/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Test FlowGraph * * This file also tests a few different conversion techniques because * sometimes that have caused compiler bugs. */ #include #include #include "flowgraph/ClipToRange.h" #include "flowgraph/MonoBlend.h" #include "flowgraph/MonoToMultiConverter.h" #include "flowgraph/SourceFloat.h" #include "flowgraph/RampLinear.h" #include "flowgraph/SinkFloat.h" #include "flowgraph/SinkI16.h" #include "flowgraph/SinkI24.h" #include "flowgraph/SinkI32.h" #include "flowgraph/SourceI16.h" #include "flowgraph/SourceI24.h" using namespace FLOWGRAPH_OUTER_NAMESPACE::flowgraph; constexpr int kBytesPerI24Packed = 3; constexpr int kNumSamples = 8; constexpr std::array kInputFloat = { 1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 53.9f, -87.2f, -1.02f}; // Corresponding PCM values as integers. constexpr std::array kExpectedI16 = { INT16_MAX, 1 << 14, INT16_MIN / 4, INT16_MIN, 0, INT16_MAX, INT16_MIN, INT16_MIN}; constexpr std::array kExpectedI32 = { INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN, 0, INT32_MAX, INT32_MIN, INT32_MIN}; // =================================== FLOAT to I16 ============== // Simple test that tries to reproduce a Clang compiler bug. __attribute__((noinline)) void local_convert_float_to_int16(const float *input, int16_t *output, int count) { for (int i = 0; i < count; i++) { int32_t n = (int32_t) (*input++ * 32768.0f); *output++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip } } TEST(test_flowgraph, local_convert_float_int16) { std::array output; // Do it inline, which will probably work even with the buggy compiler. // This validates the expected data. const float *in = kInputFloat.data(); int16_t *out = output.data(); output.fill(777); for (int i = 0; i < kNumSamples; i++) { int32_t n = (int32_t) (*in++ * 32768.0f); *out++ = std::min(INT16_MAX, std::max(INT16_MIN, n)); // clip } for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } // Convert audio signal using the function. output.fill(777); local_convert_float_to_int16(kInputFloat.data(), output.data(), kNumSamples); for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_sinki16) { static constexpr int kNumSamples = 8; std::array output; // larger than input SourceFloat sourceFloat{1}; SinkI16 sinkI16{1}; sourceFloat.setData(kInputFloat.data(), kNumSamples); sourceFloat.output.connect(&sinkI16.input); output.fill(777); int32_t numRead = sinkI16.read(output.data(), output.size()); ASSERT_EQ(kNumSamples, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI16.at(i), output.at(i)) << ", i = " << i; } } // =================================== FLOAT to I32 ============== // Simple test that tries to reproduce a Clang compiler bug. __attribute__((noinline)) static int32_t clamp32FromFloat(float f) { static const float scale = (float)(1UL << 31); static const float limpos = 1.; static const float limneg = -1.; if (f <= limneg) { return INT32_MIN; } else if (f >= limpos) { return INT32_MAX; } f *= scale; /* integer conversion is through truncation (though int to float is not). * ensure that we round to nearest, ties away from 0. */ return f > 0 ? f + 0.5 : f - 0.5; } void local_convert_float_to_int32(const float *input, int32_t *output, int count) { for (int i = 0; i < count; i++) { *output++ = clamp32FromFloat(*input++); } } TEST(test_flowgraph, simple_convert_float_int32) { std::array output; // Do it inline, which will probably work even with a buggy compiler. // This validates the expected data. const float *in = kInputFloat.data(); output.fill(777); int32_t *out = output.data(); for (int i = 0; i < kNumSamples; i++) { int64_t n = (int64_t) (*in++ * 2147483648.0f); *out++ = (int32_t)std::min((int64_t)INT32_MAX, std::max((int64_t)INT32_MIN, n)); // clip } for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, local_convert_float_int32) { std::array output; // Convert audio signal using the function. output.fill(777); local_convert_float_to_int32(kInputFloat.data(), output.data(), kNumSamples); for (int i = 0; i < kNumSamples; i++) { EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_sinki32) { std::array output; // larger than input SourceFloat sourceFloat{1}; SinkI32 sinkI32{1}; sourceFloat.setData(kInputFloat.data(), kNumSamples); sourceFloat.output.connect(&sinkI32.input); output.fill(777); int32_t numRead = sinkI32.read(output.data(), output.size()); ASSERT_EQ(kNumSamples, numRead); for (int i = 0; i < numRead; i++) { EXPECT_EQ(kExpectedI32.at(i), output.at(i)) << ", i = " << i; } } TEST(test_flowgraph, module_mono_to_stereo) { static const float input[] = {1.0f, 2.0f, 3.0f}; float output[100] = {}; SourceFloat sourceFloat{1}; MonoToMultiConverter monoToStereo{2}; SinkFloat sinkFloat{2}; sourceFloat.setData(input, 3); sourceFloat.output.connect(&monoToStereo.input); monoToStereo.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, 8); ASSERT_EQ(3, numRead); EXPECT_EQ(input[0], output[0]); EXPECT_EQ(input[0], output[1]); EXPECT_EQ(input[1], output[2]); EXPECT_EQ(input[1], output[3]); } TEST(test_flowgraph, module_ramp_linear) { constexpr int singleNumOutput = 1; constexpr int rampSize = 5; constexpr int numOutput = 100; constexpr float value = 1.0f; constexpr float initialTarget = 10.0f; constexpr float finalTarget = 100.0f; constexpr float tolerance = 0.0001f; // arbitrary float output[numOutput] = {}; RampLinear rampLinear{1}; SinkFloat sinkFloat{1}; rampLinear.input.setValue(value); rampLinear.setLengthInFrames(rampSize); rampLinear.output.connect(&sinkFloat.input); // Check that the values go to the initial target instantly. rampLinear.setTarget(initialTarget); int32_t singleNumRead = sinkFloat.read(output, singleNumOutput); ASSERT_EQ(singleNumRead, singleNumOutput); EXPECT_NEAR(value * initialTarget, output[0], tolerance); // Now set target and check that the linear ramp works as expected. rampLinear.setTarget(finalTarget); int32_t numRead = sinkFloat.read(output, numOutput); const float incrementSize = (finalTarget - initialTarget) / rampSize; ASSERT_EQ(numOutput, numRead); int i = 0; for (; i < rampSize; i++) { float expected = value * (initialTarget + i * incrementSize); EXPECT_NEAR(expected, output[i], tolerance); } for (; i < numOutput; i++) { float expected = value * finalTarget; EXPECT_NEAR(expected, output[i], tolerance); } } // It is easiest to represent packed 24-bit data as a byte array. // This test will read from input, convert to float, then write // back to output as bytes. TEST(test_flowgraph, module_packed_24) { static const uint8_t input[] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x5A}; uint8_t output[99] = {}; SourceI24 sourceI24{1}; SinkI24 sinkI24{1}; int numInputFrames = sizeof(input) / kBytesPerI24Packed; sourceI24.setData(input, numInputFrames); sourceI24.output.connect(&sinkI24.input); int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed); ASSERT_EQ(numInputFrames, numRead); for (size_t i = 0; i < sizeof(input); i++) { EXPECT_EQ(input[i], output[i]); } } TEST(test_flowgraph, module_clip_to_range) { constexpr float myMin = -2.0f; constexpr float myMax = 1.5f; static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3}; static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax}; float output[100]; SourceFloat sourceFloat{1}; ClipToRange clipper{1}; SinkFloat sinkFloat{1}; int numInputFrames = sizeof(input) / sizeof(input[0]); sourceFloat.setData(input, numInputFrames); clipper.setMinimum(myMin); clipper.setMaximum(myMax); sourceFloat.output.connect(&clipper.input); clipper.output.connect(&sinkFloat.input); int numOutputFrames = sizeof(output) / sizeof(output[0]); int32_t numRead = sinkFloat.read(output, numOutputFrames); ASSERT_EQ(numInputFrames, numRead); constexpr float tolerance = 0.000001f; // arbitrary for (int i = 0; i < numRead; i++) { EXPECT_NEAR(expected[i], output[i], tolerance); } } TEST(test_flowgraph, module_mono_blend) { // Two channel to two channel with 3 inputs and outputs. constexpr int numChannels = 2; constexpr int numFrames = 3; static const float input[] = {-0.7, 0.5, -0.25, 1.25, 1000, 2000}; static const float expected[] = {-0.1, -0.1, 0.5, 0.5, 1500, 1500}; float output[100]; SourceFloat sourceFloat{numChannels}; MonoBlend monoBlend{numChannels}; SinkFloat sinkFloat{numChannels}; sourceFloat.setData(input, numFrames); sourceFloat.output.connect(&monoBlend.input); monoBlend.output.connect(&sinkFloat.input); int32_t numRead = sinkFloat.read(output, numFrames); ASSERT_EQ(numRead, numFrames); constexpr float tolerance = 0.000001f; // arbitrary for (int i = 0; i < numRead; i++) { EXPECT_NEAR(expected[i], output[i], tolerance); } }