/* * Copyright (C) 2013-2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "system/window.h" #define LOG_TAG "Camera3-Stream" #define ATRACE_TAG ATRACE_TAG_CAMERA //#define LOG_NDEBUG 0 #include #include #include "device3/Camera3Stream.h" #include "device3/StatusTracker.h" #include "utils/TraceHFR.h" #include "ui/GraphicBufferMapper.h" #include namespace android { namespace camera3 { Camera3Stream::~Camera3Stream() { sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0 && mStatusId != StatusTracker::NO_STATUS_ID) { statusTracker->removeComponent(mStatusId); } } Camera3Stream* Camera3Stream::cast(camera_stream *stream) { return static_cast(stream); } const Camera3Stream* Camera3Stream::cast(const camera_stream *stream) { return static_cast(stream); } Camera3Stream::Camera3Stream(int id, camera_stream_type type, uint32_t width, uint32_t height, size_t maxSize, int format, android_dataspace dataSpace, camera_stream_rotation_t rotation, const String8& physicalCameraId, const std::unordered_set &sensorPixelModesUsed, int setId, bool isMultiResolution, int64_t dynamicRangeProfile, int64_t streamUseCase, bool deviceTimeBaseIsRealtime, int timestampBase) : camera_stream(), mId(id), mSetId(setId), mName(String8::format("Camera3Stream[%d]", id)), mMaxSize(maxSize), mState(STATE_CONSTRUCTED), mStatusId(StatusTracker::NO_STATUS_ID), mStreamUnpreparable(true), mUsage(0), mOldUsage(0), mOldMaxBuffers(0), mOldFormat(-1), mOldDataSpace(HAL_DATASPACE_UNKNOWN), mPrepared(false), mPrepareBlockRequest(true), mPreparedBufferIdx(0), mLastMaxCount(Camera3StreamInterface::ALLOCATE_PIPELINE_MAX), mBufferLimitLatency(kBufferLimitLatencyBinSize), mFormatOverridden(false), mOriginalFormat(format), mDataSpaceOverridden(false), mOriginalDataSpace(dataSpace), mPhysicalCameraId(physicalCameraId), mLastTimestamp(0), mIsMultiResolution(isMultiResolution), mDeviceTimeBaseIsRealtime(deviceTimeBaseIsRealtime), mTimestampBase(timestampBase) { camera_stream::stream_type = type; camera_stream::width = width; camera_stream::height = height; camera_stream::format = format; camera_stream::data_space = dataSpace; camera_stream::rotation = rotation; camera_stream::max_buffers = 0; camera_stream::physical_camera_id = mPhysicalCameraId.string(); camera_stream::sensor_pixel_modes_used = sensorPixelModesUsed; camera_stream::dynamic_range_profile = dynamicRangeProfile; camera_stream::use_case = streamUseCase; if ((format == HAL_PIXEL_FORMAT_BLOB || format == HAL_PIXEL_FORMAT_RAW_OPAQUE) && maxSize == 0) { ALOGE("%s: BLOB or RAW_OPAQUE format with size == 0", __FUNCTION__); mState = STATE_ERROR; } } int Camera3Stream::getId() const { return mId; } int Camera3Stream::getStreamSetId() const { return mSetId; } int Camera3Stream::getHalStreamGroupId() const { return mIsMultiResolution ? mSetId : -1; } bool Camera3Stream::isMultiResolution() const { return mIsMultiResolution; } uint32_t Camera3Stream::getWidth() const { return camera_stream::width; } uint32_t Camera3Stream::getHeight() const { return camera_stream::height; } int Camera3Stream::getFormat() const { return camera_stream::format; } android_dataspace Camera3Stream::getDataSpace() const { return camera_stream::data_space; } uint64_t Camera3Stream::getUsage() const { return mUsage; } void Camera3Stream::setUsage(uint64_t usage) { mUsage = usage; } void Camera3Stream::setFormatOverride(bool formatOverridden) { mFormatOverridden = formatOverridden; } bool Camera3Stream::isFormatOverridden() const { return mFormatOverridden; } int Camera3Stream::getOriginalFormat() const { return mOriginalFormat; } int64_t Camera3Stream::getDynamicRangeProfile() const { return camera_stream::dynamic_range_profile; } void Camera3Stream::setDataSpaceOverride(bool dataSpaceOverridden) { mDataSpaceOverridden = dataSpaceOverridden; } bool Camera3Stream::isDataSpaceOverridden() const { return mDataSpaceOverridden; } android_dataspace Camera3Stream::getOriginalDataSpace() const { return mOriginalDataSpace; } const String8& Camera3Stream::physicalCameraId() const { return mPhysicalCameraId; } int Camera3Stream::getMaxHalBuffers() const { return camera_stream::max_buffers; } int64_t Camera3Stream::getStreamUseCase() const { return camera_stream::use_case; } int Camera3Stream::getTimestampBase() const { return mTimestampBase; } bool Camera3Stream::isDeviceTimeBaseRealtime() const { return mDeviceTimeBaseIsRealtime; } void Camera3Stream::setOfflineProcessingSupport(bool support) { mSupportOfflineProcessing = support; } bool Camera3Stream::getOfflineProcessingSupport() const { return mSupportOfflineProcessing; } status_t Camera3Stream::forceToIdle() { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res; switch (mState) { case STATE_ERROR: case STATE_CONSTRUCTED: case STATE_IN_CONFIG: case STATE_PREPARING: case STATE_IN_RECONFIG: ALOGE("%s: Invalid state: %d", __FUNCTION__, mState); res = NO_INIT; break; case STATE_CONFIGURED: if (hasOutstandingBuffersLocked()) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentIdle(mStatusId, Fence::NO_FENCE); } } mState = STATE_IN_IDLE; res = OK; break; default: ALOGE("%s: Unknown state %d", __FUNCTION__, mState); res = NO_INIT; } return res; } status_t Camera3Stream::restoreConfiguredState() { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res; switch (mState) { case STATE_ERROR: case STATE_CONSTRUCTED: case STATE_IN_CONFIG: case STATE_PREPARING: case STATE_IN_RECONFIG: case STATE_CONFIGURED: ALOGE("%s: Invalid state: %d", __FUNCTION__, mState); res = NO_INIT; break; case STATE_IN_IDLE: if (hasOutstandingBuffersLocked()) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->markComponentActive(mStatusId); } } mState = STATE_CONFIGURED; res = OK; break; default: ALOGE("%s: Unknown state %d", __FUNCTION__, mState); res = NO_INIT; } return res; } camera_stream* Camera3Stream::startConfiguration() { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res; switch (mState) { case STATE_ERROR: ALOGE("%s: In error state", __FUNCTION__); return NULL; case STATE_CONSTRUCTED: case STATE_IN_IDLE: // OK break; case STATE_IN_CONFIG: case STATE_IN_RECONFIG: // Can start config again with no trouble; but don't redo // mOldUsage/mOldMaxBuffers return this; case STATE_CONFIGURED: if (hasOutstandingBuffersLocked()) { ALOGE("%s: Cannot configure stream; has outstanding buffers", __FUNCTION__); return NULL; } break; default: ALOGE("%s: Unknown state %d", __FUNCTION__, mState); return NULL; } mOldUsage = mUsage; mOldMaxBuffers = camera_stream::max_buffers; mOldFormat = camera_stream::format; mOldDataSpace = camera_stream::data_space; res = getEndpointUsage(&mUsage); if (res != OK) { ALOGE("%s: Cannot query consumer endpoint usage!", __FUNCTION__); return NULL; } if (mState == STATE_IN_IDLE) { // Skip configuration. return this; } // Stop tracking if currently doing so if (mStatusId != StatusTracker::NO_STATUS_ID) { sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0) { statusTracker->removeComponent(mStatusId); } mStatusId = StatusTracker::NO_STATUS_ID; } if (mState == STATE_CONSTRUCTED) { mState = STATE_IN_CONFIG; } else { // mState == STATE_CONFIGURED LOG_ALWAYS_FATAL_IF(mState != STATE_CONFIGURED, "Invalid state: 0x%x", mState); mState = STATE_IN_RECONFIG; } return this; } bool Camera3Stream::isConfiguring() const { Mutex::Autolock l(mLock); return (mState == STATE_IN_CONFIG) || (mState == STATE_IN_RECONFIG); } status_t Camera3Stream::finishConfiguration(/*out*/bool* streamReconfigured) { ATRACE_CALL(); if (streamReconfigured != nullptr) { *streamReconfigured = false; } Mutex::Autolock l(mLock); switch (mState) { case STATE_ERROR: ALOGE("%s: In error state", __FUNCTION__); return INVALID_OPERATION; case STATE_IN_CONFIG: case STATE_IN_RECONFIG: // OK break; case STATE_CONSTRUCTED: case STATE_CONFIGURED: ALOGE("%s: Cannot finish configuration that hasn't been started", __FUNCTION__); return INVALID_OPERATION; case STATE_IN_IDLE: //Skip configuration in this state return OK; default: ALOGE("%s: Unknown state", __FUNCTION__); return INVALID_OPERATION; } // Register for idle tracking sp statusTracker = mStatusTracker.promote(); if (statusTracker != 0 && mStatusId == StatusTracker::NO_STATUS_ID) { std::string name = std::string("Stream ") + std::to_string(mId); mStatusId = statusTracker->addComponent(name.c_str()); } // Check if the stream configuration is unchanged, and skip reallocation if // so. if (mState == STATE_IN_RECONFIG && mOldUsage == mUsage && mOldMaxBuffers == camera_stream::max_buffers && mOldDataSpace == camera_stream::data_space && mOldFormat == camera_stream::format) { mState = STATE_CONFIGURED; return OK; } // Reset prepared state, since buffer config has changed, and existing // allocations are no longer valid mPrepared = false; mPrepareBlockRequest = true; mStreamUnpreparable = false; bool reconfiguring = (mState == STATE_IN_RECONFIG); status_t res; res = configureQueueLocked(); // configureQueueLocked could return error in case of abandoned surface. // Treat as non-fatal error. if (res == NO_INIT || res == DEAD_OBJECT) { ALOGE("%s: Unable to configure stream %d queue (non-fatal): %s (%d)", __FUNCTION__, mId, strerror(-res), res); mState = STATE_ABANDONED; return res; } else if (res != OK) { ALOGE("%s: Unable to configure stream %d queue: %s (%d)", __FUNCTION__, mId, strerror(-res), res); mState = STATE_ERROR; return res; } if (reconfiguring && streamReconfigured != nullptr) { *streamReconfigured = true; } mState = STATE_CONFIGURED; return res; } status_t Camera3Stream::cancelConfiguration() { ATRACE_CALL(); Mutex::Autolock l(mLock); switch (mState) { case STATE_ERROR: ALOGE("%s: In error state", __FUNCTION__); return INVALID_OPERATION; case STATE_IN_CONFIG: case STATE_IN_RECONFIG: case STATE_IN_IDLE: // OK break; case STATE_CONSTRUCTED: case STATE_CONFIGURED: ALOGE("%s: Cannot cancel configuration that hasn't been started", __FUNCTION__); return INVALID_OPERATION; default: ALOGE("%s: Unknown state", __FUNCTION__); return INVALID_OPERATION; } mUsage = mOldUsage; camera_stream::max_buffers = mOldMaxBuffers; mState = ((mState == STATE_IN_RECONFIG) || (mState == STATE_IN_IDLE)) ? STATE_CONFIGURED : STATE_CONSTRUCTED; return OK; } bool Camera3Stream::isUnpreparable() { ATRACE_CALL(); Mutex::Autolock l(mLock); return mStreamUnpreparable; } void Camera3Stream::markUnpreparable() { ATRACE_CALL(); Mutex::Autolock l(mLock); mStreamUnpreparable = true; } status_t Camera3Stream::startPrepare(int maxCount, bool blockRequest) { ATRACE_CALL(); Mutex::Autolock l(mLock); if (maxCount < 0) { ALOGE("%s: Stream %d: Can't prepare stream if max buffer count (%d) is < 0", __FUNCTION__, mId, maxCount); return BAD_VALUE; } // This function should be only called when the stream is configured already. if (mState != STATE_CONFIGURED) { ALOGE("%s: Stream %d: Can't prepare stream if stream is not in CONFIGURED " "state %d", __FUNCTION__, mId, mState); return INVALID_OPERATION; } // This function can't be called if the stream has already received filled // buffers if (mStreamUnpreparable) { ALOGE("%s: Stream %d: Can't prepare stream that's already in use", __FUNCTION__, mId); return INVALID_OPERATION; } if (getHandoutOutputBufferCountLocked() > 0) { ALOGE("%s: Stream %d: Can't prepare stream that has outstanding buffers", __FUNCTION__, mId); return INVALID_OPERATION; } size_t pipelineMax = getBufferCountLocked(); size_t clampedCount = (pipelineMax < static_cast(maxCount)) ? pipelineMax : static_cast(maxCount); size_t bufferCount = (maxCount == Camera3StreamInterface::ALLOCATE_PIPELINE_MAX) ? pipelineMax : clampedCount; mPrepared = bufferCount <= mLastMaxCount; mPrepareBlockRequest = blockRequest; if (mPrepared) return OK; mLastMaxCount = bufferCount; mPreparedBuffers.insertAt(camera_stream_buffer_t(), /*index*/0, bufferCount); mPreparedBufferIdx = 0; mState = STATE_PREPARING; return NOT_ENOUGH_DATA; } bool Camera3Stream::isBlockedByPrepare() const { Mutex::Autolock l(mLock); return mState == STATE_PREPARING && mPrepareBlockRequest; } bool Camera3Stream::isAbandoned() const { Mutex::Autolock l(mLock); return mState == STATE_ABANDONED; } status_t Camera3Stream::prepareNextBuffer() { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res = OK; // This function should be only called when the stream is preparing if (mState != STATE_PREPARING) { ALOGE("%s: Stream %d: Can't prepare buffer if stream is not in PREPARING " "state %d", __FUNCTION__, mId, mState); return INVALID_OPERATION; } // Get next buffer - this may allocate, and take a while for large buffers res = getBufferLocked( &mPreparedBuffers.editItemAt(mPreparedBufferIdx) ); if (res != OK) { ALOGE("%s: Stream %d: Unable to allocate buffer %zu during preparation", __FUNCTION__, mId, mPreparedBufferIdx); return NO_INIT; } mPreparedBufferIdx++; // Check if we still have buffers left to allocate if (mPreparedBufferIdx < mPreparedBuffers.size()) { return NOT_ENOUGH_DATA; } // Done with prepare - mark stream as such, and return all buffers // via cancelPrepare mPrepared = true; return cancelPrepareLocked(); } status_t Camera3Stream::cancelPrepare() { ATRACE_CALL(); Mutex::Autolock l(mLock); return cancelPrepareLocked(); } status_t Camera3Stream::cancelPrepareLocked() { status_t res = OK; // This function should be only called when the stream is mid-preparing. if (mState != STATE_PREPARING) { ALOGE("%s: Stream %d: Can't cancel prepare stream if stream is not in " "PREPARING state %d", __FUNCTION__, mId, mState); return INVALID_OPERATION; } // Return all valid buffers to stream, in ERROR state to indicate // they weren't filled. for (size_t i = 0; i < mPreparedBufferIdx; i++) { mPreparedBuffers.editItemAt(i).release_fence = -1; mPreparedBuffers.editItemAt(i).status = CAMERA_BUFFER_STATUS_ERROR; returnBufferLocked(mPreparedBuffers[i], /*timestamp*/0, /*readoutTimestamp*/0, /*transform*/ -1); } mPreparedBuffers.clear(); mPreparedBufferIdx = 0; mState = STATE_CONFIGURED; return res; } status_t Camera3Stream::tearDown() { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res = OK; // This function should be only called when the stream is configured. if (mState != STATE_CONFIGURED) { ALOGE("%s: Stream %d: Can't tear down stream if stream is not in " "CONFIGURED state %d", __FUNCTION__, mId, mState); return INVALID_OPERATION; } // If any buffers have been handed to the HAL, the stream cannot be torn down. if (getHandoutOutputBufferCountLocked() > 0) { ALOGE("%s: Stream %d: Can't tear down a stream that has outstanding buffers", __FUNCTION__, mId); return INVALID_OPERATION; } // Free buffers by disconnecting and then reconnecting to the buffer queue // Only unused buffers will be dropped immediately; buffers that have been filled // and are waiting to be acquired by the consumer and buffers that are currently // acquired will be freed once they are released by the consumer. res = disconnectLocked(); if (res != OK) { if (res == -ENOTCONN) { // queue has been disconnected, nothing left to do, so exit with success return OK; } ALOGE("%s: Stream %d: Unable to disconnect to tear down buffers: %s (%d)", __FUNCTION__, mId, strerror(-res), res); return res; } mState = STATE_IN_CONFIG; res = configureQueueLocked(); if (res != OK) { ALOGE("%s: Unable to configure stream %d queue: %s (%d)", __FUNCTION__, mId, strerror(-res), res); mState = STATE_ERROR; return res; } // Reset prepared state, since we've reconnected to the queue and can prepare again. mPrepared = false; mStreamUnpreparable = false; mState = STATE_CONFIGURED; return OK; } status_t Camera3Stream::getBuffer(camera_stream_buffer *buffer, nsecs_t waitBufferTimeout, const std::vector& surface_ids) { ATRACE_HFR_CALL(); Mutex::Autolock l(mLock); status_t res = OK; // This function should be only called when the stream is configured already. if (mState != STATE_CONFIGURED) { ALOGE("%s: Stream %d: Can't get buffers if stream is not in CONFIGURED state %d", __FUNCTION__, mId, mState); if (mState == STATE_ABANDONED) { return DEAD_OBJECT; } else { return INVALID_OPERATION; } } // Wait for new buffer returned back if we are running into the limit. There // are 2 limits: // 1. The number of HAL buffers is greater than max_buffers // 2. The number of HAL buffers + cached buffers is greater than max_buffers // + maxCachedBuffers size_t numOutstandingBuffers = getHandoutOutputBufferCountLocked(); size_t numCachedBuffers = getCachedOutputBufferCountLocked(); size_t maxNumCachedBuffers = getMaxCachedOutputBuffersLocked(); while (numOutstandingBuffers == camera_stream::max_buffers || numOutstandingBuffers + numCachedBuffers == camera_stream::max_buffers + maxNumCachedBuffers) { ALOGV("%s: Already dequeued max output buffers (%d(+%zu)), wait for next returned one.", __FUNCTION__, camera_stream::max_buffers, maxNumCachedBuffers); nsecs_t waitStart = systemTime(SYSTEM_TIME_MONOTONIC); if (waitBufferTimeout < kWaitForBufferDuration) { waitBufferTimeout = kWaitForBufferDuration; } res = mOutputBufferReturnedSignal.waitRelative(mLock, waitBufferTimeout); nsecs_t waitEnd = systemTime(SYSTEM_TIME_MONOTONIC); mBufferLimitLatency.add(waitStart, waitEnd); if (res != OK) { if (res == TIMED_OUT) { ALOGE("%s: wait for output buffer return timed out after %lldms (max_buffers %d)", __FUNCTION__, waitBufferTimeout / 1000000LL, camera_stream::max_buffers); } return res; } size_t updatedNumOutstandingBuffers = getHandoutOutputBufferCountLocked(); size_t updatedNumCachedBuffers = getCachedOutputBufferCountLocked(); if (updatedNumOutstandingBuffers >= numOutstandingBuffers && updatedNumCachedBuffers == numCachedBuffers) { ALOGE("%s: outstanding buffer count goes from %zu to %zu, " "getBuffer(s) call must not run in parallel!", __FUNCTION__, numOutstandingBuffers, updatedNumOutstandingBuffers); return INVALID_OPERATION; } numOutstandingBuffers = updatedNumOutstandingBuffers; numCachedBuffers = updatedNumCachedBuffers; } res = getBufferLocked(buffer, surface_ids); if (res == OK) { fireBufferListenersLocked(*buffer, /*acquired*/true, /*output*/true); if (buffer->buffer) { Mutex::Autolock l(mOutstandingBuffersLock); mOutstandingBuffers.push_back(*buffer->buffer); } } return res; } bool Camera3Stream::isOutstandingBuffer(const camera_stream_buffer &buffer) const{ if (buffer.buffer == nullptr) { return false; } Mutex::Autolock l(mOutstandingBuffersLock); for (auto b : mOutstandingBuffers) { if (b == *buffer.buffer) { return true; } } return false; } void Camera3Stream::removeOutstandingBuffer(const camera_stream_buffer &buffer) { if (buffer.buffer == nullptr) { return; } Mutex::Autolock l(mOutstandingBuffersLock); for (auto b = mOutstandingBuffers.begin(); b != mOutstandingBuffers.end(); b++) { if (*b == *buffer.buffer) { mOutstandingBuffers.erase(b); return; } } } status_t Camera3Stream::returnBuffer(const camera_stream_buffer &buffer, nsecs_t timestamp, nsecs_t readoutTimestamp, bool timestampIncreasing, const std::vector& surface_ids, uint64_t frameNumber, int32_t transform) { ATRACE_HFR_CALL(); Mutex::Autolock l(mLock); // Check if this buffer is outstanding. if (!isOutstandingBuffer(buffer)) { ALOGE("%s: Stream %d: Returning an unknown buffer.", __FUNCTION__, mId); return BAD_VALUE; } removeOutstandingBuffer(buffer); // Buffer status may be changed, so make a copy of the stream_buffer struct. camera_stream_buffer b = buffer; if (timestampIncreasing && timestamp != 0 && timestamp <= mLastTimestamp) { ALOGE("%s: Stream %d: timestamp %" PRId64 " is not increasing. Prev timestamp %" PRId64, __FUNCTION__, mId, timestamp, mLastTimestamp); b.status = CAMERA_BUFFER_STATUS_ERROR; } mLastTimestamp = timestamp; /** * TODO: Check that the state is valid first. * * = HAL3.2 CONFIGURED only * * Do this for getBuffer as well. */ status_t res = returnBufferLocked(b, timestamp, readoutTimestamp, transform, surface_ids); if (res == OK) { fireBufferListenersLocked(b, /*acquired*/false, /*output*/true, timestamp, frameNumber); } // Even if returning the buffer failed, we still want to signal whoever is waiting for the // buffer to be returned. mOutputBufferReturnedSignal.signal(); return res; } status_t Camera3Stream::getInputBuffer(camera_stream_buffer *buffer, Size* size, bool respectHalLimit) { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res = OK; if (size == nullptr) { ALOGE("%s: size must not be null", __FUNCTION__); return BAD_VALUE; } // This function should be only called when the stream is configured already. if (mState != STATE_CONFIGURED) { ALOGE("%s: Stream %d: Can't get input buffers if stream is not in CONFIGURED state %d", __FUNCTION__, mId, mState); return INVALID_OPERATION; } // Wait for new buffer returned back if we are running into the limit. if (getHandoutInputBufferCountLocked() == camera_stream::max_buffers && respectHalLimit) { ALOGV("%s: Already dequeued max input buffers (%d), wait for next returned one.", __FUNCTION__, camera_stream::max_buffers); res = mInputBufferReturnedSignal.waitRelative(mLock, kWaitForBufferDuration); if (res != OK) { if (res == TIMED_OUT) { ALOGE("%s: wait for input buffer return timed out after %lldms", __FUNCTION__, kWaitForBufferDuration / 1000000LL); } return res; } } res = getInputBufferLocked(buffer, size); if (res == OK) { fireBufferListenersLocked(*buffer, /*acquired*/true, /*output*/false); if (buffer->buffer) { Mutex::Autolock l(mOutstandingBuffersLock); mOutstandingBuffers.push_back(*buffer->buffer); } } return res; } status_t Camera3Stream::returnInputBuffer(const camera_stream_buffer &buffer) { ATRACE_CALL(); Mutex::Autolock l(mLock); // Check if this buffer is outstanding. if (!isOutstandingBuffer(buffer)) { ALOGE("%s: Stream %d: Returning an unknown buffer.", __FUNCTION__, mId); return BAD_VALUE; } removeOutstandingBuffer(buffer); status_t res = returnInputBufferLocked(buffer); if (res == OK) { fireBufferListenersLocked(buffer, /*acquired*/false, /*output*/false); mInputBufferReturnedSignal.signal(); } return res; } status_t Camera3Stream::getInputBufferProducer(sp *producer) { ATRACE_CALL(); Mutex::Autolock l(mLock); return getInputBufferProducerLocked(producer); } void Camera3Stream::fireBufferRequestForFrameNumber(uint64_t frameNumber, const CameraMetadata& settings) { ATRACE_CALL(); Mutex::Autolock l(mLock); for (auto &it : mBufferListenerList) { sp listener = it.promote(); if (listener.get() != nullptr) { listener->onBufferRequestForFrameNumber(frameNumber, getId(), settings); } } } void Camera3Stream::fireBufferListenersLocked( const camera_stream_buffer& buffer, bool acquired, bool output, nsecs_t timestamp, uint64_t frameNumber) { List >::iterator it, end; // TODO: finish implementing Camera3StreamBufferListener::BufferInfo info = Camera3StreamBufferListener::BufferInfo(); info.mOutput = output; info.mError = (buffer.status == CAMERA_BUFFER_STATUS_ERROR); info.mFrameNumber = frameNumber; info.mTimestamp = timestamp; info.mStreamId = getId(); // TODO: rest of fields for (it = mBufferListenerList.begin(), end = mBufferListenerList.end(); it != end; ++it) { sp listener = it->promote(); if (listener != 0) { if (acquired) { listener->onBufferAcquired(info); } else { listener->onBufferReleased(info); } } } } bool Camera3Stream::hasOutstandingBuffers() const { ATRACE_CALL(); Mutex::Autolock l(mLock); return hasOutstandingBuffersLocked(); } size_t Camera3Stream::getOutstandingBuffersCount() const { ATRACE_CALL(); Mutex::Autolock l(mLock); return getHandoutOutputBufferCountLocked(); } status_t Camera3Stream::setStatusTracker(sp statusTracker) { Mutex::Autolock l(mLock); sp oldTracker = mStatusTracker.promote(); if (oldTracker != 0 && mStatusId != StatusTracker::NO_STATUS_ID) { oldTracker->removeComponent(mStatusId); } mStatusId = StatusTracker::NO_STATUS_ID; mStatusTracker = statusTracker; return OK; } status_t Camera3Stream::disconnect() { ATRACE_CALL(); Mutex::Autolock l(mLock); ALOGV("%s: Stream %d: Disconnecting...", __FUNCTION__, mId); status_t res = disconnectLocked(); mBufferLimitLatency.log("Stream %d latency histogram for wait on max_buffers", mId); mBufferLimitLatency.reset(); if (res == -ENOTCONN) { // "Already disconnected" -- not an error return OK; } else { return res; } } void Camera3Stream::dump(int fd, const Vector &args) const { (void)args; mBufferLimitLatency.dump(fd, " Latency histogram for wait on max_buffers"); } status_t Camera3Stream::getBufferLocked(camera_stream_buffer *, const std::vector&) { ALOGE("%s: This type of stream does not support output", __FUNCTION__); return INVALID_OPERATION; } status_t Camera3Stream::getBuffersLocked(std::vector*) { ALOGE("%s: This type of stream does not support output", __FUNCTION__); return INVALID_OPERATION; } status_t Camera3Stream::returnBufferLocked(const camera_stream_buffer &, nsecs_t, nsecs_t, int32_t, const std::vector&) { ALOGE("%s: This type of stream does not support output", __FUNCTION__); return INVALID_OPERATION; } status_t Camera3Stream::getInputBufferLocked(camera_stream_buffer *, Size *) { ALOGE("%s: This type of stream does not support input", __FUNCTION__); return INVALID_OPERATION; } status_t Camera3Stream::returnInputBufferLocked( const camera_stream_buffer &) { ALOGE("%s: This type of stream does not support input", __FUNCTION__); return INVALID_OPERATION; } status_t Camera3Stream::getInputBufferProducerLocked(sp*) { ALOGE("%s: This type of stream does not support input", __FUNCTION__); return INVALID_OPERATION; } void Camera3Stream::addBufferListener( wp listener) { Mutex::Autolock l(mLock); List >::iterator it, end; for (it = mBufferListenerList.begin(), end = mBufferListenerList.end(); it != end; ) { if (*it == listener) { ALOGE("%s: Try to add the same listener twice, ignoring...", __FUNCTION__); return; } it++; } mBufferListenerList.push_back(listener); } void Camera3Stream::removeBufferListener( const sp& listener) { Mutex::Autolock l(mLock); bool erased = true; List >::iterator it, end; for (it = mBufferListenerList.begin(), end = mBufferListenerList.end(); it != end; ) { if (*it == listener) { it = mBufferListenerList.erase(it); erased = true; } else { ++it; } } if (!erased) { ALOGW("%s: Could not find listener to remove, already removed", __FUNCTION__); } } void Camera3Stream::setBufferFreedListener( wp listener) { Mutex::Autolock l(mLock); // Only allow set listener during stream configuration because stream is guaranteed to be IDLE // at this state, so setBufferFreedListener won't collide with onBufferFreed callbacks if (mState != STATE_IN_CONFIG && mState != STATE_IN_RECONFIG) { ALOGE("%s: listener must be set during stream configuration!",__FUNCTION__); return; } mBufferFreedListener = listener; } status_t Camera3Stream::getBuffers(std::vector* buffers, nsecs_t waitBufferTimeout) { ATRACE_CALL(); Mutex::Autolock l(mLock); status_t res = OK; if (buffers == nullptr) { ALOGI("%s: buffers must not be null!", __FUNCTION__); return BAD_VALUE; } size_t numBuffersRequested = buffers->size(); if (numBuffersRequested == 0) { ALOGE("%s: 0 buffers are requested!", __FUNCTION__); return BAD_VALUE; } // This function should be only called when the stream is configured already. if (mState != STATE_CONFIGURED) { ALOGE("%s: Stream %d: Can't get buffers if stream is not in CONFIGURED state %d", __FUNCTION__, mId, mState); if (mState == STATE_ABANDONED) { return DEAD_OBJECT; } else { return INVALID_OPERATION; } } size_t numOutstandingBuffers = getHandoutOutputBufferCountLocked(); size_t numCachedBuffers = getCachedOutputBufferCountLocked(); size_t maxNumCachedBuffers = getMaxCachedOutputBuffersLocked(); // Wait for new buffer returned back if we are running into the limit. There // are 2 limits: // 1. The number of HAL buffers is greater than max_buffers // 2. The number of HAL buffers + cached buffers is greater than max_buffers // + maxCachedBuffers while (numOutstandingBuffers + numBuffersRequested > camera_stream::max_buffers || numOutstandingBuffers + numCachedBuffers + numBuffersRequested > camera_stream::max_buffers + maxNumCachedBuffers) { ALOGV("%s: Already dequeued %zu(+%zu) output buffers and requesting %zu " "(max is %d(+%zu)), waiting.", __FUNCTION__, numOutstandingBuffers, numCachedBuffers, numBuffersRequested, camera_stream::max_buffers, maxNumCachedBuffers); nsecs_t waitStart = systemTime(SYSTEM_TIME_MONOTONIC); if (waitBufferTimeout < kWaitForBufferDuration) { waitBufferTimeout = kWaitForBufferDuration; } res = mOutputBufferReturnedSignal.waitRelative(mLock, waitBufferTimeout); nsecs_t waitEnd = systemTime(SYSTEM_TIME_MONOTONIC); mBufferLimitLatency.add(waitStart, waitEnd); if (res != OK) { if (res == TIMED_OUT) { ALOGE("%s: wait for output buffer return timed out after %lldms (max_buffers %d)", __FUNCTION__, waitBufferTimeout / 1000000LL, camera_stream::max_buffers); } return res; } size_t updatedNumOutstandingBuffers = getHandoutOutputBufferCountLocked(); size_t updatedNumCachedBuffers = getCachedOutputBufferCountLocked(); if (updatedNumOutstandingBuffers >= numOutstandingBuffers && updatedNumCachedBuffers == numCachedBuffers) { ALOGE("%s: outstanding buffer count goes from %zu to %zu, " "getBuffer(s) call must not run in parallel!", __FUNCTION__, numOutstandingBuffers, updatedNumOutstandingBuffers); return INVALID_OPERATION; } numOutstandingBuffers = updatedNumOutstandingBuffers; numCachedBuffers = updatedNumCachedBuffers; } res = getBuffersLocked(buffers); if (res == OK) { for (auto& outstandingBuffer : *buffers) { camera_stream_buffer* buffer = outstandingBuffer.outBuffer; fireBufferListenersLocked(*buffer, /*acquired*/true, /*output*/true); if (buffer->buffer) { Mutex::Autolock l(mOutstandingBuffersLock); mOutstandingBuffers.push_back(*buffer->buffer); } } } return res; } void Camera3Stream::queueHDRMetadata(buffer_handle_t buffer, sp& anw, int64_t dynamicRangeProfile) { auto& mapper = GraphicBufferMapper::get(); switch (dynamicRangeProfile) { case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10: { std::optional smpte2086; auto res = mapper.getSmpte2086(buffer, &smpte2086); if ((res == OK) && smpte2086.has_value()) { const auto& metaValue = smpte2086.value(); android_smpte2086_metadata meta = { .displayPrimaryRed.x = metaValue.primaryRed.x, .displayPrimaryRed.y = metaValue.primaryRed.y, .displayPrimaryGreen.x = metaValue.primaryGreen.x, .displayPrimaryGreen.y = metaValue.primaryGreen.y, .displayPrimaryBlue.x = metaValue.primaryBlue.x, .displayPrimaryBlue.y = metaValue.primaryBlue.y, .whitePoint.x = metaValue.whitePoint.x, .whitePoint.y = metaValue.whitePoint.y, .maxLuminance = metaValue.maxLuminance, .minLuminance = metaValue.minLuminance}; native_window_set_buffers_smpte2086_metadata(anw.get(), &meta); } else { ALOGE("%s Couldn't retrieve Smpte2086 metadata %s (%d)", __FUNCTION__, strerror(-res), res); } break; } case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10_PLUS: { std::optional> smpte2094_40; auto res = mapper.getSmpte2094_40(buffer, &smpte2094_40); if ((res == OK) && smpte2094_40.has_value()) { native_window_set_buffers_hdr10_plus_metadata(anw.get(), smpte2094_40.value().size(), smpte2094_40.value().data()); } else { ALOGE("%s Couldn't retrieve Smpte2094_40 metadata %s (%d)", __FUNCTION__, strerror(-res), res); } break; } default: // No-op break; } } }; // namespace camera3 }; // namespace android