# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Decorator to overrides the gradient for a function.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.client import pywrap_tf_session from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops get_resource_handle_data = ops.get_resource_handle_data def copy_handle_data(source_t, target_t): """Copies HandleData for variant and resource type tensors if available. The CppShapeInferenceResult::HandleData proto contains information about the shapes and types of the element tensors of resource/variant type tensors. We need to copy this across function boundaries, i.e., when capturing a placeholder or when returning a function tensor as output. If we don't do this the element tensors will have unknown shapes, e.g., if a TensorList variant tensor is captured as a placeholder, elements popped from that list would have unknown shape. Args: source_t: The tensor to copy HandleData from. target_t: The tensor to copy HandleData to. """ if (target_t.dtype == dtypes.resource or target_t.dtype == dtypes.variant): if isinstance(source_t, ops.EagerTensor): handle_data = source_t._handle_data # pylint: disable=protected-access else: handle_data = get_resource_handle_data(source_t) if (handle_data is not None and handle_data.is_set and handle_data.shape_and_type): set_handle_data(target_t, handle_data) def set_handle_data(target_t, handle_data): # pylint: disable=protected-access if isinstance(target_t, ops.EagerTensor): target_t._handle_data = handle_data return pywrap_tf_session.SetHandleShapeAndType(target_t.graph._c_graph, target_t._as_tf_output(), handle_data.SerializeToString()) # pylint: enable=protected-access