/* * Copyright 2017, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #include #define LOG_TAG "CCodecBufferChannel" #define ATRACE_TAG ATRACE_TAG_VIDEO #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CCodecBufferChannel.h" #include "Codec2Buffer.h" namespace android { using android::base::StringPrintf; using hardware::hidl_handle; using hardware::hidl_string; using hardware::hidl_vec; using hardware::fromHeap; using hardware::HidlMemory; using namespace hardware::cas::V1_0; using namespace hardware::cas::native::V1_0; using CasStatus = hardware::cas::V1_0::Status; using DrmBufferType = hardware::drm::V1_0::BufferType; namespace { constexpr size_t kSmoothnessFactor = 4; constexpr size_t kRenderingDepth = 3; // This is for keeping IGBP's buffer dropping logic in legacy mode other // than making it non-blocking. Do not change this value. const static size_t kDequeueTimeoutNs = 0; } // namespace CCodecBufferChannel::QueueGuard::QueueGuard( CCodecBufferChannel::QueueSync &sync) : mSync(sync) { Mutex::Autolock l(mSync.mGuardLock); // At this point it's guaranteed that mSync is not under state transition, // as we are holding its mutex. Mutexed::Locked count(mSync.mCount); if (count->value == -1) { mRunning = false; } else { ++count->value; mRunning = true; } } CCodecBufferChannel::QueueGuard::~QueueGuard() { if (mRunning) { // We are not holding mGuardLock at this point so that QueueSync::stop() can // keep holding the lock until mCount reaches zero. Mutexed::Locked count(mSync.mCount); --count->value; count->cond.broadcast(); } } void CCodecBufferChannel::QueueSync::start() { Mutex::Autolock l(mGuardLock); // If stopped, it goes to running state; otherwise no-op. Mutexed::Locked count(mCount); if (count->value == -1) { count->value = 0; } } void CCodecBufferChannel::QueueSync::stop() { Mutex::Autolock l(mGuardLock); Mutexed::Locked count(mCount); if (count->value == -1) { // no-op return; } // Holding mGuardLock here blocks creation of additional QueueGuard objects, so // mCount can only decrement. In other words, threads that acquired the lock // are allowed to finish execution but additional threads trying to acquire // the lock at this point will block, and then get QueueGuard at STOPPED // state. while (count->value != 0) { count.waitForCondition(count->cond); } count->value = -1; } // Input CCodecBufferChannel::Input::Input() : extraBuffers("extra") {} // CCodecBufferChannel CCodecBufferChannel::CCodecBufferChannel( const std::shared_ptr &callback) : mHeapSeqNum(-1), mCCodecCallback(callback), mFrameIndex(0u), mFirstValidFrameIndex(0u), mMetaMode(MODE_NONE), mInputMetEos(false), mSendEncryptedInfoBuffer(false) { mOutputSurface.lock()->maxDequeueBuffers = kSmoothnessFactor + kRenderingDepth; { Mutexed::Locked input(mInput); input->buffers.reset(new DummyInputBuffers("")); input->extraBuffers.flush(); input->inputDelay = 0u; input->pipelineDelay = 0u; input->numSlots = kSmoothnessFactor; input->numExtraSlots = 0u; input->lastFlushIndex = 0u; } { Mutexed::Locked output(mOutput); output->outputDelay = 0u; output->numSlots = kSmoothnessFactor; } { Mutexed::Locked pools(mBlockPools); pools->outputPoolId = C2BlockPool::BASIC_LINEAR; } } CCodecBufferChannel::~CCodecBufferChannel() { if (mCrypto != nullptr && mHeapSeqNum >= 0) { mCrypto->unsetHeap(mHeapSeqNum); } } void CCodecBufferChannel::setComponent( const std::shared_ptr &component) { mComponent = component; mComponentName = component->getName() + StringPrintf("#%d", int(uintptr_t(component.get()) % 997)); mName = mComponentName.c_str(); } status_t CCodecBufferChannel::setInputSurface( const std::shared_ptr &surface) { ALOGV("[%s] setInputSurface", mName); mInputSurface = surface; return mInputSurface->connect(mComponent); } status_t CCodecBufferChannel::signalEndOfInputStream() { if (mInputSurface == nullptr) { return INVALID_OPERATION; } return mInputSurface->signalEndOfInputStream(); } status_t CCodecBufferChannel::queueInputBufferInternal( sp buffer, std::shared_ptr encryptedBlock, size_t blockSize) { int64_t timeUs; CHECK(buffer->meta()->findInt64("timeUs", &timeUs)); if (mInputMetEos) { ALOGD("[%s] buffers after EOS ignored (%lld us)", mName, (long long)timeUs); return OK; } int32_t flags = 0; int32_t tmp = 0; bool eos = false; bool tunnelFirstFrame = false; if (buffer->meta()->findInt32("eos", &tmp) && tmp) { eos = true; mInputMetEos = true; ALOGV("[%s] input EOS", mName); } if (buffer->meta()->findInt32("csd", &tmp) && tmp) { flags |= C2FrameData::FLAG_CODEC_CONFIG; } if (buffer->meta()->findInt32("tunnel-first-frame", &tmp) && tmp) { tunnelFirstFrame = true; } ALOGV("[%s] queueInputBuffer: buffer->size() = %zu", mName, buffer->size()); std::list> items; std::unique_ptr work(new C2Work); work->input.ordinal.timestamp = timeUs; work->input.ordinal.frameIndex = mFrameIndex++; // WORKAROUND: until codecs support handling work after EOS and max output sizing, use timestamp // manipulation to achieve image encoding via video codec, and to constrain encoded output. // Keep client timestamp in customOrdinal work->input.ordinal.customOrdinal = timeUs; work->input.buffers.clear(); sp copy; bool usesFrameReassembler = false; if (buffer->size() > 0u) { Mutexed::Locked input(mInput); std::shared_ptr c2buffer; if (!input->buffers->releaseBuffer(buffer, &c2buffer, false)) { return -ENOENT; } // TODO: we want to delay copying buffers. if (input->extraBuffers.numComponentBuffers() < input->numExtraSlots) { copy = input->buffers->cloneAndReleaseBuffer(buffer); if (copy != nullptr) { (void)input->extraBuffers.assignSlot(copy); if (!input->extraBuffers.releaseSlot(copy, &c2buffer, false)) { return UNKNOWN_ERROR; } bool released = input->buffers->releaseBuffer(buffer, nullptr, true); ALOGV("[%s] queueInputBuffer: buffer copied; %sreleased", mName, released ? "" : "not "); buffer = copy; } else { ALOGW("[%s] queueInputBuffer: failed to copy a buffer; this may cause input " "buffer starvation on component.", mName); } } if (input->frameReassembler) { usesFrameReassembler = true; input->frameReassembler.process(buffer, &items); } else { int32_t cvo = 0; if (buffer->meta()->findInt32("cvo", &cvo)) { int32_t rotation = cvo % 360; // change rotation to counter-clock wise. rotation = ((rotation <= 0) ? 0 : 360) - rotation; Mutexed::Locked output(mOutputSurface); uint64_t frameIndex = work->input.ordinal.frameIndex.peeku(); output->rotation[frameIndex] = rotation; } work->input.buffers.push_back(c2buffer); if (encryptedBlock) { work->input.infoBuffers.emplace_back(C2InfoBuffer::CreateLinearBuffer( kParamIndexEncryptedBuffer, encryptedBlock->share(0, blockSize, C2Fence()))); } } } else if (eos) { Mutexed::Locked input(mInput); if (input->frameReassembler) { usesFrameReassembler = true; // drain any pending items with eos input->frameReassembler.process(buffer, &items); } flags |= C2FrameData::FLAG_END_OF_STREAM; } if (usesFrameReassembler) { if (!items.empty()) { items.front()->input.configUpdate = std::move(mParamsToBeSet); mFrameIndex = (items.back()->input.ordinal.frameIndex + 1).peek(); } } else { work->input.flags = (C2FrameData::flags_t)flags; // TODO: fill info's work->input.configUpdate = std::move(mParamsToBeSet); if (tunnelFirstFrame) { C2StreamTunnelHoldRender::input tunnelHoldRender{ 0u /* stream */, C2_TRUE /* value */ }; work->input.configUpdate.push_back(C2Param::Copy(tunnelHoldRender)); } work->worklets.clear(); work->worklets.emplace_back(new C2Worklet); items.push_back(std::move(work)); eos = eos && buffer->size() > 0u; } if (eos) { work.reset(new C2Work); work->input.ordinal.timestamp = timeUs; work->input.ordinal.frameIndex = mFrameIndex++; // WORKAROUND: keep client timestamp in customOrdinal work->input.ordinal.customOrdinal = timeUs; work->input.buffers.clear(); work->input.flags = C2FrameData::FLAG_END_OF_STREAM; work->worklets.emplace_back(new C2Worklet); items.push_back(std::move(work)); } c2_status_t err = C2_OK; if (!items.empty()) { ScopedTrace trace(ATRACE_TAG, android::base::StringPrintf( "CCodecBufferChannel::queue(%s@ts=%lld)", mName, (long long)timeUs).c_str()); { Mutexed::Locked watcher(mPipelineWatcher); PipelineWatcher::Clock::time_point now = PipelineWatcher::Clock::now(); for (const std::unique_ptr &work : items) { watcher->onWorkQueued( work->input.ordinal.frameIndex.peeku(), std::vector(work->input.buffers), now); } } err = mComponent->queue(&items); } if (err != C2_OK) { Mutexed::Locked watcher(mPipelineWatcher); for (const std::unique_ptr &work : items) { watcher->onWorkDone(work->input.ordinal.frameIndex.peeku()); } } else { Mutexed::Locked input(mInput); bool released = false; if (copy) { released = input->extraBuffers.releaseSlot(copy, nullptr, true); } else if (buffer) { released = input->buffers->releaseBuffer(buffer, nullptr, true); } ALOGV("[%s] queueInputBuffer: buffer%s %sreleased", mName, (buffer == nullptr) ? "(copy)" : "", released ? "" : "not "); } feedInputBufferIfAvailableInternal(); return err; } status_t CCodecBufferChannel::setParameters(std::vector> ¶ms) { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGD("[%s] setParameters is only supported in the running state.", mName); return -ENOSYS; } mParamsToBeSet.insert(mParamsToBeSet.end(), std::make_move_iterator(params.begin()), std::make_move_iterator(params.end())); params.clear(); return OK; } status_t CCodecBufferChannel::attachBuffer( const std::shared_ptr &c2Buffer, const sp &buffer) { if (!buffer->copy(c2Buffer)) { return -ENOSYS; } return OK; } void CCodecBufferChannel::ensureDecryptDestination(size_t size) { if (!mDecryptDestination || mDecryptDestination->size() < size) { sp heap{new MemoryHeapBase(size * 2)}; if (mDecryptDestination && mCrypto && mHeapSeqNum >= 0) { mCrypto->unsetHeap(mHeapSeqNum); } mDecryptDestination = new MemoryBase(heap, 0, size * 2); if (mCrypto) { mHeapSeqNum = mCrypto->setHeap(hardware::fromHeap(heap)); } } } int32_t CCodecBufferChannel::getHeapSeqNum(const sp &memory) { CHECK(mCrypto); auto it = mHeapSeqNumMap.find(memory); int32_t heapSeqNum = -1; if (it == mHeapSeqNumMap.end()) { heapSeqNum = mCrypto->setHeap(memory); mHeapSeqNumMap.emplace(memory, heapSeqNum); } else { heapSeqNum = it->second; } return heapSeqNum; } status_t CCodecBufferChannel::attachEncryptedBuffer( const sp &memory, bool secure, const uint8_t *key, const uint8_t *iv, CryptoPlugin::Mode mode, CryptoPlugin::Pattern pattern, size_t offset, const CryptoPlugin::SubSample *subSamples, size_t numSubSamples, const sp &buffer) { static const C2MemoryUsage kSecureUsage{C2MemoryUsage::READ_PROTECTED, 0}; static const C2MemoryUsage kDefaultReadWriteUsage{ C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE}; size_t size = 0; for (size_t i = 0; i < numSubSamples; ++i) { size += subSamples[i].mNumBytesOfClearData + subSamples[i].mNumBytesOfEncryptedData; } if (size == 0) { buffer->setRange(0, 0); return OK; } std::shared_ptr pool = mBlockPools.lock()->inputPool; std::shared_ptr block; c2_status_t err = pool->fetchLinearBlock( size, secure ? kSecureUsage : kDefaultReadWriteUsage, &block); if (err != C2_OK) { ALOGI("[%s] attachEncryptedBuffer: fetchLinearBlock failed: size = %zu (%s) err = %d", mName, size, secure ? "secure" : "non-secure", err); return NO_MEMORY; } if (!secure) { ensureDecryptDestination(size); } ssize_t result = -1; ssize_t codecDataOffset = 0; if (mCrypto) { AString errorDetailMsg; int32_t heapSeqNum = getHeapSeqNum(memory); hardware::drm::V1_0::SharedBuffer src{(uint32_t)heapSeqNum, offset, size}; hardware::drm::V1_0::DestinationBuffer dst; if (secure) { dst.type = DrmBufferType::NATIVE_HANDLE; dst.secureMemory = hardware::hidl_handle(block->handle()); } else { dst.type = DrmBufferType::SHARED_MEMORY; IMemoryToSharedBuffer( mDecryptDestination, mHeapSeqNum, &dst.nonsecureMemory); } result = mCrypto->decrypt( key, iv, mode, pattern, src, 0, subSamples, numSubSamples, dst, &errorDetailMsg); if (result < 0) { ALOGI("[%s] attachEncryptedBuffer: decrypt failed: result = %zd", mName, result); return result; } } else { // Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample // directly, the structure definitions should match as checked in DescramblerImpl.cpp. hidl_vec hidlSubSamples; hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/); hardware::cas::native::V1_0::SharedBuffer src{*memory, offset, size}; hardware::cas::native::V1_0::DestinationBuffer dst; if (secure) { dst.type = BufferType::NATIVE_HANDLE; dst.secureMemory = hardware::hidl_handle(block->handle()); } else { dst.type = BufferType::SHARED_MEMORY; dst.nonsecureMemory = src; } CasStatus status = CasStatus::OK; hidl_string detailedError; ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED; if (key != nullptr) { sctrl = (ScramblingControl)key[0]; // Adjust for the PES offset codecDataOffset = key[2] | (key[3] << 8); } auto returnVoid = mDescrambler->descramble( sctrl, hidlSubSamples, src, 0, dst, 0, [&status, &result, &detailedError] ( CasStatus _status, uint32_t _bytesWritten, const hidl_string& _detailedError) { status = _status; result = (ssize_t)_bytesWritten; detailedError = _detailedError; }); if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) { ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd", mName, returnVoid.description().c_str(), status, result); return UNKNOWN_ERROR; } if (result < codecDataOffset) { ALOGD("[%s] invalid codec data offset: %zd, result %zd", mName, codecDataOffset, result); return BAD_VALUE; } } if (!secure) { C2WriteView view = block->map().get(); if (view.error() != C2_OK) { ALOGI("[%s] attachEncryptedBuffer: block map error: %d (non-secure)", mName, view.error()); return UNKNOWN_ERROR; } if (view.size() < result) { ALOGI("[%s] attachEncryptedBuffer: block size too small: size=%u result=%zd " "(non-secure)", mName, view.size(), result); return UNKNOWN_ERROR; } memcpy(view.data(), mDecryptDestination->unsecurePointer(), result); } std::shared_ptr c2Buffer{C2Buffer::CreateLinearBuffer( block->share(codecDataOffset, result - codecDataOffset, C2Fence{}))}; if (!buffer->copy(c2Buffer)) { ALOGI("[%s] attachEncryptedBuffer: buffer copy failed", mName); return -ENOSYS; } return OK; } status_t CCodecBufferChannel::queueInputBuffer(const sp &buffer) { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGD("[%s] No more buffers should be queued at current state.", mName); return -ENOSYS; } return queueInputBufferInternal(buffer); } status_t CCodecBufferChannel::queueSecureInputBuffer( const sp &buffer, bool secure, const uint8_t *key, const uint8_t *iv, CryptoPlugin::Mode mode, CryptoPlugin::Pattern pattern, const CryptoPlugin::SubSample *subSamples, size_t numSubSamples, AString *errorDetailMsg) { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGD("[%s] No more buffers should be queued at current state.", mName); return -ENOSYS; } if (!hasCryptoOrDescrambler()) { return -ENOSYS; } sp encryptedBuffer((EncryptedLinearBlockBuffer *)buffer.get()); std::shared_ptr block; size_t allocSize = buffer->size(); size_t bufferSize = 0; c2_status_t blockRes = C2_OK; bool copied = false; if (mSendEncryptedInfoBuffer) { static const C2MemoryUsage kDefaultReadWriteUsage{ C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE}; constexpr int kAllocGranule0 = 1024 * 64; constexpr int kAllocGranule1 = 1024 * 1024; std::shared_ptr pool = mBlockPools.lock()->inputPool; // round up encrypted sizes to limit fragmentation and encourage buffer reuse if (allocSize <= kAllocGranule1) { bufferSize = align(allocSize, kAllocGranule0); } else { bufferSize = align(allocSize, kAllocGranule1); } blockRes = pool->fetchLinearBlock( bufferSize, kDefaultReadWriteUsage, &block); if (blockRes == C2_OK) { C2WriteView view = block->map().get(); if (view.error() == C2_OK && view.size() == bufferSize) { copied = true; // TODO: only copy clear sections memcpy(view.data(), buffer->data(), allocSize); } } } if (!copied) { block.reset(); } ssize_t result = -1; ssize_t codecDataOffset = 0; if (numSubSamples == 1 && subSamples[0].mNumBytesOfClearData == 0 && subSamples[0].mNumBytesOfEncryptedData == 0) { // We don't need to go through crypto or descrambler if the input is empty. result = 0; } else if (mCrypto != nullptr) { hardware::drm::V1_0::DestinationBuffer destination; if (secure) { destination.type = DrmBufferType::NATIVE_HANDLE; destination.secureMemory = hidl_handle(encryptedBuffer->handle()); } else { destination.type = DrmBufferType::SHARED_MEMORY; IMemoryToSharedBuffer( mDecryptDestination, mHeapSeqNum, &destination.nonsecureMemory); } hardware::drm::V1_0::SharedBuffer source; encryptedBuffer->fillSourceBuffer(&source); result = mCrypto->decrypt( key, iv, mode, pattern, source, buffer->offset(), subSamples, numSubSamples, destination, errorDetailMsg); if (result < 0) { ALOGI("[%s] decrypt failed: result=%zd", mName, result); return result; } if (destination.type == DrmBufferType::SHARED_MEMORY) { encryptedBuffer->copyDecryptedContent(mDecryptDestination, result); } } else { // Here we cast CryptoPlugin::SubSample to hardware::cas::native::V1_0::SubSample // directly, the structure definitions should match as checked in DescramblerImpl.cpp. hidl_vec hidlSubSamples; hidlSubSamples.setToExternal((SubSample *)subSamples, numSubSamples, false /*own*/); hardware::cas::native::V1_0::SharedBuffer srcBuffer; encryptedBuffer->fillSourceBuffer(&srcBuffer); DestinationBuffer dstBuffer; if (secure) { dstBuffer.type = BufferType::NATIVE_HANDLE; dstBuffer.secureMemory = hidl_handle(encryptedBuffer->handle()); } else { dstBuffer.type = BufferType::SHARED_MEMORY; dstBuffer.nonsecureMemory = srcBuffer; } CasStatus status = CasStatus::OK; hidl_string detailedError; ScramblingControl sctrl = ScramblingControl::UNSCRAMBLED; if (key != nullptr) { sctrl = (ScramblingControl)key[0]; // Adjust for the PES offset codecDataOffset = key[2] | (key[3] << 8); } auto returnVoid = mDescrambler->descramble( sctrl, hidlSubSamples, srcBuffer, 0, dstBuffer, 0, [&status, &result, &detailedError] ( CasStatus _status, uint32_t _bytesWritten, const hidl_string& _detailedError) { status = _status; result = (ssize_t)_bytesWritten; detailedError = _detailedError; }); if (!returnVoid.isOk() || status != CasStatus::OK || result < 0) { ALOGI("[%s] descramble failed, trans=%s, status=%d, result=%zd", mName, returnVoid.description().c_str(), status, result); return UNKNOWN_ERROR; } if (result < codecDataOffset) { ALOGD("invalid codec data offset: %zd, result %zd", codecDataOffset, result); return BAD_VALUE; } ALOGV("[%s] descramble succeeded, %zd bytes", mName, result); if (dstBuffer.type == BufferType::SHARED_MEMORY) { encryptedBuffer->copyDecryptedContentFromMemory(result); } } buffer->setRange(codecDataOffset, result - codecDataOffset); return queueInputBufferInternal(buffer, block, bufferSize); } void CCodecBufferChannel::feedInputBufferIfAvailable() { QueueGuard guard(mSync); if (!guard.isRunning()) { ALOGV("[%s] We're not running --- no input buffer reported", mName); return; } feedInputBufferIfAvailableInternal(); } void CCodecBufferChannel::feedInputBufferIfAvailableInternal() { if (mInputMetEos) { return; } { Mutexed::Locked output(mOutput); if (!output->buffers || output->buffers->hasPending() || output->buffers->numActiveSlots() >= output->numSlots) { return; } } size_t numActiveSlots = 0; while (!mPipelineWatcher.lock()->pipelineFull()) { sp inBuffer; size_t index; { Mutexed::Locked input(mInput); numActiveSlots = input->buffers->numActiveSlots(); if (numActiveSlots >= input->numSlots) { break; } if (!input->buffers->requestNewBuffer(&index, &inBuffer)) { ALOGV("[%s] no new buffer available", mName); break; } } ALOGV("[%s] new input index = %zu [%p]", mName, index, inBuffer.get()); mCallback->onInputBufferAvailable(index, inBuffer); } ALOGV("[%s] # active slots after feedInputBufferIfAvailable = %zu", mName, numActiveSlots); } status_t CCodecBufferChannel::renderOutputBuffer( const sp &buffer, int64_t timestampNs) { ALOGV("[%s] renderOutputBuffer: %p", mName, buffer.get()); std::shared_ptr c2Buffer; bool released = false; { Mutexed::Locked output(mOutput); if (output->buffers) { released = output->buffers->releaseBuffer(buffer, &c2Buffer); } } // NOTE: some apps try to releaseOutputBuffer() with timestamp and/or render // set to true. sendOutputBuffers(); // input buffer feeding may have been gated by pending output buffers feedInputBufferIfAvailable(); if (!c2Buffer) { if (released) { std::call_once(mRenderWarningFlag, [this] { ALOGW("[%s] The app is calling releaseOutputBuffer() with " "timestamp or render=true with non-video buffers. Apps should " "call releaseOutputBuffer() with render=false for those.", mName); }); } return INVALID_OPERATION; } #if 0 const std::vector> infoParams = c2Buffer->info(); ALOGV("[%s] queuing gfx buffer with %zu infos", mName, infoParams.size()); for (const std::shared_ptr &info : infoParams) { AString res; for (size_t ix = 0; ix + 3 < info->size(); ix += 4) { if (ix) res.append(", "); res.append(*((int32_t*)info.get() + (ix / 4))); } ALOGV(" [%s]", res.c_str()); } #endif std::shared_ptr rotation = std::static_pointer_cast( c2Buffer->getInfo(C2StreamRotationInfo::output::PARAM_TYPE)); bool flip = rotation && (rotation->flip & 1); uint32_t quarters = ((rotation ? rotation->value : 0) / 90) & 3; { Mutexed::Locked output(mOutputSurface); if (output->surface == nullptr) { ALOGI("[%s] cannot render buffer without surface", mName); return OK; } int64_t frameIndex; buffer->meta()->findInt64("frameIndex", &frameIndex); if (output->rotation.count(frameIndex) != 0) { auto it = output->rotation.find(frameIndex); quarters = (it->second / 90) & 3; output->rotation.erase(it); } } uint32_t transform = 0; switch (quarters) { case 0: // no rotation transform = flip ? HAL_TRANSFORM_FLIP_H : 0; break; case 1: // 90 degrees counter-clockwise transform = flip ? (HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_ROT_90) : HAL_TRANSFORM_ROT_270; break; case 2: // 180 degrees transform = flip ? HAL_TRANSFORM_FLIP_V : HAL_TRANSFORM_ROT_180; break; case 3: // 90 degrees clockwise transform = flip ? (HAL_TRANSFORM_FLIP_H | HAL_TRANSFORM_ROT_90) : HAL_TRANSFORM_ROT_90; break; } std::shared_ptr surfaceScaling = std::static_pointer_cast( c2Buffer->getInfo(C2StreamSurfaceScalingInfo::output::PARAM_TYPE)); uint32_t videoScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW; if (surfaceScaling) { videoScalingMode = surfaceScaling->value; } // Use dataspace from format as it has the default aspects already applied android_dataspace_t dataSpace = HAL_DATASPACE_UNKNOWN; // this is 0 (void)buffer->format()->findInt32("android._dataspace", (int32_t *)&dataSpace); // HDR static info std::shared_ptr hdrStaticInfo = std::static_pointer_cast( c2Buffer->getInfo(C2StreamHdrStaticInfo::output::PARAM_TYPE)); // HDR10 plus info std::shared_ptr hdr10PlusInfo = std::static_pointer_cast( c2Buffer->getInfo(C2StreamHdr10PlusInfo::output::PARAM_TYPE)); if (hdr10PlusInfo && hdr10PlusInfo->flexCount() == 0) { hdr10PlusInfo.reset(); } // HDR dynamic info std::shared_ptr hdrDynamicInfo = std::static_pointer_cast( c2Buffer->getInfo(C2StreamHdrDynamicMetadataInfo::output::PARAM_TYPE)); // TODO: make this sticky & enable unset if (hdrDynamicInfo && hdrDynamicInfo->flexCount() == 0) { hdrDynamicInfo.reset(); } if (hdr10PlusInfo) { // C2StreamHdr10PlusInfo is deprecated; components should use // C2StreamHdrDynamicMetadataInfo // TODO: #metric if (hdrDynamicInfo) { // It is unexpected that C2StreamHdr10PlusInfo and // C2StreamHdrDynamicMetadataInfo is both present. // C2StreamHdrDynamicMetadataInfo takes priority. // TODO: #metric } else { std::shared_ptr info = C2StreamHdrDynamicMetadataInfo::output::AllocShared( hdr10PlusInfo->flexCount(), 0u, C2Config::HDR_DYNAMIC_METADATA_TYPE_SMPTE_2094_40); memcpy(info->m.data, hdr10PlusInfo->m.value, hdr10PlusInfo->flexCount()); hdrDynamicInfo = info; } } std::vector blocks = c2Buffer->data().graphicBlocks(); if (blocks.size() != 1u) { ALOGD("[%s] expected 1 graphic block, but got %zu", mName, blocks.size()); return UNKNOWN_ERROR; } const C2ConstGraphicBlock &block = blocks.front(); C2Fence c2fence = block.fence(); sp fence = Fence::NO_FENCE; // TODO: it's not sufficient to just check isHW() and then construct android::fence from it. // Once C2Fence::type() is added, check the exact C2Fence type if (c2fence.isHW()) { int fenceFd = c2fence.fd(); fence = sp::make(fenceFd); if (!fence) { ALOGE("[%s] Failed to allocate a fence", mName); close(fenceFd); return NO_MEMORY; } } // TODO: revisit this after C2Fence implementation. android::IGraphicBufferProducer::QueueBufferInput qbi( timestampNs, false, // droppable dataSpace, Rect(blocks.front().crop().left, blocks.front().crop().top, blocks.front().crop().right(), blocks.front().crop().bottom()), videoScalingMode, transform, fence, 0); if (hdrStaticInfo || hdrDynamicInfo) { HdrMetadata hdr; if (hdrStaticInfo) { // If mastering max and min luminance fields are 0, do not use them. // It indicates the value may not be present in the stream. if (hdrStaticInfo->mastering.maxLuminance > 0.0f && hdrStaticInfo->mastering.minLuminance > 0.0f) { struct android_smpte2086_metadata smpte2086_meta = { .displayPrimaryRed = { hdrStaticInfo->mastering.red.x, hdrStaticInfo->mastering.red.y }, .displayPrimaryGreen = { hdrStaticInfo->mastering.green.x, hdrStaticInfo->mastering.green.y }, .displayPrimaryBlue = { hdrStaticInfo->mastering.blue.x, hdrStaticInfo->mastering.blue.y }, .whitePoint = { hdrStaticInfo->mastering.white.x, hdrStaticInfo->mastering.white.y }, .maxLuminance = hdrStaticInfo->mastering.maxLuminance, .minLuminance = hdrStaticInfo->mastering.minLuminance, }; hdr.validTypes |= HdrMetadata::SMPTE2086; hdr.smpte2086 = smpte2086_meta; } // If the content light level fields are 0, do not use them, it // indicates the value may not be present in the stream. if (hdrStaticInfo->maxCll > 0.0f && hdrStaticInfo->maxFall > 0.0f) { struct android_cta861_3_metadata cta861_meta = { .maxContentLightLevel = hdrStaticInfo->maxCll, .maxFrameAverageLightLevel = hdrStaticInfo->maxFall, }; hdr.validTypes |= HdrMetadata::CTA861_3; hdr.cta8613 = cta861_meta; } // does not have valid info if (!(hdr.validTypes & (HdrMetadata::SMPTE2086 | HdrMetadata::CTA861_3))) { hdrStaticInfo.reset(); } } if (hdrDynamicInfo && hdrDynamicInfo->m.type_ == C2Config::HDR_DYNAMIC_METADATA_TYPE_SMPTE_2094_40) { hdr.validTypes |= HdrMetadata::HDR10PLUS; hdr.hdr10plus.assign( hdrDynamicInfo->m.data, hdrDynamicInfo->m.data + hdrDynamicInfo->flexCount()); } qbi.setHdrMetadata(hdr); } SetMetadataToGralloc4Handle(dataSpace, hdrStaticInfo, hdrDynamicInfo, block.handle()); // we don't have dirty regions qbi.setSurfaceDamage(Region::INVALID_REGION); android::IGraphicBufferProducer::QueueBufferOutput qbo; status_t result = mComponent->queueToOutputSurface(block, qbi, &qbo); if (result != OK) { ALOGI("[%s] queueBuffer failed: %d", mName, result); if (result == NO_INIT) { mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); } return result; } if(android::base::GetBoolProperty("debug.stagefright.fps", false)) { ALOGD("[%s] queue buffer successful", mName); } else { ALOGV("[%s] queue buffer successful", mName); } int64_t mediaTimeUs = 0; (void)buffer->meta()->findInt64("timeUs", &mediaTimeUs); mCCodecCallback->onOutputFramesRendered(mediaTimeUs, timestampNs); return OK; } status_t CCodecBufferChannel::discardBuffer(const sp &buffer) { ALOGV("[%s] discardBuffer: %p", mName, buffer.get()); bool released = false; { Mutexed::Locked input(mInput); if (input->buffers && input->buffers->releaseBuffer(buffer, nullptr, true)) { released = true; } } { Mutexed::Locked output(mOutput); if (output->buffers && output->buffers->releaseBuffer(buffer, nullptr)) { released = true; } } if (released) { sendOutputBuffers(); feedInputBufferIfAvailable(); } else { ALOGD("[%s] MediaCodec discarded an unknown buffer", mName); } return OK; } void CCodecBufferChannel::getInputBufferArray(Vector> *array) { array->clear(); Mutexed::Locked input(mInput); if (!input->buffers) { ALOGE("getInputBufferArray: No Input Buffers allocated"); return; } if (!input->buffers->isArrayMode()) { input->buffers = input->buffers->toArrayMode(input->numSlots); } input->buffers->getArray(array); } void CCodecBufferChannel::getOutputBufferArray(Vector> *array) { array->clear(); Mutexed::Locked output(mOutput); if (!output->buffers) { ALOGE("getOutputBufferArray: No Output Buffers allocated"); return; } if (!output->buffers->isArrayMode()) { output->buffers = output->buffers->toArrayMode(output->numSlots); } output->buffers->getArray(array); } status_t CCodecBufferChannel::start( const sp &inputFormat, const sp &outputFormat, bool buffersBoundToCodec) { C2StreamBufferTypeSetting::input iStreamFormat(0u); C2StreamBufferTypeSetting::output oStreamFormat(0u); C2ComponentKindSetting kind; C2PortReorderBufferDepthTuning::output reorderDepth; C2PortReorderKeySetting::output reorderKey; C2PortActualDelayTuning::input inputDelay(0); C2PortActualDelayTuning::output outputDelay(0); C2ActualPipelineDelayTuning pipelineDelay(0); C2SecureModeTuning secureMode(C2Config::SM_UNPROTECTED); c2_status_t err = mComponent->query( { &iStreamFormat, &oStreamFormat, &kind, &reorderDepth, &reorderKey, &inputDelay, &pipelineDelay, &outputDelay, &secureMode, }, {}, C2_DONT_BLOCK, nullptr); if (err == C2_BAD_INDEX) { if (!iStreamFormat || !oStreamFormat || !kind) { return UNKNOWN_ERROR; } } else if (err != C2_OK) { return UNKNOWN_ERROR; } uint32_t inputDelayValue = inputDelay ? inputDelay.value : 0; uint32_t pipelineDelayValue = pipelineDelay ? pipelineDelay.value : 0; uint32_t outputDelayValue = outputDelay ? outputDelay.value : 0; size_t numInputSlots = inputDelayValue + pipelineDelayValue + kSmoothnessFactor; size_t numOutputSlots = outputDelayValue + kSmoothnessFactor; // TODO: get this from input format bool secure = mComponent->getName().find(".secure") != std::string::npos; // secure mode is a static parameter (shall not change in the executing state) mSendEncryptedInfoBuffer = secureMode.value == C2Config::SM_READ_PROTECTED_WITH_ENCRYPTED; std::shared_ptr allocatorStore = GetCodec2PlatformAllocatorStore(); int poolMask = GetCodec2PoolMask(); C2PlatformAllocatorStore::id_t preferredLinearId = GetPreferredLinearAllocatorId(poolMask); if (inputFormat != nullptr) { bool graphic = (iStreamFormat.value == C2BufferData::GRAPHIC); bool audioEncoder = !graphic && (kind.value == C2Component::KIND_ENCODER); C2Config::api_feature_t apiFeatures = C2Config::api_feature_t( API_REFLECTION | API_VALUES | API_CURRENT_VALUES | API_DEPENDENCY | API_SAME_INPUT_BUFFER); C2StreamAudioFrameSizeInfo::input encoderFrameSize(0u); C2StreamSampleRateInfo::input sampleRate(0u); C2StreamChannelCountInfo::input channelCount(0u); C2StreamPcmEncodingInfo::input pcmEncoding(0u); std::shared_ptr pool; { Mutexed::Locked pools(mBlockPools); // set default allocator ID. pools->inputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC : preferredLinearId; // query C2PortAllocatorsTuning::input from component. If an allocator ID is obtained // from component, create the input block pool with given ID. Otherwise, use default IDs. std::vector> params; C2ApiFeaturesSetting featuresSetting{apiFeatures}; std::vector stackParams({&featuresSetting}); if (audioEncoder) { stackParams.push_back(&encoderFrameSize); stackParams.push_back(&sampleRate); stackParams.push_back(&channelCount); stackParams.push_back(&pcmEncoding); } else { encoderFrameSize.invalidate(); sampleRate.invalidate(); channelCount.invalidate(); pcmEncoding.invalidate(); } err = mComponent->query(stackParams, { C2PortAllocatorsTuning::input::PARAM_TYPE }, C2_DONT_BLOCK, ¶ms); if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) { ALOGD("[%s] Query input allocators returned %zu params => %s (%u)", mName, params.size(), asString(err), err); } else if (params.size() == 1) { C2PortAllocatorsTuning::input *inputAllocators = C2PortAllocatorsTuning::input::From(params[0].get()); if (inputAllocators && inputAllocators->flexCount() > 0) { std::shared_ptr allocator; // verify allocator IDs and resolve default allocator allocatorStore->fetchAllocator(inputAllocators->m.values[0], &allocator); if (allocator) { pools->inputAllocatorId = allocator->getId(); } else { ALOGD("[%s] component requested invalid input allocator ID %u", mName, inputAllocators->m.values[0]); } } } if (featuresSetting) { apiFeatures = featuresSetting.value; } // TODO: use C2Component wrapper to associate this pool with ourselves if ((poolMask >> pools->inputAllocatorId) & 1) { err = CreateCodec2BlockPool(pools->inputAllocatorId, nullptr, &pool); ALOGD("[%s] Created input block pool with allocatorID %u => poolID %llu - %s (%d)", mName, pools->inputAllocatorId, (unsigned long long)(pool ? pool->getLocalId() : 111000111), asString(err), err); } else { err = C2_NOT_FOUND; } if (err != C2_OK) { C2BlockPool::local_id_t inputPoolId = graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR; err = GetCodec2BlockPool(inputPoolId, nullptr, &pool); ALOGD("[%s] Using basic input block pool with poolID %llu => got %llu - %s (%d)", mName, (unsigned long long)inputPoolId, (unsigned long long)(pool ? pool->getLocalId() : 111000111), asString(err), err); if (err != C2_OK) { return NO_MEMORY; } } pools->inputPool = pool; } bool forceArrayMode = false; Mutexed::Locked input(mInput); input->inputDelay = inputDelayValue; input->pipelineDelay = pipelineDelayValue; input->numSlots = numInputSlots; input->extraBuffers.flush(); input->numExtraSlots = 0u; input->lastFlushIndex = mFrameIndex.load(std::memory_order_relaxed); if (audioEncoder && encoderFrameSize && sampleRate && channelCount) { input->frameReassembler.init( pool, {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE}, encoderFrameSize.value, sampleRate.value, channelCount.value, pcmEncoding ? pcmEncoding.value : C2Config::PCM_16); } bool conforming = (apiFeatures & API_SAME_INPUT_BUFFER); // For encrypted content, framework decrypts source buffer (ashmem) into // C2Buffers. Thus non-conforming codecs can process these. if (!buffersBoundToCodec && !input->frameReassembler && (hasCryptoOrDescrambler() || conforming)) { input->buffers.reset(new SlotInputBuffers(mName)); } else if (graphic) { if (mInputSurface) { input->buffers.reset(new DummyInputBuffers(mName)); } else if (mMetaMode == MODE_ANW) { input->buffers.reset(new GraphicMetadataInputBuffers(mName)); // This is to ensure buffers do not get released prematurely. // TODO: handle this without going into array mode forceArrayMode = true; } else { input->buffers.reset(new GraphicInputBuffers(mName)); } } else { if (hasCryptoOrDescrambler()) { int32_t capacity = kLinearBufferSize; (void)inputFormat->findInt32(KEY_MAX_INPUT_SIZE, &capacity); if ((size_t)capacity > kMaxLinearBufferSize) { ALOGD("client requested %d, capped to %zu", capacity, kMaxLinearBufferSize); capacity = kMaxLinearBufferSize; } if (mDealer == nullptr) { mDealer = new MemoryDealer( align(capacity, MemoryDealer::getAllocationAlignment()) * (numInputSlots + 1), "EncryptedLinearInputBuffers"); mDecryptDestination = mDealer->allocate((size_t)capacity); } if (mCrypto != nullptr && mHeapSeqNum < 0) { sp heap = fromHeap(mDealer->getMemoryHeap()); mHeapSeqNum = mCrypto->setHeap(heap); } else { mHeapSeqNum = -1; } input->buffers.reset(new EncryptedLinearInputBuffers( secure, mDealer, mCrypto, mHeapSeqNum, (size_t)capacity, numInputSlots, mName)); forceArrayMode = true; } else { input->buffers.reset(new LinearInputBuffers(mName)); } } input->buffers->setFormat(inputFormat); if (err == C2_OK) { input->buffers->setPool(pool); } else { // TODO: error } if (forceArrayMode) { input->buffers = input->buffers->toArrayMode(numInputSlots); } } if (outputFormat != nullptr) { sp outputSurface; uint32_t outputGeneration; int maxDequeueCount = 0; { Mutexed::Locked output(mOutputSurface); maxDequeueCount = output->maxDequeueBuffers = numOutputSlots + reorderDepth.value + kRenderingDepth; outputSurface = output->surface ? output->surface->getIGraphicBufferProducer() : nullptr; if (outputSurface) { output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers); } outputGeneration = output->generation; } bool graphic = (oStreamFormat.value == C2BufferData::GRAPHIC); C2BlockPool::local_id_t outputPoolId_; C2BlockPool::local_id_t prevOutputPoolId; { Mutexed::Locked pools(mBlockPools); prevOutputPoolId = pools->outputPoolId; // set default allocator ID. pools->outputAllocatorId = (graphic) ? C2PlatformAllocatorStore::GRALLOC : preferredLinearId; // query C2PortAllocatorsTuning::output from component, or use default allocator if // unsuccessful. std::vector> params; err = mComponent->query({ }, { C2PortAllocatorsTuning::output::PARAM_TYPE }, C2_DONT_BLOCK, ¶ms); if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) { ALOGD("[%s] Query output allocators returned %zu params => %s (%u)", mName, params.size(), asString(err), err); } else if (err == C2_OK && params.size() == 1) { C2PortAllocatorsTuning::output *outputAllocators = C2PortAllocatorsTuning::output::From(params[0].get()); if (outputAllocators && outputAllocators->flexCount() > 0) { std::shared_ptr allocator; // verify allocator IDs and resolve default allocator allocatorStore->fetchAllocator(outputAllocators->m.values[0], &allocator); if (allocator) { pools->outputAllocatorId = allocator->getId(); } else { ALOGD("[%s] component requested invalid output allocator ID %u", mName, outputAllocators->m.values[0]); } } } // use bufferqueue if outputting to a surface. // query C2PortSurfaceAllocatorTuning::output from component, or use default allocator // if unsuccessful. if (outputSurface) { params.clear(); err = mComponent->query({ }, { C2PortSurfaceAllocatorTuning::output::PARAM_TYPE }, C2_DONT_BLOCK, ¶ms); if ((err != C2_OK && err != C2_BAD_INDEX) || params.size() != 1) { ALOGD("[%s] Query output surface allocator returned %zu params => %s (%u)", mName, params.size(), asString(err), err); } else if (err == C2_OK && params.size() == 1) { C2PortSurfaceAllocatorTuning::output *surfaceAllocator = C2PortSurfaceAllocatorTuning::output::From(params[0].get()); if (surfaceAllocator) { std::shared_ptr allocator; // verify allocator IDs and resolve default allocator allocatorStore->fetchAllocator(surfaceAllocator->value, &allocator); if (allocator) { pools->outputAllocatorId = allocator->getId(); } else { ALOGD("[%s] component requested invalid surface output allocator ID %u", mName, surfaceAllocator->value); err = C2_BAD_VALUE; } } } if (pools->outputAllocatorId == C2PlatformAllocatorStore::GRALLOC && err != C2_OK && ((poolMask >> C2PlatformAllocatorStore::BUFFERQUEUE) & 1)) { pools->outputAllocatorId = C2PlatformAllocatorStore::BUFFERQUEUE; } } if ((poolMask >> pools->outputAllocatorId) & 1) { err = mComponent->createBlockPool( pools->outputAllocatorId, &pools->outputPoolId, &pools->outputPoolIntf); ALOGI("[%s] Created output block pool with allocatorID %u => poolID %llu - %s", mName, pools->outputAllocatorId, (unsigned long long)pools->outputPoolId, asString(err)); } else { err = C2_NOT_FOUND; } if (err != C2_OK) { // use basic pool instead pools->outputPoolId = graphic ? C2BlockPool::BASIC_GRAPHIC : C2BlockPool::BASIC_LINEAR; } // Configure output block pool ID as parameter C2PortBlockPoolsTuning::output to // component. std::unique_ptr poolIdsTuning = C2PortBlockPoolsTuning::output::AllocUnique({ pools->outputPoolId }); std::vector> failures; err = mComponent->config({ poolIdsTuning.get() }, C2_MAY_BLOCK, &failures); ALOGD("[%s] Configured output block pool ids %llu => %s", mName, (unsigned long long)poolIdsTuning->m.values[0], asString(err)); outputPoolId_ = pools->outputPoolId; } if (prevOutputPoolId != C2BlockPool::BASIC_LINEAR && prevOutputPoolId != C2BlockPool::BASIC_GRAPHIC) { c2_status_t err = mComponent->destroyBlockPool(prevOutputPoolId); if (err != C2_OK) { ALOGW("Failed to clean up previous block pool %llu - %s (%d)\n", (unsigned long long) prevOutputPoolId, asString(err), err); } } Mutexed::Locked output(mOutput); output->outputDelay = outputDelayValue; output->numSlots = numOutputSlots; if (graphic) { if (outputSurface || !buffersBoundToCodec) { output->buffers.reset(new GraphicOutputBuffers(mName)); } else { output->buffers.reset(new RawGraphicOutputBuffers(mName)); } } else { output->buffers.reset(new LinearOutputBuffers(mName)); } output->buffers->setFormat(outputFormat); output->buffers->clearStash(); if (reorderDepth) { output->buffers->setReorderDepth(reorderDepth.value); } if (reorderKey) { output->buffers->setReorderKey(reorderKey.value); } // Try to set output surface to created block pool if given. if (outputSurface) { mComponent->setOutputSurface( outputPoolId_, outputSurface, outputGeneration, maxDequeueCount); } else { // configure CPU read consumer usage C2StreamUsageTuning::output outputUsage{0u, C2MemoryUsage::CPU_READ}; std::vector> failures; err = mComponent->config({ &outputUsage }, C2_MAY_BLOCK, &failures); // do not print error message for now as most components may not yet // support this setting ALOGD_IF(err != C2_BAD_INDEX, "[%s] Configured output usage [%#llx]", mName, (long long)outputUsage.value); } if (oStreamFormat.value == C2BufferData::LINEAR) { if (buffersBoundToCodec) { // WORKAROUND: if we're using early CSD workaround we convert to // array mode, to appease apps assuming the output // buffers to be of the same size. output->buffers = output->buffers->toArrayMode(numOutputSlots); } int32_t channelCount; int32_t sampleRate; if (outputFormat->findInt32(KEY_CHANNEL_COUNT, &channelCount) && outputFormat->findInt32(KEY_SAMPLE_RATE, &sampleRate)) { int32_t delay = 0; int32_t padding = 0;; if (!outputFormat->findInt32("encoder-delay", &delay)) { delay = 0; } if (!outputFormat->findInt32("encoder-padding", &padding)) { padding = 0; } if (delay || padding) { // We need write access to the buffers, and we're already in // array mode. output->buffers->initSkipCutBuffer(delay, padding, sampleRate, channelCount); } } } int32_t tunneled = 0; if (!outputFormat->findInt32("android._tunneled", &tunneled)) { tunneled = 0; } mTunneled = (tunneled != 0); } // Set up pipeline control. This has to be done after mInputBuffers and // mOutputBuffers are initialized to make sure that lingering callbacks // about buffers from the previous generation do not interfere with the // newly initialized pipeline capacity. if (inputFormat || outputFormat) { Mutexed::Locked watcher(mPipelineWatcher); watcher->inputDelay(inputDelayValue) .pipelineDelay(pipelineDelayValue) .outputDelay(outputDelayValue) .smoothnessFactor(kSmoothnessFactor); watcher->flush(); } mInputMetEos = false; mSync.start(); return OK; } status_t CCodecBufferChannel::prepareInitialInputBuffers( std::map> *clientInputBuffers) { if (mInputSurface) { return OK; } size_t numInputSlots = mInput.lock()->numSlots; { Mutexed::Locked input(mInput); while (clientInputBuffers->size() < numInputSlots) { size_t index; sp buffer; if (!input->buffers->requestNewBuffer(&index, &buffer)) { break; } clientInputBuffers->emplace(index, buffer); } } if (clientInputBuffers->empty()) { ALOGW("[%s] start: cannot allocate memory at all", mName); return NO_MEMORY; } else if (clientInputBuffers->size() < numInputSlots) { ALOGD("[%s] start: cannot allocate memory for all slots, " "only %zu buffers allocated", mName, clientInputBuffers->size()); } else { ALOGV("[%s] %zu initial input buffers available", mName, clientInputBuffers->size()); } return OK; } status_t CCodecBufferChannel::requestInitialInputBuffers( std::map> &&clientInputBuffers) { C2StreamBufferTypeSetting::output oStreamFormat(0u); C2PrependHeaderModeSetting prepend(PREPEND_HEADER_TO_NONE); c2_status_t err = mComponent->query({ &oStreamFormat, &prepend }, {}, C2_DONT_BLOCK, nullptr); if (err != C2_OK && err != C2_BAD_INDEX) { return UNKNOWN_ERROR; } std::list> flushedConfigs; mFlushedConfigs.lock()->swap(flushedConfigs); if (!flushedConfigs.empty()) { { Mutexed::Locked watcher(mPipelineWatcher); PipelineWatcher::Clock::time_point now = PipelineWatcher::Clock::now(); for (const std::unique_ptr &work : flushedConfigs) { watcher->onWorkQueued( work->input.ordinal.frameIndex.peeku(), std::vector(work->input.buffers), now); } } err = mComponent->queue(&flushedConfigs); if (err != C2_OK) { ALOGW("[%s] Error while queueing a flushed config", mName); return UNKNOWN_ERROR; } } if (oStreamFormat.value == C2BufferData::LINEAR && (!prepend || prepend.value == PREPEND_HEADER_TO_NONE) && !clientInputBuffers.empty()) { size_t minIndex = clientInputBuffers.begin()->first; sp minBuffer = clientInputBuffers.begin()->second; for (const auto &[index, buffer] : clientInputBuffers) { if (minBuffer->capacity() > buffer->capacity()) { minIndex = index; minBuffer = buffer; } } // WORKAROUND: Some apps expect CSD available without queueing // any input. Queue an empty buffer to get the CSD. minBuffer->setRange(0, 0); minBuffer->meta()->clear(); minBuffer->meta()->setInt64("timeUs", 0); if (queueInputBufferInternal(minBuffer) != OK) { ALOGW("[%s] Error while queueing an empty buffer to get CSD", mName); return UNKNOWN_ERROR; } clientInputBuffers.erase(minIndex); } for (const auto &[index, buffer] : clientInputBuffers) { mCallback->onInputBufferAvailable(index, buffer); } return OK; } void CCodecBufferChannel::stop() { mSync.stop(); mFirstValidFrameIndex = mFrameIndex.load(std::memory_order_relaxed); } void CCodecBufferChannel::stopUseOutputSurface(bool pushBlankBuffer) { sp surface = mOutputSurface.lock()->surface; if (surface) { C2BlockPool::local_id_t outputPoolId; { Mutexed::Locked pools(mBlockPools); outputPoolId = pools->outputPoolId; } if (mComponent) mComponent->stopUsingOutputSurface(outputPoolId); if (pushBlankBuffer) { sp anw = static_cast(surface.get()); if (anw) { pushBlankBuffersToNativeWindow(anw.get()); } } } } void CCodecBufferChannel::reset() { stop(); if (mInputSurface != nullptr) { mInputSurface.reset(); } mPipelineWatcher.lock()->flush(); { Mutexed::Locked input(mInput); input->buffers.reset(new DummyInputBuffers("")); input->extraBuffers.flush(); } { Mutexed::Locked output(mOutput); output->buffers.reset(); } } void CCodecBufferChannel::release() { mComponent.reset(); mInputAllocator.reset(); mOutputSurface.lock()->surface.clear(); { Mutexed::Locked blockPools{mBlockPools}; blockPools->inputPool.reset(); blockPools->outputPoolIntf.reset(); } setCrypto(nullptr); setDescrambler(nullptr); } void CCodecBufferChannel::flush(const std::list> &flushedWork) { ALOGV("[%s] flush", mName); std::list> configs; mInput.lock()->lastFlushIndex = mFrameIndex.load(std::memory_order_relaxed); { Mutexed::Locked watcher(mPipelineWatcher); for (const std::unique_ptr &work : flushedWork) { uint64_t frameIndex = work->input.ordinal.frameIndex.peeku(); if (!(work->input.flags & C2FrameData::FLAG_CODEC_CONFIG)) { watcher->onWorkDone(frameIndex); continue; } if (work->input.buffers.empty() || work->input.buffers.front() == nullptr || work->input.buffers.front()->data().linearBlocks().empty()) { ALOGD("[%s] no linear codec config data found", mName); watcher->onWorkDone(frameIndex); continue; } std::unique_ptr copy(new C2Work); copy->input.flags = C2FrameData::flags_t( work->input.flags | C2FrameData::FLAG_DROP_FRAME); copy->input.ordinal = work->input.ordinal; copy->input.ordinal.frameIndex = mFrameIndex++; for (size_t i = 0; i < work->input.buffers.size(); ++i) { copy->input.buffers.push_back(watcher->onInputBufferReleased(frameIndex, i)); } for (const std::unique_ptr ¶m : work->input.configUpdate) { copy->input.configUpdate.push_back(C2Param::Copy(*param)); } copy->input.infoBuffers.insert( copy->input.infoBuffers.begin(), work->input.infoBuffers.begin(), work->input.infoBuffers.end()); copy->worklets.emplace_back(new C2Worklet); configs.push_back(std::move(copy)); watcher->onWorkDone(frameIndex); ALOGV("[%s] stashed flushed codec config data", mName); } } mFlushedConfigs.lock()->swap(configs); { Mutexed::Locked input(mInput); input->buffers->flush(); input->extraBuffers.flush(); } { Mutexed::Locked output(mOutput); if (output->buffers) { output->buffers->flush(flushedWork); output->buffers->flushStash(); } } } void CCodecBufferChannel::onWorkDone( std::unique_ptr work, const sp &outputFormat, const C2StreamInitDataInfo::output *initData) { if (handleWork(std::move(work), outputFormat, initData)) { feedInputBufferIfAvailable(); } } void CCodecBufferChannel::onInputBufferDone( uint64_t frameIndex, size_t arrayIndex) { if (mInputSurface) { return; } std::shared_ptr buffer = mPipelineWatcher.lock()->onInputBufferReleased(frameIndex, arrayIndex); bool newInputSlotAvailable = false; { Mutexed::Locked input(mInput); if (input->lastFlushIndex >= frameIndex) { ALOGD("[%s] Ignoring stale input buffer done callback: " "last flush index = %lld, frameIndex = %lld", mName, input->lastFlushIndex.peekll(), (long long)frameIndex); } else { newInputSlotAvailable = input->buffers->expireComponentBuffer(buffer); if (!newInputSlotAvailable) { (void)input->extraBuffers.expireComponentBuffer(buffer); } } } if (newInputSlotAvailable) { feedInputBufferIfAvailable(); } } bool CCodecBufferChannel::handleWork( std::unique_ptr work, const sp &outputFormat, const C2StreamInitDataInfo::output *initData) { { Mutexed::Locked output(mOutput); if (!output->buffers) { return false; } } // Whether the output buffer should be reported to the client or not. bool notifyClient = false; if (work->result == C2_OK){ notifyClient = true; } else if (work->result == C2_NOT_FOUND) { ALOGD("[%s] flushed work; ignored.", mName); } else { // C2_OK and C2_NOT_FOUND are the only results that we accept for processing // the config update. ALOGD("[%s] work failed to complete: %d", mName, work->result); mCCodecCallback->onError(work->result, ACTION_CODE_FATAL); return false; } if ((work->input.ordinal.frameIndex - mFirstValidFrameIndex.load()).peek() < 0) { // Discard frames from previous generation. ALOGD("[%s] Discard frames from previous generation.", mName); notifyClient = false; } if (mInputSurface == nullptr && (work->worklets.size() != 1u || !work->worklets.front() || !(work->worklets.front()->output.flags & C2FrameData::FLAG_INCOMPLETE))) { mPipelineWatcher.lock()->onWorkDone( work->input.ordinal.frameIndex.peeku()); } // NOTE: MediaCodec usage supposedly have only one worklet if (work->worklets.size() != 1u) { ALOGI("[%s] onWorkDone: incorrect number of worklets: %zu", mName, work->worklets.size()); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return false; } const std::unique_ptr &worklet = work->worklets.front(); std::shared_ptr buffer; // NOTE: MediaCodec usage supposedly have only one output stream. if (worklet->output.buffers.size() > 1u) { ALOGI("[%s] onWorkDone: incorrect number of output buffers: %zu", mName, worklet->output.buffers.size()); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return false; } else if (worklet->output.buffers.size() == 1u) { buffer = worklet->output.buffers[0]; if (!buffer) { ALOGD("[%s] onWorkDone: nullptr found in buffers; ignored.", mName); } } std::optional newInputDelay, newPipelineDelay, newOutputDelay, newReorderDepth; std::optional newReorderKey; bool needMaxDequeueBufferCountUpdate = false; while (!worklet->output.configUpdate.empty()) { std::unique_ptr param; worklet->output.configUpdate.back().swap(param); worklet->output.configUpdate.pop_back(); switch (param->coreIndex().coreIndex()) { case C2PortReorderBufferDepthTuning::CORE_INDEX: { C2PortReorderBufferDepthTuning::output reorderDepth; if (reorderDepth.updateFrom(*param)) { ALOGV("[%s] onWorkDone: updated reorder depth to %u", mName, reorderDepth.value); newReorderDepth = reorderDepth.value; needMaxDequeueBufferCountUpdate = true; } else { ALOGD("[%s] onWorkDone: failed to read reorder depth", mName); } break; } case C2PortReorderKeySetting::CORE_INDEX: { C2PortReorderKeySetting::output reorderKey; if (reorderKey.updateFrom(*param)) { newReorderKey = reorderKey.value; ALOGV("[%s] onWorkDone: updated reorder key to %u", mName, reorderKey.value); } else { ALOGD("[%s] onWorkDone: failed to read reorder key", mName); } break; } case C2PortActualDelayTuning::CORE_INDEX: { if (param->isGlobal()) { C2ActualPipelineDelayTuning pipelineDelay; if (pipelineDelay.updateFrom(*param)) { ALOGV("[%s] onWorkDone: updating pipeline delay %u", mName, pipelineDelay.value); newPipelineDelay = pipelineDelay.value; (void)mPipelineWatcher.lock()->pipelineDelay( pipelineDelay.value); } } if (param->forInput()) { C2PortActualDelayTuning::input inputDelay; if (inputDelay.updateFrom(*param)) { ALOGV("[%s] onWorkDone: updating input delay %u", mName, inputDelay.value); newInputDelay = inputDelay.value; (void)mPipelineWatcher.lock()->inputDelay( inputDelay.value); } } if (param->forOutput()) { C2PortActualDelayTuning::output outputDelay; if (outputDelay.updateFrom(*param)) { ALOGV("[%s] onWorkDone: updating output delay %u", mName, outputDelay.value); (void)mPipelineWatcher.lock()->outputDelay(outputDelay.value); newOutputDelay = outputDelay.value; needMaxDequeueBufferCountUpdate = true; } } break; } case C2PortTunnelSystemTime::CORE_INDEX: { C2PortTunnelSystemTime::output frameRenderTime; if (frameRenderTime.updateFrom(*param)) { ALOGV("[%s] onWorkDone: frame rendered (sys:%lld ns, media:%lld us)", mName, (long long)frameRenderTime.value, (long long)worklet->output.ordinal.timestamp.peekll()); mCCodecCallback->onOutputFramesRendered( worklet->output.ordinal.timestamp.peek(), frameRenderTime.value); } break; } case C2StreamTunnelHoldRender::CORE_INDEX: { C2StreamTunnelHoldRender::output firstTunnelFrameHoldRender; if (!(worklet->output.flags & C2FrameData::FLAG_INCOMPLETE)) break; if (!firstTunnelFrameHoldRender.updateFrom(*param)) break; if (firstTunnelFrameHoldRender.value != C2_TRUE) break; ALOGV("[%s] onWorkDone: first tunnel frame ready", mName); mCCodecCallback->onFirstTunnelFrameReady(); break; } default: ALOGV("[%s] onWorkDone: unrecognized config update (%08X)", mName, param->index()); break; } } if (newInputDelay || newPipelineDelay) { Mutexed::Locked input(mInput); size_t newNumSlots = newInputDelay.value_or(input->inputDelay) + newPipelineDelay.value_or(input->pipelineDelay) + kSmoothnessFactor; if (input->buffers->isArrayMode()) { if (input->numSlots >= newNumSlots) { input->numExtraSlots = 0; } else { input->numExtraSlots = newNumSlots - input->numSlots; } ALOGV("[%s] onWorkDone: updated number of extra slots to %zu (input array mode)", mName, input->numExtraSlots); } else { input->numSlots = newNumSlots; } } size_t numOutputSlots = 0; uint32_t reorderDepth = 0; bool outputBuffersChanged = false; if (newReorderKey || newReorderDepth || needMaxDequeueBufferCountUpdate) { Mutexed::Locked output(mOutput); if (!output->buffers) { return false; } numOutputSlots = output->numSlots; if (newReorderKey) { output->buffers->setReorderKey(newReorderKey.value()); } if (newReorderDepth) { output->buffers->setReorderDepth(newReorderDepth.value()); } reorderDepth = output->buffers->getReorderDepth(); if (newOutputDelay) { output->outputDelay = newOutputDelay.value(); numOutputSlots = newOutputDelay.value() + kSmoothnessFactor; if (output->numSlots < numOutputSlots) { output->numSlots = numOutputSlots; if (output->buffers->isArrayMode()) { OutputBuffersArray *array = (OutputBuffersArray *)output->buffers.get(); ALOGV("[%s] onWorkDone: growing output buffer array to %zu", mName, numOutputSlots); array->grow(numOutputSlots); outputBuffersChanged = true; } } } numOutputSlots = output->numSlots; } if (outputBuffersChanged) { mCCodecCallback->onOutputBuffersChanged(); } if (needMaxDequeueBufferCountUpdate) { int maxDequeueCount = 0; { Mutexed::Locked output(mOutputSurface); maxDequeueCount = output->maxDequeueBuffers = numOutputSlots + reorderDepth + kRenderingDepth; if (output->surface) { output->surface->setMaxDequeuedBufferCount(output->maxDequeueBuffers); } } if (maxDequeueCount > 0) { mComponent->setOutputSurfaceMaxDequeueCount(maxDequeueCount); } } int32_t flags = 0; if (worklet->output.flags & C2FrameData::FLAG_END_OF_STREAM) { flags |= BUFFER_FLAG_END_OF_STREAM; ALOGV("[%s] onWorkDone: output EOS", mName); } // WORKAROUND: adjust output timestamp based on client input timestamp and codec // input timestamp. Codec output timestamp (in the timestamp field) shall correspond to // the codec input timestamp, but client output timestamp should (reported in timeUs) // shall correspond to the client input timesamp (in customOrdinal). By using the // delta between the two, this allows for some timestamp deviation - e.g. if one input // produces multiple output. c2_cntr64_t timestamp = worklet->output.ordinal.timestamp + work->input.ordinal.customOrdinal - work->input.ordinal.timestamp; if (mInputSurface != nullptr) { // When using input surface we need to restore the original input timestamp. timestamp = work->input.ordinal.customOrdinal; } ScopedTrace trace(ATRACE_TAG, android::base::StringPrintf( "CCodecBufferChannel::onWorkDone(%s@ts=%lld)", mName, timestamp.peekll()).c_str()); ALOGV("[%s] onWorkDone: input %lld, codec %lld => output %lld => %lld", mName, work->input.ordinal.customOrdinal.peekll(), work->input.ordinal.timestamp.peekll(), worklet->output.ordinal.timestamp.peekll(), timestamp.peekll()); // csd cannot be re-ordered and will always arrive first. if (initData != nullptr) { Mutexed::Locked output(mOutput); if (output->buffers && outputFormat) { output->buffers->updateSkipCutBuffer(outputFormat); output->buffers->setFormat(outputFormat); } if (!notifyClient) { return false; } size_t index; sp outBuffer; if (output->buffers && output->buffers->registerCsd(initData, &index, &outBuffer) == OK) { outBuffer->meta()->setInt64("timeUs", timestamp.peek()); outBuffer->meta()->setInt32("flags", BUFFER_FLAG_CODEC_CONFIG); ALOGV("[%s] onWorkDone: csd index = %zu [%p]", mName, index, outBuffer.get()); output.unlock(); mCallback->onOutputBufferAvailable(index, outBuffer); } else { ALOGD("[%s] onWorkDone: unable to register csd", mName); output.unlock(); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return false; } } bool drop = false; if (worklet->output.flags & C2FrameData::FLAG_DROP_FRAME) { ALOGV("[%s] onWorkDone: drop buffer but keep metadata", mName); drop = true; } if (notifyClient && !buffer && !flags) { if (mTunneled && drop && outputFormat) { ALOGV("[%s] onWorkDone: Keep tunneled, drop frame with format change (%lld)", mName, work->input.ordinal.frameIndex.peekull()); } else { ALOGV("[%s] onWorkDone: Not reporting output buffer (%lld)", mName, work->input.ordinal.frameIndex.peekull()); notifyClient = false; } } if (buffer) { for (const std::shared_ptr &info : buffer->info()) { // TODO: properly translate these to metadata switch (info->coreIndex().coreIndex()) { case C2StreamPictureTypeMaskInfo::CORE_INDEX: if (((C2StreamPictureTypeMaskInfo *)info.get())->value & C2Config::SYNC_FRAME) { flags |= BUFFER_FLAG_KEY_FRAME; } break; default: break; } } } { Mutexed::Locked output(mOutput); if (!output->buffers) { return false; } output->buffers->pushToStash( buffer, notifyClient, timestamp.peek(), flags, outputFormat, worklet->output.ordinal); } sendOutputBuffers(); return true; } void CCodecBufferChannel::sendOutputBuffers() { OutputBuffers::BufferAction action; size_t index; sp outBuffer; std::shared_ptr c2Buffer; constexpr int kMaxReallocTry = 5; int reallocTryNum = 0; while (true) { Mutexed::Locked output(mOutput); if (!output->buffers) { return; } action = output->buffers->popFromStashAndRegister( &c2Buffer, &index, &outBuffer); if (action != OutputBuffers::REALLOCATE) { reallocTryNum = 0; } switch (action) { case OutputBuffers::SKIP: return; case OutputBuffers::DISCARD: break; case OutputBuffers::NOTIFY_CLIENT: output.unlock(); mCallback->onOutputBufferAvailable(index, outBuffer); break; case OutputBuffers::REALLOCATE: if (++reallocTryNum > kMaxReallocTry) { output.unlock(); ALOGE("[%s] sendOutputBuffers: tried %d realloc and failed", mName, kMaxReallocTry); mCCodecCallback->onError(UNKNOWN_ERROR, ACTION_CODE_FATAL); return; } if (!output->buffers->isArrayMode()) { output->buffers = output->buffers->toArrayMode(output->numSlots); } static_cast(output->buffers.get())-> realloc(c2Buffer); output.unlock(); mCCodecCallback->onOutputBuffersChanged(); break; case OutputBuffers::RETRY: ALOGV("[%s] sendOutputBuffers: unable to register output buffer", mName); return; default: LOG_ALWAYS_FATAL("[%s] sendOutputBuffers: " "corrupted BufferAction value (%d) " "returned from popFromStashAndRegister.", mName, int(action)); return; } } } status_t CCodecBufferChannel::setSurface(const sp &newSurface, bool pushBlankBuffer) { static std::atomic_uint32_t surfaceGeneration{0}; uint32_t generation = (getpid() << 10) | ((surfaceGeneration.fetch_add(1, std::memory_order_relaxed) + 1) & ((1 << 10) - 1)); sp producer; int maxDequeueCount; sp oldSurface; { Mutexed::Locked outputSurface(mOutputSurface); maxDequeueCount = outputSurface->maxDequeueBuffers; oldSurface = outputSurface->surface; } if (newSurface) { newSurface->setScalingMode(NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); newSurface->setDequeueTimeout(kDequeueTimeoutNs); newSurface->setMaxDequeuedBufferCount(maxDequeueCount); producer = newSurface->getIGraphicBufferProducer(); producer->setGenerationNumber(generation); } else { ALOGE("[%s] setting output surface to null", mName); return INVALID_OPERATION; } std::shared_ptr outputPoolIntf; C2BlockPool::local_id_t outputPoolId; { Mutexed::Locked pools(mBlockPools); outputPoolId = pools->outputPoolId; outputPoolIntf = pools->outputPoolIntf; } if (outputPoolIntf) { if (mComponent->setOutputSurface( outputPoolId, producer, generation, maxDequeueCount) != C2_OK) { ALOGI("[%s] setSurface: component setOutputSurface failed", mName); return INVALID_OPERATION; } } { Mutexed::Locked output(mOutputSurface); output->surface = newSurface; output->generation = generation; } if (oldSurface && pushBlankBuffer) { // When ReleaseSurface was set from MediaCodec, // pushing a blank buffer at the end might be necessary. sp anw = static_cast(oldSurface.get()); if (anw) { pushBlankBuffersToNativeWindow(anw.get()); } } return OK; } PipelineWatcher::Clock::duration CCodecBufferChannel::elapsed() { // Otherwise, component may have stalled work due to input starvation up to // the sum of the delay in the pipeline. // TODO(b/231253301): When client pushed EOS, the pipeline could have less // number of frames. size_t n = 0; size_t outputDelay = mOutput.lock()->outputDelay; { Mutexed::Locked input(mInput); n = input->inputDelay + input->pipelineDelay + outputDelay; } return mPipelineWatcher.lock()->elapsed(PipelineWatcher::Clock::now(), n); } void CCodecBufferChannel::setMetaMode(MetaMode mode) { mMetaMode = mode; } void CCodecBufferChannel::setCrypto(const sp &crypto) { if (mCrypto != nullptr) { for (std::pair, int32_t> entry : mHeapSeqNumMap) { mCrypto->unsetHeap(entry.second); } mHeapSeqNumMap.clear(); if (mHeapSeqNum >= 0) { mCrypto->unsetHeap(mHeapSeqNum); mHeapSeqNum = -1; } } mCrypto = crypto; } void CCodecBufferChannel::setDescrambler(const sp &descrambler) { mDescrambler = descrambler; } status_t toStatusT(c2_status_t c2s, c2_operation_t c2op) { // C2_OK is always translated to OK. if (c2s == C2_OK) { return OK; } // Operation-dependent translation // TODO: Add as necessary switch (c2op) { case C2_OPERATION_Component_start: switch (c2s) { case C2_NO_MEMORY: return NO_MEMORY; default: return UNKNOWN_ERROR; } default: break; } // Backup operation-agnostic translation switch (c2s) { case C2_BAD_INDEX: return BAD_INDEX; case C2_BAD_VALUE: return BAD_VALUE; case C2_BLOCKING: return WOULD_BLOCK; case C2_DUPLICATE: return ALREADY_EXISTS; case C2_NO_INIT: return NO_INIT; case C2_NO_MEMORY: return NO_MEMORY; case C2_NOT_FOUND: return NAME_NOT_FOUND; case C2_TIMED_OUT: return TIMED_OUT; case C2_BAD_STATE: case C2_CANCELED: case C2_CANNOT_DO: case C2_CORRUPTED: case C2_OMITTED: case C2_REFUSED: return UNKNOWN_ERROR; default: return -static_cast(c2s); } } } // namespace android