/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "CCodecConfig" #include #include #include #include #include #include #include #include #include #include #include "CCodecConfig.h" #include "Codec2Mapper.h" #define DRC_DEFAULT_MOBILE_REF_LEVEL 64 /* 64*-0.25dB = -16 dB below full scale for mobile conf */ #define DRC_DEFAULT_MOBILE_DRC_CUT 127 /* maximum compression of dynamic range for mobile conf */ #define DRC_DEFAULT_MOBILE_DRC_BOOST 127 /* maximum compression of dynamic range for mobile conf */ #define DRC_DEFAULT_MOBILE_DRC_HEAVY 1 /* switch for heavy compression for mobile conf */ #define DRC_DEFAULT_MOBILE_DRC_EFFECT 3 /* MPEG-D DRC effect type; 3 => Limited playback range */ #define DRC_DEFAULT_MOBILE_DRC_ALBUM 0 /* MPEG-D DRC album mode; 0 => album mode is disabled, 1 => album mode is enabled */ #define DRC_DEFAULT_MOBILE_OUTPUT_LOUDNESS -1 /* decoder output loudness; -1 => the value is unknown, otherwise dB step value (e.g. 64 for -16 dB) */ #define DRC_DEFAULT_MOBILE_ENC_LEVEL (-1) /* encoder target level; -1 => the value is unknown, otherwise dB step value (e.g. 64 for -16 dB) */ // names of properties that can be used to override the default DRC settings #define PROP_DRC_OVERRIDE_REF_LEVEL "aac_drc_reference_level" #define PROP_DRC_OVERRIDE_CUT "aac_drc_cut" #define PROP_DRC_OVERRIDE_BOOST "aac_drc_boost" #define PROP_DRC_OVERRIDE_HEAVY "aac_drc_heavy" #define PROP_DRC_OVERRIDE_ENC_LEVEL "aac_drc_enc_target_level" #define PROP_DRC_OVERRIDE_EFFECT "ro.aac_drc_effect_type" namespace android { // CCodecConfig namespace { void C2ValueToMessageItem(const C2Value &value, AMessage::ItemData &item) { int32_t int32Value; uint32_t uint32Value; int64_t int64Value; uint64_t uint64Value; float floatValue; if (value.get(&int32Value)) { item.set(int32Value); } else if (value.get(&uint32Value) && uint32Value <= uint32_t(INT32_MAX)) { // SDK does not support unsigned values item.set((int32_t)uint32Value); } else if (value.get(&int64Value)) { item.set(int64Value); } else if (value.get(&uint64Value) && uint64Value <= uint64_t(INT64_MAX)) { // SDK does not support unsigned values item.set((int64_t)uint64Value); } else if (value.get(&floatValue)) { item.set(floatValue); } } /** * mapping between SDK and Codec 2.0 configurations. */ struct ConfigMapper { /** * Value mapper (C2Value => C2Value) */ typedef std::function Mapper; /// shorthand typedef CCodecConfig::Domain Domain; ConfigMapper(std::string mediaKey, C2String c2struct, C2String c2field) : mDomain(Domain::ALL), mMediaKey(mediaKey), mStruct(c2struct), mField(c2field) { } /// Limits this parameter to the given domain ConfigMapper &limitTo(uint32_t domain) { C2_CHECK(domain & Domain::GUARD_BIT); mDomain = Domain(mDomain & domain); return *this; } /// Adds SDK => Codec 2.0 mapper (should not be in the SDK format) ConfigMapper &withMapper(Mapper mapper) { C2_CHECK(!mMapper); C2_CHECK(!mReverse); mMapper = mapper; return *this; } /// Adds SDK <=> Codec 2.0 value mappers ConfigMapper &withMappers(Mapper mapper, Mapper reverse) { C2_CHECK(!mMapper); C2_CHECK(!mReverse); mMapper = mapper; mReverse = reverse; return *this; } /// Adds SDK <=> Codec 2.0 value mappers based on C2Mapper template ConfigMapper &withC2Mappers() { C2_CHECK(!mMapper); C2_CHECK(!mReverse); mMapper = [](C2Value v) -> C2Value { SdkType sdkValue; C2Type c2Value; if (v.get(&sdkValue) && C2Mapper::map(sdkValue, &c2Value)) { return c2Value; } return C2Value(); }; mReverse = [](C2Value v) -> C2Value { SdkType sdkValue; C2Type c2Value; using C2ValueType=typename _c2_reduce_enum_to_underlying_type::type; if (v.get((C2ValueType*)&c2Value) && C2Mapper::map(c2Value, &sdkValue)) { return sdkValue; } return C2Value(); }; return *this; } /// Maps from SDK values in an AMessage to a suitable C2Value. C2Value mapFromMessage(const AMessage::ItemData &item) const { C2Value value; int32_t int32Value; int64_t int64Value; float floatValue; double doubleValue; if (item.find(&int32Value)) { value = int32Value; } else if (item.find(&int64Value)) { value = int64Value; } else if (item.find(&floatValue)) { value = floatValue; } else if (item.find(&doubleValue)) { value = (float)doubleValue; } if (value.type() != C2Value::NO_INIT && mMapper) { value = mMapper(value); } return value; } /// Maps from a C2Value to an SDK value in an AMessage. AMessage::ItemData mapToMessage(C2Value value) const { AMessage::ItemData item; if (value.type() != C2Value::NO_INIT && mReverse) { value = mReverse(value); } C2ValueToMessageItem(value, item); return item; } Domain domain() const { return mDomain; } std::string mediaKey() const { return mMediaKey; } std::string path() const { return mField.size() ? mStruct + '.' + mField : mStruct; } Mapper mapper() const { return mMapper; } Mapper reverse() const { return mReverse; } private: Domain mDomain; ///< parameter domain (mask) containing port, kind and config domains std::string mMediaKey; ///< SDK key C2String mStruct; ///< Codec 2.0 struct name C2String mField; ///< Codec 2.0 field name Mapper mMapper; ///< optional SDK => Codec 2.0 value mapper Mapper mReverse; ///< optional Codec 2.0 => SDK value mapper }; template AString QueryMediaTypeImpl( const std::shared_ptr &configurable) { AString mediaType; std::vector> queried; c2_status_t c2err = configurable->query( {}, { PORT::PARAM_TYPE, STREAM::PARAM_TYPE }, C2_DONT_BLOCK, &queried); if (c2err != C2_OK && queried.size() == 0) { ALOGD("Query media type failed => %s", asString(c2err)); } else { PORT *portMediaType = PORT::From(queried[0].get()); if (portMediaType) { mediaType = AString( portMediaType->m.value, strnlen(portMediaType->m.value, portMediaType->flexCount())); } else { STREAM *streamMediaType = STREAM::From(queried[0].get()); if (streamMediaType) { mediaType = AString( streamMediaType->m.value, strnlen(streamMediaType->m.value, streamMediaType->flexCount())); } } ALOGD("read media type: %s", mediaType.c_str()); } return mediaType; } AString QueryMediaType( bool input, const std::shared_ptr &configurable) { typedef C2PortMediaTypeSetting P; typedef C2StreamMediaTypeSetting S; if (input) { return QueryMediaTypeImpl(configurable); } else { return QueryMediaTypeImpl(configurable); } } } // namespace /** * Set of standard parameters used by CCodec that are exposed to MediaCodec. */ struct StandardParams { typedef CCodecConfig::Domain Domain; // standard (MediaCodec) params are keyed by media format key typedef std::string SdkKey; /// used to return reference to no config mappers in getConfigMappersForSdkKey static const std::vector NO_MAPPERS; /// Returns Codec 2.0 equivalent parameters for an SDK format key. const std::vector &getConfigMappersForSdkKey(std::string key) const { auto it = mConfigMappers.find(key); if (it == mConfigMappers.end()) { if (mComplained.count(key) == 0) { ALOGD("no c2 equivalents for %s", key.c_str()); mComplained.insert(key); } return NO_MAPPERS; } ALOGV("found %zu eqs for %s", it->second.size(), key.c_str()); return it->second; } /** * Adds a SDK <=> Codec 2.0 parameter mapping. Multiple Codec 2.0 parameters may map to a * single SDK key, in which case they shall be ordered from least authoritative to most * authoritative. When constructing SDK formats, the last mapped Codec 2.0 parameter that * is supported by the component will determine the exposed value. (TODO: perhaps restrict this * by domain.) */ void add(const ConfigMapper &cm) { auto it = mConfigMappers.find(cm.mediaKey()); ALOGV("%c%c%c%c %c%c%c %04x %9s %s => %s", ((cm.domain() & Domain::IS_INPUT) ? 'I' : ' '), ((cm.domain() & Domain::IS_OUTPUT) ? 'O' : ' '), ((cm.domain() & Domain::IS_CODED) ? 'C' : ' '), ((cm.domain() & Domain::IS_RAW) ? 'R' : ' '), ((cm.domain() & Domain::IS_CONFIG) ? 'c' : ' '), ((cm.domain() & Domain::IS_PARAM) ? 'p' : ' '), ((cm.domain() & Domain::IS_READ) ? 'r' : ' '), cm.domain(), it == mConfigMappers.end() ? "adding" : "extending", cm.mediaKey().c_str(), cm.path().c_str()); if (it == mConfigMappers.end()) { std::vector eqs = { cm }; mConfigMappers.emplace(cm.mediaKey(), eqs); } else { it->second.push_back(cm); } } /** * Returns all paths for a specific domain. * * \param any maximum domain mask. Returned parameters must match at least one of the domains * in the mask. * \param all minimum domain mask. Returned parameters must match all of the domains in the * mask. This is restricted to the bits of the maximum mask. */ std::vector getPathsForDomain( Domain any, Domain all = Domain::ALL) const { std::vector res; for (const auto &[key, mappers] : mConfigMappers) { for (const ConfigMapper &cm : mappers) { ALOGV("filtering %s %x %x %x %x", cm.path().c_str(), cm.domain(), any, (cm.domain() & any), (cm.domain() & any & all)); if ((cm.domain() & any) && ((cm.domain() & any & all) == (any & all))) { res.push_back(cm.path()); } } } return res; } /** * Returns SDK <=> Codec 2.0 mappings. * * TODO: replace these with better methods as this exposes the inner structure. */ const std::map> getKeys() const { return mConfigMappers; } private: std::map> mConfigMappers; mutable std::set mComplained; }; const std::vector StandardParams::NO_MAPPERS; CCodecConfig::CCodecConfig() : mInputFormat(new AMessage), mOutputFormat(new AMessage), mUsingSurface(false), mTunneled(false), mPushBlankBuffersOnStop(false) { } void CCodecConfig::initializeStandardParams() { typedef Domain D; mStandardParams = std::make_shared(); std::function add = [params = mStandardParams](const ConfigMapper &cm) { params->add(cm); }; std::function deprecated = add; // allow int32 or float SDK values and represent them as float ConfigMapper::Mapper makeFloat = [](C2Value v) -> C2Value { // convert from i32 to float int32_t i32Value; float fpValue; if (v.get(&i32Value)) { return (float)i32Value; } else if (v.get(&fpValue)) { return fpValue; } return C2Value(); }; ConfigMapper::Mapper negate = [](C2Value v) -> C2Value { int32_t value; if (v.get(&value)) { return -value; } return C2Value(); }; add(ConfigMapper(KEY_MIME, C2_PARAMKEY_INPUT_MEDIA_TYPE, "value") .limitTo(D::INPUT & D::READ)); add(ConfigMapper(KEY_MIME, C2_PARAMKEY_OUTPUT_MEDIA_TYPE, "value") .limitTo(D::OUTPUT & D::READ)); add(ConfigMapper(KEY_BIT_RATE, C2_PARAMKEY_BITRATE, "value") .limitTo(D::ENCODER & D::CODED)); // Some audio decoders require bitrate information to be set add(ConfigMapper(KEY_BIT_RATE, C2_PARAMKEY_BITRATE, "value") .limitTo(D::AUDIO & D::DECODER & D::CODED)); // we also need to put the bitrate in the max bitrate field add(ConfigMapper(KEY_MAX_BIT_RATE, C2_PARAMKEY_BITRATE, "value") .limitTo(D::ENCODER & D::READ & D::OUTPUT)); add(ConfigMapper(PARAMETER_KEY_VIDEO_BITRATE, C2_PARAMKEY_BITRATE, "value") .limitTo(D::ENCODER & D::VIDEO & D::PARAM)); add(ConfigMapper(KEY_BITRATE_MODE, C2_PARAMKEY_BITRATE_MODE, "value") .limitTo(D::ENCODER & D::CODED) .withC2Mappers()); // remove when codecs switch to PARAMKEY and new modes deprecated(ConfigMapper(KEY_BITRATE_MODE, "coded.bitrate-mode", "value") .limitTo(D::ENCODER)); add(ConfigMapper(KEY_FRAME_RATE, C2_PARAMKEY_FRAME_RATE, "value") .limitTo(D::VIDEO) .withMappers(makeFloat, [](C2Value v) -> C2Value { // read back always as int float value; if (v.get(&value)) { return (int32_t)value; } return C2Value(); })); add(ConfigMapper(KEY_MAX_INPUT_SIZE, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE, "value") .limitTo(D::INPUT)); // remove when codecs switch to PARAMKEY deprecated(ConfigMapper(KEY_MAX_INPUT_SIZE, "coded.max-frame-size", "value") .limitTo(D::INPUT)); // Rotation // Note: SDK rotation is clock-wise, while C2 rotation is counter-clock-wise add(ConfigMapper(KEY_ROTATION, C2_PARAMKEY_VUI_ROTATION, "value") .limitTo((D::VIDEO | D::IMAGE) & D::CODED) .withMappers(negate, negate)); add(ConfigMapper(KEY_ROTATION, C2_PARAMKEY_ROTATION, "value") .limitTo((D::VIDEO | D::IMAGE) & D::RAW) .withMappers(negate, negate)); // android 'video-scaling' add(ConfigMapper("android._video-scaling", C2_PARAMKEY_SURFACE_SCALING_MODE, "value") .limitTo(D::VIDEO & D::DECODER & D::RAW)); // Color Aspects // // configure default for decoders add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "range") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM)) .withC2Mappers()); add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "transfer") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM)) .withC2Mappers()); add(ConfigMapper("color-primaries", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "primaries") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM))); add(ConfigMapper("color-matrix", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "matrix") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::CODED & (D::CONFIG | D::PARAM))); // read back default for decoders. This is needed in case the component does not support // color aspects. In that case, these values get copied to color-* keys. // TRICKY: We read these values at raw port, since that's where we want to read these. add(ConfigMapper("default-color-range", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "range") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ) .withC2Mappers()); add(ConfigMapper("default-color-transfer", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "transfer") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ) .withC2Mappers()); add(ConfigMapper("default-color-primaries", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "primaries") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ)); add(ConfigMapper("default-color-matrix", C2_PARAMKEY_DEFAULT_COLOR_ASPECTS, "matrix") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ)); // read back final for decoder output (also, configure final aspects as well. This should be // overwritten based on coded/default values if component supports color aspects, but is used // as final values if component does not support aspects at all) add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_COLOR_ASPECTS, "range") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ) .withC2Mappers()); add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_COLOR_ASPECTS, "transfer") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ) .withC2Mappers()); add(ConfigMapper("color-primaries", C2_PARAMKEY_COLOR_ASPECTS, "primaries") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ)); add(ConfigMapper("color-matrix", C2_PARAMKEY_COLOR_ASPECTS, "matrix") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::READ)); // configure transfer request add(ConfigMapper("color-transfer-request", C2_PARAMKEY_COLOR_ASPECTS, "transfer") .limitTo((D::VIDEO | D::IMAGE) & D::DECODER & D::RAW & D::CONFIG) .withC2Mappers()); // configure source aspects for encoders and read them back on the coded(!) port. // This is to ensure muxing the desired aspects into the container. add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_COLOR_ASPECTS, "range") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED) .withC2Mappers()); add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_COLOR_ASPECTS, "transfer") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED) .withC2Mappers()); add(ConfigMapper("color-primaries", C2_PARAMKEY_COLOR_ASPECTS, "primaries") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED)); add(ConfigMapper("color-matrix", C2_PARAMKEY_COLOR_ASPECTS, "matrix") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::CODED)); // read back coded aspects for encoders (on the raw port), but also configure // desired aspects here. add(ConfigMapper(KEY_COLOR_RANGE, C2_PARAMKEY_VUI_COLOR_ASPECTS, "range") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW) .withC2Mappers()); add(ConfigMapper(KEY_COLOR_TRANSFER, C2_PARAMKEY_VUI_COLOR_ASPECTS, "transfer") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW) .withC2Mappers()); add(ConfigMapper("color-primaries", C2_PARAMKEY_VUI_COLOR_ASPECTS, "primaries") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW)); add(ConfigMapper("color-matrix", C2_PARAMKEY_VUI_COLOR_ASPECTS, "matrix") .limitTo((D::VIDEO | D::IMAGE) & D::ENCODER & D::RAW)); // Dataspace add(ConfigMapper("android._dataspace", C2_PARAMKEY_DATA_SPACE, "value") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); // HDR add(ConfigMapper("smpte2086.red.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.red.x") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.red.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.red.y") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.green.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.green.x") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.green.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.green.y") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.blue.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.blue.x") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.blue.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.blue.y") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.white.x", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.white.x") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.white.y", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.white.y") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.max-luminance", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.max-luminance") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("smpte2086.min-luminance", C2_PARAMKEY_HDR_STATIC_INFO, "mastering.min-luminance") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("cta861.max-cll", C2_PARAMKEY_HDR_STATIC_INFO, "max-cll") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("cta861.max-fall", C2_PARAMKEY_HDR_STATIC_INFO, "max-fall") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper(C2_PARAMKEY_HDR_FORMAT, C2_PARAMKEY_HDR_FORMAT, "value") .limitTo((D::VIDEO | D::IMAGE) & D::CODED & D::CONFIG)); add(ConfigMapper(std::string(KEY_FEATURE_) + FEATURE_SecurePlayback, C2_PARAMKEY_SECURE_MODE, "value")); add(ConfigMapper(KEY_PREPEND_HEADER_TO_SYNC_FRAMES, C2_PARAMKEY_PREPEND_HEADER_MODE, "value") .limitTo(D::ENCODER & D::VIDEO) .withMappers([](C2Value v) -> C2Value { int32_t value; if (v.get(&value)) { return value ? C2Value(C2Config::PREPEND_HEADER_TO_ALL_SYNC) : C2Value(C2Config::PREPEND_HEADER_TO_NONE); } return C2Value(); }, [](C2Value v) -> C2Value { C2Config::prepend_header_mode_t value; using C2ValueType=typename _c2_reduce_enum_to_underlying_type::type; if (v.get((C2ValueType *)&value)) { switch (value) { case C2Config::PREPEND_HEADER_TO_NONE: return 0; case C2Config::PREPEND_HEADER_TO_ALL_SYNC: return 1; case C2Config::PREPEND_HEADER_ON_CHANGE: [[fallthrough]]; default: return C2Value(); } } return C2Value(); })); // remove when codecs switch to PARAMKEY deprecated(ConfigMapper(KEY_PREPEND_HEADER_TO_SYNC_FRAMES, "coding.add-csd-to-sync-frames", "value") .limitTo(D::ENCODER & D::VIDEO)); // convert to timestamp base add(ConfigMapper(KEY_I_FRAME_INTERVAL, C2_PARAMKEY_SYNC_FRAME_INTERVAL, "value") .limitTo(D::VIDEO & D::ENCODER & D::CONFIG) .withMapper([](C2Value v) -> C2Value { // convert from i32 to float int32_t i32Value; float fpValue; if (v.get(&i32Value)) { return int64_t(1000000) * i32Value; } else if (v.get(&fpValue)) { return int64_t(c2_min(1000000 * fpValue + 0.5, (double)INT64_MAX)); } return C2Value(); })); // remove when codecs switch to proper coding.gop (add support for calculating gop) deprecated(ConfigMapper("i-frame-period", "coding.gop", "intra-period") .limitTo(D::ENCODER & D::VIDEO)); add(ConfigMapper(KEY_INTRA_REFRESH_PERIOD, C2_PARAMKEY_INTRA_REFRESH, "period") .limitTo(D::VIDEO & D::ENCODER) .withMappers(makeFloat, [](C2Value v) -> C2Value { // read back always as int float value; if (v.get(&value)) { return (int32_t)value; } return C2Value(); })); deprecated(ConfigMapper(PARAMETER_KEY_REQUEST_SYNC_FRAME, "coding.request-sync", "value") .limitTo(D::PARAM & D::ENCODER) .withMapper([](C2Value) -> C2Value { return uint32_t(1); })); add(ConfigMapper(PARAMETER_KEY_REQUEST_SYNC_FRAME, C2_PARAMKEY_REQUEST_SYNC_FRAME, "value") .limitTo(D::PARAM & D::ENCODER) .withMapper([](C2Value) -> C2Value { return uint32_t(1); })); add(ConfigMapper(KEY_OPERATING_RATE, C2_PARAMKEY_OPERATING_RATE, "value") .limitTo(D::PARAM | D::CONFIG) // write-only .withMapper(makeFloat)); // C2 priorities are inverted add(ConfigMapper(KEY_PRIORITY, C2_PARAMKEY_PRIORITY, "value") .withMappers(negate, negate)); // remove when codecs switch to PARAMKEY deprecated(ConfigMapper(KEY_OPERATING_RATE, "ctrl.operating-rate", "value") .withMapper(makeFloat)); deprecated(ConfigMapper(KEY_PRIORITY, "ctrl.priority", "value")); add(ConfigMapper(KEY_WIDTH, C2_PARAMKEY_PICTURE_SIZE, "width") .limitTo(D::VIDEO | D::IMAGE)); add(ConfigMapper(KEY_HEIGHT, C2_PARAMKEY_PICTURE_SIZE, "height") .limitTo(D::VIDEO | D::IMAGE)); add(ConfigMapper("crop-left", C2_PARAMKEY_CROP_RECT, "left") .limitTo(D::VIDEO | D::IMAGE)); add(ConfigMapper("crop-top", C2_PARAMKEY_CROP_RECT, "top") .limitTo(D::VIDEO | D::IMAGE)); add(ConfigMapper("crop-width", C2_PARAMKEY_CROP_RECT, "width") .limitTo(D::VIDEO | D::IMAGE)); add(ConfigMapper("crop-height", C2_PARAMKEY_CROP_RECT, "height") .limitTo(D::VIDEO | D::IMAGE)); add(ConfigMapper(KEY_MAX_WIDTH, C2_PARAMKEY_MAX_PICTURE_SIZE, "width") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper(KEY_MAX_HEIGHT, C2_PARAMKEY_MAX_PICTURE_SIZE, "height") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper("csd-0", C2_PARAMKEY_INIT_DATA, "value") .limitTo(D::OUTPUT & D::READ)); deprecated(ConfigMapper(KEY_HDR10_PLUS_INFO, C2_PARAMKEY_INPUT_HDR10_PLUS_INFO, "value") .limitTo(D::VIDEO & D::PARAM & D::INPUT)); deprecated(ConfigMapper(KEY_HDR10_PLUS_INFO, C2_PARAMKEY_OUTPUT_HDR10_PLUS_INFO, "value") .limitTo(D::VIDEO & D::OUTPUT)); add(ConfigMapper( std::string(C2_PARAMKEY_INPUT_HDR_DYNAMIC_INFO) + ".type", C2_PARAMKEY_INPUT_HDR_DYNAMIC_INFO, "type") .limitTo(D::VIDEO & D::PARAM & D::INPUT)); add(ConfigMapper( std::string(C2_PARAMKEY_INPUT_HDR_DYNAMIC_INFO) + ".data", C2_PARAMKEY_INPUT_HDR_DYNAMIC_INFO, "data") .limitTo(D::VIDEO & D::PARAM & D::INPUT)); add(ConfigMapper( std::string(C2_PARAMKEY_OUTPUT_HDR_DYNAMIC_INFO) + ".type", C2_PARAMKEY_OUTPUT_HDR_DYNAMIC_INFO, "type") .limitTo(D::VIDEO & D::OUTPUT)); add(ConfigMapper( std::string(C2_PARAMKEY_OUTPUT_HDR_DYNAMIC_INFO) + ".data", C2_PARAMKEY_OUTPUT_HDR_DYNAMIC_INFO, "data") .limitTo(D::VIDEO & D::OUTPUT)); add(ConfigMapper(C2_PARAMKEY_TEMPORAL_LAYERING, C2_PARAMKEY_TEMPORAL_LAYERING, "") .limitTo(D::ENCODER & D::VIDEO & D::OUTPUT)); // Pixel Format (use local key for actual pixel format as we don't distinguish between // SDK layouts for flexible format and we need the actual SDK color format in the media format) add(ConfigMapper("android._color-format", C2_PARAMKEY_PIXEL_FORMAT, "value") .limitTo((D::VIDEO | D::IMAGE) & D::RAW) .withMappers([](C2Value v) -> C2Value { int32_t value; if (v.get(&value)) { uint32_t result; if (C2Mapper::mapPixelFormatFrameworkToCodec(value, &result)) { return result; } } return C2Value(); }, [](C2Value v) -> C2Value { uint32_t value; if (v.get(&value)) { int32_t result; if (C2Mapper::mapPixelFormatCodecToFramework(value, &result)) { return result; } } return C2Value(); })); add(ConfigMapper(KEY_PIXEL_ASPECT_RATIO_WIDTH, C2_PARAMKEY_PIXEL_ASPECT_RATIO, "width") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper(KEY_PIXEL_ASPECT_RATIO_HEIGHT, C2_PARAMKEY_PIXEL_ASPECT_RATIO, "height") .limitTo((D::VIDEO | D::IMAGE) & D::RAW)); add(ConfigMapper(KEY_CHANNEL_COUNT, C2_PARAMKEY_CHANNEL_COUNT, "value") .limitTo(D::AUDIO)); // read back to both formats add(ConfigMapper(KEY_CHANNEL_COUNT, C2_PARAMKEY_CODED_CHANNEL_COUNT, "value") .limitTo(D::AUDIO & D::CODED)); add(ConfigMapper(KEY_SAMPLE_RATE, C2_PARAMKEY_SAMPLE_RATE, "value") .limitTo(D::AUDIO)); // read back to both port formats add(ConfigMapper(KEY_SAMPLE_RATE, C2_PARAMKEY_CODED_SAMPLE_RATE, "value") .limitTo(D::AUDIO & D::CODED)); auto pcmEncodingMapper = [](C2Value v) -> C2Value { int32_t value; C2Config::pcm_encoding_t to; if (v.get(&value) && C2Mapper::map(value, &to)) { return to; } return C2Value(); }; auto pcmEncodingReverse = [](C2Value v) -> C2Value { C2Config::pcm_encoding_t value; int32_t to; using C2ValueType=typename _c2_reduce_enum_to_underlying_type::type; if (v.get((C2ValueType*)&value) && C2Mapper::map(value, &to)) { return to; } return C2Value(); }; add(ConfigMapper(KEY_PCM_ENCODING, C2_PARAMKEY_PCM_ENCODING, "value") .limitTo(D::AUDIO) .withMappers(pcmEncodingMapper, pcmEncodingReverse)); add(ConfigMapper("android._codec-pcm-encoding", C2_PARAMKEY_PCM_ENCODING, "value") .limitTo(D::AUDIO & D::READ) .withMappers(pcmEncodingMapper, pcmEncodingReverse)); add(ConfigMapper(KEY_IS_ADTS, C2_PARAMKEY_AAC_PACKAGING, "value") .limitTo(D::AUDIO & D::CODED) .withMappers([](C2Value v) -> C2Value { int32_t value; if (v.get(&value) && value) { return C2Config::AAC_PACKAGING_ADTS; } return C2Value(); }, [](C2Value v) -> C2Value { uint32_t value; if (v.get(&value) && value == C2Config::AAC_PACKAGING_ADTS) { return (int32_t)1; } return C2Value(); })); std::shared_ptr mapper = C2Mapper::GetProfileLevelMapper(mCodingMediaType); add(ConfigMapper(KEY_PROFILE, C2_PARAMKEY_PROFILE_LEVEL, "profile") .limitTo(D::CODED) .withMappers([mapper](C2Value v) -> C2Value { C2Config::profile_t c2 = PROFILE_UNUSED; int32_t sdk; if (mapper && v.get(&sdk) && mapper->mapProfile(sdk, &c2)) { return c2; } return PROFILE_UNUSED; }, [mapper](C2Value v) -> C2Value { C2Config::profile_t c2; int32_t sdk; using C2ValueType=typename _c2_reduce_enum_to_underlying_type::type; if (mapper && v.get((C2ValueType*)&c2) && mapper->mapProfile(c2, &sdk)) { return sdk; } return C2Value(); })); add(ConfigMapper(KEY_LEVEL, C2_PARAMKEY_PROFILE_LEVEL, "level") .limitTo(D::CODED) .withMappers([mapper](C2Value v) -> C2Value { C2Config::level_t c2 = LEVEL_UNUSED; int32_t sdk; if (mapper && v.get(&sdk) && mapper->mapLevel(sdk, &c2)) { return c2; } return LEVEL_UNUSED; }, [mapper](C2Value v) -> C2Value { C2Config::level_t c2; int32_t sdk; using C2ValueType=typename _c2_reduce_enum_to_underlying_type::type; if (mapper && v.get((C2ValueType*)&c2) && mapper->mapLevel(c2, &sdk)) { return sdk; } return C2Value(); })); add(ConfigMapper(KEY_AAC_PROFILE, C2_PARAMKEY_PROFILE_LEVEL, "profile") .limitTo(D::AUDIO & D::ENCODER & (D::CONFIG | D::PARAM)) .withMapper([mapper](C2Value v) -> C2Value { C2Config::profile_t c2 = PROFILE_UNUSED; int32_t sdk; if (mapper && v.get(&sdk) && mapper->mapProfile(sdk, &c2)) { return c2; } return PROFILE_UNUSED; })); // convert to dBFS and add default add(ConfigMapper(KEY_AAC_DRC_TARGET_REFERENCE_LEVEL, C2_PARAMKEY_DRC_TARGET_REFERENCE_LEVEL, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM | D::READ)) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < -1) { value = property_get_int32(PROP_DRC_OVERRIDE_REF_LEVEL, DRC_DEFAULT_MOBILE_REF_LEVEL); } return float(-0.25 * c2_min(value, 127)); },[](C2Value v) -> C2Value { float value; if (v.get(&value)) { return (int32_t) (-4. * value); } return C2Value(); })); // convert to 0-1 (%) and add default add(ConfigMapper(KEY_AAC_DRC_ATTENUATION_FACTOR, C2_PARAMKEY_DRC_ATTENUATION_FACTOR, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM | D::READ)) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < 0) { value = property_get_int32(PROP_DRC_OVERRIDE_CUT, DRC_DEFAULT_MOBILE_DRC_CUT); } return float(c2_min(value, 127) / 127.); },[](C2Value v) -> C2Value { float value; if (v.get(&value)) { return (int32_t) (value * 127. + 0.5); } else { return C2Value(); } })); // convert to 0-1 (%) and add default add(ConfigMapper(KEY_AAC_DRC_BOOST_FACTOR, C2_PARAMKEY_DRC_BOOST_FACTOR, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM | D::READ)) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < 0) { value = property_get_int32(PROP_DRC_OVERRIDE_BOOST, DRC_DEFAULT_MOBILE_DRC_BOOST); } return float(c2_min(value, 127) / 127.); },[](C2Value v) -> C2Value { float value; if (v.get(&value)) { return (int32_t) (value * 127. + 0.5); } else { return C2Value(); } })); // convert to compression type and add default add(ConfigMapper(KEY_AAC_DRC_HEAVY_COMPRESSION, C2_PARAMKEY_DRC_COMPRESSION_MODE, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM)) .withMapper([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < 0) { value = property_get_int32(PROP_DRC_OVERRIDE_HEAVY, DRC_DEFAULT_MOBILE_DRC_HEAVY); } return value == 1 ? C2Config::DRC_COMPRESSION_HEAVY : C2Config::DRC_COMPRESSION_LIGHT; })); // convert to dBFS and add default add(ConfigMapper(KEY_AAC_ENCODED_TARGET_LEVEL, C2_PARAMKEY_DRC_ENCODED_TARGET_LEVEL, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM | D::READ)) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < 0) { value = property_get_int32(PROP_DRC_OVERRIDE_ENC_LEVEL, DRC_DEFAULT_MOBILE_ENC_LEVEL); } return float(-0.25 * c2_min(value, 127)); },[](C2Value v) -> C2Value { float value; if (v.get(&value)) { return (int32_t) (-4. * value); } else { return C2Value(); } })); // convert to effect type (these map to SDK values) and add default add(ConfigMapper(KEY_AAC_DRC_EFFECT_TYPE, C2_PARAMKEY_DRC_EFFECT_TYPE, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM | D::READ)) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < -1 || value > 8) { value = property_get_int32(PROP_DRC_OVERRIDE_EFFECT, DRC_DEFAULT_MOBILE_DRC_EFFECT); // ensure value is within range if (value < -1 || value > 8) { value = DRC_DEFAULT_MOBILE_DRC_EFFECT; } } return value; },[](C2Value v) -> C2Value { int32_t value; if (v.get(&value)) { return value; } else { return C2Value(); } })); // convert to album mode and add default add(ConfigMapper(KEY_AAC_DRC_ALBUM_MODE, C2_PARAMKEY_DRC_ALBUM_MODE, "value") .limitTo(D::AUDIO & D::DECODER & (D::CONFIG | D::PARAM | D::READ)) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < 0 || value > 1) { value = DRC_DEFAULT_MOBILE_DRC_ALBUM; // ensure value is within range if (value < 0 || value > 1) { value = DRC_DEFAULT_MOBILE_DRC_ALBUM; } } return value; },[](C2Value v) -> C2Value { int32_t value; if (v.get(&value)) { return value; } else { return C2Value(); } })); add(ConfigMapper(KEY_AAC_DRC_OUTPUT_LOUDNESS, C2_PARAMKEY_DRC_OUTPUT_LOUDNESS, "value") .limitTo(D::OUTPUT & D::DECODER & D::READ) .withMappers([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < -1) { value = DRC_DEFAULT_MOBILE_OUTPUT_LOUDNESS; } return float(-0.25 * c2_min(value, 127)); },[](C2Value v) -> C2Value { float value; if (v.get(&value)) { return (int32_t) (-4. * value); } return C2Value(); })); add(ConfigMapper(KEY_AAC_MAX_OUTPUT_CHANNEL_COUNT, C2_PARAMKEY_MAX_CHANNEL_COUNT, "value") .limitTo(D::AUDIO & (D::CONFIG | D::PARAM | D::READ))); add(ConfigMapper(KEY_MAX_OUTPUT_CHANNEL_COUNT, C2_PARAMKEY_MAX_CHANNEL_COUNT, "value") .limitTo(D::AUDIO & (D::CONFIG | D::PARAM | D::READ))); add(ConfigMapper(KEY_CHANNEL_MASK, C2_PARAMKEY_CHANNEL_MASK, "value") .limitTo(D::AUDIO & D::DECODER & D::READ)); add(ConfigMapper(KEY_AAC_SBR_MODE, C2_PARAMKEY_AAC_SBR_MODE, "value") .limitTo(D::AUDIO & D::ENCODER & (D::CONFIG | D::PARAM | D::READ)) .withMapper([](C2Value v) -> C2Value { int32_t value; if (!v.get(&value) || value < 0) { return C2Config::AAC_SBR_AUTO; } switch (value) { case 0: return C2Config::AAC_SBR_OFF; case 1: return C2Config::AAC_SBR_SINGLE_RATE; case 2: return C2Config::AAC_SBR_DUAL_RATE; default: return C2Config::AAC_SBR_AUTO + 1; // invalid value } })); add(ConfigMapper("android._encoding-quality-level", C2_PARAMKEY_ENCODING_QUALITY_LEVEL, "value") .limitTo(D::ENCODER & (D::CONFIG | D::PARAM))); add(ConfigMapper(KEY_QUALITY, C2_PARAMKEY_QUALITY, "value") .limitTo(D::ENCODER & (D::CONFIG | D::PARAM))); add(ConfigMapper(KEY_FLAC_COMPRESSION_LEVEL, C2_PARAMKEY_COMPLEXITY, "value") .limitTo(D::AUDIO & D::ENCODER)); add(ConfigMapper("complexity", C2_PARAMKEY_COMPLEXITY, "value") .limitTo(D::ENCODER & (D::CONFIG | D::PARAM))); add(ConfigMapper(KEY_GRID_COLUMNS, C2_PARAMKEY_TILE_LAYOUT, "columns") .limitTo(D::IMAGE)); add(ConfigMapper(KEY_GRID_ROWS, C2_PARAMKEY_TILE_LAYOUT, "rows") .limitTo(D::IMAGE)); add(ConfigMapper(KEY_TILE_WIDTH, C2_PARAMKEY_TILE_LAYOUT, "tile.width") .limitTo(D::IMAGE)); add(ConfigMapper(KEY_TILE_HEIGHT, C2_PARAMKEY_TILE_LAYOUT, "tile.height") .limitTo(D::IMAGE)); add(ConfigMapper(KEY_LATENCY, C2_PARAMKEY_PIPELINE_DELAY_REQUEST, "value") .limitTo(D::VIDEO & D::ENCODER)); add(ConfigMapper(C2_PARAMKEY_INPUT_TIME_STRETCH, C2_PARAMKEY_INPUT_TIME_STRETCH, "value")); add(ConfigMapper(KEY_LOW_LATENCY, C2_PARAMKEY_LOW_LATENCY_MODE, "value") .limitTo(D::DECODER & (D::CONFIG | D::PARAM)) .withMapper([](C2Value v) -> C2Value { int32_t value = 0; (void)v.get(&value); return value == 0 ? C2_FALSE : C2_TRUE; })); add(ConfigMapper("android._trigger-tunnel-peek", C2_PARAMKEY_TUNNEL_START_RENDER, "value") .limitTo(D::PARAM & D::VIDEO & D::DECODER) .withMapper([](C2Value v) -> C2Value { int32_t value = 0; (void)v.get(&value); return value == 0 ? C2_FALSE : C2_TRUE; })); add(ConfigMapper("android._tunnel-peek-set-legacy", C2_PARAMKEY_TUNNEL_PEEK_MODE, "value") .limitTo(D::PARAM & D::VIDEO & D::DECODER) .withMapper([](C2Value v) -> C2Value { int32_t value = 0; (void)v.get(&value); return value == 0 ? C2Value(C2PlatformConfig::SPECIFIED_PEEK) : C2Value(C2PlatformConfig::UNSPECIFIED_PEEK); })); add(ConfigMapper(KEY_VIDEO_QP_AVERAGE, C2_PARAMKEY_AVERAGE_QP, "value") .limitTo(D::ENCODER & D::VIDEO & D::READ)); add(ConfigMapper(KEY_PICTURE_TYPE, C2_PARAMKEY_PICTURE_TYPE, "value") .limitTo(D::ENCODER & D::VIDEO & D::READ) .withMappers([](C2Value v) -> C2Value { int32_t sdk; C2Config::picture_type_t c2; if (v.get(&sdk) && C2Mapper::map(sdk, &c2)) { return C2Value(c2); } return C2Value(); }, [](C2Value v) -> C2Value { C2Config::picture_type_t c2; int32_t sdk = PICTURE_TYPE_UNKNOWN; using C2ValueType=typename _c2_reduce_enum_to_underlying_type::type; if (v.get((C2ValueType*)&c2) && C2Mapper::map(c2, &sdk)) { return sdk; } return C2Value(); })); /* still to do not yet used by MediaCodec, but defined as MediaFormat KEY_AUDIO_SESSION_ID // we use "audio-hw-sync" KEY_OUTPUT_REORDER_DEPTH */ } status_t CCodecConfig::initialize( const std::shared_ptr &reflector, const std::shared_ptr &configurable) { C2ComponentDomainSetting domain(C2Component::DOMAIN_OTHER); C2ComponentKindSetting kind(C2Component::KIND_OTHER); std::vector> queried; c2_status_t c2err = configurable->query({ &domain, &kind }, {}, C2_DONT_BLOCK, &queried); if (c2err != C2_OK) { ALOGD("Query domain & kind failed => %s", asString(c2err)); // TEMP: determine kind from component name if (kind.value == C2Component::KIND_OTHER) { if (configurable->getName().find("encoder") != std::string::npos) { kind.value = C2Component::KIND_ENCODER; } else if (configurable->getName().find("decoder") != std::string::npos) { kind.value = C2Component::KIND_DECODER; } } // TEMP: determine domain from media type (port (preferred) or stream #0) if (domain.value == C2Component::DOMAIN_OTHER) { AString mediaType = QueryMediaType(true /* input */, configurable); if (mediaType.startsWith("audio/")) { domain.value = C2Component::DOMAIN_AUDIO; } else if (mediaType.startsWith("video/")) { domain.value = C2Component::DOMAIN_VIDEO; } else if (mediaType.startsWith("image/")) { domain.value = C2Component::DOMAIN_IMAGE; } } } mDomain = (domain.value == C2Component::DOMAIN_VIDEO ? Domain::IS_VIDEO : domain.value == C2Component::DOMAIN_IMAGE ? Domain::IS_IMAGE : domain.value == C2Component::DOMAIN_AUDIO ? Domain::IS_AUDIO : Domain::OTHER_DOMAIN) | (kind.value == C2Component::KIND_DECODER ? Domain::IS_DECODER : kind.value == C2Component::KIND_ENCODER ? Domain::IS_ENCODER : Domain::OTHER_KIND); mInputDomain = Domain(((mDomain & IS_DECODER) ? IS_CODED : IS_RAW) | IS_INPUT); mOutputDomain = Domain(((mDomain & IS_ENCODER) ? IS_CODED : IS_RAW) | IS_OUTPUT); ALOGV("domain is %#x (%u %u)", mDomain, domain.value, kind.value); std::vector paramIndices; switch (kind.value) { case C2Component::KIND_DECODER: mCodingMediaType = QueryMediaType(true /* input */, configurable).c_str(); break; case C2Component::KIND_ENCODER: mCodingMediaType = QueryMediaType(false /* input */, configurable).c_str(); break; default: mCodingMediaType = ""; } c2err = configurable->querySupportedParams(&mParamDescs); if (c2err != C2_OK) { ALOGD("Query supported params failed after returning %zu values => %s", mParamDescs.size(), asString(c2err)); return UNKNOWN_ERROR; } for (const std::shared_ptr &desc : mParamDescs) { mSupportedIndices.emplace(desc->index()); } mReflector = reflector; if (mReflector == nullptr) { ALOGE("Null param reflector"); return UNKNOWN_ERROR; } // enumerate all fields mParamUpdater = std::make_shared(); mParamUpdater->clear(); mParamUpdater->supportWholeParam( C2_PARAMKEY_TEMPORAL_LAYERING, C2StreamTemporalLayeringTuning::CORE_INDEX); mParamUpdater->addParamDesc(mReflector, mParamDescs); // TEMP: add some standard fields even if not reflected if (kind.value == C2Component::KIND_ENCODER) { mParamUpdater->addStandardParam(C2_PARAMKEY_INIT_DATA); } if (domain.value == C2Component::DOMAIN_IMAGE || domain.value == C2Component::DOMAIN_VIDEO) { if (kind.value != C2Component::KIND_ENCODER) { addLocalParam(C2_PARAMKEY_PICTURE_SIZE); addLocalParam(C2_PARAMKEY_CROP_RECT); addLocalParam( new C2StreamPixelAspectRatioInfo::output(0u, 1u, 1u), C2_PARAMKEY_PIXEL_ASPECT_RATIO); addLocalParam(new C2StreamRotationInfo::output(0u, 0), C2_PARAMKEY_ROTATION); addLocalParam( new C2StreamColorAspectsTuning::output(0u), C2_PARAMKEY_DEFAULT_COLOR_ASPECTS); addLocalParam(C2_PARAMKEY_DATA_SPACE); addLocalParam(C2_PARAMKEY_HDR_STATIC_INFO); addLocalParam( new C2StreamSurfaceScalingInfo::output(0u, VIDEO_SCALING_MODE_SCALE_TO_FIT), C2_PARAMKEY_SURFACE_SCALING_MODE); } else { addLocalParam(new C2StreamColorAspectsInfo::input(0u), C2_PARAMKEY_COLOR_ASPECTS); if (domain.value == C2Component::DOMAIN_VIDEO) { addLocalParam(new C2AndroidStreamAverageBlockQuantizationInfo::output(0u, 0), C2_PARAMKEY_AVERAGE_QP); addLocalParam(new C2StreamPictureTypeInfo::output(0u, 0), C2_PARAMKEY_PICTURE_TYPE); } } } initializeStandardParams(); // subscribe to all supported standard (exposed) params // TODO: limit this to params that are actually in the domain std::vector formatKeys = mStandardParams->getPathsForDomain(Domain(1 << 30)); std::vector indices; mParamUpdater->getParamIndicesForKeys(formatKeys, &indices); mSubscribedIndices.insert(indices.begin(), indices.end()); // also subscribe to some non-SDK standard parameters // for number of input/output buffers mSubscribedIndices.emplace(C2PortSuggestedBufferCountTuning::input::PARAM_TYPE); mSubscribedIndices.emplace(C2PortSuggestedBufferCountTuning::output::PARAM_TYPE); mSubscribedIndices.emplace(C2ActualPipelineDelayTuning::PARAM_TYPE); mSubscribedIndices.emplace(C2PortActualDelayTuning::input::PARAM_TYPE); mSubscribedIndices.emplace(C2PortActualDelayTuning::output::PARAM_TYPE); // for output buffer array allocation mSubscribedIndices.emplace(C2StreamMaxBufferSizeInfo::output::PARAM_TYPE); // init data (CSD) mSubscribedIndices.emplace(C2StreamInitDataInfo::output::PARAM_TYPE); for (const std::shared_ptr &desc : mParamDescs) { if (desc->index().isVendor()) { std::vector keys; mParamUpdater->getKeysForParamIndex(desc->index(), &keys); for (const std::string &key : keys) { mVendorParams.insert_or_assign(key, desc); } } } // Parameters that are not subscribed initially, but can be subscribed // upon explicit request. static const std::initializer_list kOptionalParams = { C2AndroidStreamAverageBlockQuantizationInfo::output::PARAM_TYPE, C2StreamPictureTypeInfo::output::PARAM_TYPE, }; for (const C2Param::Index &index : kOptionalParams) { mSubscribedIndices.erase(index); } subscribeToConfigUpdate(configurable, {}, C2_MAY_BLOCK); return OK; } status_t CCodecConfig::subscribeToConfigUpdate( const std::shared_ptr &configurable, const std::vector &indices, c2_blocking_t blocking) { static const int32_t kProductFirstApiLevel = base::GetIntProperty("ro.product.first_api_level", 0); static const int32_t kBoardApiLevel = base::GetIntProperty("ro.board.first_api_level", 0); static const int32_t kFirstApiLevel = (kBoardApiLevel != 0) ? kBoardApiLevel : kProductFirstApiLevel; mSubscribedIndices.insert(indices.begin(), indices.end()); if (mSubscribedIndices.size() != mSubscribedIndicesSize && kFirstApiLevel >= __ANDROID_API_T__) { std::vector indicesVector; for (C2Param::Index ix : mSubscribedIndices) { indicesVector.push_back(ix); } std::unique_ptr subscribeTuning = C2SubscribedParamIndicesTuning::AllocUnique(indicesVector); std::vector> results; c2_status_t c2Err = configurable->config({ subscribeTuning.get() }, blocking, &results); if (c2Err != C2_OK && c2Err != C2_BAD_INDEX) { ALOGD("Failed to subscribe to parameters => %s", asString(c2Err)); // TODO: error } ALOGV("Subscribed to %zu params", mSubscribedIndices.size()); mSubscribedIndicesSize = mSubscribedIndices.size(); } #if defined(LOG_NDEBUG) && !LOG_NDEBUG ALOGV("subscribed to %zu params:", mSubscribedIndices.size()); std::stringstream ss; for (const C2Param::Index &index : mSubscribedIndices) { ss << index << " "; if (ss.str().length() > 70) { ALOGV("%s", ss.str().c_str()); std::stringstream().swap(ss); } } if (!ss.str().empty()) { ALOGV("%s", ss.str().c_str()); } #endif return OK; } status_t CCodecConfig::queryConfiguration( const std::shared_ptr &configurable) { // query all subscribed parameters std::vector indices(mSubscribedIndices.begin(), mSubscribedIndices.end()); std::vector> queried; c2_status_t c2Err = configurable->query({}, indices, C2_MAY_BLOCK, &queried); if (c2Err != OK) { ALOGI("query failed after returning %zu values (%s)", queried.size(), asString(c2Err)); // TODO: error } updateConfiguration(queried, ALL); return OK; } bool CCodecConfig::updateConfiguration( std::vector> &configUpdate, Domain domain) { ALOGV("updating configuration with %zu params", configUpdate.size()); bool changed = false; for (std::unique_ptr &p : configUpdate) { if (p && *p) { // Allow unsubscribed vendor parameters to go through --- it may be // later handled by the format shaper. if (!p->isVendor() && mSubscribedIndices.count(p->index()) == 0) { ALOGV("updateConfiguration: skipped unsubscribed param %08x", p->index()); continue; } auto insertion = mCurrentConfig.emplace(p->index(), nullptr); if (insertion.second || *insertion.first->second != *p) { if (mSupportedIndices.count(p->index()) || mLocalParams.count(p->index())) { // only track changes in supported (reflected or local) indices changed = true; } else { ALOGV("an unlisted config was %s: %#x", insertion.second ? "added" : "updated", p->index()); } } insertion.first->second = std::move(p); } } if (mInputSurface && (domain & mOutputDomain) && mInputSurfaceDataspace != mInputSurface->getDataspace()) { changed = true; mInputSurfaceDataspace = mInputSurface->getDataspace(); } ALOGV("updated configuration has %zu params (%s)", mCurrentConfig.size(), changed ? "CHANGED" : "no change"); if (changed) { return updateFormats(domain); } return false; } bool CCodecConfig::updateFormats(Domain domain) { // get addresses of params in the current config std::vector paramPointers; for (const auto &it : mCurrentConfig) { paramPointers.push_back(it.second.get()); } ReflectedParamUpdater::Dict reflected = mParamUpdater->getParams(paramPointers); std::string config = reflected.debugString(); std::set configLines; std::string diff; for (size_t start = 0; start != std::string::npos; ) { size_t end = config.find('\n', start); size_t count = (end == std::string::npos) ? std::string::npos : end - start + 1; std::string line = config.substr(start, count); configLines.insert(line); if (mLastConfig.count(line) == 0) { diff.append(line); } start = (end == std::string::npos) ? std::string::npos : end + 1; } if (!diff.empty()) { ALOGD("c2 config diff is %s", diff.c_str()); } mLastConfig.swap(configLines); bool changed = false; if (domain & mInputDomain) { sp oldFormat = mInputFormat; mInputFormat = mInputFormat->dup(); // trigger format changed mInputFormat->extend(getFormatForDomain(reflected, mInputDomain)); if (mInputFormat->countEntries() != oldFormat->countEntries() || mInputFormat->changesFrom(oldFormat)->countEntries() > 0) { changed = true; } else { mInputFormat = oldFormat; // no change } } if (domain & mOutputDomain) { sp oldFormat = mOutputFormat; mOutputFormat = mOutputFormat->dup(); // trigger output format changed mOutputFormat->extend(getFormatForDomain(reflected, mOutputDomain)); if (mOutputFormat->countEntries() != oldFormat->countEntries() || mOutputFormat->changesFrom(oldFormat)->countEntries() > 0) { changed = true; } else { mOutputFormat = oldFormat; // no change } } ALOGV_IF(changed, "format(s) changed"); return changed; } sp CCodecConfig::getFormatForDomain( const ReflectedParamUpdater::Dict &reflected, Domain portDomain) const { sp msg = new AMessage; for (const auto &[key, mappers] : mStandardParams->getKeys()) { for (const ConfigMapper &cm : mappers) { if ((cm.domain() & portDomain) == 0 // input-output-coded-raw || (cm.domain() & mDomain) != mDomain // component domain + kind (these must match) || (cm.domain() & IS_READ) == 0) { continue; } auto it = reflected.find(cm.path()); if (it == reflected.end()) { continue; } C2Value c2Value; sp bufValue; AString strValue; AMessage::ItemData item; if (it->second.find(&c2Value)) { item = cm.mapToMessage(c2Value); } else if (it->second.find(&bufValue)) { item.set(bufValue); } else if (it->second.find(&strValue)) { item.set(strValue); } else { ALOGD("unexpected untyped query value for key: %s", cm.path().c_str()); continue; } msg->setItem(key.c_str(), item); } } bool input = (portDomain & Domain::IS_INPUT); std::vector vendorKeys; for (const auto &[key, value] : reflected) { auto it = mVendorParams.find(key); if (it == mVendorParams.end()) { continue; } C2Param::Index index = it->second->index(); if (mSubscribedIndices.count(index) == 0) { continue; } // For vendor parameters, we only care about direction if ((input && !index.forInput()) || (!input && !index.forOutput())) { continue; } C2Value c2Value; sp bufValue; AString strValue; AMessage::ItemData item; if (value.find(&c2Value)) { C2ValueToMessageItem(c2Value, item); } else if (value.find(&bufValue)) { item.set(bufValue); } else if (value.find(&strValue)) { item.set(strValue); } else { ALOGD("unexpected untyped query value for key: %s", key.c_str()); continue; } msg->setItem(key.c_str(), item); } { // convert from Codec 2.0 rect to MediaFormat rect and add crop rect if not present int32_t left, top, width, height; if (msg->findInt32("crop-left", &left) && msg->findInt32("crop-width", &width) && msg->findInt32("crop-top", &top) && msg->findInt32("crop-height", &height) && left >= 0 && width >=0 && width <= INT32_MAX - left && top >= 0 && height >=0 && height <= INT32_MAX - top) { msg->removeEntryAt(msg->findEntryByName("crop-left")); msg->removeEntryAt(msg->findEntryByName("crop-top")); msg->removeEntryAt(msg->findEntryByName("crop-width")); msg->removeEntryAt(msg->findEntryByName("crop-height")); msg->setRect("crop", left, top, left + width - 1, top + height - 1); } else if (msg->findInt32("width", &width) && msg->findInt32("height", &height)) { msg->setRect("crop", 0, 0, width - 1, height - 1); } } { // convert temporal layering to schema sp tmp; if (msg->findBuffer(C2_PARAMKEY_TEMPORAL_LAYERING, &tmp) && tmp != nullptr) { C2StreamTemporalLayeringTuning *layering = C2StreamTemporalLayeringTuning::From(C2Param::From(tmp->data(), tmp->size())); if (layering && layering->m.layerCount > 0 && layering->m.bLayerCount < layering->m.layerCount) { // check if this is webrtc compatible AString mime; if (msg->findString(KEY_MIME, &mime) && mime.equalsIgnoreCase(MIMETYPE_VIDEO_VP8) && layering->m.bLayerCount == 0 && (layering->m.layerCount == 1 || (layering->m.layerCount == 2 && layering->flexCount() >= 1 && layering->m.bitrateRatios[0] == .6f) || (layering->m.layerCount == 3 && layering->flexCount() >= 2 && layering->m.bitrateRatios[0] == .4f && layering->m.bitrateRatios[1] == .6f) || (layering->m.layerCount == 4 && layering->flexCount() >= 3 && layering->m.bitrateRatios[0] == .25f && layering->m.bitrateRatios[1] == .4f && layering->m.bitrateRatios[2] == .6f))) { msg->setString(KEY_TEMPORAL_LAYERING, AStringPrintf( "webrtc.vp8.%u-layer", layering->m.layerCount)); } else if (layering->m.bLayerCount) { msg->setString(KEY_TEMPORAL_LAYERING, AStringPrintf( "android.generic.%u+%u", layering->m.layerCount - layering->m.bLayerCount, layering->m.bLayerCount)); } else if (layering->m.bLayerCount) { msg->setString(KEY_TEMPORAL_LAYERING, AStringPrintf( "android.generic.%u", layering->m.layerCount)); } } msg->removeEntryAt(msg->findEntryByName(C2_PARAMKEY_TEMPORAL_LAYERING)); } } // Remove KEY_AAC_SBR_MODE from SDK message if it is outside supported range // as SDK doesn't have a way to signal default sbr mode based on profile and // requires that the key isn't present in format to signal that int sbrMode; if (msg->findInt32(KEY_AAC_SBR_MODE, &sbrMode) && (sbrMode < 0 || sbrMode > 2)) { msg->removeEntryAt(msg->findEntryByName(KEY_AAC_SBR_MODE)); } { // convert color info // move default color to color aspect if not read from the component int32_t tmp; int32_t range; if (msg->findInt32("default-color-range", &range)) { if (!msg->findInt32(KEY_COLOR_RANGE, &tmp)) { msg->setInt32(KEY_COLOR_RANGE, range); } msg->removeEntryAt(msg->findEntryByName("default-color-range")); } int32_t transfer; if (msg->findInt32("default-color-transfer", &transfer)) { if (!msg->findInt32(KEY_COLOR_TRANSFER, &tmp)) { msg->setInt32(KEY_COLOR_TRANSFER, transfer); } msg->removeEntryAt(msg->findEntryByName("default-color-transfer")); } C2Color::primaries_t primaries; if (msg->findInt32("default-color-primaries", (int32_t*)&primaries)) { if (!msg->findInt32("color-primaries", &tmp)) { msg->setInt32("color-primaries", primaries); } msg->removeEntryAt(msg->findEntryByName("default-color-primaries")); } C2Color::matrix_t matrix; if (msg->findInt32("default-color-matrix", (int32_t*)&matrix)) { if (!msg->findInt32("color-matrix", &tmp)) { msg->setInt32("color-matrix", matrix); } msg->removeEntryAt(msg->findEntryByName("default-color-matrix")); } if (msg->findInt32("color-primaries", (int32_t*)&primaries) && msg->findInt32("color-matrix", (int32_t*)&matrix)) { int32_t standard; if (C2Mapper::map(primaries, matrix, &standard)) { msg->setInt32(KEY_COLOR_STANDARD, standard); } msg->removeEntryAt(msg->findEntryByName("color-primaries")); msg->removeEntryAt(msg->findEntryByName("color-matrix")); } // calculate dataspace for raw graphic buffers if not specified by component, or if // using surface with unspecified aspects (as those must be defaulted which may change // the dataspace) if ((portDomain & IS_RAW) && (mDomain & (IS_IMAGE | IS_VIDEO))) { android_dataspace dataspace; ColorAspects aspects = { ColorAspects::RangeUnspecified, ColorAspects::PrimariesUnspecified, ColorAspects::TransferUnspecified, ColorAspects::MatrixUnspecified }; ColorUtils::getColorAspectsFromFormat(msg, aspects); ColorAspects origAspects = aspects; if (mUsingSurface) { // get image size (default to HD) int32_t width = 1280; int32_t height = 720; int32_t left, top, right, bottom; if (msg->findRect("crop", &left, &top, &right, &bottom)) { width = right - left + 1; height = bottom - top + 1; } else { (void)msg->findInt32(KEY_WIDTH, &width); (void)msg->findInt32(KEY_HEIGHT, &height); } ColorUtils::setDefaultCodecColorAspectsIfNeeded(aspects, width, height); ColorUtils::setColorAspectsIntoFormat(aspects, msg); } if (!msg->findInt32("android._dataspace", (int32_t*)&dataspace) || aspects.mRange != origAspects.mRange || aspects.mPrimaries != origAspects.mPrimaries || aspects.mTransfer != origAspects.mTransfer || aspects.mMatrixCoeffs != origAspects.mMatrixCoeffs) { dataspace = ColorUtils::getDataSpaceForColorAspects(aspects, true /* mayExpand */); msg->setInt32("android._dataspace", dataspace); } } if (mInputSurface) { android_dataspace dataspace = mInputSurface->getDataspace(); ColorUtils::convertDataSpaceToV0(dataspace); int32_t standard; ColorUtils::getColorConfigFromDataSpace(dataspace, &range, &standard, &transfer); if (range != 0) { msg->setInt32(KEY_COLOR_RANGE, range); } if (standard != 0) { msg->setInt32(KEY_COLOR_STANDARD, standard); } if (transfer != 0) { msg->setInt32(KEY_COLOR_TRANSFER, transfer); } msg->setInt32("android._dataspace", dataspace); } // HDR static info C2HdrStaticMetadataStruct hdr; if (msg->findFloat("smpte2086.red.x", &hdr.mastering.red.x) && msg->findFloat("smpte2086.red.y", &hdr.mastering.red.y) && msg->findFloat("smpte2086.green.x", &hdr.mastering.green.x) && msg->findFloat("smpte2086.green.y", &hdr.mastering.green.y) && msg->findFloat("smpte2086.blue.x", &hdr.mastering.blue.x) && msg->findFloat("smpte2086.blue.y", &hdr.mastering.blue.y) && msg->findFloat("smpte2086.white.x", &hdr.mastering.white.x) && msg->findFloat("smpte2086.white.y", &hdr.mastering.white.y) && msg->findFloat("smpte2086.max-luminance", &hdr.mastering.maxLuminance) && msg->findFloat("smpte2086.min-luminance", &hdr.mastering.minLuminance) && msg->findFloat("cta861.max-cll", &hdr.maxCll) && msg->findFloat("cta861.max-fall", &hdr.maxFall)) { if (hdr.mastering.red.x >= 0 && hdr.mastering.red.x <= 1 && hdr.mastering.red.y >= 0 && hdr.mastering.red.y <= 1 && hdr.mastering.green.x >= 0 && hdr.mastering.green.x <= 1 && hdr.mastering.green.y >= 0 && hdr.mastering.green.y <= 1 && hdr.mastering.blue.x >= 0 && hdr.mastering.blue.x <= 1 && hdr.mastering.blue.y >= 0 && hdr.mastering.blue.y <= 1 && hdr.mastering.white.x >= 0 && hdr.mastering.white.x <= 1 && hdr.mastering.white.y >= 0 && hdr.mastering.white.y <= 1 && hdr.mastering.maxLuminance >= 0 && hdr.mastering.maxLuminance <= 65535 && hdr.mastering.minLuminance >= 0 && hdr.mastering.minLuminance <= 6.5535 && hdr.maxCll >= 0 && hdr.maxCll <= 65535 && hdr.maxFall >= 0 && hdr.maxFall <= 65535) { HDRStaticInfo meta; meta.mID = meta.kType1; meta.sType1.mR.x = hdr.mastering.red.x / 0.00002 + 0.5; meta.sType1.mR.y = hdr.mastering.red.y / 0.00002 + 0.5; meta.sType1.mG.x = hdr.mastering.green.x / 0.00002 + 0.5; meta.sType1.mG.y = hdr.mastering.green.y / 0.00002 + 0.5; meta.sType1.mB.x = hdr.mastering.blue.x / 0.00002 + 0.5; meta.sType1.mB.y = hdr.mastering.blue.y / 0.00002 + 0.5; meta.sType1.mW.x = hdr.mastering.white.x / 0.00002 + 0.5; meta.sType1.mW.y = hdr.mastering.white.y / 0.00002 + 0.5; meta.sType1.mMaxDisplayLuminance = hdr.mastering.maxLuminance + 0.5; meta.sType1.mMinDisplayLuminance = hdr.mastering.minLuminance / 0.0001 + 0.5; meta.sType1.mMaxContentLightLevel = hdr.maxCll + 0.5; meta.sType1.mMaxFrameAverageLightLevel = hdr.maxFall + 0.5; msg->setBuffer(KEY_HDR_STATIC_INFO, ABuffer::CreateAsCopy(&meta, sizeof(meta))); } else { ALOGD("found invalid HDR static metadata %s", msg->debugString(8).c_str()); } msg->removeEntryAt(msg->findEntryByName("smpte2086.red.x")); msg->removeEntryAt(msg->findEntryByName("smpte2086.red.y")); msg->removeEntryAt(msg->findEntryByName("smpte2086.green.x")); msg->removeEntryAt(msg->findEntryByName("smpte2086.green.y")); msg->removeEntryAt(msg->findEntryByName("smpte2086.blue.x")); msg->removeEntryAt(msg->findEntryByName("smpte2086.blue.y")); msg->removeEntryAt(msg->findEntryByName("smpte2086.white.x")); msg->removeEntryAt(msg->findEntryByName("smpte2086.white.y")); msg->removeEntryAt(msg->findEntryByName("smpte2086.max-luminance")); msg->removeEntryAt(msg->findEntryByName("smpte2086.min-luminance")); msg->removeEntryAt(msg->findEntryByName("cta861.max-cll")); msg->removeEntryAt(msg->findEntryByName("cta861.max-fall")); } // HDR dynamic info std::string keyPrefix = input ? C2_PARAMKEY_INPUT_HDR_DYNAMIC_INFO : C2_PARAMKEY_OUTPUT_HDR_DYNAMIC_INFO; std::string typeKey = keyPrefix + ".type"; std::string dataKey = keyPrefix + ".data"; int32_t type; sp data; if (msg->findInt32(typeKey.c_str(), &type) && msg->findBuffer(dataKey.c_str(), &data)) { if (type == HDR_DYNAMIC_METADATA_TYPE_SMPTE_2094_40) { msg->setBuffer(KEY_HDR10_PLUS_INFO, data); msg->removeEntryAt(msg->findEntryByName(typeKey.c_str())); msg->removeEntryAt(msg->findEntryByName(dataKey.c_str())); } } } ALOGV("converted to SDK values as %s", msg->debugString().c_str()); return msg; } /// converts an AMessage value to a ParamUpdater value static void convert(const AMessage::ItemData &from, ReflectedParamUpdater::Value *to) { int32_t int32Value; int64_t int64Value; sp bufValue; AString strValue; float floatValue; double doubleValue; if (from.find(&int32Value)) { to->set(int32Value); } else if (from.find(&int64Value)) { to->set(int64Value); } else if (from.find(&bufValue)) { to->set(bufValue); } else if (from.find(&strValue)) { to->set(strValue); } else if (from.find(&floatValue)) { to->set(C2Value(floatValue)); } else if (from.find(&doubleValue)) { // convert double to float to->set(C2Value((float)doubleValue)); } // ignore all other AMessage types } /// relaxes Codec 2.0 specific value types to SDK types (mainly removes signedness and counterness /// from 32/64-bit values.) static void relaxValues(ReflectedParamUpdater::Value &item) { C2Value c2Value; int32_t int32Value; int64_t int64Value; (void)item.find(&c2Value); if (c2Value.get(&int32Value) || c2Value.get((uint32_t*)&int32Value) || c2Value.get((c2_cntr32_t*)&int32Value)) { item.set(int32Value); } else if (c2Value.get(&int64Value) || c2Value.get((uint64_t*)&int64Value) || c2Value.get((c2_cntr64_t*)&int64Value)) { item.set(int64Value); } } ReflectedParamUpdater::Dict CCodecConfig::getReflectedFormat( const sp ¶ms_, Domain configDomain) const { // create a modifiable copy of params sp params = params_->dup(); ALOGV("filtering with config domain %x", configDomain); // convert some macro parameters to Codec 2.0 specific expressions { // make i-frame-interval frame based float iFrameInterval; if (params->findAsFloat(KEY_I_FRAME_INTERVAL, &iFrameInterval)) { float frameRate; if (params->findAsFloat(KEY_FRAME_RATE, &frameRate)) { params->setInt32("i-frame-period", (frameRate <= 0 || iFrameInterval < 0) ? -1 /* no sync frames */ : (int32_t)c2_min(iFrameInterval * frameRate + 0.5, (float)INT32_MAX)); } } } if (mDomain == (IS_VIDEO | IS_ENCODER)) { // convert capture-rate into input-time-stretch float frameRate, captureRate; if (params->findAsFloat(KEY_FRAME_RATE, &frameRate)) { if (!params->findAsFloat("time-lapse-fps", &captureRate) && !params->findAsFloat(KEY_CAPTURE_RATE, &captureRate)) { captureRate = frameRate; } if (captureRate > 0 && frameRate > 0) { params->setFloat(C2_PARAMKEY_INPUT_TIME_STRETCH, captureRate / frameRate); } } // add HDR format for video encoding if (configDomain == IS_CONFIG) { // don't assume here that transfer is set for HDR, only require it for HLG int transfer = 0; params->findInt32(KEY_COLOR_TRANSFER, &transfer); int profile; if (params->findInt32(KEY_PROFILE, &profile)) { std::shared_ptr mapper = C2Mapper::GetProfileLevelMapper(mCodingMediaType); C2Config::hdr_format_t c2 = C2Config::hdr_format_t::UNKNOWN; if (mapper && mapper->mapHdrFormat(profile, &c2)) { if (c2 == C2Config::hdr_format_t::HLG && transfer != COLOR_TRANSFER_HLG) { c2 = C2Config::hdr_format_t::UNKNOWN; } params->setInt32(C2_PARAMKEY_HDR_FORMAT, c2); } } } } { // reflect temporal layering into a binary blob AString schema; if (params->findString(KEY_TEMPORAL_LAYERING, &schema)) { unsigned int numLayers = 0; unsigned int numBLayers = 0; int tags; char dummy; std::unique_ptr layering; if (sscanf(schema.c_str(), "webrtc.vp8.%u-layer%c", &numLayers, &dummy) == 1 && numLayers > 0) { switch (numLayers) { case 1: layering = C2StreamTemporalLayeringTuning::output::AllocUnique( {}, 0u, 1u, 0u); break; case 2: layering = C2StreamTemporalLayeringTuning::output::AllocUnique( { .6f }, 0u, 2u, 0u); break; case 3: layering = C2StreamTemporalLayeringTuning::output::AllocUnique( { .4f, .6f }, 0u, 3u, 0u); break; default: layering = C2StreamTemporalLayeringTuning::output::AllocUnique( { .25f, .4f, .6f }, 0u, 4u, 0u); break; } } else if ((tags = sscanf(schema.c_str(), "android.generic.%u%c%u%c", &numLayers, &dummy, &numBLayers, &dummy)) && (tags == 1 || (tags == 3 && dummy == '+')) && numLayers > 0 && numLayers < UINT32_MAX - numBLayers) { layering = C2StreamTemporalLayeringTuning::output::AllocUnique( {}, 0u, numLayers + numBLayers, numBLayers); } else { ALOGD("Ignoring unsupported ts-schema [%s]", schema.c_str()); } if (layering) { params->setBuffer(C2_PARAMKEY_TEMPORAL_LAYERING, ABuffer::CreateAsCopy(layering.get(), layering->size())); } } } { // convert from MediaFormat rect to Codec 2.0 rect int32_t offset; int32_t end; AMessage::ItemData item; if (params->findInt32("crop-left", &offset) && params->findInt32("crop-right", &end) && offset >= 0 && end >= offset - 1) { size_t ix = params->findEntryByName("crop-right"); params->setEntryNameAt(ix, "crop-width"); item.set(end - offset + 1); params->setEntryAt(ix, item); } if (params->findInt32("crop-top", &offset) && params->findInt32("crop-bottom", &end) && offset >= 0 && end >= offset - 1) { size_t ix = params->findEntryByName("crop-bottom"); params->setEntryNameAt(ix, "crop-height"); item.set(end - offset + 1); params->setEntryAt(ix, item); } } { // convert color info int32_t standard; if (params->findInt32(KEY_COLOR_STANDARD, &standard)) { C2Color::primaries_t primaries; C2Color::matrix_t matrix; if (C2Mapper::map(standard, &primaries, &matrix)) { params->setInt32("color-primaries", primaries); params->setInt32("color-matrix", matrix); } } sp hdrMeta; if (params->findBuffer(KEY_HDR_STATIC_INFO, &hdrMeta) && hdrMeta->size() == sizeof(HDRStaticInfo)) { HDRStaticInfo *meta = (HDRStaticInfo*)hdrMeta->data(); if (meta->mID == meta->kType1) { params->setFloat("smpte2086.red.x", meta->sType1.mR.x * 0.00002); params->setFloat("smpte2086.red.y", meta->sType1.mR.y * 0.00002); params->setFloat("smpte2086.green.x", meta->sType1.mG.x * 0.00002); params->setFloat("smpte2086.green.y", meta->sType1.mG.y * 0.00002); params->setFloat("smpte2086.blue.x", meta->sType1.mB.x * 0.00002); params->setFloat("smpte2086.blue.y", meta->sType1.mB.y * 0.00002); params->setFloat("smpte2086.white.x", meta->sType1.mW.x * 0.00002); params->setFloat("smpte2086.white.y", meta->sType1.mW.y * 0.00002); params->setFloat("smpte2086.max-luminance", meta->sType1.mMaxDisplayLuminance); params->setFloat("smpte2086.min-luminance", meta->sType1.mMinDisplayLuminance * 0.0001); params->setFloat("cta861.max-cll", meta->sType1.mMaxContentLightLevel); params->setFloat("cta861.max-fall", meta->sType1.mMaxFrameAverageLightLevel); } } sp hdrDynamicInfo; if (params->findBuffer(KEY_HDR10_PLUS_INFO, &hdrDynamicInfo)) { for (const std::string &prefix : { C2_PARAMKEY_INPUT_HDR_DYNAMIC_INFO, C2_PARAMKEY_OUTPUT_HDR_DYNAMIC_INFO }) { params->setInt32((prefix + ".type").c_str(), HDR_DYNAMIC_METADATA_TYPE_SMPTE_2094_40); params->setBuffer((prefix + ".data").c_str(), hdrDynamicInfo); } } } // this is to verify that we set proper signedness for standard parameters bool beVeryStrict = property_get_bool("debug.stagefright.ccodec_strict_type", false); // this is to allow vendors to use the wrong signedness for standard parameters bool beVeryLax = property_get_bool("debug.stagefright.ccodec_lax_type", false); ReflectedParamUpdater::Dict filtered; for (size_t ix = 0; ix < params->countEntries(); ++ix) { AMessage::Type type; AString name = params->getEntryNameAt(ix, &type); AMessage::ItemData msgItem = params->getEntryAt(ix); ReflectedParamUpdater::Value item; convert(msgItem, &item); // convert item to param updater item if (name.startsWith("vendor.")) { // vendor params pass through as is filtered.emplace(name.c_str(), item); continue; } // standard parameters may get modified, filtered or duplicated for (const ConfigMapper &cm : mStandardParams->getConfigMappersForSdkKey(name.c_str())) { // note: we ignore port domain for configuration if ((cm.domain() & configDomain) // component domain + kind (these must match) && (cm.domain() & mDomain) == mDomain) { // map arithmetic values, pass through string or buffer switch (type) { case AMessage::kTypeBuffer: case AMessage::kTypeString: break; case AMessage::kTypeInt32: case AMessage::kTypeInt64: case AMessage::kTypeFloat: case AMessage::kTypeDouble: // for now only map settings with mappers as we are not creating // signed <=> unsigned mappers // TODO: be precise about signed unsigned if (beVeryStrict || cm.mapper()) { item.set(cm.mapFromMessage(params->getEntryAt(ix))); // also allow to relax type strictness if (beVeryLax) { relaxValues(item); } } break; default: continue; } filtered.emplace(cm.path(), item); } } } ALOGV("filter src msg %s", params->debugString(4).c_str()); ALOGV("filter dst params %s", filtered.debugString(4).c_str()); return filtered; } status_t CCodecConfig::getConfigUpdateFromSdkParams( std::shared_ptr configurable, const sp &sdkParams, Domain configDomain, c2_blocking_t blocking, std::vector> *configUpdate) const { ReflectedParamUpdater::Dict params = getReflectedFormat(sdkParams, configDomain); std::vector indices; mParamUpdater->getParamIndicesFromMessage(params, &indices); if (indices.empty()) { ALOGD("no recognized params in: %s", params.debugString().c_str()); return OK; } configUpdate->clear(); std::vector supportedIndices; for (C2Param::Index ix : indices) { if (mSupportedIndices.count(ix)) { supportedIndices.push_back(ix); } else if (mLocalParams.count(ix)) { // query local parameter here auto it = mCurrentConfig.find(ix); if (it != mCurrentConfig.end()) { configUpdate->emplace_back(C2Param::Copy(*it->second)); } } } c2_status_t err = configurable->query({ }, supportedIndices, blocking, configUpdate); if (err != C2_OK) { ALOGD("query failed after returning %zu params => %s", configUpdate->size(), asString(err)); } if (configUpdate->size()) { mParamUpdater->updateParamsFromMessage(params, configUpdate); } return OK; } status_t CCodecConfig::setParameters( std::shared_ptr configurable, std::vector> &configUpdate, c2_blocking_t blocking) { status_t result = OK; if (configUpdate.empty()) { return OK; } std::vector indices; std::vector paramVector; for (const std::unique_ptr ¶m : configUpdate) { if (mSupportedIndices.count(param->index())) { // component parameter paramVector.push_back(param.get()); indices.push_back(param->index()); } else if (mLocalParams.count(param->index())) { // handle local parameter here LocalParamValidator validator = mLocalParams.find(param->index())->second; c2_status_t err = C2_OK; std::unique_ptr copy = C2Param::Copy(*param); if (validator) { err = validator(copy); } if (err == C2_OK) { ALOGV("updated local parameter value for %s", mParamUpdater->getParamName(param->index()).c_str()); mCurrentConfig[param->index()] = std::move(copy); } else { ALOGD("failed to set parameter value for %s => %s", mParamUpdater->getParamName(param->index()).c_str(), asString(err)); result = BAD_VALUE; } } } // update subscribed param indices subscribeToConfigUpdate(configurable, indices, blocking); std::vector> failures; c2_status_t err = configurable->config(paramVector, blocking, &failures); if (err != C2_OK) { ALOGD("config failed => %s", asString(err)); // This is non-fatal. } for (const std::unique_ptr &failure : failures) { switch (failure->failure) { case C2SettingResult::BAD_VALUE: ALOGD("Bad parameter value"); result = BAD_VALUE; break; default: ALOGV("failure = %d", int(failure->failure)); break; } } // Re-query parameter values in case config could not update them and update the current // configuration. configUpdate.clear(); err = configurable->query({}, indices, blocking, &configUpdate); if (err != C2_OK) { ALOGD("query failed after returning %zu params => %s", configUpdate.size(), asString(err)); } (void)updateConfiguration(configUpdate, ALL); // TODO: error value return result; } const C2Param *CCodecConfig::getConfigParameterValue(C2Param::Index index) const { auto it = mCurrentConfig.find(index); if (it == mCurrentConfig.end()) { return nullptr; } else { return it->second.get(); } } status_t CCodecConfig::subscribeToAllVendorParams( const std::shared_ptr &configurable, c2_blocking_t blocking) { for (const auto &[path, desc] : mVendorParams) { mSubscribedIndices.insert(desc->index()); } return subscribeToConfigUpdate(configurable, {}, blocking); } status_t CCodecConfig::querySupportedParameters(std::vector *names) { if (!names) { return BAD_VALUE; } names->clear(); // TODO: expand to standard params for (const auto &[key, desc] : mVendorParams) { if (desc->isVisible()) { names->push_back(key); } } return OK; } status_t CCodecConfig::describe(const std::string &name, CodecParameterDescriptor *desc) { if (!desc) { return BAD_VALUE; } // TODO: expand to standard params desc->name = name; switch (mParamUpdater->getTypeForKey(name)) { case C2FieldDescriptor::INT32: case C2FieldDescriptor::UINT32: case C2FieldDescriptor::CNTR32: desc->type = AMessage::kTypeInt32; return OK; case C2FieldDescriptor::INT64: case C2FieldDescriptor::UINT64: case C2FieldDescriptor::CNTR64: desc->type = AMessage::kTypeInt64; return OK; case C2FieldDescriptor::FLOAT: desc->type = AMessage::kTypeFloat; return OK; case C2FieldDescriptor::STRING: desc->type = AMessage::kTypeString; return OK; case C2FieldDescriptor::BLOB: desc->type = AMessage::kTypeBuffer; return OK; default: return NAME_NOT_FOUND; } } status_t CCodecConfig::subscribeToVendorConfigUpdate( const std::shared_ptr &configurable, const std::vector &names, c2_blocking_t blocking) { for (const std::string &name : names) { auto it = mVendorParams.find(name); if (it == mVendorParams.end()) { ALOGD("%s is not a recognized vendor parameter; ignored.", name.c_str()); continue; } mSubscribedIndices.insert(it->second->index()); } return subscribeToConfigUpdate(configurable, {}, blocking); } status_t CCodecConfig::unsubscribeFromVendorConfigUpdate( const std::shared_ptr &configurable, const std::vector &names, c2_blocking_t blocking) { for (const std::string &name : names) { auto it = mVendorParams.find(name); if (it == mVendorParams.end()) { ALOGD("%s is not a recognized vendor parameter; ignored.", name.c_str()); continue; } mSubscribedIndices.erase(it->second->index()); } return subscribeToConfigUpdate(configurable, {}, blocking); } } // namespace android