# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for padv2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v1 as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function @register_make_test_function() def make_padv2_tests(options): """Make a set of tests to do padv2.""" # TODO(nupurgarg): Add test for tf.uint8. test_parameters = [ # 5D: { "dtype": [tf.int32, tf.int64, tf.float32], "input_shape": [[1, 1, 2, 1, 1], [2, 1, 1, 1, 1]], "paddings": [[[0, 0], [0, 1], [2, 3], [0, 0], [1, 0]], [[0, 1], [0, 0], [0, 0], [2, 3], [1, 0]]], "constant_paddings": [True, False], "constant_values": [0, 2], }, # 4D: { "dtype": [tf.int32, tf.int64, tf.float32], "input_shape": [[1, 1, 2, 1], [2, 1, 1, 1]], "paddings": [[[0, 0], [0, 1], [2, 3], [0, 0]], [[0, 1], [0, 0], [0, 0], [2, 3]]], "constant_paddings": [True, False], "constant_values": [0, 2], }, # 2D: { "dtype": [tf.int32, tf.int64, tf.float32], "input_shape": [[1, 2]], "paddings": [[[0, 1], [2, 3]]], "constant_paddings": [True, False], "constant_values": [0, 2], }, # 1D: { "dtype": [tf.int32], "input_shape": [[1]], "paddings": [[[0, 1]]], "constant_paddings": [False], "constant_values": [0, 2], }, ] def build_graph(parameters): """Build a pad graph given `parameters`.""" input_tensor = tf.compat.v1.placeholder( dtype=parameters["dtype"], name="input", shape=parameters["input_shape"]) # Get paddings as either a placeholder or constants. if parameters["constant_paddings"]: paddings = parameters["paddings"] input_tensors = [input_tensor] else: shape = [len(parameters["paddings"]), 2] paddings = tf.compat.v1.placeholder( dtype=tf.int32, name="padding", shape=shape) input_tensors = [input_tensor, paddings] out = tf.pad( input_tensor, paddings=paddings, constant_values=parameters["constant_values"]) return input_tensors, [out] def build_inputs(parameters, sess, inputs, outputs): values = [ create_tensor_data(parameters["dtype"], parameters["input_shape"]) ] if not parameters["constant_paddings"]: values.append(np.array(parameters["paddings"])) return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)