# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for lstm.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import ExtraTocoOptions from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function from tensorflow.python.ops import rnn @register_make_test_function() def make_lstm_tests(options): """Make a set of tests to do basic Lstm cell.""" test_parameters = [ { "dtype": [tf.float32], "num_batchs": [1], "time_step_size": [1], "input_vec_size": [3], "num_cells": [4], "split_tflite_lstm_inputs": [False], }, ] def build_graph(parameters): """Build a simple graph with BasicLSTMCell.""" num_batchs = parameters["num_batchs"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] num_cells = parameters["num_cells"] inputs_after_split = [] for i in range(time_step_size): one_timestamp_input = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="split_{}".format(i), shape=[num_batchs, input_vec_size]) inputs_after_split.append(one_timestamp_input) # Currently lstm identifier has a few limitations: only supports # forget_bias == 0, inner state activation == tanh. # TODO(zhixianyan): Add another test with forget_bias == 1. # TODO(zhixianyan): Add another test with relu as activation. lstm_cell = tf.compat.v1.nn.rnn_cell.BasicLSTMCell( num_cells, forget_bias=0.0, state_is_tuple=True) cell_outputs, _ = rnn.static_rnn( lstm_cell, inputs_after_split, dtype=tf.float32) out = cell_outputs[-1] return inputs_after_split, [out] def build_inputs(parameters, sess, inputs, outputs): """Feed inputs, assign variables, and freeze graph.""" with tf.compat.v1.variable_scope("", reuse=True): kernel = tf.get_variable("rnn/basic_lstm_cell/kernel") bias = tf.get_variable("rnn/basic_lstm_cell/bias") kernel_values = create_tensor_data(parameters["dtype"], [kernel.shape[0], kernel.shape[1]], -1, 1) bias_values = create_tensor_data(parameters["dtype"], [bias.shape[0]], 0, 1) sess.run(tf.group(kernel.assign(kernel_values), bias.assign(bias_values))) num_batchs = parameters["num_batchs"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] input_values = [] for _ in range(time_step_size): tensor_data = create_tensor_data(parameters["dtype"], [num_batchs, input_vec_size], 0, 1) input_values.append(tensor_data) out = sess.run(outputs, feed_dict=dict(zip(inputs, input_values))) return input_values, out # TODO(zhixianyan): Automatically generate rnn_states for lstm cell. extra_toco_options = ExtraTocoOptions() extra_toco_options.rnn_states = ( "{state_array:rnn/BasicLSTMCellZeroState/zeros," "back_edge_source_array:rnn/basic_lstm_cell/Add_1,size:4}," "{state_array:rnn/BasicLSTMCellZeroState/zeros_1," "back_edge_source_array:rnn/basic_lstm_cell/Mul_2,size:4}") make_zip_of_tests( options, test_parameters, build_graph, build_inputs, extra_toco_options, use_frozen_graph=True)