConstPointer, 3); paramLength.data.resize(1); // Set the length parameter to {-1} to signal that the actual string length // is to be used. Since we store the parameter blob as an array of four uint8_t // values, we have to pass the binary equivalent of -1. paramLength.data[0] = {0xff, 0xff, 0xff, 0xff}; break; } default: break; } } void FrameCaptureShared::captureClientArraySnapshot(const gl::Context *context, size_t vertexCount, size_t instanceCount) { const gl::VertexArray *vao = context->getState().getVertexArray(); // Capture client array data. for (size_t attribIndex : context->getStateCache().getActiveClientAttribsMask()) { const gl::VertexAttribute &attrib = vao->getVertexAttribute(attribIndex); const gl::VertexBinding &binding = vao->getVertexBinding(attrib.bindingIndex); int callIndex = mClientVertexArrayMap[attribIndex]; if (callIndex != -1) { size_t count = vertexCount; if (binding.getDivisor() > 0) { count = rx::UnsignedCeilDivide(static_cast(instanceCount), binding.getDivisor()); } // The last capture element doesn't take up the full stride. size_t bytesToCapture = (count - 1) * binding.getStride() + attrib.format->pixelBytes; CallCapture &call = mFrameCalls[callIndex]; ParamCapture ¶m = call.params.getClientArrayPointerParameter(); ASSERT(param.type == ParamType::TvoidConstPointer); ParamBuffer updateParamBuffer; updateParamBuffer.addValueParam("arrayIndex", ParamType::TGLint, static_cast(attribIndex)); ParamCapture updateMemory("pointer", ParamType::TvoidConstPointer); CaptureMemory(param.value.voidConstPointerVal, bytesToCapture, &updateMemory); updateParamBuffer.addParam(std::move(updateMemory)); updateParamBuffer.addValueParam("size", ParamType::TGLuint64, bytesToCapture); mFrameCalls.emplace_back("UpdateClientArrayPointer", std::move(updateParamBuffer)); mClientArraySizes[attribIndex] = std::max(mClientArraySizes[attribIndex], bytesToCapture); } } } void FrameCaptureShared::captureCoherentBufferSnapshot(const gl::Context *context, gl::BufferID id) { if (!hasBufferData(id)) { // This buffer was not marked writable return; } const gl::State &apiState = context->getState(); const gl::BufferManager &buffers = apiState.getBufferManagerForCapture(); gl::Buffer *buffer = buffers.getBuffer(id); if (!buffer) { // Could not find buffer binding return; } ASSERT(buffer->isMapped()); std::shared_ptr coherentBuffer = mCoherentBufferTracker.mBuffers[id.value]; std::vector dirtyPageRanges = coherentBuffer->getDirtyPageRanges(); AddressRange wholeRange = coherentBuffer->getRange(); for (PageRange &pageRange : dirtyPageRanges) { // Write protect the memory already, so the app is blocked on writing during our capture coherentBuffer->protectPageRange(pageRange); // Create the parameters to our helper for use during replay ParamBuffer dataParamBuffer; // Pass in the target buffer ID dataParamBuffer.addValueParam("dest", ParamType::TGLuint, buffer->id().value); // Capture the current buffer data with a binary param ParamCapture captureData("source", ParamType::TvoidConstPointer); AddressRange dirtyRange = coherentBuffer->getDirtyAddressRange(pageRange); CaptureMemory(reinterpret_cast(dirtyRange.start), dirtyRange.size, &captureData); dataParamBuffer.addParam(std::move(captureData)); // Also track its size for use with memcpy dataParamBuffer.addValueParam("size", ParamType::TGLsizeiptr, static_cast(dirtyRange.size)); if (wholeRange.start != dirtyRange.start) { // Capture with offset GLsizeiptr offset = dirtyRange.start - wholeRange.start; ASSERT(offset > 0); // The dirty page range is not at the start of the buffer, track the offset. dataParamBuffer.addValueParam("offset", ParamType::TGLsizeiptr, offset); // Call the helper that populates the buffer with captured data mFrameCalls.emplace_back("UpdateClientBufferDataWithOffset", std::move(dataParamBuffer)); } else { // Call the helper that populates the buffer with captured data mFrameCalls.emplace_back("UpdateClientBufferData", std::move(dataParamBuffer)); } } } void FrameCaptureShared::captureMappedBufferSnapshot(const gl::Context *context, const CallCapture &call) { // If the buffer was mapped writable, we need to restore its data, since we have no // visibility into what the client did to the buffer while mapped. // This sequence will result in replay calls like this: // ... // gMappedBufferData[gBufferMap[42]] = glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0, 65536, // GL_MAP_WRITE_BIT); // ... // UpdateClientBufferData(42, &gBinaryData[164631024], 65536); // glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER); // ... // Re-map the buffer, using the info we tracked about the buffer gl::BufferBinding target = call.params.getParam("targetPacked", ParamType::TBufferBinding, 0).value.BufferBindingVal; FrameCaptureShared *frameCaptureShared = context->getShareGroup()->getFrameCaptureShared(); gl::Buffer *buffer = context->getState().getTargetBuffer(target); if (!frameCaptureShared->hasBufferData(buffer->id())) { // This buffer was not marked writable, so we did not back it up return; } std::pair bufferDataOffsetAndLength = frameCaptureShared->getBufferDataOffsetAndLength(buffer->id()); GLintptr offset = bufferDataOffsetAndLength.first; GLsizeiptr length = bufferDataOffsetAndLength.second; // Map the buffer so we can copy its contents out ASSERT(!buffer->isMapped()); angle::Result result = buffer->mapRange(context, offset, length, GL_MAP_READ_BIT); if (result != angle::Result::Continue) { ERR() << "Failed to mapRange of buffer" << std::endl; } const uint8_t *data = reinterpret_cast(buffer->getMapPointer()); // Create the parameters to our helper for use during replay ParamBuffer dataParamBuffer; // Pass in the target buffer ID dataParamBuffer.addValueParam("dest", ParamType::TGLuint, buffer->id().value); // Capture the current buffer data with a binary param ParamCapture captureData("source", ParamType::TvoidConstPointer); CaptureMemory(data, length, &captureData); dataParamBuffer.addParam(std::move(captureData)); // Also track its size for use with memcpy dataParamBuffer.addValueParam("size", ParamType::TGLsizeiptr, length); // Call the helper that populates the buffer with captured data mFrameCalls.emplace_back("UpdateClientBufferData", std::move(dataParamBuffer)); // Unmap the buffer and move on GLboolean dontCare; (void)buffer->unmap(context, &dontCare); } void FrameCaptureShared::checkForCaptureTrigger() { // If the capture trigger has not been set, move on if (mCaptureTrigger == 0) { return; } // Otherwise, poll the value for a change std::string captureTriggerStr = GetCaptureTrigger(); if (captureTriggerStr.empty()) { return; } // If the value has changed, use the original value as the frame count // TODO (anglebug.com/4949): Improve capture at unknown frame time. It is good to // avoid polling if the feature is not enabled, but not entirely intuitive to set // a value to zero when you want to trigger it. uint32_t captureTrigger = atoi(captureTriggerStr.c_str()); if (captureTrigger != mCaptureTrigger) { // Start mid-execution capture for the current frame mCaptureStartFrame = mFrameIndex + 1; // Use the original trigger value as the frame count mCaptureEndFrame = mCaptureStartFrame + mCaptureTrigger - 1; INFO() << "Capture triggered after frame " << mFrameIndex << " for " << mCaptureTrigger << " frames"; // Stop polling mCaptureTrigger = 0; } } void FrameCaptureShared::scanSetupCalls(const gl::Context *context, std::vector &setupCalls) { // Scan all the instructions in the list for tracking for (CallCapture &call : setupCalls) { updateReadBufferSize(call.params.getReadBufferSize()); updateResourceCountsFromCallCapture(call); } } void FrameCaptureShared::runMidExecutionCapture(const gl::Context *mainContext) { mMidExecutionCaptureActive = true; // Make sure all pending work for every Context in the share group has completed so all data // (buffers, textures, etc.) has been updated and no resources are in use. egl::ShareGroup *shareGroup = mainContext->getShareGroup(); shareGroup->finishAllContexts(); const gl::State &contextState = mainContext->getState(); gl::State mainContextReplayState(nullptr, nullptr, nullptr, nullptr, nullptr, EGL_OPENGL_ES_API, contextState.getClientVersion(), false, true, true, true, false, EGL_CONTEXT_PRIORITY_MEDIUM_IMG, contextState.hasProtectedContent()); mainContextReplayState.initializeForCapture(mainContext); CaptureShareGroupMidExecutionSetup(mainContext, &mShareGroupSetupCalls, &mResourceTracker, mainContextReplayState); scanSetupCalls(mainContext, mShareGroupSetupCalls); for (const gl::Context *shareContext : shareGroup->getContexts()) { FrameCapture *frameCapture = shareContext->getFrameCapture(); ASSERT(frameCapture->getSetupCalls().empty()); if (shareContext->id() == mainContext->id()) { CaptureMidExecutionSetup(shareContext, &frameCapture->getSetupCalls(), &mShareGroupSetupCalls, &mResourceIDToSetupCalls, &mResourceTracker, mainContextReplayState, mValidateSerializedState); scanSetupCalls(mainContext, frameCapture->getSetupCalls()); } else { gl::State auxContextReplayState( nullptr, nullptr, nullptr, nullptr, nullptr, EGL_OPENGL_ES_API, shareContext->getState().getClientVersion(), false, true, true, true, false, EGL_CONTEXT_PRIORITY_MEDIUM_IMG, shareContext->getState().hasProtectedContent()); auxContextReplayState.initializeForCapture(shareContext); CaptureMidExecutionSetup(shareContext, &frameCapture->getSetupCalls(), &mShareGroupSetupCalls, &mResourceIDToSetupCalls, &mResourceTracker, auxContextReplayState, mValidateSerializedState); scanSetupCalls(mainContext, frameCapture->getSetupCalls()); WriteAuxiliaryContextCppSetupReplay( mReplayWriter, mCompression, mOutDirectory, shareContext, mCaptureLabel, 1, frameCapture->getSetupCalls(), &mBinaryData, mSerializeStateEnabled, *this); } } mMidExecutionCaptureActive = false; } void FrameCaptureShared::onEndFrame(const gl::Context *context) { if (!enabled() || mFrameIndex > mCaptureEndFrame) { setCaptureInactive(); mCoherentBufferTracker.onEndFrame(); return; } FrameCapture *frameCapture = context->getFrameCapture(); // Count resource IDs. This is also done on every frame. It could probably be done by // checking the GL state instead of the calls. for (const CallCapture &call : mFrameCalls) { for (const ParamCapture ¶m : call.params.getParamCaptures()) { ResourceIDType idType = GetResourceIDTypeFromParamType(param.type); if (idType != ResourceIDType::InvalidEnum) { mHasResourceType.set(idType); } } } // Assume that the context performing the swap is the "main" context. ASSERT(mWindowSurfaceContextID.value == 0 || mWindowSurfaceContextID == context->id()); mWindowSurfaceContextID = context->id(); // On Android, we can trigger a capture during the run checkForCaptureTrigger(); // Check for MEC. Done after checkForCaptureTrigger(), since that can modify mCaptureStartFrame. if (mFrameIndex < mCaptureStartFrame) { if (mFrameIndex == mCaptureStartFrame - 1) { runMidExecutionCapture(context); // Set the capture active to ensure all GLES commands issued by the next frame are // handled correctly by maybeCapturePreCallUpdates() and maybeCapturePostCallUpdates(). setCaptureActive(); } mFrameIndex++; reset(); return; } ASSERT(isCaptureActive()); if (!mFrameCalls.empty()) { mActiveFrameIndices.push_back(getReplayFrameIndex()); } // Make sure all pending work for every Context in the share group has completed so all data // (buffers, textures, etc.) has been updated and no resources are in use. egl::ShareGroup *shareGroup = context->getShareGroup(); shareGroup->finishAllContexts(); // Only validate the first frame for now to save on retracing time. if (mValidateSerializedState && mFrameIndex == mCaptureStartFrame) { CaptureValidateSerializedState(context, &mFrameCalls); } writeMainContextCppReplay(context, frameCapture->getSetupCalls()); if (mFrameIndex == mCaptureEndFrame) { // Write shared MEC after frame sequence so we can eliminate unused assets like programs WriteShareGroupCppSetupReplay(mReplayWriter, mCompression, mOutDirectory, mCaptureLabel, 1, 1, mShareGroupSetupCalls, &mResourceTracker, &mBinaryData, mSerializeStateEnabled, mWindowSurfaceContextID); // Save the index files after the last frame. writeCppReplayIndexFiles(context, false); SaveBinaryData(mCompression, mOutDirectory, kSharedContextId, mCaptureLabel, mBinaryData); mBinaryData.clear(); mWroteIndexFile = true; } reset(); mFrameIndex++; } void FrameCaptureShared::onDestroyContext(const gl::Context *context) { if (!mEnabled) { return; } if (!mWroteIndexFile && mFrameIndex > mCaptureStartFrame) { // If context is destroyed before end frame is reached and at least // 1 frame has been recorded, then write the index files. // It doesn't make sense to write the index files when no frame has been recorded mFrameIndex -= 1; mCaptureEndFrame = mFrameIndex; writeCppReplayIndexFiles(context, true); SaveBinaryData(mCompression, mOutDirectory, kSharedContextId, mCaptureLabel, mBinaryData); mBinaryData.clear(); mWroteIndexFile = true; } } void FrameCaptureShared::onMakeCurrent(const gl::Context *context, const egl::Surface *drawSurface) { if (!drawSurface) { return; } // Track the width, height and color space of the draw surface as provided to makeCurrent SurfaceParams ¶ms = mDrawSurfaceParams[context->id()]; params.extents = gl::Extents(drawSurface->getWidth(), drawSurface->getHeight(), 1); params.colorSpace = egl::FromEGLenum(drawSurface->getGLColorspace()); } DataCounters::DataCounters() = default; DataCounters::~DataCounters() = default; int DataCounters::getAndIncrement(EntryPoint entryPoint, const std::string ¶mName) { Counter counterKey = {entryPoint, paramName}; return mData[counterKey]++; } DataTracker::DataTracker() = default; DataTracker::~DataTracker() = default; StringCounters::StringCounters() = default; StringCounters::~StringCounters() = default; int StringCounters::getStringCounter(const std::vector &strings) { const auto &id = mStringCounterMap.find(strings); if (id == mStringCounterMap.end()) { return kStringsNotFound; } else { return mStringCounterMap[strings]; } } void StringCounters::setStringCounter(const std::vector &strings, int &counter) { ASSERT(counter >= 0); mStringCounterMap[strings] = counter; } TrackedResource::TrackedResource() = default; TrackedResource::~TrackedResource() = default; ResourceTracker::ResourceTracker() = default; ResourceTracker::~ResourceTracker() = default; void ResourceTracker::setDeletedFenceSync(GLsync sync) { ASSERT(sync != nullptr); if (mStartingFenceSyncs.find(sync) == mStartingFenceSyncs.end()) { // This is a fence sync created after MEC was initialized. Ignore it. return; } // In this case, the app is deleting a fence sync we started with, we need to regen on loop. mFenceSyncsToRegen.insert(sync); } void TrackedResource::setGennedResource(GLuint id) { if (mStartingResources.find(id) == mStartingResources.end()) { // This is a resource created after MEC was initialized, track it mNewResources.insert(id); return; } } bool TrackedResource::resourceIsGenerated(GLuint id) { return mStartingResources.find(id) != mStartingResources.end() || mNewResources.find(id) != mNewResources.end(); } void TrackedResource::setDeletedResource(GLuint id) { if (id == 0) { // Ignore ID 0 return; } if (mNewResources.find(id) != mNewResources.end()) { // This is a resource created after MEC was initialized, just clear it, since there will be // no actions required for it to return to starting state. mNewResources.erase(id); return; } if (mStartingResources.find(id) != mStartingResources.end()) { // In this case, the app is deleting a resource we started with, we need to regen on loop mResourcesToRegen.insert(id); // Also restore its contents mResourcesToRestore.insert(id); } // If none of the above is true, the app is deleting a resource that was never genned. } void TrackedResource::setModifiedResource(GLuint id) { // If this was a starting resource, we need to track it for restore if (mStartingResources.find(id) != mStartingResources.end()) { mResourcesToRestore.insert(id); } } void ResourceTracker::setBufferMapped(GLuint id) { // If this was a starting buffer, we may need to restore it to original state during Reset. // Skip buffers that were deleted after the starting point. const TrackedResource &trackedBuffers = getTrackedResource(ResourceIDType::Buffer); const ResourceSet &startingBuffers = trackedBuffers.getStartingResources(); const ResourceSet &buffersToRegen = trackedBuffers.getResourcesToRegen(); if (startingBuffers.find(id) != startingBuffers.end() && buffersToRegen.find(id) == buffersToRegen.end()) { // Track that its current state is mapped (true) mStartingBuffersMappedCurrent[id] = true; } } void ResourceTracker::setBufferUnmapped(GLuint id) { // If this was a starting buffer, we may need to restore it to original state during Reset. // Skip buffers that were deleted after the starting point. const TrackedResource &trackedBuffers = getTrackedResource(ResourceIDType::Buffer); const ResourceSet &startingBuffers = trackedBuffers.getStartingResources(); const ResourceSet &buffersToRegen = trackedBuffers.getResourcesToRegen(); if (startingBuffers.find(id) != startingBuffers.end() && buffersToRegen.find(id) == buffersToRegen.end()) { // Track that its current state is unmapped (false) mStartingBuffersMappedCurrent[id] = false; } } bool ResourceTracker::getStartingBuffersMappedCurrent(GLuint id) const { const auto &foundBool = mStartingBuffersMappedCurrent.find(id); ASSERT(foundBool != mStartingBuffersMappedCurrent.end()); return foundBool->second; } bool ResourceTracker::getStartingBuffersMappedInitial(GLuint id) const { const auto &foundBool = mStartingBuffersMappedInitial.find(id); ASSERT(foundBool != mStartingBuffersMappedInitial.end()); return foundBool->second; } void ResourceTracker::onShaderProgramAccess(gl::ShaderProgramID shaderProgramID) { mMaxShaderPrograms = std::max(mMaxShaderPrograms, shaderProgramID.value + 1); } bool FrameCaptureShared::isCapturing() const { // Currently we will always do a capture up until the last frame. In the future we could improve // mid execution capture by only capturing between the start and end frames. The only necessary // reason we need to capture before the start is for attached program and shader sources. return mEnabled && mFrameIndex <= mCaptureEndFrame; } uint32_t FrameCaptureShared::getFrameCount() const { return mCaptureEndFrame - mCaptureStartFrame + 1; } uint32_t FrameCaptureShared::getReplayFrameIndex() const { return mFrameIndex - mCaptureStartFrame + 1; } void FrameCaptureShared::replay(gl::Context *context) { ReplayContext replayContext(mReadBufferSize, mClientArraySizes); for (const CallCapture &call : mFrameCalls) { INFO() << "frame index: " << mFrameIndex << " " << call.name(); if (call.entryPoint == EntryPoint::GLInvalid) { if (call.customFunctionName == "UpdateClientArrayPointer") { GLint arrayIndex = call.params.getParam("arrayIndex", ParamType::TGLint, 0).value.GLintVal; ASSERT(arrayIndex < gl::MAX_VERTEX_ATTRIBS); const ParamCapture &pointerParam = call.params.getParam("pointer", ParamType::TvoidConstPointer, 1); ASSERT(pointerParam.data.size() == 1); const void *pointer = pointerParam.data[0].data(); size_t size = static_cast( call.params.getParam("size", ParamType::TGLuint64, 2).value.GLuint64Val); std::vector &curClientArrayBuffer = replayContext.getClientArraysBuffer()[arrayIndex]; ASSERT(curClientArrayBuffer.size() >= size); memcpy(curClientArrayBuffer.data(), pointer, size); } continue; } ReplayCall(context, &replayContext, call); } } // Serialize trace metadata into a JSON file. The JSON file will be named "trace_prefix.json". // // As of writing, it will have the format like so: // { // "TraceMetadata": // { // "AreClientArraysEnabled" : 1, "CaptureRevision" : 16631, "ConfigAlphaBits" : 8, // "ConfigBlueBits" : 8, "ConfigDepthBits" : 24, "ConfigGreenBits" : 8, // ... etc ... void FrameCaptureShared::writeJSON(const gl::Context *context) { const gl::ContextID contextId = context->id(); const SurfaceParams &surfaceParams = mDrawSurfaceParams.at(contextId); const gl::State &glState = context->getState(); const egl::Config *config = context->getConfig(); const egl::AttributeMap &displayAttribs = context->getDisplay()->getAttributeMap(); unsigned int frameCount = getFrameCount(); JsonSerializer json; json.startGroup("TraceMetadata"); json.addScalar("CaptureRevision", GetANGLERevision()); json.addScalar("ContextClientMajorVersion", context->getClientMajorVersion()); json.addScalar("ContextClientMinorVersion", context->getClientMinorVersion()); json.addHexValue("DisplayPlatformType", displayAttribs.getAsInt(EGL_PLATFORM_ANGLE_TYPE_ANGLE)); json.addHexValue("DisplayDeviceType", displayAttribs.getAsInt(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE)); json.addScalar("FrameStart", 1); json.addScalar("FrameEnd", frameCount); json.addScalar("DrawSurfaceWidth", surfaceParams.extents.width); json.addScalar("DrawSurfaceHeight", surfaceParams.extents.height); json.addHexValue("DrawSurfaceColorSpace", ToEGLenum(surfaceParams.colorSpace)); if (config) { json.addScalar("ConfigRedBits", config->redSize); json.addScalar("ConfigGreenBits", config->greenSize); json.addScalar("ConfigBlueBits", config->blueSize); json.addScalar("ConfigAlphaBits", config->alphaSize); json.addScalar("ConfigDepthBits", config->depthSize); json.addScalar("ConfigStencilBits", config->stencilSize); } else { json.addScalar("ConfigRedBits", EGL_DONT_CARE); json.addScalar("ConfigGreenBits", EGL_DONT_CARE); json.addScalar("ConfigBlueBits", EGL_DONT_CARE); json.addScalar("ConfigAlphaBits", EGL_DONT_CARE); json.addScalar("ConfigDepthBits", EGL_DONT_CARE); json.addScalar("ConfigStencilBits", EGL_DONT_CARE); } json.addBool("IsBinaryDataCompressed", mCompression); json.addBool("AreClientArraysEnabled", glState.areClientArraysEnabled()); json.addBool("IsBindGeneratesResourcesEnabled", glState.isBindGeneratesResourceEnabled()); json.addBool("IsWebGLCompatibilityEnabled", glState.isWebGL()); json.addBool("IsRobustResourceInitEnabled", glState.isRobustResourceInitEnabled()); json.addBool("IsTrimmingEnabled", mTrimEnabled); json.endGroup(); { const std::vector &traceFiles = mReplayWriter.getAndResetWrittenFiles(); json.addVectorOfStrings("TraceFiles", traceFiles); } json.addScalar("WindowSurfaceContextID", contextId.value); { std::stringstream jsonFileNameStream; jsonFileNameStream << mOutDirectory << FmtCapturePrefix(kNoContextId, mCaptureLabel) << ".json"; std::string jsonFileName = jsonFileNameStream.str(); SaveFileHelper saveData(jsonFileName); saveData.write(reinterpret_cast(json.data()), json.length()); } } void FrameCaptureShared::writeCppReplayIndexFiles(const gl::Context *context, bool writeResetContextCall) { // Ensure the last frame is written. This will no-op if the frame is already written. mReplayWriter.saveFrame(); const gl::ContextID contextId = context->id(); { std::stringstream header; header << "#pragma once\n"; header << "\n"; header << "#include \n"; header << "#include \n"; std::string includes = header.str(); mReplayWriter.setHeaderPrologue(includes); } { std::stringstream source; source << "#include \"" << FmtCapturePrefix(contextId, mCaptureLabel) << ".h\"\n"; source << "#include \"trace_fixture.h\"\n"; source << "#include \"angle_trace_gl.h\"\n"; std::string sourcePrologue = source.str(); mReplayWriter.setSourcePrologue(sourcePrologue); } { std::string proto = "void InitReplay()"; std::stringstream source; source << proto << "\n"; source << "{\n"; WriteInitReplayCall(mCompression, source, kSharedContextId, mCaptureLabel, MaxClientArraySize(mClientArraySizes), mReadBufferSize, mMaxAccessedResourceIDs); source << "}\n"; mReplayWriter.addPrivateFunction(proto, std::stringstream(), source); } { std::string proto = "void ReplayFrame(uint32_t frameIndex)"; std::stringstream source; source << proto << "\n"; source << "{\n"; source << " switch (frameIndex)\n"; source << " {\n"; for (uint32_t frameIndex : mActiveFrameIndices) { source << " case " << frameIndex << ":\n"; source << " " << FmtReplayFunction(contextId, frameIndex) << ";\n"; source << " break;\n"; } source << " default:\n"; source << " break;\n"; source << " }\n"; source << "}\n"; mReplayWriter.addPublicFunction(proto, std::stringstream(), source); } if (writeResetContextCall) { std::string proto = "void ResetReplay()"; std::stringstream source; source << proto << "\n"; source << "{\n"; source << " // Reset context is empty because context is destroyed before end " "frame is reached\n"; source << "}\n"; mReplayWriter.addPublicFunction(proto, std::stringstream(), source); } if (mSerializeStateEnabled) { std::string proto = "const char *GetSerializedContextState(uint32_t frameIndex)"; std::stringstream source; source << proto << "\n"; source << "{\n"; source << " switch (frameIndex)\n"; source << " {\n"; for (uint32_t frameIndex = 1; frameIndex <= getFrameCount(); ++frameIndex) { source << " case " << frameIndex << ":\n"; source << " return " << FmtGetSerializedContextStateFunction(contextId, frameIndex) << ";\n"; } source << " default:\n"; source << " return nullptr;\n"; source << " }\n"; source << "}\n"; mReplayWriter.addPublicFunction(proto, std::stringstream(), source); } { std::stringstream fnameStream; fnameStream << mOutDirectory << FmtCapturePrefix(contextId, mCaptureLabel); std::string fnamePattern = fnameStream.str(); mReplayWriter.setFilenamePattern(fnamePattern); } mReplayWriter.saveIndexFilesAndHeader(); writeJSON(context); } void FrameCaptureShared::writeMainContextCppReplay(const gl::Context *context, const std::vector &setupCalls) { ASSERT(mWindowSurfaceContextID == context->id()); { std::stringstream header; header << "#include \"" << FmtCapturePrefix(context->id(), mCaptureLabel) << ".h\"\n"; header << "#include \"angle_trace_gl.h\"\n"; std::string headerString = header.str(); mReplayWriter.setSourcePrologue(headerString); } uint32_t frameCount = getFrameCount(); uint32_t frameIndex = getReplayFrameIndex(); if (frameIndex == 1) { { std::stringstream protoStream; std::stringstream headerStream; std::stringstream bodyStream; protoStream << "void " << FmtSetupFunction(kNoPartId, context->id()); std::string proto = protoStream.str(); WriteCppReplayFunctionWithParts(context->id(), ReplayFunc::Setup, mReplayWriter, frameIndex, &mBinaryData, setupCalls, headerStream, bodyStream); mReplayWriter.addPrivateFunction(proto, headerStream, bodyStream); } { std::string proto = "void SetupReplay()"; std::stringstream out; out << proto << "\n"; out << "{\n"; out << " EGLContext context = eglGetCurrentContext();\n"; out << " gContextMap[" << context->id().value << "] = context;\n"; out << "\n"; // Setup all of the shared objects. out << " InitReplay();\n"; if (usesMidExecutionCapture()) { out << " " << FmtSetupFunction(kNoPartId, kSharedContextId) << ";\n"; } // Setup the presentation (this) context first. out << " " << FmtSetupFunction(kNoPartId, context->id()) << ";\n"; out << "\n"; // Setup each of the auxiliary contexts. egl::ShareGroup *shareGroup = context->getShareGroup(); const egl::ContextSet &shareContextSet = shareGroup->getContexts(); for (gl::Context *shareContext : shareContextSet) { // Skip the presentation context, since that context was created by the test // framework. if (shareContext->id() == context->id()) { continue; } // TODO(http://www.anglebug.com/5878): Support capture/replay of eglCreateContext() // so this block can be moved into SetupReplayContextXX() by injecting them into the // beginning of the setup call stream. out << " EGLContext context" << shareContext->id() << " = eglCreateContext(nullptr, nullptr, context, nullptr);\n"; out << " gContextMap[" << shareContext->id().value << "] = context" << shareContext->id() << ";\n"; // The SetupReplayContextXX() calls only exist if this is a mid-execution capture // and we can only call them if they exist, so only output the calls if this is a // MEC. if (usesMidExecutionCapture()) { out << " " << FmtSetupFunction(kNoPartId, shareContext->id()) << ";\n"; } } // If there are other contexts that were initialized, we need to make the main context // current again. if (shareContextSet.size() > 1) { out << "\n"; out << " eglMakeCurrent(EGL_NO_DISPLAY, EGL_NO_SURFACE, EGL_NO_SURFACE, " "context);\n"; } out << "}\n"; mReplayWriter.addPublicFunction(proto, std::stringstream(), out); } } // Emit code to reset back to starting state if (frameIndex == frameCount) { std::stringstream protoStream; std::stringstream headerStream; std::stringstream bodyStream; protoStream << "void " << FmtResetFunction(); std::string proto = protoStream.str(); bodyStream << proto << "\n"; bodyStream << "{\n"; // TODO(http://anglebug.com/5878): Look at moving this into the shared context file since // it's resetting shared objects. for (ResourceIDType resourceType : AllEnums()) { // Framebuffers must be done last so updated textures can be bound to them if (resourceType == ResourceIDType::Framebuffer) { continue; } MaybeResetResources(resourceType, mReplayWriter, bodyStream, headerStream, &mResourceTracker, &mBinaryData); } MaybeResetResources(ResourceIDType::Framebuffer, mReplayWriter, bodyStream, headerStream, &mResourceTracker, &mBinaryData); // Reset opaque type objects that don't have IDs, so are not ResourceIDTypes. MaybeResetOpaqueTypeObjects(mReplayWriter, bodyStream, headerStream, &mResourceTracker, &mBinaryData); bodyStream << "}\n"; mReplayWriter.addPublicFunction(proto, headerStream, bodyStream); } if (!mFrameCalls.empty()) { std::stringstream protoStream; protoStream << "void " << FmtReplayFunction(context->id(), frameIndex); std::string proto = protoStream.str(); std::stringstream headerStream; std::stringstream bodyStream; WriteCppReplayFunctionWithParts(context->id(), ReplayFunc::Replay, mReplayWriter, frameIndex, &mBinaryData, mFrameCalls, headerStream, bodyStream); mReplayWriter.addPrivateFunction(proto, headerStream, bodyStream); } if (mSerializeStateEnabled) { std::string serializedContextString; if (SerializeContextToString(const_cast(context), &serializedContextString) == Result::Continue) { std::stringstream protoStream; protoStream << "const char *" << FmtGetSerializedContextStateFunction(context->id(), frameIndex); std::string proto = protoStream.str(); std::stringstream bodyStream; bodyStream << proto << "\n"; bodyStream << "{\n"; bodyStream << " return R\"(" << serializedContextString << ")\";\n"; bodyStream << "}\n"; mReplayWriter.addPrivateFunction(proto, std::stringstream(), bodyStream); } } { std::stringstream fnamePatternStream; fnamePatternStream << mOutDirectory << FmtCapturePrefix(context->id(), mCaptureLabel); std::string fnamePattern = fnamePatternStream.str(); mReplayWriter.setFilenamePattern(fnamePattern); } if (mFrameIndex == mCaptureEndFrame) { mReplayWriter.saveFrame(); } else { mReplayWriter.saveFrameIfFull(); } } void FrameCaptureShared::reset() { mFrameCalls.clear(); mClientVertexArrayMap.fill(-1); // Do not reset replay-specific settings like the maximum read buffer size, client array sizes, // or the 'has seen' type map. We could refine this into per-frame and per-capture maximums if // necessary. } const std::string &FrameCaptureShared::getShaderSource(gl::ShaderProgramID id) const { const auto &foundSources = mCachedShaderSource.find(id); ASSERT(foundSources != mCachedShaderSource.end()); return foundSources->second; } void FrameCaptureShared::setShaderSource(gl::ShaderProgramID id, std::string source) { mCachedShaderSource[id] = source; } const ProgramSources &FrameCaptureShared::getProgramSources(gl::ShaderProgramID id) const { const auto &foundSources = mCachedProgramSources.find(id); ASSERT(foundSources != mCachedProgramSources.end()); return foundSources->second; } void FrameCaptureShared::setProgramSources(gl::ShaderProgramID id, ProgramSources sources) { mCachedProgramSources[id] = sources; } void FrameCaptureShared::markResourceSetupCallsInactive(std::vector *setupCalls, ResourceIDType type, GLuint id, gl::Range range) { if (!mTrimEnabled) { return; } ASSERT(mResourceIDToSetupCalls[type].find(id) == mResourceIDToSetupCalls[type].end()); // Mark all of the calls that were used to initialize this resource as INACTIVE for (size_t index : range) { (*setupCalls)[index].isActive = false; } mResourceIDToSetupCalls[type][id] = range; } void CaptureMemory(const void *source, size_t size, ParamCapture *paramCapture) { std::vector data(size); memcpy(data.data(), source, size); paramCapture->data.emplace_back(std::move(data)); } void CaptureString(const GLchar *str, ParamCapture *paramCapture) { // include the '\0' suffix CaptureMemory(str, strlen(str) + 1, paramCapture); } void CaptureStringLimit(const GLchar *str, uint32_t limit, ParamCapture *paramCapture) { // Write the incoming string up to limit, including null terminator size_t length = strlen(str) + 1; if (length > limit) { // If too many characters, resize the string to fit in the limit std::string newStr = str; newStr.resize(limit - 1); CaptureString(newStr.c_str(), paramCapture); } else { CaptureMemory(str, length, paramCapture); } } void CaptureVertexPointerGLES1(const gl::State &glState, gl::ClientVertexArrayType type, const void *pointer, ParamCapture *paramCapture) { paramCapture->value.voidConstPointerVal = pointer; if (!glState.getTargetBuffer(gl::BufferBinding::Array)) { paramCapture->arrayClientPointerIndex = gl::GLES1Renderer::VertexArrayIndex(type, glState.gles1()); } } gl::Program *GetProgramForCapture(const gl::State &glState, gl::ShaderProgramID handle) { gl::Program *program = glState.getShaderProgramManagerForCapture().getProgram(handle); return program; } void CaptureGetActiveUniformBlockivParameters(const gl::State &glState, gl::ShaderProgramID handle, gl::UniformBlockIndex uniformBlockIndex, GLenum pname, ParamCapture *paramCapture) { int numParams = 1; // From the OpenGL ES 3.0 spec: // If pname is UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the // active uniform indices for the uniform block identified by uniformBlockIndex is // returned. The number of elements that will be written to params is the value of // UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex if (pname == GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES) { gl::Program *program = GetProgramForCapture(glState, handle); if (program) { gl::QueryActiveUniformBlockiv(program, uniformBlockIndex, GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS, &numParams); } } paramCapture->readBufferSizeBytes = sizeof(GLint) * numParams; } void CaptureGetParameter(const gl::State &glState, GLenum pname, size_t typeSize, ParamCapture *paramCapture) { // kMaxReportedCapabilities is the biggest array we'll need to hold data from glGet calls. // This value needs to be updated if any new extensions are introduced that would allow for // more compressed texture formats. The current value is taken from: // http://opengles.gpuinfo.org/displaycapability.php?name=GL_NUM_COMPRESSED_TEXTURE_FORMATS&esversion=2 constexpr unsigned int kMaxReportedCapabilities = 69; paramCapture->readBufferSizeBytes = typeSize * kMaxReportedCapabilities; } void CaptureGenHandlesImpl(GLsizei n, GLuint *handles, ParamCapture *paramCapture) { paramCapture->readBufferSizeBytes = sizeof(GLuint) * n; CaptureMemory(handles, paramCapture->readBufferSizeBytes, paramCapture); } void CaptureShaderStrings(GLsizei count, const GLchar *const *strings, const GLint *length, ParamCapture *paramCapture) { // Concat the array elements of the string into one data vector, // append the terminating zero and use this as the captured shader // string. The string count and the length array are adjusted // accordingly in the capture post-processing std::vector data; size_t offset = 0; for (GLsizei index = 0; index < count; ++index) { size_t len = ((length && length[index] >= 0) ? length[index] : strlen(strings[index])); data.resize(offset + len); std::copy(strings[index], strings[index] + len, data.begin() + offset); offset += len; } data.push_back(0); paramCapture->data.emplace_back(std::move(data)); } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLboolean value) { switch (value) { case GL_TRUE: os << "GL_TRUE"; break; case GL_FALSE: os << "GL_FALSE"; break; default: os << "0x" << std::hex << std::uppercase << GLint(value); } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLboolean *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const void *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, void *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const GLfloat *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const GLint *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLsizei *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, const GLuint *value) { if (value == 0) { os << "nullptr"; } else { os << "reinterpret_cast(" << static_cast(reinterpret_cast(value)) << ")"; } } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLDEBUGPROCKHR value) {} template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLDEBUGPROC value) {} template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::BufferID value) { os << "gBufferMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::FenceNVID value) { os << "gFenceNVMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::FramebufferID value) { os << "gFramebufferMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::MemoryObjectID value) { os << "gMemoryObjectMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::ProgramPipelineID value) { os << "gProgramPipelineMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::QueryID value) { os << "gQueryMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::RenderbufferID value) { os << "gRenderbufferMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::SamplerID value) { os << "gSamplerMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::SemaphoreID value) { os << "gSemaphoreMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::ShaderProgramID value) { os << "gShaderProgramMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLsync value) { os << "gSyncMap[" << SyncIndexValue(value) << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::TextureID value) { os << "gTextureMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::TransformFeedbackID value) { os << "gTransformFeedbackMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::VertexArrayID value) { os << "gVertexArrayMap[" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::UniformLocation value) { if (value.value == -1) { os << "-1"; return; } os << "gUniformLocations["; // Find the program from the call parameters. std::vector programIDs; if (FindShaderProgramIDsInCall(call, programIDs)) { ASSERT(programIDs.size() == 1); os << "gShaderProgramMap[" << programIDs[0].value << "]"; } else { os << "gCurrentProgram"; } os << "][" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, gl::UniformBlockIndex value) { // Find the program from the call parameters. std::vector programIDs; bool foundProgram = FindShaderProgramIDsInCall(call, programIDs); ASSERT(foundProgram && programIDs.size() == 1); os << "gUniformBlockIndexes[gShaderProgramMap[" << programIDs[0].value << "]][" << value.value << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLeglImageOES value) { uint64_t pointerValue = reinterpret_cast(value); os << "reinterpret_cast(" << pointerValue << "ul)"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, GLubyte value) { const int v = value; os << v; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, EGLContext value) { os << "gContextMap[" << reinterpret_cast(value) << "]"; } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, EGLDisplay value) { if (value == EGL_NO_DISPLAY) { os << "EGL_NO_DISPLAY"; return; } // We don't support capturing real EGL calls. UNREACHABLE(); } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, EGLSurface value) { if (value == EGL_NO_SURFACE) { os << "EGL_NO_SURFACE"; return; } // We don't support capturing real EGL calls. UNREACHABLE(); } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, EGLDEBUGPROCKHR value) { // The value isn't actually useful, but this fixes MSVC compile errors: // error: implicit conversion between pointer-to-function and pointer-to-object is a Microsoft // extension [-Werror,-Wmicrosoft-cast] os << reinterpret_cast(value); } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, EGLGetBlobFuncANDROID value) { // The value isn't actually useful, but this fixes MSVC compile errors: // error: implicit conversion between pointer-to-function and pointer-to-object is a Microsoft // extension [-Werror,-Wmicrosoft-cast] os << reinterpret_cast(value); } template <> void WriteParamValueReplay(std::ostream &os, const CallCapture &call, EGLSetBlobFuncANDROID value) { // The value isn't actually useful, but this fixes MSVC compile errors: // error: implicit conversion between pointer-to-function and pointer-to-object is a Microsoft // extension [-Werror,-Wmicrosoft-cast] os << reinterpret_cast(value); } // ReplayWriter implementation. ReplayWriter::ReplayWriter() : mSourceFileSizeThreshold(kDefaultSourceFileSizeThreshold), mFrameIndex(1) {} ReplayWriter::~ReplayWriter() { ASSERT(mPrivateFunctionPrototypes.empty()); ASSERT(mPublicFunctionPrototypes.empty()); ASSERT(mPrivateFunctions.empty()); ASSERT(mPublicFunctions.empty()); ASSERT(mGlobalVariableDeclarations.empty()); ASSERT(mReplayHeaders.empty()); } void ReplayWriter::setSourceFileSizeThreshold(size_t sourceFileSizeThreshold) { mSourceFileSizeThreshold = sourceFileSizeThreshold; } void ReplayWriter::setFilenamePattern(const std::string &pattern) { if (mFilenamePattern != pattern) { mFilenamePattern = pattern; // Reset the frame counter if the filename pattern changes. mFrameIndex = 1; } } void ReplayWriter::setCaptureLabel(const std::string &label) { mCaptureLabel = label; } void ReplayWriter::setSourcePrologue(const std::string &prologue) { mSourcePrologue = prologue; } void ReplayWriter::setHeaderPrologue(const std::string &prologue) { mHeaderPrologue = prologue; } void ReplayWriter::addPublicFunction(const std::string &functionProto, const std::stringstream &headerStream, const std::stringstream &bodyStream) { mPublicFunctionPrototypes.push_back(functionProto); std::string header = headerStream.str(); std::string body = bodyStream.str(); if (!header.empty()) { mReplayHeaders.emplace_back(header); } if (!body.empty()) { mPublicFunctions.emplace_back(body); } } void ReplayWriter::addPrivateFunction(const std::string &functionProto, const std::stringstream &headerStream, const std::stringstream &bodyStream) { mPrivateFunctionPrototypes.push_back(functionProto); std::string header = headerStream.str(); std::string body = bodyStream.str(); if (!header.empty()) { mReplayHeaders.emplace_back(header); } if (!body.empty()) { mPrivateFunctions.emplace_back(body); } } std::string ReplayWriter::getInlineVariableName(EntryPoint entryPoint, const std::string ¶mName) { int counter = mDataTracker.getCounters().getAndIncrement(entryPoint, paramName); return GetVarName(entryPoint, paramName, counter); } std::string ReplayWriter::getInlineStringSetVariableName(EntryPoint entryPoint, const std::string ¶mName, const std::vector &strings, bool *isNewEntryOut) { int counter = mDataTracker.getStringCounters().getStringCounter(strings); *isNewEntryOut = (counter == kStringsNotFound); if (*isNewEntryOut) { // This is a unique set of strings, so set up their declaration and update the counter counter = mDataTracker.getCounters().getAndIncrement(entryPoint, paramName); mDataTracker.getStringCounters().setStringCounter(strings, counter); std::string varName = GetVarName(entryPoint, paramName, counter); std::stringstream declStream; declStream << "const char *const " << varName << "[]"; std::string decl = declStream.str(); mGlobalVariableDeclarations.push_back(decl); return varName; } else { return GetVarName(entryPoint, paramName, counter); } } size_t ReplayWriter::getStoredReplaySourceSize() const { size_t sum = 0; for (const std::string &header : mReplayHeaders) { sum += header.size(); } for (const std::string &publicFunc : mPublicFunctions) { sum += publicFunc.size(); } for (const std::string &privateFunc : mPrivateFunctions) { sum += privateFunc.size(); } return sum; } // static std::string ReplayWriter::GetVarName(EntryPoint entryPoint, const std::string ¶mName, int counter) { std::stringstream strstr; strstr << GetEntryPointName(entryPoint) << "_" << paramName << "_" << counter; return strstr.str(); } void ReplayWriter::saveFrame() { if (mReplayHeaders.empty() && mPublicFunctions.empty() && mPrivateFunctions.empty()) { return; } std::stringstream strstr; strstr << mFilenamePattern << "_" << std::setfill('0') << std::setw(3) << mFrameIndex++ << ".cpp"; std::string frameFilePath = strstr.str(); writeReplaySource(frameFilePath); } void ReplayWriter::saveFrameIfFull() { if (getStoredReplaySourceSize() < mSourceFileSizeThreshold) { INFO() << "Merging captured frame: " << getStoredReplaySourceSize() << " less than threshold of " << mSourceFileSizeThreshold << " bytes"; return; } saveFrame(); } void ReplayWriter::saveHeader() { std::stringstream headerPathStream; headerPathStream << mFilenamePattern << ".h"; std::string headerPath = headerPathStream.str(); SaveFileHelper saveH(headerPath); saveH << mHeaderPrologue << "\n"; saveH << "// Public functions are declared in trace_fixture.h.\n"; saveH << "\n"; saveH << "// Private Functions\n"; saveH << "\n"; for (const std::string &proto : mPrivateFunctionPrototypes) { saveH << proto << ";\n"; } saveH << "\n"; saveH << "// Global variables\n"; saveH << "\n"; for (const std::string &globalVar : mGlobalVariableDeclarations) { saveH << "extern " << globalVar << ";\n"; } mPublicFunctionPrototypes.clear(); mPrivateFunctionPrototypes.clear(); mGlobalVariableDeclarations.clear(); addWrittenFile(headerPath); } void ReplayWriter::saveIndexFilesAndHeader() { std::stringstream sourcePathStream; sourcePathStream << mFilenamePattern << ".cpp"; std::string sourcePath = sourcePathStream.str(); writeReplaySource(sourcePath); saveHeader(); } void ReplayWriter::saveSetupFile() { std::stringstream strstr; strstr << mFilenamePattern << ".cpp"; std::string frameFilePath = strstr.str(); writeReplaySource(frameFilePath); } void ReplayWriter::writeReplaySource(const std::string &filename) { SaveFileHelper saveCpp(filename); saveCpp << mSourcePrologue << "\n"; for (const std::string &header : mReplayHeaders) { saveCpp << header << "\n"; } saveCpp << "// Private Functions\n"; saveCpp << "\n"; for (const std::string &func : mPrivateFunctions) { saveCpp << func << "\n"; } saveCpp << "// Public Functions\n"; saveCpp << "\n"; saveCpp << "extern \"C\"\n"; saveCpp << "{\n"; for (const std::string &func : mPublicFunctions) { saveCpp << func << "\n"; } saveCpp << "} // extern \"C\"\n"; mReplayHeaders.clear(); mPrivateFunctions.clear(); mPublicFunctions.clear(); addWrittenFile(filename); } void ReplayWriter::addWrittenFile(const std::string &filename) { std::string writtenFile = GetBaseName(filename); ASSERT(std::find(mWrittenFiles.begin(), mWrittenFiles.end(), writtenFile) == mWrittenFiles.end()); mWrittenFiles.push_back(writtenFile); } std::vector ReplayWriter::getAndResetWrittenFiles() { std::vector results = std::move(mWrittenFiles); std::sort(results.begin(), results.end()); ASSERT(mWrittenFiles.empty()); return results; } } // namespace angle