// Copyright 2015-2016 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. use super::{ bigint::{self, Prime}, verification, RsaEncoding, N, }; /// RSA PKCS#1 1.5 signatures. use crate::{ arithmetic::montgomery::R, bits, digest, error::{self, KeyRejected}, io::{self, der, der_writer}, pkcs8, rand, signature, }; use alloc::boxed::Box; /// An RSA key pair, used for signing. pub struct RsaKeyPair { p: PrivatePrime

, q: PrivatePrime, qInv: bigint::Elem, qq: bigint::Modulus, q_mod_n: bigint::Elem, public: verification::Key, public_key: RsaSubjectPublicKey, } derive_debug_via_field!(RsaKeyPair, stringify!(RsaKeyPair), public_key); impl RsaKeyPair { /// Parses an unencrypted PKCS#8-encoded RSA private key. /// /// Only two-prime (not multi-prime) keys are supported. The public modulus /// (n) must be at least 2047 bits. The public modulus must be no larger /// than 4096 bits. It is recommended that the public modulus be exactly /// 2048 or 3072 bits. The public exponent must be at least 65537. /// /// This will generate a 2048-bit RSA private key of the correct form using /// OpenSSL's command line tool: /// /// ```sh /// openssl genpkey -algorithm RSA \ /// -pkeyopt rsa_keygen_bits:2048 \ /// -pkeyopt rsa_keygen_pubexp:65537 | \ /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8 /// ``` /// /// This will generate a 3072-bit RSA private key of the correct form: /// /// ```sh /// openssl genpkey -algorithm RSA \ /// -pkeyopt rsa_keygen_bits:3072 \ /// -pkeyopt rsa_keygen_pubexp:65537 | \ /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8 /// ``` /// /// Often, keys generated for use in OpenSSL-based software are stored in /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be /// converted to binary PKCS#8 form using the OpenSSL command line tool like /// this: /// /// ```sh /// openssl pkcs8 -topk8 -nocrypt -outform der \ /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 /// ``` /// /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8 /// form like this: /// /// ```sh /// openssl pkcs8 -nocrypt -outform der \ /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 /// ``` /// /// The private key is validated according to [NIST SP-800-56B rev. 1] /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown), /// with the following exceptions: /// /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an /// expected modulus length is provided as a parameter, so checks /// regarding these expectations are not done. /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the /// expected modulus length is provided as a parameter, the consistency /// check between these values and the private key's value of n isn't /// done. /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for /// performance reasons and to avoid any side channels that such tests /// would provide. /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7: /// * *ring* has a slightly looser lower bound for the values of `p` /// and `q` than what the NIST document specifies. This looser lower /// bound matches what most other crypto libraries do. The check might /// be tightened to meet NIST's requirements in the future. Similarly, /// the check that `p` and `q` are not too close together is skipped /// currently, but may be added in the future. /// - The validity of the mathematical relationship of `dP`, `dQ`, `e` /// and `n` is verified only during signing. Some size checks of `d`, /// `dP` and `dQ` are performed at construction, but some NIST checks /// are skipped because they would be expensive and/or they would leak /// information through side channels. If a preemptive check of the /// consistency of `dP`, `dQ`, `e` and `n` with each other is /// necessary, that can be done by signing any message with the key /// pair. /// /// * `d` is not fully validated, neither at construction nor during /// signing. This is OK as far as *ring*'s usage of the key is /// concerned because *ring* never uses the value of `d` (*ring* always /// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem, /// instead). However, *ring*'s checks would not be sufficient for /// validating a key pair for use by some other system; that other /// system must check the value of `d` itself if `d` is to be used. /// /// In addition to the NIST requirements, *ring* requires that `p > q` and /// that `e` must be no more than 33 bits. /// /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the /// encoding of the key. /// /// [NIST SP-800-56B rev. 1]: /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf /// /// [RFC 3447 Appendix A.1.2]: /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 /// /// [RFC 5958]: /// https://tools.ietf.org/html/rfc5958 pub fn from_pkcs8(pkcs8: &[u8]) -> Result { const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der"); let (der, _) = pkcs8::unwrap_key_( untrusted::Input::from(&RSA_ENCRYPTION), pkcs8::Version::V1Only, untrusted::Input::from(pkcs8), )?; Self::from_der(der.as_slice_less_safe()) } /// Parses an RSA private key that is not inside a PKCS#8 wrapper. /// /// The private key must be encoded as a binary DER-encoded ASN.1 /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other /// respects, this is just like `from_pkcs8()`. See the documentation for /// `from_pkcs8()` for more details. /// /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key) /// instead. /// /// [RFC 3447 Appendix A.1.2]: /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 /// /// [NIST SP-800-56B rev. 1]: /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf pub fn from_der(input: &[u8]) -> Result { untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| { der::nested( input, der::Tag::Sequence, error::KeyRejected::invalid_encoding(), Self::from_der_reader, ) }) } fn from_der_reader(input: &mut untrusted::Reader) -> Result { let version = der::small_nonnegative_integer(input) .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?; if version != 0 { return Err(KeyRejected::version_not_supported()); } fn positive_integer<'a>( input: &mut untrusted::Reader<'a>, ) -> Result, KeyRejected> { der::positive_integer(input) .map_err(|error::Unspecified| KeyRejected::invalid_encoding()) } let n = positive_integer(input)?; let e = positive_integer(input)?; let d = positive_integer(input)?.big_endian_without_leading_zero_as_input(); let p = positive_integer(input)?.big_endian_without_leading_zero_as_input(); let q = positive_integer(input)?.big_endian_without_leading_zero_as_input(); let dP = positive_integer(input)?.big_endian_without_leading_zero_as_input(); let dQ = positive_integer(input)?.big_endian_without_leading_zero_as_input(); let qInv = positive_integer(input)?.big_endian_without_leading_zero_as_input(); let (p, p_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(p) .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?; let (q, q_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(q) .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?; // Our implementation of CRT-based modular exponentiation used requires // that `p > q` so swap them if `p < q`. If swapped, `qInv` is // recalculated below. `p != q` is verified implicitly below, e.g. when // `q_mod_p` is constructed. let ((p, p_bits, dP), (q, q_bits, dQ, qInv)) = match q.verify_less_than(&p) { Ok(_) => ((p, p_bits, dP), (q, q_bits, dQ, Some(qInv))), Err(error::Unspecified) => { // TODO: verify `q` and `qInv` are inverses (mod p). ((q, q_bits, dQ), (p, p_bits, dP, None)) } }; // XXX: Some steps are done out of order, but the NIST steps are worded // in such a way that it is clear that NIST intends for them to be done // in order. TODO: Does this matter at all? // 6.4.1.4.3/6.4.1.2.1 - Step 1. // Step 1.a is omitted, as explained above. // Step 1.b is omitted per above. Instead, we check that the public // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits. // XXX: The maximum limit of 4096 bits is primarily due to lack of // testing of larger key sizes; see, in particular, // https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html // and // https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html. // Also, this limit might help with memory management decisions later. // Step 1.c. We validate e >= 65537. let public_key = verification::Key::from_modulus_and_exponent( n.big_endian_without_leading_zero_as_input(), e.big_endian_without_leading_zero_as_input(), bits::BitLength::from_usize_bits(2048), super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS, 65537, )?; // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2. // 6.4.1.4.3 Step 3. // Step 3.a is done below, out of order. // Step 3.b is unneeded since `n_bits` is derived here from `n`. // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover // the prime factors since they are already given.) // 6.4.1.4.3 - Step 5. // Steps 5.a and 5.b are omitted, as explained above. // Step 5.c. // // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`. // // Second, stop if `p > 2**(nBits/2) - 1`. let half_n_bits = public_key.n_bits.half_rounded_up(); if p_bits != half_n_bits { return Err(KeyRejected::inconsistent_components()); } // TODO: Step 5.d: Verify GCD(p - 1, e) == 1. // Steps 5.e and 5.f are omitted as explained above. // Step 5.g. // // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`. // // Second, stop if `q > 2**(nBits/2) - 1`. if p_bits != q_bits { return Err(KeyRejected::inconsistent_components()); } // TODO: Step 5.h: Verify GCD(p - 1, e) == 1. let q_mod_n_decoded = q .to_elem(&public_key.n) .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; // TODO: Step 5.i // // 3.b is unneeded since `n_bits` is derived here from `n`. // 6.4.1.4.3 - Step 3.a (out of order). // // Verify that p * q == n. We restrict ourselves to modular // multiplication. We rely on the fact that we've verified // 0 < q < p < n. We check that q and p are close to sqrt(n) and then // assume that these preconditions are enough to let us assume that // checking p * q == 0 (mod n) is equivalent to checking p * q == n. let q_mod_n = bigint::elem_mul( public_key.n.oneRR().as_ref(), q_mod_n_decoded.clone(), &public_key.n, ); let p_mod_n = p .to_elem(&public_key.n) .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, &public_key.n); if !pq_mod_n.is_zero() { return Err(KeyRejected::inconsistent_components()); } // 6.4.1.4.3/6.4.1.2.1 - Step 6. // Step 6.a, partial. // // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d, // and knowing d is odd makes the inequality strict. let (d, d_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(d) .map_err(|_| error::KeyRejected::invalid_encoding())?; if !(half_n_bits < d_bits) { return Err(KeyRejected::inconsistent_components()); } // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have // a good way of calculating LCM, so it is omitted, as explained above. d.verify_less_than_modulus(&public_key.n) .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; if !d.is_odd() { return Err(KeyRejected::invalid_component()); } // Step 6.b is omitted as explained above. // 6.4.1.4.3 - Step 7. // Step 7.a. let p = PrivatePrime::new(p, dP)?; // Step 7.b. let q = PrivatePrime::new(q, dQ)?; let q_mod_p = q.modulus.to_elem(&p.modulus); // Step 7.c. let qInv = if let Some(qInv) = qInv { bigint::Elem::from_be_bytes_padded(qInv, &p.modulus) .map_err(|error::Unspecified| KeyRejected::invalid_component())? } else { // We swapped `p` and `q` above, so we need to calculate `qInv`. // Step 7.f below will verify `qInv` is correct. let q_mod_p = bigint::elem_mul(p.modulus.oneRR().as_ref(), q_mod_p.clone(), &p.modulus); bigint::elem_inverse_consttime(q_mod_p, &p.modulus) .map_err(|error::Unspecified| KeyRejected::unexpected_error())? }; // Steps 7.d and 7.e are omitted per the documentation above, and // because we don't (in the long term) have a good way to do modulo // with an even modulus. // Step 7.f. let qInv = bigint::elem_mul(p.modulus.oneRR().as_ref(), qInv, &p.modulus); bigint::verify_inverses_consttime(&qInv, q_mod_p, &p.modulus) .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; let qq = bigint::elem_mul(&q_mod_n, q_mod_n_decoded, &public_key.n).into_modulus::()?; let public_key_serialized = RsaSubjectPublicKey::from_n_and_e(n, e); Ok(Self { p, q, qInv, q_mod_n, qq, public: public_key, public_key: public_key_serialized, }) } /// Returns the length in bytes of the key pair's public modulus. /// /// A signature has the same length as the public modulus. pub fn public_modulus_len(&self) -> usize { self.public_key .modulus() .big_endian_without_leading_zero_as_input() .as_slice_less_safe() .len() } } impl signature::KeyPair for RsaKeyPair { type PublicKey = RsaSubjectPublicKey; fn public_key(&self) -> &Self::PublicKey { &self.public_key } } /// A serialized RSA public key. #[derive(Clone)] pub struct RsaSubjectPublicKey(Box<[u8]>); impl AsRef<[u8]> for RsaSubjectPublicKey { fn as_ref(&self) -> &[u8] { self.0.as_ref() } } derive_debug_self_as_ref_hex_bytes!(RsaSubjectPublicKey); impl RsaSubjectPublicKey { fn from_n_and_e(n: io::Positive, e: io::Positive) -> Self { let bytes = der_writer::write_all(der::Tag::Sequence, &|output| { der_writer::write_positive_integer(output, &n); der_writer::write_positive_integer(output, &e); }); RsaSubjectPublicKey(bytes) } /// The public modulus (n). pub fn modulus(&self) -> io::Positive { // Parsing won't fail because we serialized it ourselves. let (public_key, _exponent) = super::parse_public_key(untrusted::Input::from(self.as_ref())).unwrap(); public_key } /// The public exponent (e). pub fn exponent(&self) -> io::Positive { // Parsing won't fail because we serialized it ourselves. let (_public_key, exponent) = super::parse_public_key(untrusted::Input::from(self.as_ref())).unwrap(); exponent } } struct PrivatePrime { modulus: bigint::Modulus, exponent: bigint::PrivateExponent, } impl PrivatePrime { /// Constructs a `PrivatePrime` from the private prime `p` and `dP` where /// dP == d % (p - 1). fn new(p: bigint::Nonnegative, dP: untrusted::Input) -> Result { let (p, p_bits) = bigint::Modulus::from_nonnegative_with_bit_length(p)?; if p_bits.as_usize_bits() % 512 != 0 { return Err(error::KeyRejected::private_modulus_len_not_multiple_of_512_bits()); } // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b. let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, &p) .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; // XXX: Steps 7.d and 7.e are omitted. We don't check that // `dP == d % (p - 1)` because we don't (in the long term) have a good // way to do modulo with an even modulus. Instead we just check that // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we // do the private key operation, since we verify that the result of the // private key operation using the CRT parameters is consistent with `n` // and `e`. TODO: Either prove that what we do is sufficient, or make // it so. Ok(PrivatePrime { modulus: p, exponent: dP, }) } } fn elem_exp_consttime( c: &bigint::Elem, p: &PrivatePrime, ) -> Result, error::Unspecified> where M: bigint::NotMuchSmallerModulus, M: Prime, { let c_mod_m = bigint::elem_reduced(c, &p.modulus); // We could precompute `oneRRR = elem_squared(&p.oneRR`) as mentioned // in the Smooth CRT-RSA paper. let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus); let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus); bigint::elem_exp_consttime(c_mod_m, &p.exponent, &p.modulus) } // Type-level representations of the different moduli used in RSA signing, in // addition to `super::N`. See `super::bigint`'s modulue-level documentation. #[derive(Copy, Clone)] enum P {} unsafe impl Prime for P {} unsafe impl bigint::SmallerModulus for P {} unsafe impl bigint::NotMuchSmallerModulus for P {} #[derive(Copy, Clone)] enum QQ {} unsafe impl bigint::SmallerModulus for QQ {} unsafe impl bigint::NotMuchSmallerModulus for QQ {} // `q < p < 2*q` since `q` is slightly smaller than `p` (see below). Thus: // // q < p < 2*q // q*q < p*q < 2*q*q. // q**2 < n < 2*(q**2). unsafe impl bigint::SlightlySmallerModulus for QQ {} #[derive(Copy, Clone)] enum Q {} unsafe impl Prime for Q {} unsafe impl bigint::SmallerModulus for Q {} unsafe impl bigint::SmallerModulus

for Q {} // q < p && `p.bit_length() == q.bit_length()` implies `q < p < 2*q`. unsafe impl bigint::SlightlySmallerModulus

for Q {} unsafe impl bigint::SmallerModulus for Q {} unsafe impl bigint::NotMuchSmallerModulus for Q {} impl RsaKeyPair { /// Sign `msg`. `msg` is digested using the digest algorithm from /// `padding_alg` and the digest is then padded using the padding algorithm /// from `padding_alg`. The signature it written into `signature`; /// `signature`'s length must be exactly the length returned by /// `public_modulus_len()`. `rng` may be used to randomize the padding /// (e.g. for PSS). /// /// Many other crypto libraries have signing functions that takes a /// precomputed digest as input, instead of the message to digest. This /// function does *not* take a precomputed digest; instead, `sign` /// calculates the digest itself. /// /// Lots of effort has been made to make the signing operations close to /// constant time to protect the private key from side channel attacks. On /// x86-64, this is done pretty well, but not perfectly. On other /// platforms, it is done less perfectly. pub fn sign( &self, padding_alg: &'static dyn RsaEncoding, rng: &dyn rand::SecureRandom, msg: &[u8], signature: &mut [u8], ) -> Result<(), error::Unspecified> { let mod_bits = self.public.n_bits; if signature.len() != mod_bits.as_usize_bytes_rounded_up() { return Err(error::Unspecified); } let m_hash = digest::digest(padding_alg.digest_alg(), msg); padding_alg.encode(&m_hash, signature, mod_bits, rng)?; // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem // with Garner's algorithm. let n = &self.public.n; // Step 1. The value zero is also rejected. let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(signature), n)?; // Step 2 let c = base; // Step 2.b.i. let m_1 = elem_exp_consttime(&c, &self.p)?; let c_mod_qq = bigint::elem_reduced_once(&c, &self.qq); let m_2 = elem_exp_consttime(&c_mod_qq, &self.q)?; // Step 2.b.ii isn't needed since there are only two primes. // Step 2.b.iii. let p = &self.p.modulus; let m_2 = bigint::elem_widen(m_2, p); let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p); let h = bigint::elem_mul(&self.qInv, m_1_minus_m_2, p); // Step 2.b.iv. The reduction in the modular multiplication isn't // necessary because `h < p` and `p * q == n` implies `h * q < n`. // Modular arithmetic is used simply to avoid implementing // non-modular arithmetic. let h = bigint::elem_widen(h, n); let q_times_h = bigint::elem_mul(&self.q_mod_n, h, n); let m_2 = bigint::elem_widen(m_2, n); let m = bigint::elem_add(m_2, q_times_h, n); // Step 2.b.v isn't needed since there are only two primes. // Verify the result to protect against fault attacks as described // in "On the Importance of Checking Cryptographic Protocols for // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. // This check is cheap assuming `e` is small, which is ensured during // `KeyPair` construction. Note that this is the only validation of `e` // that is done other than basic checks on its size, oddness, and // minimum value, since the relationship of `e` to `d`, `p`, and `q` is // not verified during `KeyPair` construction. { let verify = bigint::elem_exp_vartime(m.clone(), self.public.e, n); let verify = verify.into_unencoded(n); bigint::elem_verify_equal_consttime(&verify, &c)?; } // Step 3. // // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. m.fill_be_bytes(signature); Ok(()) } } #[cfg(test)] mod tests { // We intentionally avoid `use super::*` so that we are sure to use only // the public API; this ensures that enough of the API is public. use crate::{rand, signature}; use alloc::vec; // `KeyPair::sign` requires that the output buffer is the same length as // the public key modulus. Test what happens when it isn't the same length. #[test] fn test_signature_rsa_pkcs1_sign_output_buffer_len() { // Sign the message "hello, world", using PKCS#1 v1.5 padding and the // SHA256 digest algorithm. const MESSAGE: &[u8] = b"hello, world"; let rng = rand::SystemRandom::new(); const PRIVATE_KEY_DER: &[u8] = include_bytes!("signature_rsa_example_private_key.der"); let key_pair = signature::RsaKeyPair::from_der(PRIVATE_KEY_DER).unwrap(); // The output buffer is one byte too short. let mut signature = vec![0; key_pair.public_modulus_len() - 1]; assert!(key_pair .sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature) .is_err()); // The output buffer is the right length. signature.push(0); assert!(key_pair .sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature) .is_ok()); // The output buffer is one byte too long. signature.push(0); assert!(key_pair .sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature) .is_err()); } }