/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "CCodec" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "C2OMXNode.h" #include "CCodecBufferChannel.h" #include "CCodecConfig.h" #include "Codec2Mapper.h" #include "InputSurfaceWrapper.h" extern "C" android::PersistentSurface *CreateInputSurface(); namespace android { using namespace std::chrono_literals; using ::android::hardware::graphics::bufferqueue::V1_0::utils::H2BGraphicBufferProducer; using android::base::StringPrintf; using ::android::hardware::media::c2::V1_0::IInputSurface; typedef hardware::media::omx::V1_0::IGraphicBufferSource HGraphicBufferSource; typedef CCodecConfig Config; namespace { class CCodecWatchdog : public AHandler { private: enum { kWhatWatch, }; constexpr static int64_t kWatchIntervalUs = 3300000; // 3.3 secs public: static sp getInstance() { static sp instance(new CCodecWatchdog); static std::once_flag flag; // Call Init() only once. std::call_once(flag, Init, instance); return instance; } ~CCodecWatchdog() = default; void watch(sp codec) { bool shouldPost = false; { Mutexed>>::Locked codecs(mCodecsToWatch); // If a watch message is in flight, piggy-back this instance as well. // Otherwise, post a new watch message. shouldPost = codecs->empty(); codecs->emplace(codec); } if (shouldPost) { ALOGV("posting watch message"); (new AMessage(kWhatWatch, this))->post(kWatchIntervalUs); } } protected: void onMessageReceived(const sp &msg) { switch (msg->what()) { case kWhatWatch: { Mutexed>>::Locked codecs(mCodecsToWatch); ALOGV("watch for %zu codecs", codecs->size()); for (auto it = codecs->begin(); it != codecs->end(); ++it) { sp codec = it->promote(); if (codec == nullptr) { continue; } codec->initiateReleaseIfStuck(); } codecs->clear(); break; } default: { TRESPASS("CCodecWatchdog: unrecognized message"); } } } private: CCodecWatchdog() : mLooper(new ALooper) {} static void Init(const sp &thiz) { ALOGV("Init"); thiz->mLooper->setName("CCodecWatchdog"); thiz->mLooper->registerHandler(thiz); thiz->mLooper->start(); } sp mLooper; Mutexed>> mCodecsToWatch; }; class C2InputSurfaceWrapper : public InputSurfaceWrapper { public: explicit C2InputSurfaceWrapper( const std::shared_ptr &surface) : mSurface(surface) { } ~C2InputSurfaceWrapper() override = default; status_t connect(const std::shared_ptr &comp) override { if (mConnection != nullptr) { return ALREADY_EXISTS; } return toStatusT(comp->connectToInputSurface(mSurface, &mConnection)); } void disconnect() override { if (mConnection != nullptr) { mConnection->disconnect(); mConnection = nullptr; } } status_t start() override { // InputSurface does not distinguish started state return OK; } status_t signalEndOfInputStream() override { C2InputSurfaceEosTuning eos(true); std::vector> failures; c2_status_t err = mSurface->config({&eos}, C2_MAY_BLOCK, &failures); if (err != C2_OK) { return UNKNOWN_ERROR; } return OK; } status_t configure(Config &config __unused) { // TODO return OK; } private: std::shared_ptr mSurface; std::shared_ptr mConnection; }; class GraphicBufferSourceWrapper : public InputSurfaceWrapper { public: typedef hardware::media::omx::V1_0::Status OmxStatus; GraphicBufferSourceWrapper( const sp &source, uint32_t width, uint32_t height, uint64_t usage) : mSource(source), mWidth(width), mHeight(height) { mDataSpace = HAL_DATASPACE_BT709; mConfig.mUsage = usage; } ~GraphicBufferSourceWrapper() override = default; status_t connect(const std::shared_ptr &comp) override { mNode = new C2OMXNode(comp); mOmxNode = new hardware::media::omx::V1_0::utils::TWOmxNode(mNode); mNode->setFrameSize(mWidth, mHeight); // Usage is queried during configure(), so setting it beforehand. OMX_U32 usage = mConfig.mUsage & 0xFFFFFFFF; (void)mNode->setParameter( (OMX_INDEXTYPE)OMX_IndexParamConsumerUsageBits, &usage, sizeof(usage)); return GetStatus(mSource->configure( mOmxNode, static_cast(mDataSpace))); } void disconnect() override { if (mNode == nullptr) { return; } sp source = mNode->getSource(); if (source == nullptr) { ALOGD("GBSWrapper::disconnect: node is not configured with OMXBufferSource."); return; } source->onOmxIdle(); source->onOmxLoaded(); mNode.clear(); mOmxNode.clear(); } status_t GetStatus(hardware::Return &&status) { if (status.isOk()) { return static_cast(status.withDefault(OmxStatus::UNKNOWN_ERROR)); } else if (status.isDeadObject()) { return DEAD_OBJECT; } return UNKNOWN_ERROR; } status_t start() override { sp source = mNode->getSource(); if (source == nullptr) { return NO_INIT; } size_t numSlots = 16; constexpr OMX_U32 kPortIndexInput = 0; OMX_PARAM_PORTDEFINITIONTYPE param; param.nPortIndex = kPortIndexInput; status_t err = mNode->getParameter(OMX_IndexParamPortDefinition, ¶m, sizeof(param)); if (err == OK) { numSlots = param.nBufferCountActual; } for (size_t i = 0; i < numSlots; ++i) { source->onInputBufferAdded(i); } source->onOmxExecuting(); return OK; } status_t signalEndOfInputStream() override { return GetStatus(mSource->signalEndOfInputStream()); } status_t configure(Config &config) { std::stringstream status; status_t err = OK; // handle each configuration granually, in case we need to handle part of the configuration // elsewhere // TRICKY: we do not unset frame delay repeating if (config.mMinFps > 0 && config.mMinFps != mConfig.mMinFps) { int64_t us = 1e6 / config.mMinFps + 0.5; status_t res = GetStatus(mSource->setRepeatPreviousFrameDelayUs(us)); status << " minFps=" << config.mMinFps << " => repeatDelayUs=" << us; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } mConfig.mMinFps = config.mMinFps; } // pts gap if (config.mMinAdjustedFps > 0 || config.mFixedAdjustedFps > 0) { if (mNode != nullptr) { OMX_PARAM_U32TYPE ptrGapParam = {}; ptrGapParam.nSize = sizeof(OMX_PARAM_U32TYPE); float gap = (config.mMinAdjustedFps > 0) ? c2_min(INT32_MAX + 0., 1e6 / config.mMinAdjustedFps + 0.5) : c2_max(0. - INT32_MAX, -1e6 / config.mFixedAdjustedFps - 0.5); // float -> uint32_t is undefined if the value is negative. // First convert to int32_t to ensure the expected behavior. ptrGapParam.nU32 = int32_t(gap); (void)mNode->setParameter( (OMX_INDEXTYPE)OMX_IndexParamMaxFrameDurationForBitrateControl, &ptrGapParam, sizeof(ptrGapParam)); } } // max fps // TRICKY: we do not unset max fps to 0 unless using fixed fps if ((config.mMaxFps > 0 || (config.mFixedAdjustedFps > 0 && config.mMaxFps == -1)) && config.mMaxFps != mConfig.mMaxFps) { status_t res = GetStatus(mSource->setMaxFps(config.mMaxFps)); status << " maxFps=" << config.mMaxFps; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } mConfig.mMaxFps = config.mMaxFps; } if (config.mTimeOffsetUs != mConfig.mTimeOffsetUs) { status_t res = GetStatus(mSource->setTimeOffsetUs(config.mTimeOffsetUs)); status << " timeOffset " << config.mTimeOffsetUs << "us"; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } mConfig.mTimeOffsetUs = config.mTimeOffsetUs; } if (config.mCaptureFps != mConfig.mCaptureFps || config.mCodedFps != mConfig.mCodedFps) { status_t res = GetStatus(mSource->setTimeLapseConfig(config.mCodedFps, config.mCaptureFps)); status << " timeLapse " << config.mCaptureFps << "fps as " << config.mCodedFps << "fps"; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } mConfig.mCaptureFps = config.mCaptureFps; mConfig.mCodedFps = config.mCodedFps; } if (config.mStartAtUs != mConfig.mStartAtUs || (config.mStopped != mConfig.mStopped && !config.mStopped)) { status_t res = GetStatus(mSource->setStartTimeUs(config.mStartAtUs)); status << " start at " << config.mStartAtUs << "us"; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } mConfig.mStartAtUs = config.mStartAtUs; mConfig.mStopped = config.mStopped; } // suspend-resume if (config.mSuspended != mConfig.mSuspended) { status_t res = GetStatus(mSource->setSuspend(config.mSuspended, config.mSuspendAtUs)); status << " " << (config.mSuspended ? "suspend" : "resume") << " at " << config.mSuspendAtUs << "us"; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } mConfig.mSuspended = config.mSuspended; mConfig.mSuspendAtUs = config.mSuspendAtUs; } if (config.mStopped != mConfig.mStopped && config.mStopped) { status_t res = GetStatus(mSource->setStopTimeUs(config.mStopAtUs)); status << " stop at " << config.mStopAtUs << "us"; if (res != OK) { status << " (=> " << asString(res) << ")"; err = res; } else { status << " delayUs"; hardware::Return trans = mSource->getStopTimeOffsetUs( [&res, &delayUs = config.mInputDelayUs]( auto status, auto stopTimeOffsetUs) { res = static_cast(status); delayUs = stopTimeOffsetUs; }); if (!trans.isOk()) { res = trans.isDeadObject() ? DEAD_OBJECT : UNKNOWN_ERROR; } if (res != OK) { status << " (=> " << asString(res) << ")"; } else { status << "=" << config.mInputDelayUs << "us"; } mConfig.mInputDelayUs = config.mInputDelayUs; } mConfig.mStopAtUs = config.mStopAtUs; mConfig.mStopped = config.mStopped; } // color aspects (android._color-aspects) // consumer usage is queried earlier. // priority if (mConfig.mPriority != config.mPriority) { if (config.mPriority != INT_MAX) { mNode->setPriority(config.mPriority); } mConfig.mPriority = config.mPriority; } if (status.str().empty()) { ALOGD("ISConfig not changed"); } else { ALOGD("ISConfig%s", status.str().c_str()); } return err; } void onInputBufferDone(c2_cntr64_t index) override { mNode->onInputBufferDone(index); } android_dataspace getDataspace() override { return mNode->getDataspace(); } private: sp mSource; sp mNode; sp mOmxNode; uint32_t mWidth; uint32_t mHeight; Config mConfig; }; class Codec2ClientInterfaceWrapper : public C2ComponentStore { std::shared_ptr mClient; public: Codec2ClientInterfaceWrapper(std::shared_ptr client) : mClient(client) { } virtual ~Codec2ClientInterfaceWrapper() = default; virtual c2_status_t config_sm( const std::vector ¶ms, std::vector> *const failures) { return mClient->config(params, C2_MAY_BLOCK, failures); }; virtual c2_status_t copyBuffer( std::shared_ptr, std::shared_ptr) { return C2_OMITTED; } virtual c2_status_t createComponent( C2String, std::shared_ptr *const component) { component->reset(); return C2_OMITTED; } virtual c2_status_t createInterface( C2String, std::shared_ptr *const interface) { interface->reset(); return C2_OMITTED; } virtual c2_status_t query_sm( const std::vector &stackParams, const std::vector &heapParamIndices, std::vector> *const heapParams) const { return mClient->query(stackParams, heapParamIndices, C2_MAY_BLOCK, heapParams); } virtual c2_status_t querySupportedParams_nb( std::vector> *const params) const { return mClient->querySupportedParams(params); } virtual c2_status_t querySupportedValues_sm( std::vector &fields) const { return mClient->querySupportedValues(fields, C2_MAY_BLOCK); } virtual C2String getName() const { return mClient->getName(); } virtual std::shared_ptr getParamReflector() const { return mClient->getParamReflector(); } virtual std::vector> listComponents() { return std::vector>(); } }; void RevertOutputFormatIfNeeded( const sp &oldFormat, sp ¤tFormat) { // We used to not report changes to these keys to the client. const static std::set sIgnoredKeys({ KEY_BIT_RATE, KEY_FRAME_RATE, KEY_MAX_BIT_RATE, KEY_MAX_WIDTH, KEY_MAX_HEIGHT, "csd-0", "csd-1", "csd-2", }); if (currentFormat == oldFormat) { return; } sp diff = currentFormat->changesFrom(oldFormat); AMessage::Type type; for (size_t i = diff->countEntries(); i > 0; --i) { if (sIgnoredKeys.count(diff->getEntryNameAt(i - 1, &type)) > 0) { diff->removeEntryAt(i - 1); } } if (diff->countEntries() == 0) { currentFormat = oldFormat; } } void AmendOutputFormatWithCodecSpecificData( const uint8_t *data, size_t size, const std::string &mediaType, const sp &outputFormat) { if (mediaType == MIMETYPE_VIDEO_AVC) { // Codec specific data should be SPS and PPS in a single buffer, // each prefixed by a startcode (0x00 0x00 0x00 0x01). // We separate the two and put them into the output format // under the keys "csd-0" and "csd-1". unsigned csdIndex = 0; const uint8_t *nalStart; size_t nalSize; while (getNextNALUnit(&data, &size, &nalStart, &nalSize, true) == OK) { sp csd = new ABuffer(nalSize + 4); memcpy(csd->data(), "\x00\x00\x00\x01", 4); memcpy(csd->data() + 4, nalStart, nalSize); outputFormat->setBuffer( AStringPrintf("csd-%u", csdIndex).c_str(), csd); ++csdIndex; } if (csdIndex != 2) { ALOGW("Expected two NAL units from AVC codec config, but %u found", csdIndex); } } else { // For everything else we just stash the codec specific data into // the output format as a single piece of csd under "csd-0". sp csd = new ABuffer(size); memcpy(csd->data(), data, size); csd->setRange(0, size); outputFormat->setBuffer("csd-0", csd); } } } // namespace // CCodec::ClientListener struct CCodec::ClientListener : public Codec2Client::Listener { explicit ClientListener(const wp &codec) : mCodec(codec) {} virtual void onWorkDone( const std::weak_ptr& component, std::list>& workItems) override { (void)component; sp codec(mCodec.promote()); if (!codec) { return; } codec->onWorkDone(workItems); } virtual void onTripped( const std::weak_ptr& component, const std::vector>& settingResult ) override { // TODO (void)component; (void)settingResult; } virtual void onError( const std::weak_ptr& component, uint32_t errorCode) override { { // Component is only used for reporting as we use a separate listener for each instance std::shared_ptr comp = component.lock(); if (!comp) { ALOGD("Component died with error: 0x%x", errorCode); } else { ALOGD("Component \"%s\" returned error: 0x%x", comp->getName().c_str(), errorCode); } } // Report to MediaCodec // Note: for now we do not propagate the error code to MediaCodec // except for C2_NO_MEMORY, as we would need to translate to a MediaCodec error. sp codec(mCodec.promote()); if (!codec || !codec->mCallback) { return; } codec->mCallback->onError( errorCode == C2_NO_MEMORY ? NO_MEMORY : UNKNOWN_ERROR, ACTION_CODE_FATAL); } virtual void onDeath( const std::weak_ptr& component) override { { // Log the death of the component. std::shared_ptr comp = component.lock(); if (!comp) { ALOGE("Codec2 component died."); } else { ALOGE("Codec2 component \"%s\" died.", comp->getName().c_str()); } } // Report to MediaCodec. sp codec(mCodec.promote()); if (!codec || !codec->mCallback) { return; } codec->mCallback->onError(DEAD_OBJECT, ACTION_CODE_FATAL); } virtual void onFrameRendered(uint64_t bufferQueueId, int32_t slotId, int64_t timestampNs) override { // TODO: implement (void)bufferQueueId; (void)slotId; (void)timestampNs; } virtual void onInputBufferDone( uint64_t frameIndex, size_t arrayIndex) override { sp codec(mCodec.promote()); if (codec) { codec->onInputBufferDone(frameIndex, arrayIndex); } } private: wp mCodec; }; // CCodecCallbackImpl class CCodecCallbackImpl : public CCodecCallback { public: explicit CCodecCallbackImpl(CCodec *codec) : mCodec(codec) {} ~CCodecCallbackImpl() override = default; void onError(status_t err, enum ActionCode actionCode) override { mCodec->mCallback->onError(err, actionCode); } void onOutputFramesRendered(int64_t mediaTimeUs, nsecs_t renderTimeNs) override { mCodec->mCallback->onOutputFramesRendered( {RenderedFrameInfo(mediaTimeUs, renderTimeNs)}); } void onOutputBuffersChanged() override { mCodec->mCallback->onOutputBuffersChanged(); } void onFirstTunnelFrameReady() override { mCodec->mCallback->onFirstTunnelFrameReady(); } private: CCodec *mCodec; }; // CCodec CCodec::CCodec() : mChannel(new CCodecBufferChannel(std::make_shared(this))), mConfig(new CCodecConfig) { } CCodec::~CCodec() { } std::shared_ptr CCodec::getBufferChannel() { return mChannel; } status_t CCodec::tryAndReportOnError(std::function job) { status_t err = job(); if (err != C2_OK) { mCallback->onError(err, ACTION_CODE_FATAL); } return err; } void CCodec::initiateAllocateComponent(const sp &msg) { auto setAllocating = [this] { Mutexed::Locked state(mState); if (state->get() != RELEASED) { return INVALID_OPERATION; } state->set(ALLOCATING); return OK; }; if (tryAndReportOnError(setAllocating) != OK) { return; } sp codecInfo; CHECK(msg->findObject("codecInfo", &codecInfo)); // For Codec 2.0 components, componentName == codecInfo->getCodecName(). sp allocMsg(new AMessage(kWhatAllocate, this)); allocMsg->setObject("codecInfo", codecInfo); allocMsg->post(); } void CCodec::allocate(const sp &codecInfo) { if (codecInfo == nullptr) { mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return; } ALOGD("allocate(%s)", codecInfo->getCodecName()); mClientListener.reset(new ClientListener(this)); AString componentName = codecInfo->getCodecName(); std::shared_ptr client; // set up preferred component store to access vendor store parameters client = Codec2Client::CreateFromService("default"); if (client) { ALOGI("setting up '%s' as default (vendor) store", client->getServiceName().c_str()); SetPreferredCodec2ComponentStore( std::make_shared(client)); } std::shared_ptr comp; c2_status_t status = Codec2Client::CreateComponentByName( componentName.c_str(), mClientListener, &comp, &client); if (status != C2_OK) { ALOGE("Failed Create component: %s, error=%d", componentName.c_str(), status); Mutexed::Locked state(mState); state->set(RELEASED); state.unlock(); mCallback->onError((status == C2_NO_MEMORY ? NO_MEMORY : UNKNOWN_ERROR), ACTION_CODE_FATAL); state.lock(); return; } ALOGI("Created component [%s]", componentName.c_str()); mChannel->setComponent(comp); auto setAllocated = [this, comp, client] { Mutexed::Locked state(mState); if (state->get() != ALLOCATING) { state->set(RELEASED); return UNKNOWN_ERROR; } state->set(ALLOCATED); state->comp = comp; mClient = client; return OK; }; if (tryAndReportOnError(setAllocated) != OK) { return; } // initialize config here in case setParameters is called prior to configure Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; status_t err = config->initialize(mClient->getParamReflector(), comp); if (err != OK) { ALOGW("Failed to initialize configuration support"); // TODO: report error once we complete implementation. } config->queryConfiguration(comp); mCallback->onComponentAllocated(componentName.c_str()); } void CCodec::initiateConfigureComponent(const sp &format) { auto checkAllocated = [this] { Mutexed::Locked state(mState); return (state->get() != ALLOCATED) ? UNKNOWN_ERROR : OK; }; if (tryAndReportOnError(checkAllocated) != OK) { return; } sp msg(new AMessage(kWhatConfigure, this)); msg->setMessage("format", format); msg->post(); } void CCodec::configure(const sp &msg) { std::shared_ptr comp; auto checkAllocated = [this, &comp] { Mutexed::Locked state(mState); if (state->get() != ALLOCATED) { state->set(RELEASED); return UNKNOWN_ERROR; } comp = state->comp; return OK; }; if (tryAndReportOnError(checkAllocated) != OK) { return; } auto doConfig = [msg, comp, this]() -> status_t { AString mime; if (!msg->findString("mime", &mime)) { return BAD_VALUE; } int32_t encoder; if (!msg->findInt32("encoder", &encoder)) { encoder = false; } int32_t flags; if (!msg->findInt32("flags", &flags)) { return BAD_VALUE; } // TODO: read from intf() if ((!encoder) != (comp->getName().find("encoder") == std::string::npos)) { return UNKNOWN_ERROR; } int32_t storeMeta; if (encoder && msg->findInt32("android._input-metadata-buffer-type", &storeMeta) && storeMeta != kMetadataBufferTypeInvalid) { if (storeMeta != kMetadataBufferTypeANWBuffer) { ALOGD("Only ANW buffers are supported for legacy metadata mode"); return BAD_VALUE; } mChannel->setMetaMode(CCodecBufferChannel::MODE_ANW); } status_t err = OK; sp obj; sp surface; if (msg->findObject("native-window", &obj)) { surface = static_cast(obj.get()); // setup tunneled playback if (surface != nullptr) { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; if ((config->mDomain & Config::IS_DECODER) && (config->mDomain & Config::IS_VIDEO)) { int32_t tunneled; if (msg->findInt32("feature-tunneled-playback", &tunneled) && tunneled != 0) { ALOGI("Configuring TUNNELED video playback."); err = configureTunneledVideoPlayback(comp, &config->mSidebandHandle, msg); if (err != OK) { ALOGE("configureTunneledVideoPlayback failed!"); return err; } config->mTunneled = true; } int32_t pushBlankBuffersOnStop = 0; if (msg->findInt32(KEY_PUSH_BLANK_BUFFERS_ON_STOP, &pushBlankBuffersOnStop)) { config->mPushBlankBuffersOnStop = pushBlankBuffersOnStop == 1; } // secure compoment or protected content default with // "push-blank-buffers-on-shutdown" flag if (!config->mPushBlankBuffersOnStop) { int32_t usageProtected; if (comp->getName().find(".secure") != std::string::npos) { config->mPushBlankBuffersOnStop = true; } else if (msg->findInt32("protected", &usageProtected) && usageProtected) { config->mPushBlankBuffersOnStop = true; } } } } setSurface(surface); } Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; config->mUsingSurface = surface != nullptr; config->mBuffersBoundToCodec = ((flags & CONFIGURE_FLAG_USE_BLOCK_MODEL) == 0); ALOGD("[%s] buffers are %sbound to CCodec for this session", comp->getName().c_str(), config->mBuffersBoundToCodec ? "" : "not "); // Enforce required parameters int32_t i32; float flt; if (config->mDomain & Config::IS_AUDIO) { if (!msg->findInt32(KEY_SAMPLE_RATE, &i32)) { ALOGD("sample rate is missing, which is required for audio components."); return BAD_VALUE; } if (!msg->findInt32(KEY_CHANNEL_COUNT, &i32)) { ALOGD("channel count is missing, which is required for audio components."); return BAD_VALUE; } if ((config->mDomain & Config::IS_ENCODER) && !mime.equalsIgnoreCase(MEDIA_MIMETYPE_AUDIO_FLAC) && !msg->findInt32(KEY_BIT_RATE, &i32) && !msg->findFloat(KEY_BIT_RATE, &flt)) { ALOGD("bitrate is missing, which is required for audio encoders."); return BAD_VALUE; } } int32_t width = 0; int32_t height = 0; if (config->mDomain & (Config::IS_IMAGE | Config::IS_VIDEO)) { if (!msg->findInt32(KEY_WIDTH, &width)) { ALOGD("width is missing, which is required for image/video components."); return BAD_VALUE; } if (!msg->findInt32(KEY_HEIGHT, &height)) { ALOGD("height is missing, which is required for image/video components."); return BAD_VALUE; } if ((config->mDomain & Config::IS_ENCODER) && (config->mDomain & Config::IS_VIDEO)) { int32_t mode = BITRATE_MODE_VBR; if (msg->findInt32(KEY_BITRATE_MODE, &mode) && mode == BITRATE_MODE_CQ) { if (!msg->findInt32(KEY_QUALITY, &i32)) { ALOGD("quality is missing, which is required for video encoders in CQ."); return BAD_VALUE; } } else { if (!msg->findInt32(KEY_BIT_RATE, &i32) && !msg->findFloat(KEY_BIT_RATE, &flt)) { ALOGD("bitrate is missing, which is required for video encoders."); return BAD_VALUE; } } if (!msg->findInt32(KEY_I_FRAME_INTERVAL, &i32) && !msg->findFloat(KEY_I_FRAME_INTERVAL, &flt)) { ALOGD("I frame interval is missing, which is required for video encoders."); return BAD_VALUE; } if (!msg->findInt32(KEY_FRAME_RATE, &i32) && !msg->findFloat(KEY_FRAME_RATE, &flt)) { ALOGD("frame rate is missing, which is required for video encoders."); return BAD_VALUE; } } } /* * Handle input surface configuration */ if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE)) && (config->mDomain & Config::IS_ENCODER)) { config->mISConfig.reset(new InputSurfaceWrapper::Config{}); { config->mISConfig->mMinFps = 0; int64_t value; if (msg->findInt64(KEY_REPEAT_PREVIOUS_FRAME_AFTER, &value) && value > 0) { config->mISConfig->mMinFps = 1e6 / value; } if (!msg->findFloat( KEY_MAX_FPS_TO_ENCODER, &config->mISConfig->mMaxFps)) { config->mISConfig->mMaxFps = -1; } config->mISConfig->mMinAdjustedFps = 0; config->mISConfig->mFixedAdjustedFps = 0; if (msg->findInt64(KEY_MAX_PTS_GAP_TO_ENCODER, &value)) { if (value < 0 && value >= INT32_MIN) { config->mISConfig->mFixedAdjustedFps = -1e6 / value; config->mISConfig->mMaxFps = -1; } else if (value > 0 && value <= INT32_MAX) { config->mISConfig->mMinAdjustedFps = 1e6 / value; } } } { bool captureFpsFound = false; double timeLapseFps; float captureRate; if (msg->findDouble("time-lapse-fps", &timeLapseFps)) { config->mISConfig->mCaptureFps = timeLapseFps; captureFpsFound = true; } else if (msg->findAsFloat(KEY_CAPTURE_RATE, &captureRate)) { config->mISConfig->mCaptureFps = captureRate; captureFpsFound = true; } if (captureFpsFound) { (void)msg->findAsFloat(KEY_FRAME_RATE, &config->mISConfig->mCodedFps); } } { config->mISConfig->mSuspended = false; config->mISConfig->mSuspendAtUs = -1; int32_t value; if (msg->findInt32(KEY_CREATE_INPUT_SURFACE_SUSPENDED, &value) && value) { config->mISConfig->mSuspended = true; } } config->mISConfig->mUsage = 0; config->mISConfig->mPriority = INT_MAX; } /* * Handle desired color format. */ int32_t defaultColorFormat = COLOR_FormatYUV420Flexible; if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE))) { int32_t format = 0; // Query vendor format for Flexible YUV std::vector> heapParams; C2StoreFlexiblePixelFormatDescriptorsInfo *pixelFormatInfo = nullptr; int vendorSdkVersion = base::GetIntProperty( "ro.vendor.build.version.sdk", android_get_device_api_level()); if (vendorSdkVersion >= __ANDROID_API_S__ && mClient->query( {}, {C2StoreFlexiblePixelFormatDescriptorsInfo::PARAM_TYPE}, C2_MAY_BLOCK, &heapParams) == C2_OK && heapParams.size() == 1u) { pixelFormatInfo = C2StoreFlexiblePixelFormatDescriptorsInfo::From( heapParams[0].get()); } else { pixelFormatInfo = nullptr; } // bit depth -> format std::map flexPixelFormat; std::map flexPlanarPixelFormat; std::map flexSemiPlanarPixelFormat; if (pixelFormatInfo && *pixelFormatInfo) { for (size_t i = 0; i < pixelFormatInfo->flexCount(); ++i) { const C2FlexiblePixelFormatDescriptorStruct &desc = pixelFormatInfo->m.values[i]; if (desc.subsampling != C2Color::YUV_420 // TODO(b/180076105): some device report wrong layout // || desc.layout == C2Color::INTERLEAVED_PACKED // || desc.layout == C2Color::INTERLEAVED_ALIGNED || desc.layout == C2Color::UNKNOWN_LAYOUT) { continue; } if (flexPixelFormat.count(desc.bitDepth) == 0) { flexPixelFormat.emplace(desc.bitDepth, desc.pixelFormat); } if (desc.layout == C2Color::PLANAR_PACKED && flexPlanarPixelFormat.count(desc.bitDepth) == 0) { flexPlanarPixelFormat.emplace(desc.bitDepth, desc.pixelFormat); } if (desc.layout == C2Color::SEMIPLANAR_PACKED && flexSemiPlanarPixelFormat.count(desc.bitDepth) == 0) { flexSemiPlanarPixelFormat.emplace(desc.bitDepth, desc.pixelFormat); } } } if (!msg->findInt32(KEY_COLOR_FORMAT, &format)) { // Also handle default color format (encoders require color format, so this is only // needed for decoders. if (!(config->mDomain & Config::IS_ENCODER)) { if (surface == nullptr) { const char *prefix = ""; if (flexSemiPlanarPixelFormat.count(8) != 0) { format = COLOR_FormatYUV420SemiPlanar; prefix = "semi-"; } else { format = COLOR_FormatYUV420Planar; } ALOGD("Client requested ByteBuffer mode decoder w/o color format set: " "using default %splanar color format", prefix); } else { format = COLOR_FormatSurface; } defaultColorFormat = format; } } else { if ((config->mDomain & Config::IS_ENCODER) || !surface) { if (vendorSdkVersion < __ANDROID_API_S__ && (format == COLOR_FormatYUV420Flexible || format == COLOR_FormatYUV420Planar || format == COLOR_FormatYUV420PackedPlanar || format == COLOR_FormatYUV420SemiPlanar || format == COLOR_FormatYUV420PackedSemiPlanar)) { // pre-S framework used to map these color formats into YV12. // Codecs from older vendor partition may be relying on // this assumption. format = HAL_PIXEL_FORMAT_YV12; } switch (format) { case COLOR_FormatYUV420Flexible: format = COLOR_FormatYUV420Planar; if (flexPixelFormat.count(8) != 0) { format = flexPixelFormat[8]; } break; case COLOR_FormatYUV420Planar: case COLOR_FormatYUV420PackedPlanar: if (flexPlanarPixelFormat.count(8) != 0) { format = flexPlanarPixelFormat[8]; } else if (flexPixelFormat.count(8) != 0) { format = flexPixelFormat[8]; } break; case COLOR_FormatYUV420SemiPlanar: case COLOR_FormatYUV420PackedSemiPlanar: if (flexSemiPlanarPixelFormat.count(8) != 0) { format = flexSemiPlanarPixelFormat[8]; } else if (flexPixelFormat.count(8) != 0) { format = flexPixelFormat[8]; } break; case COLOR_FormatYUVP010: format = COLOR_FormatYUVP010; if (flexSemiPlanarPixelFormat.count(10) != 0) { format = flexSemiPlanarPixelFormat[10]; } else if (flexPixelFormat.count(10) != 0) { format = flexPixelFormat[10]; } break; default: // No-op break; } } } if (format != 0) { msg->setInt32("android._color-format", format); } } /* * Handle dataspace */ int32_t usingRecorder; if (msg->findInt32("android._using-recorder", &usingRecorder) && usingRecorder) { android_dataspace dataSpace = HAL_DATASPACE_BT709; int32_t width, height; if (msg->findInt32("width", &width) && msg->findInt32("height", &height)) { ColorAspects aspects; getColorAspectsFromFormat(msg, aspects); setDefaultCodecColorAspectsIfNeeded(aspects, width, height); // TODO: read dataspace / color aspect from the component setColorAspectsIntoFormat(aspects, const_cast &>(msg)); dataSpace = getDataSpaceForColorAspects(aspects, true /* mayexpand */); } msg->setInt32("android._dataspace", (int32_t)dataSpace); ALOGD("setting dataspace to %x", dataSpace); } int32_t subscribeToAllVendorParams; if (msg->findInt32("x-*", &subscribeToAllVendorParams) && subscribeToAllVendorParams) { if (config->subscribeToAllVendorParams(comp, C2_MAY_BLOCK) != OK) { ALOGD("[%s] Failed to subscribe to all vendor params", comp->getName().c_str()); } } std::vector> configUpdate; // NOTE: We used to ignore "video-bitrate" at configure; replicate // the behavior here. sp sdkParams = msg; int32_t videoBitrate; if (sdkParams->findInt32(PARAMETER_KEY_VIDEO_BITRATE, &videoBitrate)) { sdkParams = msg->dup(); sdkParams->removeEntryAt(sdkParams->findEntryByName(PARAMETER_KEY_VIDEO_BITRATE)); } err = config->getConfigUpdateFromSdkParams( comp, sdkParams, Config::IS_CONFIG, C2_DONT_BLOCK, &configUpdate); if (err != OK) { ALOGW("failed to convert configuration to c2 params"); } int32_t maxBframes = 0; if ((config->mDomain & Config::IS_ENCODER) && (config->mDomain & Config::IS_VIDEO) && sdkParams->findInt32(KEY_MAX_B_FRAMES, &maxBframes) && maxBframes > 0) { std::unique_ptr gop = C2StreamGopTuning::output::AllocUnique(2 /* flexCount */, 0u /* stream */); gop->m.values[0] = { P_FRAME, UINT32_MAX }; gop->m.values[1] = { C2Config::picture_type_t(P_FRAME | B_FRAME), uint32_t(maxBframes) }; configUpdate.push_back(std::move(gop)); } if ((config->mDomain & Config::IS_ENCODER) && (config->mDomain & Config::IS_VIDEO)) { // we may not use all 3 of these entries std::unique_ptr qp = C2StreamPictureQuantizationTuning::output::AllocUnique(3 /* flexCount */, 0u /* stream */); int ix = 0; int32_t iMax = INT32_MAX; int32_t iMin = INT32_MIN; (void) sdkParams->findInt32(KEY_VIDEO_QP_I_MAX, &iMax); (void) sdkParams->findInt32(KEY_VIDEO_QP_I_MIN, &iMin); if (iMax != INT32_MAX || iMin != INT32_MIN) { qp->m.values[ix++] = {I_FRAME, iMin, iMax}; } int32_t pMax = INT32_MAX; int32_t pMin = INT32_MIN; (void) sdkParams->findInt32(KEY_VIDEO_QP_P_MAX, &pMax); (void) sdkParams->findInt32(KEY_VIDEO_QP_P_MIN, &pMin); if (pMax != INT32_MAX || pMin != INT32_MIN) { qp->m.values[ix++] = {P_FRAME, pMin, pMax}; } int32_t bMax = INT32_MAX; int32_t bMin = INT32_MIN; (void) sdkParams->findInt32(KEY_VIDEO_QP_B_MAX, &bMax); (void) sdkParams->findInt32(KEY_VIDEO_QP_B_MIN, &bMin); if (bMax != INT32_MAX || bMin != INT32_MIN) { qp->m.values[ix++] = {B_FRAME, bMin, bMax}; } // adjust to reflect actual use. qp->setFlexCount(ix); configUpdate.push_back(std::move(qp)); } int32_t background = 0; if ((config->mDomain & Config::IS_VIDEO) && msg->findInt32("android._background-mode", &background) && background) { androidSetThreadPriority(gettid(), ANDROID_PRIORITY_BACKGROUND); if (config->mISConfig) { config->mISConfig->mPriority = ANDROID_PRIORITY_BACKGROUND; } } err = config->setParameters(comp, configUpdate, C2_DONT_BLOCK); if (err != OK) { ALOGW("failed to configure c2 params"); return err; } std::vector> params; C2StreamUsageTuning::input usage(0u, 0u); C2StreamMaxBufferSizeInfo::input maxInputSize(0u, 0u); C2PrependHeaderModeSetting prepend(PREPEND_HEADER_TO_NONE); C2Param::Index colorAspectsRequestIndex = C2StreamColorAspectsInfo::output::PARAM_TYPE | C2Param::CoreIndex::IS_REQUEST_FLAG; std::initializer_list indices { colorAspectsRequestIndex.withStream(0u), }; int32_t colorTransferRequest = 0; if (config->mDomain & (Config::IS_IMAGE | Config::IS_VIDEO) && !sdkParams->findInt32("color-transfer-request", &colorTransferRequest)) { colorTransferRequest = 0; } c2_status_t c2err = C2_OK; if (colorTransferRequest != 0) { c2err = comp->query( { &usage, &maxInputSize, &prepend }, indices, C2_DONT_BLOCK, ¶ms); } else { c2err = comp->query( { &usage, &maxInputSize, &prepend }, {}, C2_DONT_BLOCK, ¶ms); } if (c2err != C2_OK && c2err != C2_BAD_INDEX) { ALOGE("Failed to query component interface: %d", c2err); return UNKNOWN_ERROR; } if (usage) { if (usage.value & C2MemoryUsage::CPU_READ) { config->mInputFormat->setInt32("using-sw-read-often", true); } if (config->mISConfig) { C2AndroidMemoryUsage androidUsage(C2MemoryUsage(usage.value)); config->mISConfig->mUsage = androidUsage.asGrallocUsage(); } config->mInputFormat->setInt64("android._C2MemoryUsage", usage.value); } // NOTE: we don't blindly use client specified input size if specified as clients // at times specify too small size. Instead, mimic the behavior from OMX, where the // client specified size is only used to ask for bigger buffers than component suggested // size. int32_t clientInputSize = 0; bool clientSpecifiedInputSize = msg->findInt32(KEY_MAX_INPUT_SIZE, &clientInputSize) && clientInputSize > 0; // TEMP: enforce minimum buffer size of 1MB for video decoders // and 16K / 4K for audio encoders/decoders if (maxInputSize.value == 0) { if (config->mDomain & Config::IS_AUDIO) { maxInputSize.value = encoder ? 16384 : 4096; } else if (!encoder) { maxInputSize.value = 1048576u; } } // verify that CSD fits into this size (if defined) if ((config->mDomain & Config::IS_DECODER) && maxInputSize.value > 0) { sp csd; for (size_t ix = 0; msg->findBuffer(StringPrintf("csd-%zu", ix).c_str(), &csd); ++ix) { if (csd && csd->size() > maxInputSize.value) { maxInputSize.value = csd->size(); } } } // TODO: do this based on component requiring linear allocator for input if ((config->mDomain & Config::IS_DECODER) || (config->mDomain & Config::IS_AUDIO)) { if (clientSpecifiedInputSize) { // Warn that we're overriding client's max input size if necessary. if ((uint32_t)clientInputSize < maxInputSize.value) { ALOGD("client requested max input size %d, which is smaller than " "what component recommended (%u); overriding with component " "recommendation.", clientInputSize, maxInputSize.value); ALOGW("This behavior is subject to change. It is recommended that " "app developers double check whether the requested " "max input size is in reasonable range."); } else { maxInputSize.value = clientInputSize; } } // Pass max input size on input format to the buffer channel (if supplied by the // component or by a default) if (maxInputSize.value) { config->mInputFormat->setInt32( KEY_MAX_INPUT_SIZE, (int32_t)(c2_min(maxInputSize.value, uint32_t(INT32_MAX)))); } } int32_t clientPrepend; if ((config->mDomain & Config::IS_VIDEO) && (config->mDomain & Config::IS_ENCODER) && msg->findInt32(KEY_PREPEND_HEADER_TO_SYNC_FRAMES, &clientPrepend) && clientPrepend && (!prepend || prepend.value != PREPEND_HEADER_TO_ALL_SYNC)) { ALOGE("Failed to set KEY_PREPEND_HEADER_TO_SYNC_FRAMES"); return BAD_VALUE; } int32_t componentColorFormat = 0; if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE))) { // propagate HDR static info to output format for both encoders and decoders // if component supports this info, we will update from component, but only the raw port, // so don't propagate if component already filled it in. sp hdrInfo; if (msg->findBuffer(KEY_HDR_STATIC_INFO, &hdrInfo) && !config->mOutputFormat->findBuffer(KEY_HDR_STATIC_INFO, &hdrInfo)) { config->mOutputFormat->setBuffer(KEY_HDR_STATIC_INFO, hdrInfo); } // Set desired color format from configuration parameter int32_t format; if (!msg->findInt32(KEY_COLOR_FORMAT, &format)) { format = defaultColorFormat; } if (config->mDomain & Config::IS_ENCODER) { config->mInputFormat->setInt32(KEY_COLOR_FORMAT, format); if (msg->findInt32("android._color-format", &componentColorFormat)) { config->mInputFormat->setInt32("android._color-format", componentColorFormat); } } else { config->mOutputFormat->setInt32(KEY_COLOR_FORMAT, format); } } // propagate encoder delay and padding to output format if ((config->mDomain & Config::IS_DECODER) && (config->mDomain & Config::IS_AUDIO)) { int delay = 0; if (msg->findInt32("encoder-delay", &delay)) { config->mOutputFormat->setInt32("encoder-delay", delay); } int padding = 0; if (msg->findInt32("encoder-padding", &padding)) { config->mOutputFormat->setInt32("encoder-padding", padding); } } if (config->mDomain & Config::IS_AUDIO) { // set channel-mask int32_t mask; if (msg->findInt32(KEY_CHANNEL_MASK, &mask)) { if (config->mDomain & Config::IS_ENCODER) { config->mInputFormat->setInt32(KEY_CHANNEL_MASK, mask); } else { config->mOutputFormat->setInt32(KEY_CHANNEL_MASK, mask); } } // set PCM encoding int32_t pcmEncoding = kAudioEncodingPcm16bit; msg->findInt32(KEY_PCM_ENCODING, &pcmEncoding); if (encoder) { config->mInputFormat->setInt32("android._config-pcm-encoding", pcmEncoding); } else { config->mOutputFormat->setInt32("android._config-pcm-encoding", pcmEncoding); } } std::unique_ptr colorTransferRequestParam; for (std::unique_ptr ¶m : params) { if (param->index() == colorAspectsRequestIndex.withStream(0u)) { ALOGI("found color transfer request param"); colorTransferRequestParam = std::move(param); } } if (colorTransferRequest != 0) { if (colorTransferRequestParam && *colorTransferRequestParam) { C2StreamColorAspectsInfo::output *info = static_cast( colorTransferRequestParam.get()); if (!C2Mapper::map(info->transfer, &colorTransferRequest)) { colorTransferRequest = 0; } } else { colorTransferRequest = 0; } config->mInputFormat->setInt32("color-transfer-request", colorTransferRequest); } if (componentColorFormat != 0 && componentColorFormat != COLOR_FormatSurface) { // Need to get stride/vstride uint32_t pixelFormat = PIXEL_FORMAT_UNKNOWN; if (C2Mapper::mapPixelFormatFrameworkToCodec(componentColorFormat, &pixelFormat)) { // TODO: retrieve these values without allocating a buffer. // Currently allocating a buffer is necessary to retrieve the layout. int64_t blockUsage = usage.value | C2MemoryUsage::CPU_READ | C2MemoryUsage::CPU_WRITE; std::shared_ptr block = FetchGraphicBlock( width, height, componentColorFormat, blockUsage, {comp->getName()}); sp buffer; if (block) { buffer = GraphicBlockBuffer::Allocate( config->mInputFormat, block, [](size_t size) -> sp { return new ABuffer(size); }); } else { ALOGD("Failed to allocate a graphic block " "(width=%d height=%d pixelFormat=%u usage=%llx)", width, height, pixelFormat, (long long)blockUsage); // This means that byte buffer mode is not supported in this configuration // anyway. Skip setting stride/vstride to input format. } if (buffer) { sp imageData = buffer->getImageData(); MediaImage2 *img = nullptr; if (imageData && imageData->data() && imageData->size() >= sizeof(MediaImage2)) { img = (MediaImage2*)imageData->data(); } if (img && img->mNumPlanes > 0 && img->mType != img->MEDIA_IMAGE_TYPE_UNKNOWN) { int32_t stride = img->mPlane[0].mRowInc; config->mInputFormat->setInt32(KEY_STRIDE, stride); if (img->mNumPlanes > 1 && stride > 0) { int64_t offsetDelta = (int64_t)img->mPlane[1].mOffset - (int64_t)img->mPlane[0].mOffset; if (offsetDelta % stride == 0) { int32_t vstride = int32_t(offsetDelta / stride); config->mInputFormat->setInt32(KEY_SLICE_HEIGHT, vstride); } else { ALOGD("Cannot report accurate slice height: " "offsetDelta = %lld stride = %d", (long long)offsetDelta, stride); } } } } } } if (config->mTunneled) { config->mOutputFormat->setInt32("android._tunneled", 1); } // Convert an encoding statistics level to corresponding encoding statistics // kinds int32_t encodingStatisticsLevel = VIDEO_ENCODING_STATISTICS_LEVEL_NONE; if ((config->mDomain & Config::IS_ENCODER) && (config->mDomain & Config::IS_VIDEO) && msg->findInt32(KEY_VIDEO_ENCODING_STATISTICS_LEVEL, &encodingStatisticsLevel)) { // Higher level include all the enc stats belong to lower level. switch (encodingStatisticsLevel) { // case VIDEO_ENCODING_STATISTICS_LEVEL_2: // reserved for the future level 2 // with more enc stat kinds // Future extended encoding statistics for the level 2 should be added here case VIDEO_ENCODING_STATISTICS_LEVEL_1: config->subscribeToConfigUpdate( comp, { C2AndroidStreamAverageBlockQuantizationInfo::output::PARAM_TYPE, C2StreamPictureTypeInfo::output::PARAM_TYPE, }); break; case VIDEO_ENCODING_STATISTICS_LEVEL_NONE: break; } } ALOGD("encoding statistics level = %d", encodingStatisticsLevel); ALOGD("setup formats input: %s", config->mInputFormat->debugString().c_str()); ALOGD("setup formats output: %s", config->mOutputFormat->debugString().c_str()); return OK; }; if (tryAndReportOnError(doConfig) != OK) { return; } Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; config->queryConfiguration(comp); mCallback->onComponentConfigured(config->mInputFormat, config->mOutputFormat); } void CCodec::initiateCreateInputSurface() { status_t err = [this] { Mutexed::Locked state(mState); if (state->get() != ALLOCATED) { return UNKNOWN_ERROR; } // TODO: read it from intf() properly. if (state->comp->getName().find("encoder") == std::string::npos) { return INVALID_OPERATION; } return OK; }(); if (err != OK) { mCallback->onInputSurfaceCreationFailed(err); return; } (new AMessage(kWhatCreateInputSurface, this))->post(); } sp CCodec::CreateOmxInputSurface() { using namespace android::hardware::media::omx::V1_0; using namespace android::hardware::media::omx::V1_0::utils; using namespace android::hardware::graphics::bufferqueue::V1_0::utils; typedef android::hardware::media::omx::V1_0::Status OmxStatus; android::sp omx = IOmx::getService(); if (omx == nullptr) { return nullptr; } typedef android::hardware::graphics::bufferqueue::V1_0:: IGraphicBufferProducer HGraphicBufferProducer; typedef android::hardware::media::omx::V1_0:: IGraphicBufferSource HGraphicBufferSource; OmxStatus s; android::sp gbp; android::sp gbs; using ::android::hardware::Return; Return transStatus = omx->createInputSurface( [&s, &gbp, &gbs]( OmxStatus status, const android::sp& producer, const android::sp& source) { s = status; gbp = producer; gbs = source; }); if (transStatus.isOk() && s == OmxStatus::OK) { return new PersistentSurface(new H2BGraphicBufferProducer(gbp), gbs); } return nullptr; } sp CCodec::CreateCompatibleInputSurface() { sp surface(CreateInputSurface()); if (surface == nullptr) { surface = CreateOmxInputSurface(); } return surface; } void CCodec::createInputSurface() { status_t err; sp bufferProducer; sp outputFormat; uint64_t usage = 0; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; outputFormat = config->mOutputFormat; usage = config->mISConfig ? config->mISConfig->mUsage : 0; } sp persistentSurface = CreateCompatibleInputSurface(); sp hidlTarget = persistentSurface->getHidlTarget(); sp hidlInputSurface = IInputSurface::castFrom(hidlTarget); sp gbs = HGraphicBufferSource::castFrom(hidlTarget); if (hidlInputSurface) { std::shared_ptr inputSurface = std::make_shared(hidlInputSurface); err = setupInputSurface(std::make_shared( inputSurface)); bufferProducer = inputSurface->getGraphicBufferProducer(); } else if (gbs) { int32_t width = 0; (void)outputFormat->findInt32("width", &width); int32_t height = 0; (void)outputFormat->findInt32("height", &height); err = setupInputSurface(std::make_shared( gbs, width, height, usage)); bufferProducer = persistentSurface->getBufferProducer(); } else { ALOGE("Corrupted input surface"); mCallback->onInputSurfaceCreationFailed(UNKNOWN_ERROR); return; } if (err != OK) { ALOGE("Failed to set up input surface: %d", err); mCallback->onInputSurfaceCreationFailed(err); return; } // Formats can change after setupInputSurface sp inputFormat; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; inputFormat = config->mInputFormat; outputFormat = config->mOutputFormat; } mCallback->onInputSurfaceCreated( inputFormat, outputFormat, new BufferProducerWrapper(bufferProducer)); } status_t CCodec::setupInputSurface(const std::shared_ptr &surface) { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; config->mUsingSurface = true; // we are now using surface - apply default color aspects to input format - as well as // get dataspace bool inputFormatChanged = config->updateFormats(Config::IS_INPUT); // configure dataspace static_assert(sizeof(int32_t) == sizeof(android_dataspace), "dataspace size mismatch"); // The output format contains app-configured color aspects, and the input format // has the default color aspects. Use the default for the unspecified params. ColorAspects inputColorAspects, colorAspects; getColorAspectsFromFormat(config->mOutputFormat, colorAspects); getColorAspectsFromFormat(config->mInputFormat, inputColorAspects); if (colorAspects.mRange == ColorAspects::RangeUnspecified) { colorAspects.mRange = inputColorAspects.mRange; } if (colorAspects.mPrimaries == ColorAspects::PrimariesUnspecified) { colorAspects.mPrimaries = inputColorAspects.mPrimaries; } if (colorAspects.mTransfer == ColorAspects::TransferUnspecified) { colorAspects.mTransfer = inputColorAspects.mTransfer; } if (colorAspects.mMatrixCoeffs == ColorAspects::MatrixUnspecified) { colorAspects.mMatrixCoeffs = inputColorAspects.mMatrixCoeffs; } android_dataspace dataSpace = getDataSpaceForColorAspects( colorAspects, /* mayExtend = */ false); surface->setDataSpace(dataSpace); setColorAspectsIntoFormat(colorAspects, config->mInputFormat, /* force = */ true); config->mInputFormat->setInt32("android._dataspace", int32_t(dataSpace)); ALOGD("input format %s to %s", inputFormatChanged ? "changed" : "unchanged", config->mInputFormat->debugString().c_str()); status_t err = mChannel->setInputSurface(surface); if (err != OK) { // undo input format update config->mUsingSurface = false; (void)config->updateFormats(Config::IS_INPUT); return err; } config->mInputSurface = surface; if (config->mISConfig) { surface->configure(*config->mISConfig); } else { ALOGD("ISConfig: no configuration"); } return OK; } void CCodec::initiateSetInputSurface(const sp &surface) { sp msg = new AMessage(kWhatSetInputSurface, this); msg->setObject("surface", surface); msg->post(); } void CCodec::setInputSurface(const sp &surface) { sp outputFormat; uint64_t usage = 0; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; outputFormat = config->mOutputFormat; usage = config->mISConfig ? config->mISConfig->mUsage : 0; } sp hidlTarget = surface->getHidlTarget(); sp inputSurface = IInputSurface::castFrom(hidlTarget); sp gbs = HGraphicBufferSource::castFrom(hidlTarget); if (inputSurface) { status_t err = setupInputSurface(std::make_shared( std::make_shared(inputSurface))); if (err != OK) { ALOGE("Failed to set up input surface: %d", err); mCallback->onInputSurfaceDeclined(err); return; } } else if (gbs) { int32_t width = 0; (void)outputFormat->findInt32("width", &width); int32_t height = 0; (void)outputFormat->findInt32("height", &height); status_t err = setupInputSurface(std::make_shared( gbs, width, height, usage)); if (err != OK) { ALOGE("Failed to set up input surface: %d", err); mCallback->onInputSurfaceDeclined(err); return; } } else { ALOGE("Failed to set input surface: Corrupted surface."); mCallback->onInputSurfaceDeclined(UNKNOWN_ERROR); return; } // Formats can change after setupInputSurface sp inputFormat; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; inputFormat = config->mInputFormat; outputFormat = config->mOutputFormat; } mCallback->onInputSurfaceAccepted(inputFormat, outputFormat); } void CCodec::initiateStart() { auto setStarting = [this] { Mutexed::Locked state(mState); if (state->get() != ALLOCATED) { return UNKNOWN_ERROR; } state->set(STARTING); return OK; }; if (tryAndReportOnError(setStarting) != OK) { return; } (new AMessage(kWhatStart, this))->post(); } void CCodec::start() { std::shared_ptr comp; auto checkStarting = [this, &comp] { Mutexed::Locked state(mState); if (state->get() != STARTING) { return UNKNOWN_ERROR; } comp = state->comp; return OK; }; if (tryAndReportOnError(checkStarting) != OK) { return; } c2_status_t err = comp->start(); if (err != C2_OK) { mCallback->onError(toStatusT(err, C2_OPERATION_Component_start), ACTION_CODE_FATAL); return; } sp inputFormat; sp outputFormat; status_t err2 = OK; bool buffersBoundToCodec = false; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; inputFormat = config->mInputFormat; // start triggers format dup outputFormat = config->mOutputFormat = config->mOutputFormat->dup(); if (config->mInputSurface) { err2 = config->mInputSurface->start(); config->mInputSurfaceDataspace = config->mInputSurface->getDataspace(); } buffersBoundToCodec = config->mBuffersBoundToCodec; } if (err2 != OK) { mCallback->onError(err2, ACTION_CODE_FATAL); return; } err2 = mChannel->start(inputFormat, outputFormat, buffersBoundToCodec); if (err2 != OK) { mCallback->onError(err2, ACTION_CODE_FATAL); return; } auto setRunning = [this] { Mutexed::Locked state(mState); if (state->get() != STARTING) { return UNKNOWN_ERROR; } state->set(RUNNING); return OK; }; if (tryAndReportOnError(setRunning) != OK) { return; } // preparation of input buffers may not succeed due to the lack of // memory; returning correct error code (NO_MEMORY) as an error allows // MediaCodec to try reclaim and restart codec gracefully. std::map> clientInputBuffers; err2 = mChannel->prepareInitialInputBuffers(&clientInputBuffers); if (err2 != OK) { ALOGE("Initial preparation for Input Buffers failed"); mCallback->onError(err2, ACTION_CODE_FATAL); return; } mCallback->onStartCompleted(); mChannel->requestInitialInputBuffers(std::move(clientInputBuffers)); } void CCodec::initiateShutdown(bool keepComponentAllocated) { if (keepComponentAllocated) { initiateStop(); } else { initiateRelease(); } } void CCodec::initiateStop() { { Mutexed::Locked state(mState); if (state->get() == ALLOCATED || state->get() == RELEASED || state->get() == STOPPING || state->get() == RELEASING) { // We're already stopped, released, or doing it right now. state.unlock(); mCallback->onStopCompleted(); state.lock(); return; } state->set(STOPPING); } mChannel->reset(); bool pushBlankBuffer = mConfig.lock().get()->mPushBlankBuffersOnStop; sp stopMessage(new AMessage(kWhatStop, this)); stopMessage->setInt32("pushBlankBuffer", pushBlankBuffer); stopMessage->post(); } void CCodec::stop(bool pushBlankBuffer) { std::shared_ptr comp; { Mutexed::Locked state(mState); if (state->get() == RELEASING) { state.unlock(); // We're already stopped or release is in progress. mCallback->onStopCompleted(); state.lock(); return; } else if (state->get() != STOPPING) { state.unlock(); mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); state.lock(); return; } comp = state->comp; } status_t err = comp->stop(); mChannel->stopUseOutputSurface(pushBlankBuffer); if (err != C2_OK) { // TODO: convert err into status_t mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); } { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; if (config->mInputSurface) { config->mInputSurface->disconnect(); config->mInputSurface = nullptr; config->mInputSurfaceDataspace = HAL_DATASPACE_UNKNOWN; } } { Mutexed::Locked state(mState); if (state->get() == STOPPING) { state->set(ALLOCATED); } } mCallback->onStopCompleted(); } void CCodec::initiateRelease(bool sendCallback /* = true */) { bool clearInputSurfaceIfNeeded = false; { Mutexed::Locked state(mState); if (state->get() == RELEASED || state->get() == RELEASING) { // We're already released or doing it right now. if (sendCallback) { state.unlock(); mCallback->onReleaseCompleted(); state.lock(); } return; } if (state->get() == ALLOCATING) { state->set(RELEASING); // With the altered state allocate() would fail and clean up. if (sendCallback) { state.unlock(); mCallback->onReleaseCompleted(); state.lock(); } return; } if (state->get() == STARTING || state->get() == RUNNING || state->get() == STOPPING) { // Input surface may have been started, so clean up is needed. clearInputSurfaceIfNeeded = true; } state->set(RELEASING); } if (clearInputSurfaceIfNeeded) { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; if (config->mInputSurface) { config->mInputSurface->disconnect(); config->mInputSurface = nullptr; config->mInputSurfaceDataspace = HAL_DATASPACE_UNKNOWN; } } mChannel->reset(); bool pushBlankBuffer = mConfig.lock().get()->mPushBlankBuffersOnStop; // thiz holds strong ref to this while the thread is running. sp thiz(this); std::thread([thiz, sendCallback, pushBlankBuffer] { thiz->release(sendCallback, pushBlankBuffer); }).detach(); } void CCodec::release(bool sendCallback, bool pushBlankBuffer) { std::shared_ptr comp; { Mutexed::Locked state(mState); if (state->get() == RELEASED) { if (sendCallback) { state.unlock(); mCallback->onReleaseCompleted(); state.lock(); } return; } comp = state->comp; } comp->release(); mChannel->stopUseOutputSurface(pushBlankBuffer); { Mutexed::Locked state(mState); state->set(RELEASED); state->comp.reset(); } (new AMessage(kWhatRelease, this))->post(); if (sendCallback) { mCallback->onReleaseCompleted(); } } status_t CCodec::setSurface(const sp &surface) { bool pushBlankBuffer = false; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; sp nativeWindow = static_cast(surface.get()); status_t err = OK; if (config->mTunneled && config->mSidebandHandle != nullptr) { err = native_window_set_sideband_stream( nativeWindow.get(), const_cast(config->mSidebandHandle->handle())); if (err != OK) { ALOGE("NativeWindow(%p) native_window_set_sideband_stream(%p) failed! (err %d).", nativeWindow.get(), config->mSidebandHandle->handle(), err); return err; } } else { // Explicitly reset the sideband handle of the window for // non-tunneled video in case the window was previously used // for a tunneled video playback. err = native_window_set_sideband_stream(nativeWindow.get(), nullptr); if (err != OK) { ALOGE("native_window_set_sideband_stream(nullptr) failed! (err %d).", err); return err; } } pushBlankBuffer = config->mPushBlankBuffersOnStop; } return mChannel->setSurface(surface, pushBlankBuffer); } void CCodec::signalFlush() { status_t err = [this] { Mutexed::Locked state(mState); if (state->get() == FLUSHED) { return ALREADY_EXISTS; } if (state->get() != RUNNING) { return UNKNOWN_ERROR; } state->set(FLUSHING); return OK; }(); switch (err) { case ALREADY_EXISTS: mCallback->onFlushCompleted(); return; case OK: break; default: mCallback->onError(err, ACTION_CODE_FATAL); return; } mChannel->stop(); (new AMessage(kWhatFlush, this))->post(); } void CCodec::flush() { std::shared_ptr comp; auto checkFlushing = [this, &comp] { Mutexed::Locked state(mState); if (state->get() != FLUSHING) { return UNKNOWN_ERROR; } comp = state->comp; return OK; }; if (tryAndReportOnError(checkFlushing) != OK) { return; } std::list> flushedWork; c2_status_t err = comp->flush(C2Component::FLUSH_COMPONENT, &flushedWork); { Mutexed>>::Locked queue(mWorkDoneQueue); flushedWork.splice(flushedWork.end(), *queue); } if (err != C2_OK) { // TODO: convert err into status_t mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); } mChannel->flush(flushedWork); { Mutexed::Locked state(mState); if (state->get() == FLUSHING) { state->set(FLUSHED); } } mCallback->onFlushCompleted(); } void CCodec::signalResume() { std::shared_ptr comp; auto setResuming = [this, &comp] { Mutexed::Locked state(mState); if (state->get() != FLUSHED) { return UNKNOWN_ERROR; } state->set(RESUMING); comp = state->comp; return OK; }; if (tryAndReportOnError(setResuming) != OK) { return; } { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; sp outputFormat = config->mOutputFormat; config->queryConfiguration(comp); RevertOutputFormatIfNeeded(outputFormat, config->mOutputFormat); } (void)mChannel->start(nullptr, nullptr, [&]{ Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; return config->mBuffersBoundToCodec; }()); { Mutexed::Locked state(mState); if (state->get() != RESUMING) { state.unlock(); mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); state.lock(); return; } state->set(RUNNING); } std::map> clientInputBuffers; status_t err = mChannel->prepareInitialInputBuffers(&clientInputBuffers); // FIXME(b/237656746) if (err != OK && err != NO_MEMORY) { ALOGE("Resume request for Input Buffers failed"); mCallback->onError(err, ACTION_CODE_FATAL); return; } mChannel->requestInitialInputBuffers(std::move(clientInputBuffers)); } void CCodec::signalSetParameters(const sp &msg) { std::shared_ptr comp; auto checkState = [this, &comp] { Mutexed::Locked state(mState); if (state->get() == RELEASED) { return INVALID_OPERATION; } comp = state->comp; return OK; }; if (tryAndReportOnError(checkState) != OK) { return; } // NOTE: We used to ignore "bitrate" at setParameters; replicate // the behavior here. sp params = msg; int32_t bitrate; if (params->findInt32(KEY_BIT_RATE, &bitrate)) { params = msg->dup(); params->removeEntryAt(params->findEntryByName(KEY_BIT_RATE)); } int32_t syncId = 0; if (params->findInt32("audio-hw-sync", &syncId) || params->findInt32("hw-av-sync-id", &syncId)) { configureTunneledVideoPlayback(comp, nullptr, params); } Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; /** * Handle input surface parameters */ if ((config->mDomain & (Config::IS_VIDEO | Config::IS_IMAGE)) && (config->mDomain & Config::IS_ENCODER) && config->mInputSurface && config->mISConfig) { (void)params->findInt64(PARAMETER_KEY_OFFSET_TIME, &config->mISConfig->mTimeOffsetUs); if (params->findInt64("skip-frames-before", &config->mISConfig->mStartAtUs)) { config->mISConfig->mStopped = false; } else if (params->findInt64("stop-time-us", &config->mISConfig->mStopAtUs)) { config->mISConfig->mStopped = true; } int32_t value; if (params->findInt32(PARAMETER_KEY_SUSPEND, &value)) { config->mISConfig->mSuspended = value; config->mISConfig->mSuspendAtUs = -1; (void)params->findInt64(PARAMETER_KEY_SUSPEND_TIME, &config->mISConfig->mSuspendAtUs); } (void)config->mInputSurface->configure(*config->mISConfig); if (config->mISConfig->mStopped) { config->mInputFormat->setInt64( "android._stop-time-offset-us", config->mISConfig->mInputDelayUs); } } std::vector> configUpdate; (void)config->getConfigUpdateFromSdkParams( comp, params, Config::IS_PARAM, C2_MAY_BLOCK, &configUpdate); // Prefer to pass parameters to the buffer channel, so they can be synchronized with the frames. // Parameter synchronization is not defined when using input surface. For now, route // these directly to the component. if (config->mInputSurface == nullptr && (property_get_bool("debug.stagefright.ccodec_delayed_params", false) || comp->getName().find("c2.android.") == 0)) { mChannel->setParameters(configUpdate); } else { sp outputFormat = config->mOutputFormat; (void)config->setParameters(comp, configUpdate, C2_MAY_BLOCK); RevertOutputFormatIfNeeded(outputFormat, config->mOutputFormat); } } void CCodec::signalEndOfInputStream() { mCallback->onSignaledInputEOS(mChannel->signalEndOfInputStream()); } void CCodec::signalRequestIDRFrame() { std::shared_ptr comp; { Mutexed::Locked state(mState); if (state->get() == RELEASED) { ALOGD("no IDR request sent since component is released"); return; } comp = state->comp; } ALOGV("request IDR"); Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; std::vector> params; params.push_back( std::make_unique(0u, true)); config->setParameters(comp, params, C2_MAY_BLOCK); } status_t CCodec::querySupportedParameters(std::vector *names) { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; return config->querySupportedParameters(names); } status_t CCodec::describeParameter( const std::string &name, CodecParameterDescriptor *desc) { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; return config->describe(name, desc); } status_t CCodec::subscribeToParameters(const std::vector &names) { std::shared_ptr comp = mState.lock()->comp; if (!comp) { return INVALID_OPERATION; } Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; return config->subscribeToVendorConfigUpdate(comp, names); } status_t CCodec::unsubscribeFromParameters(const std::vector &names) { std::shared_ptr comp = mState.lock()->comp; if (!comp) { return INVALID_OPERATION; } Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; return config->unsubscribeFromVendorConfigUpdate(comp, names); } void CCodec::onWorkDone(std::list> &workItems) { if (!workItems.empty()) { Mutexed>>::Locked queue(mWorkDoneQueue); queue->splice(queue->end(), workItems); } (new AMessage(kWhatWorkDone, this))->post(); } void CCodec::onInputBufferDone(uint64_t frameIndex, size_t arrayIndex) { mChannel->onInputBufferDone(frameIndex, arrayIndex); if (arrayIndex == 0) { // We always put no more than one buffer per work, if we use an input surface. Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; if (config->mInputSurface) { config->mInputSurface->onInputBufferDone(frameIndex); } } } void CCodec::onMessageReceived(const sp &msg) { TimePoint now = std::chrono::steady_clock::now(); CCodecWatchdog::getInstance()->watch(this); switch (msg->what()) { case kWhatAllocate: { // C2ComponentStore::createComponent() should return within 100ms. setDeadline(now, 1500ms, "allocate"); sp obj; CHECK(msg->findObject("codecInfo", &obj)); allocate((MediaCodecInfo *)obj.get()); break; } case kWhatConfigure: { // C2Component::commit_sm() should return within 5ms. setDeadline(now, 1500ms, "configure"); sp format; CHECK(msg->findMessage("format", &format)); configure(format); break; } case kWhatStart: { // C2Component::start() should return within 500ms. setDeadline(now, 1500ms, "start"); start(); break; } case kWhatStop: { // C2Component::stop() should return within 500ms. setDeadline(now, 1500ms, "stop"); int32_t pushBlankBuffer; if (!msg->findInt32("pushBlankBuffer", &pushBlankBuffer)) { pushBlankBuffer = 0; } stop(static_cast(pushBlankBuffer)); break; } case kWhatFlush: { // C2Component::flush_sm() should return within 5ms. setDeadline(now, 1500ms, "flush"); flush(); break; } case kWhatRelease: { mChannel->release(); mClient.reset(); mClientListener.reset(); break; } case kWhatCreateInputSurface: { // Surface operations may be briefly blocking. setDeadline(now, 1500ms, "createInputSurface"); createInputSurface(); break; } case kWhatSetInputSurface: { // Surface operations may be briefly blocking. setDeadline(now, 1500ms, "setInputSurface"); sp obj; CHECK(msg->findObject("surface", &obj)); sp surface(static_cast(obj.get())); setInputSurface(surface); break; } case kWhatWorkDone: { std::unique_ptr work; bool shouldPost = false; { Mutexed>>::Locked queue(mWorkDoneQueue); if (queue->empty()) { break; } work.swap(queue->front()); queue->pop_front(); shouldPost = !queue->empty(); } if (shouldPost) { (new AMessage(kWhatWorkDone, this))->post(); } // handle configuration changes in work done std::shared_ptr initData; sp outputFormat = nullptr; { Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; Config::Watcher initDataWatcher = config->watch(); if (!work->worklets.empty() && (work->worklets.front()->output.flags & C2FrameData::FLAG_DISCARD_FRAME) == 0) { // copy buffer info to config std::vector> updates; for (const std::unique_ptr ¶m : work->worklets.front()->output.configUpdate) { updates.push_back(C2Param::Copy(*param)); } unsigned stream = 0; std::vector> &outputBuffers = work->worklets.front()->output.buffers; for (const std::shared_ptr &buf : outputBuffers) { for (const std::shared_ptr &info : buf->info()) { // move all info into output-stream #0 domain updates.emplace_back( C2Param::CopyAsStream(*info, true /* output */, stream)); } const std::vector blocks = buf->data().graphicBlocks(); // for now only do the first block if (!blocks.empty()) { // ALOGV("got output buffer with crop %u,%u+%u,%u and size %u,%u", // block.crop().left, block.crop().top, // block.crop().width, block.crop().height, // block.width(), block.height()); const C2ConstGraphicBlock &block = blocks[0]; updates.emplace_back(new C2StreamCropRectInfo::output( stream, block.crop())); } ++stream; } sp oldFormat = config->mOutputFormat; config->updateConfiguration(updates, config->mOutputDomain); RevertOutputFormatIfNeeded(oldFormat, config->mOutputFormat); // copy standard infos to graphic buffers if not already present (otherwise, we // may overwrite the actual intermediate value with a final value) stream = 0; const static C2Param::Index stdGfxInfos[] = { C2StreamRotationInfo::output::PARAM_TYPE, C2StreamColorAspectsInfo::output::PARAM_TYPE, C2StreamDataSpaceInfo::output::PARAM_TYPE, C2StreamHdrStaticInfo::output::PARAM_TYPE, C2StreamHdr10PlusInfo::output::PARAM_TYPE, // will be deprecated C2StreamHdrDynamicMetadataInfo::output::PARAM_TYPE, C2StreamPixelAspectRatioInfo::output::PARAM_TYPE, C2StreamSurfaceScalingInfo::output::PARAM_TYPE }; for (const std::shared_ptr &buf : outputBuffers) { if (buf->data().graphicBlocks().size()) { for (C2Param::Index ix : stdGfxInfos) { if (!buf->hasInfo(ix)) { const C2Param *param = config->getConfigParameterValue(ix.withStream(stream)); if (param) { std::shared_ptr info(C2Param::Copy(*param)); buf->setInfo(std::static_pointer_cast(info)); } } } } ++stream; } } if (config->mInputSurface) { if (work->worklets.empty() || !work->worklets.back() || (work->worklets.back()->output.flags & C2FrameData::FLAG_INCOMPLETE) == 0) { config->mInputSurface->onInputBufferDone(work->input.ordinal.frameIndex); } } if (initDataWatcher.hasChanged()) { initData = initDataWatcher.update(); AmendOutputFormatWithCodecSpecificData( initData->m.value, initData->flexCount(), config->mCodingMediaType, config->mOutputFormat); } outputFormat = config->mOutputFormat; } mChannel->onWorkDone( std::move(work), outputFormat, initData ? initData.get() : nullptr); break; } case kWhatWatch: { // watch message already posted; no-op. break; } default: { ALOGE("unrecognized message"); break; } } setDeadline(TimePoint::max(), 0ms, "none"); } void CCodec::setDeadline( const TimePoint &now, const std::chrono::milliseconds &timeout, const char *name) { int32_t mult = std::max(1, property_get_int32("debug.stagefright.ccodec_timeout_mult", 1)); Mutexed::Locked deadline(mDeadline); deadline->set(now + (timeout * mult), name); } status_t CCodec::configureTunneledVideoPlayback( std::shared_ptr comp, sp *sidebandHandle, const sp &msg) { std::vector> failures; std::unique_ptr tunneledPlayback = C2PortTunneledModeTuning::output::AllocUnique( 1, C2PortTunneledModeTuning::Struct::SIDEBAND, C2PortTunneledModeTuning::Struct::REALTIME, 0); // TODO: use KEY_AUDIO_HW_SYNC, KEY_HARDWARE_AV_SYNC_ID when they are in MediaCodecConstants.h if (msg->findInt32("audio-hw-sync", &tunneledPlayback->m.syncId[0])) { tunneledPlayback->m.syncType = C2PortTunneledModeTuning::Struct::sync_type_t::AUDIO_HW_SYNC; } else if (msg->findInt32("hw-av-sync-id", &tunneledPlayback->m.syncId[0])) { tunneledPlayback->m.syncType = C2PortTunneledModeTuning::Struct::sync_type_t::HW_AV_SYNC; } else { tunneledPlayback->m.syncType = C2PortTunneledModeTuning::Struct::sync_type_t::REALTIME; tunneledPlayback->setFlexCount(0); } c2_status_t c2err = comp->config({ tunneledPlayback.get() }, C2_MAY_BLOCK, &failures); if (c2err != C2_OK) { return UNKNOWN_ERROR; } if (sidebandHandle == nullptr) { return OK; } std::vector> params; c2err = comp->query({}, {C2PortTunnelHandleTuning::output::PARAM_TYPE}, C2_DONT_BLOCK, ¶ms); if (c2err == C2_OK && params.size() == 1u) { C2PortTunnelHandleTuning::output *videoTunnelSideband = C2PortTunnelHandleTuning::output::From(params[0].get()); // Currently, Codec2 only supports non-fd case for sideband native_handle. native_handle_t *handle = native_handle_create(0, videoTunnelSideband->flexCount()); *sidebandHandle = NativeHandle::create(handle, true /* ownsHandle */); if (handle != nullptr && videoTunnelSideband->flexCount()) { memcpy(handle->data, videoTunnelSideband->m.values, sizeof(int32_t) * videoTunnelSideband->flexCount()); return OK; } else { return NO_MEMORY; } } return UNKNOWN_ERROR; } void CCodec::initiateReleaseIfStuck() { std::string name; bool pendingDeadline = false; { Mutexed::Locked deadline(mDeadline); if (deadline->get() < std::chrono::steady_clock::now()) { name = deadline->getName(); } if (deadline->get() != TimePoint::max()) { pendingDeadline = true; } } bool tunneled = false; bool isMediaTypeKnown = false; { static const std::set kKnownMediaTypes{ MIMETYPE_VIDEO_VP8, MIMETYPE_VIDEO_VP9, MIMETYPE_VIDEO_AV1, MIMETYPE_VIDEO_AVC, MIMETYPE_VIDEO_HEVC, MIMETYPE_VIDEO_MPEG4, MIMETYPE_VIDEO_H263, MIMETYPE_VIDEO_MPEG2, MIMETYPE_VIDEO_RAW, MIMETYPE_VIDEO_DOLBY_VISION, MIMETYPE_AUDIO_AMR_NB, MIMETYPE_AUDIO_AMR_WB, MIMETYPE_AUDIO_MPEG, MIMETYPE_AUDIO_AAC, MIMETYPE_AUDIO_QCELP, MIMETYPE_AUDIO_VORBIS, MIMETYPE_AUDIO_OPUS, MIMETYPE_AUDIO_G711_ALAW, MIMETYPE_AUDIO_G711_MLAW, MIMETYPE_AUDIO_RAW, MIMETYPE_AUDIO_FLAC, MIMETYPE_AUDIO_MSGSM, MIMETYPE_AUDIO_AC3, MIMETYPE_AUDIO_EAC3, MIMETYPE_IMAGE_ANDROID_HEIC, }; Mutexed>::Locked configLocked(mConfig); const std::unique_ptr &config = *configLocked; tunneled = config->mTunneled; isMediaTypeKnown = (kKnownMediaTypes.count(config->mCodingMediaType) != 0); } if (!tunneled && isMediaTypeKnown && name.empty()) { constexpr std::chrono::steady_clock::duration kWorkDurationThreshold = 3s; std::chrono::steady_clock::duration elapsed = mChannel->elapsed(); if (elapsed >= kWorkDurationThreshold) { name = "queue"; } if (elapsed > 0s) { pendingDeadline = true; } } if (name.empty()) { // We're not stuck. if (pendingDeadline) { // If we are not stuck yet but still has deadline coming up, // post watch message to check back later. (new AMessage(kWhatWatch, this))->post(); } return; } C2String compName; { Mutexed::Locked state(mState); if (!state->comp) { ALOGD("previous call to %s exceeded timeout " "and the component is already released", name.c_str()); return; } compName = state->comp->getName(); } ALOGW("[%s] previous call to %s exceeded timeout", compName.c_str(), name.c_str()); initiateRelease(false); mCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); } // static PersistentSurface *CCodec::CreateInputSurface() { using namespace android; using ::android::hardware::media::omx::V1_0::implementation::TWGraphicBufferSource; // Attempt to create a Codec2's input surface. std::shared_ptr inputSurface = Codec2Client::CreateInputSurface(); if (!inputSurface) { if (property_get_int32("debug.stagefright.c2inputsurface", 0) == -1) { sp gbp; sp gbs = new OmxGraphicBufferSource(); status_t err = gbs->initCheck(); if (err != OK) { ALOGE("Failed to create persistent input surface: error %d", err); return nullptr; } return new PersistentSurface( gbs->getIGraphicBufferProducer(), new TWGraphicBufferSource(gbs)); } else { return nullptr; } } return new PersistentSurface( inputSurface->getGraphicBufferProducer(), static_cast>( inputSurface->getHalInterface())); } class IntfCache { public: IntfCache() = default; status_t init(const std::string &name) { std::shared_ptr intf{ Codec2Client::CreateInterfaceByName(name.c_str())}; if (!intf) { ALOGW("IntfCache [%s]: Unrecognized interface name", name.c_str()); mInitStatus = NO_INIT; return NO_INIT; } const static C2StreamUsageTuning::input sUsage{0u /* stream id */}; mFields.push_back(C2FieldSupportedValuesQuery::Possible( C2ParamField{&sUsage, &sUsage.value})); c2_status_t err = intf->querySupportedValues(mFields, C2_MAY_BLOCK); if (err != C2_OK) { ALOGW("IntfCache [%s]: failed to query usage supported value (err=%d)", name.c_str(), err); mFields[0].status = err; } std::vector> params; err = intf->query( {&mApiFeatures}, { C2StreamBufferTypeSetting::input::PARAM_TYPE, C2PortAllocatorsTuning::input::PARAM_TYPE }, C2_MAY_BLOCK, ¶ms); if (err != C2_OK && err != C2_BAD_INDEX) { ALOGW("IntfCache [%s]: failed to query api features (err=%d)", name.c_str(), err); } while (!params.empty()) { C2Param *param = params.back().release(); params.pop_back(); if (!param) { continue; } if (param->type() == C2StreamBufferTypeSetting::input::PARAM_TYPE) { mInputStreamFormat.reset( C2StreamBufferTypeSetting::input::From(param)); } else if (param->type() == C2PortAllocatorsTuning::input::PARAM_TYPE) { mInputAllocators.reset( C2PortAllocatorsTuning::input::From(param)); } } mInitStatus = OK; return OK; } status_t initCheck() const { return mInitStatus; } const C2FieldSupportedValuesQuery &getUsageSupportedValues() const { CHECK_EQ(1u, mFields.size()); return mFields[0]; } const C2ApiFeaturesSetting &getApiFeatures() const { return mApiFeatures; } const C2StreamBufferTypeSetting::input &getInputStreamFormat() const { static std::unique_ptr sInvalidated = []{ std::unique_ptr param; param.reset(new C2StreamBufferTypeSetting::input(0u, C2BufferData::INVALID)); param->invalidate(); return param; }(); return mInputStreamFormat ? *mInputStreamFormat : *sInvalidated; } const C2PortAllocatorsTuning::input &getInputAllocators() const { static std::unique_ptr sInvalidated = []{ std::unique_ptr param = C2PortAllocatorsTuning::input::AllocUnique(0); param->invalidate(); return param; }(); return mInputAllocators ? *mInputAllocators : *sInvalidated; } private: status_t mInitStatus{NO_INIT}; std::vector mFields; C2ApiFeaturesSetting mApiFeatures; std::unique_ptr mInputStreamFormat; std::unique_ptr mInputAllocators; }; static const IntfCache &GetIntfCache(const std::string &name) { static IntfCache sNullIntfCache; static std::mutex sMutex; static std::map sCache; std::unique_lock lock{sMutex}; auto it = sCache.find(name); if (it == sCache.end()) { lock.unlock(); IntfCache intfCache; status_t err = intfCache.init(name); if (err != OK) { return sNullIntfCache; } lock.lock(); it = sCache.insert({name, std::move(intfCache)}).first; } return it->second; } static status_t GetCommonAllocatorIds( const std::vector &names, C2Allocator::type_t type, std::set *ids) { int poolMask = GetCodec2PoolMask(); C2PlatformAllocatorStore::id_t preferredLinearId = GetPreferredLinearAllocatorId(poolMask); C2Allocator::id_t defaultAllocatorId = (type == C2Allocator::LINEAR) ? preferredLinearId : C2PlatformAllocatorStore::GRALLOC; ids->clear(); if (names.empty()) { return OK; } bool firstIteration = true; for (const std::string &name : names) { const IntfCache &intfCache = GetIntfCache(name); if (intfCache.initCheck() != OK) { continue; } const C2StreamBufferTypeSetting::input &streamFormat = intfCache.getInputStreamFormat(); if (streamFormat) { C2Allocator::type_t allocatorType = C2Allocator::LINEAR; if (streamFormat.value == C2BufferData::GRAPHIC || streamFormat.value == C2BufferData::GRAPHIC_CHUNKS) { allocatorType = C2Allocator::GRAPHIC; } if (type != allocatorType) { // requested type is not supported at input allocators ids->clear(); ids->insert(defaultAllocatorId); ALOGV("name(%s) does not support a type(0x%x) as input allocator." " uses default allocator id(%d)", name.c_str(), type, defaultAllocatorId); break; } } const C2PortAllocatorsTuning::input &allocators = intfCache.getInputAllocators(); if (firstIteration) { firstIteration = false; if (allocators && allocators.flexCount() > 0) { ids->insert(allocators.m.values, allocators.m.values + allocators.flexCount()); } if (ids->empty()) { // The component does not advertise allocators. Use default. ids->insert(defaultAllocatorId); } continue; } bool filtered = false; if (allocators && allocators.flexCount() > 0) { filtered = true; for (auto it = ids->begin(); it != ids->end(); ) { bool found = false; for (size_t j = 0; j < allocators.flexCount(); ++j) { if (allocators.m.values[j] == *it) { found = true; break; } } if (found) { ++it; } else { it = ids->erase(it); } } } if (!filtered) { // The component does not advertise supported allocators. Use default. bool containsDefault = (ids->count(defaultAllocatorId) > 0u); if (ids->size() != (containsDefault ? 1 : 0)) { ids->clear(); if (containsDefault) { ids->insert(defaultAllocatorId); } } } } // Finally, filter with pool masks for (auto it = ids->begin(); it != ids->end(); ) { if ((poolMask >> *it) & 1) { ++it; } else { it = ids->erase(it); } } return OK; } static status_t CalculateMinMaxUsage( const std::vector &names, uint64_t *minUsage, uint64_t *maxUsage) { static C2StreamUsageTuning::input sUsage{0u /* stream id */}; *minUsage = 0; *maxUsage = ~0ull; for (const std::string &name : names) { const IntfCache &intfCache = GetIntfCache(name); if (intfCache.initCheck() != OK) { continue; } const C2FieldSupportedValuesQuery &usageSupportedValues = intfCache.getUsageSupportedValues(); if (usageSupportedValues.status != C2_OK) { continue; } const C2FieldSupportedValues &supported = usageSupportedValues.values; if (supported.type != C2FieldSupportedValues::FLAGS) { continue; } if (supported.values.empty()) { *maxUsage = 0; continue; } if (supported.values.size() > 1) { *minUsage |= supported.values[1].u64; } else { *minUsage |= supported.values[0].u64; } int64_t currentMaxUsage = 0; for (const C2Value::Primitive &flags : supported.values) { currentMaxUsage |= flags.u64; } *maxUsage &= currentMaxUsage; } return OK; } // static status_t CCodec::CanFetchLinearBlock( const std::vector &names, const C2MemoryUsage &usage, bool *isCompatible) { for (const std::string &name : names) { const IntfCache &intfCache = GetIntfCache(name); if (intfCache.initCheck() != OK) { continue; } const C2ApiFeaturesSetting &features = intfCache.getApiFeatures(); if (features && !(features.value & API_SAME_INPUT_BUFFER)) { *isCompatible = false; return OK; } } std::set allocators; GetCommonAllocatorIds(names, C2Allocator::LINEAR, &allocators); if (allocators.empty()) { *isCompatible = false; return OK; } uint64_t minUsage = 0; uint64_t maxUsage = ~0ull; CalculateMinMaxUsage(names, &minUsage, &maxUsage); minUsage |= usage.expected; *isCompatible = ((maxUsage & minUsage) == minUsage); return OK; } static std::shared_ptr GetPool(C2Allocator::id_t allocId) { static std::mutex sMutex{}; static std::map> sPools; std::unique_lock lock{sMutex}; std::shared_ptr pool; auto it = sPools.find(allocId); if (it == sPools.end()) { c2_status_t err = CreateCodec2BlockPool(allocId, nullptr, &pool); if (err == OK) { sPools.emplace(allocId, pool); } else { pool.reset(); } } else { pool = it->second; } return pool; } // static std::shared_ptr CCodec::FetchLinearBlock( size_t capacity, const C2MemoryUsage &usage, const std::vector &names) { std::set allocators; GetCommonAllocatorIds(names, C2Allocator::LINEAR, &allocators); if (allocators.empty()) { allocators.insert(C2PlatformAllocatorStore::DEFAULT_LINEAR); } uint64_t minUsage = 0; uint64_t maxUsage = ~0ull; CalculateMinMaxUsage(names, &minUsage, &maxUsage); minUsage |= usage.expected; if ((maxUsage & minUsage) != minUsage) { allocators.clear(); allocators.insert(C2PlatformAllocatorStore::DEFAULT_LINEAR); } std::shared_ptr block; for (C2Allocator::id_t allocId : allocators) { std::shared_ptr pool = GetPool(allocId); if (!pool) { continue; } c2_status_t err = pool->fetchLinearBlock(capacity, C2MemoryUsage{minUsage}, &block); if (err != C2_OK || !block) { block.reset(); continue; } break; } return block; } // static status_t CCodec::CanFetchGraphicBlock( const std::vector &names, bool *isCompatible) { uint64_t minUsage = 0; uint64_t maxUsage = ~0ull; std::set allocators; GetCommonAllocatorIds(names, C2Allocator::GRAPHIC, &allocators); if (allocators.empty()) { *isCompatible = false; return OK; } CalculateMinMaxUsage(names, &minUsage, &maxUsage); *isCompatible = ((maxUsage & minUsage) == minUsage); return OK; } // static std::shared_ptr CCodec::FetchGraphicBlock( int32_t width, int32_t height, int32_t format, uint64_t usage, const std::vector &names) { uint32_t halPixelFormat = HAL_PIXEL_FORMAT_YCBCR_420_888; if (!C2Mapper::mapPixelFormatFrameworkToCodec(format, &halPixelFormat)) { ALOGD("Unrecognized pixel format: %d", format); return nullptr; } uint64_t minUsage = 0; uint64_t maxUsage = ~0ull; std::set allocators; GetCommonAllocatorIds(names, C2Allocator::GRAPHIC, &allocators); if (allocators.empty()) { allocators.insert(C2PlatformAllocatorStore::DEFAULT_GRAPHIC); } CalculateMinMaxUsage(names, &minUsage, &maxUsage); minUsage |= usage; if ((maxUsage & minUsage) != minUsage) { allocators.clear(); allocators.insert(C2PlatformAllocatorStore::DEFAULT_GRAPHIC); } std::shared_ptr block; for (C2Allocator::id_t allocId : allocators) { std::shared_ptr pool; c2_status_t err = CreateCodec2BlockPool(allocId, nullptr, &pool); if (err != C2_OK || !pool) { continue; } err = pool->fetchGraphicBlock( width, height, halPixelFormat, C2MemoryUsage{minUsage}, &block); if (err != C2_OK || !block) { block.reset(); continue; } break; } return block; } } // namespace android