// // Copyright 2010 The Android Open Source Project // // Provides a shared memory transport for input events. // #define LOG_TAG "InputTransport" //#define LOG_NDEBUG 0 // Log debug messages about channel messages (send message, receive message) #define DEBUG_CHANNEL_MESSAGES 0 // Log debug messages whenever InputChannel objects are created/destroyed static constexpr bool DEBUG_CHANNEL_LIFECYCLE = false; // Log debug messages about transport actions static constexpr bool DEBUG_TRANSPORT_ACTIONS = false; // Log debug messages about touch event resampling #define DEBUG_RESAMPLING 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::StringPrintf; namespace android { // Socket buffer size. The default is typically about 128KB, which is much larger than // we really need. So we make it smaller. It just needs to be big enough to hold // a few dozen large multi-finger motion events in the case where an application gets // behind processing touches. static const size_t SOCKET_BUFFER_SIZE = 32 * 1024; // Nanoseconds per milliseconds. static const nsecs_t NANOS_PER_MS = 1000000; // Latency added during resampling. A few milliseconds doesn't hurt much but // reduces the impact of mispredicted touch positions. static const nsecs_t RESAMPLE_LATENCY = 5 * NANOS_PER_MS; // Minimum time difference between consecutive samples before attempting to resample. static const nsecs_t RESAMPLE_MIN_DELTA = 2 * NANOS_PER_MS; // Maximum time difference between consecutive samples before attempting to resample // by extrapolation. static const nsecs_t RESAMPLE_MAX_DELTA = 20 * NANOS_PER_MS; // Maximum time to predict forward from the last known state, to avoid predicting too // far into the future. This time is further bounded by 50% of the last time delta. static const nsecs_t RESAMPLE_MAX_PREDICTION = 8 * NANOS_PER_MS; /** * System property for enabling / disabling touch resampling. * Resampling extrapolates / interpolates the reported touch event coordinates to better * align them to the VSYNC signal, thus resulting in smoother scrolling performance. * Resampling is not needed (and should be disabled) on hardware that already * has touch events triggered by VSYNC. * Set to "1" to enable resampling (default). * Set to "0" to disable resampling. * Resampling is enabled by default. */ static const char* PROPERTY_RESAMPLING_ENABLED = "ro.input.resampling"; template inline static T min(const T& a, const T& b) { return a < b ? a : b; } inline static float lerp(float a, float b, float alpha) { return a + alpha * (b - a); } inline static bool isPointerEvent(int32_t source) { return (source & AINPUT_SOURCE_CLASS_POINTER) == AINPUT_SOURCE_CLASS_POINTER; } inline static const char* toString(bool value) { return value ? "true" : "false"; } // --- InputMessage --- bool InputMessage::isValid(size_t actualSize) const { if (size() != actualSize) { ALOGE("Received message of incorrect size %zu (expected %zu)", actualSize, size()); return false; } switch (header.type) { case Type::KEY: return true; case Type::MOTION: { const bool valid = body.motion.pointerCount > 0 && body.motion.pointerCount <= MAX_POINTERS; if (!valid) { ALOGE("Received invalid MOTION: pointerCount = %" PRIu32, body.motion.pointerCount); } return valid; } case Type::FINISHED: case Type::FOCUS: case Type::CAPTURE: case Type::DRAG: case Type::TOUCH_MODE: return true; case Type::TIMELINE: { const nsecs_t gpuCompletedTime = body.timeline.graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME]; const nsecs_t presentTime = body.timeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME]; const bool valid = presentTime > gpuCompletedTime; if (!valid) { ALOGE("Received invalid TIMELINE: gpuCompletedTime = %" PRId64 " presentTime = %" PRId64, gpuCompletedTime, presentTime); } return valid; } } ALOGE("Invalid message type: %" PRIu32, header.type); return false; } size_t InputMessage::size() const { switch (header.type) { case Type::KEY: return sizeof(Header) + body.key.size(); case Type::MOTION: return sizeof(Header) + body.motion.size(); case Type::FINISHED: return sizeof(Header) + body.finished.size(); case Type::FOCUS: return sizeof(Header) + body.focus.size(); case Type::CAPTURE: return sizeof(Header) + body.capture.size(); case Type::DRAG: return sizeof(Header) + body.drag.size(); case Type::TIMELINE: return sizeof(Header) + body.timeline.size(); case Type::TOUCH_MODE: return sizeof(Header) + body.touchMode.size(); } return sizeof(Header); } /** * There could be non-zero bytes in-between InputMessage fields. Force-initialize the entire * memory to zero, then only copy the valid bytes on a per-field basis. */ void InputMessage::getSanitizedCopy(InputMessage* msg) const { memset(msg, 0, sizeof(*msg)); // Write the header msg->header.type = header.type; msg->header.seq = header.seq; // Write the body switch(header.type) { case InputMessage::Type::KEY: { // int32_t eventId msg->body.key.eventId = body.key.eventId; // nsecs_t eventTime msg->body.key.eventTime = body.key.eventTime; // int32_t deviceId msg->body.key.deviceId = body.key.deviceId; // int32_t source msg->body.key.source = body.key.source; // int32_t displayId msg->body.key.displayId = body.key.displayId; // std::array hmac msg->body.key.hmac = body.key.hmac; // int32_t action msg->body.key.action = body.key.action; // int32_t flags msg->body.key.flags = body.key.flags; // int32_t keyCode msg->body.key.keyCode = body.key.keyCode; // int32_t scanCode msg->body.key.scanCode = body.key.scanCode; // int32_t metaState msg->body.key.metaState = body.key.metaState; // int32_t repeatCount msg->body.key.repeatCount = body.key.repeatCount; // nsecs_t downTime msg->body.key.downTime = body.key.downTime; break; } case InputMessage::Type::MOTION: { // int32_t eventId msg->body.motion.eventId = body.motion.eventId; // uint32_t pointerCount msg->body.motion.pointerCount = body.motion.pointerCount; // nsecs_t eventTime msg->body.motion.eventTime = body.motion.eventTime; // int32_t deviceId msg->body.motion.deviceId = body.motion.deviceId; // int32_t source msg->body.motion.source = body.motion.source; // int32_t displayId msg->body.motion.displayId = body.motion.displayId; // std::array hmac msg->body.motion.hmac = body.motion.hmac; // int32_t action msg->body.motion.action = body.motion.action; // int32_t actionButton msg->body.motion.actionButton = body.motion.actionButton; // int32_t flags msg->body.motion.flags = body.motion.flags; // int32_t metaState msg->body.motion.metaState = body.motion.metaState; // int32_t buttonState msg->body.motion.buttonState = body.motion.buttonState; // MotionClassification classification msg->body.motion.classification = body.motion.classification; // int32_t edgeFlags msg->body.motion.edgeFlags = body.motion.edgeFlags; // nsecs_t downTime msg->body.motion.downTime = body.motion.downTime; msg->body.motion.dsdx = body.motion.dsdx; msg->body.motion.dtdx = body.motion.dtdx; msg->body.motion.dtdy = body.motion.dtdy; msg->body.motion.dsdy = body.motion.dsdy; msg->body.motion.tx = body.motion.tx; msg->body.motion.ty = body.motion.ty; // float xPrecision msg->body.motion.xPrecision = body.motion.xPrecision; // float yPrecision msg->body.motion.yPrecision = body.motion.yPrecision; // float xCursorPosition msg->body.motion.xCursorPosition = body.motion.xCursorPosition; // float yCursorPosition msg->body.motion.yCursorPosition = body.motion.yCursorPosition; msg->body.motion.dsdxRaw = body.motion.dsdxRaw; msg->body.motion.dtdxRaw = body.motion.dtdxRaw; msg->body.motion.dtdyRaw = body.motion.dtdyRaw; msg->body.motion.dsdyRaw = body.motion.dsdyRaw; msg->body.motion.txRaw = body.motion.txRaw; msg->body.motion.tyRaw = body.motion.tyRaw; //struct Pointer pointers[MAX_POINTERS] for (size_t i = 0; i < body.motion.pointerCount; i++) { // PointerProperties properties msg->body.motion.pointers[i].properties.id = body.motion.pointers[i].properties.id; msg->body.motion.pointers[i].properties.toolType = body.motion.pointers[i].properties.toolType, // PointerCoords coords msg->body.motion.pointers[i].coords.bits = body.motion.pointers[i].coords.bits; const uint32_t count = BitSet64::count(body.motion.pointers[i].coords.bits); memcpy(&msg->body.motion.pointers[i].coords.values[0], &body.motion.pointers[i].coords.values[0], count * (sizeof(body.motion.pointers[i].coords.values[0]))); } break; } case InputMessage::Type::FINISHED: { msg->body.finished.handled = body.finished.handled; msg->body.finished.consumeTime = body.finished.consumeTime; break; } case InputMessage::Type::FOCUS: { msg->body.focus.eventId = body.focus.eventId; msg->body.focus.hasFocus = body.focus.hasFocus; break; } case InputMessage::Type::CAPTURE: { msg->body.capture.eventId = body.capture.eventId; msg->body.capture.pointerCaptureEnabled = body.capture.pointerCaptureEnabled; break; } case InputMessage::Type::DRAG: { msg->body.drag.eventId = body.drag.eventId; msg->body.drag.x = body.drag.x; msg->body.drag.y = body.drag.y; msg->body.drag.isExiting = body.drag.isExiting; break; } case InputMessage::Type::TIMELINE: { msg->body.timeline.eventId = body.timeline.eventId; msg->body.timeline.graphicsTimeline = body.timeline.graphicsTimeline; break; } case InputMessage::Type::TOUCH_MODE: { msg->body.touchMode.eventId = body.touchMode.eventId; msg->body.touchMode.isInTouchMode = body.touchMode.isInTouchMode; } } } // --- InputChannel --- std::unique_ptr InputChannel::create(const std::string& name, android::base::unique_fd fd, sp token) { const int result = fcntl(fd, F_SETFL, O_NONBLOCK); if (result != 0) { LOG_ALWAYS_FATAL("channel '%s' ~ Could not make socket non-blocking: %s", name.c_str(), strerror(errno)); return nullptr; } // using 'new' to access a non-public constructor return std::unique_ptr(new InputChannel(name, std::move(fd), token)); } InputChannel::InputChannel(const std::string name, android::base::unique_fd fd, sp token) : mName(std::move(name)), mFd(std::move(fd)), mToken(std::move(token)) { if (DEBUG_CHANNEL_LIFECYCLE) { ALOGD("Input channel constructed: name='%s', fd=%d", getName().c_str(), getFd().get()); } } InputChannel::~InputChannel() { if (DEBUG_CHANNEL_LIFECYCLE) { ALOGD("Input channel destroyed: name='%s', fd=%d", getName().c_str(), getFd().get()); } } status_t InputChannel::openInputChannelPair(const std::string& name, std::unique_ptr& outServerChannel, std::unique_ptr& outClientChannel) { int sockets[2]; if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets)) { status_t result = -errno; ALOGE("channel '%s' ~ Could not create socket pair. errno=%s(%d)", name.c_str(), strerror(errno), errno); outServerChannel.reset(); outClientChannel.reset(); return result; } int bufferSize = SOCKET_BUFFER_SIZE; setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize)); setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize)); setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize)); setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize)); sp token = new BBinder(); std::string serverChannelName = name + " (server)"; android::base::unique_fd serverFd(sockets[0]); outServerChannel = InputChannel::create(serverChannelName, std::move(serverFd), token); std::string clientChannelName = name + " (client)"; android::base::unique_fd clientFd(sockets[1]); outClientChannel = InputChannel::create(clientChannelName, std::move(clientFd), token); return OK; } status_t InputChannel::sendMessage(const InputMessage* msg) { const size_t msgLength = msg->size(); InputMessage cleanMsg; msg->getSanitizedCopy(&cleanMsg); ssize_t nWrite; do { nWrite = ::send(getFd(), &cleanMsg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL); } while (nWrite == -1 && errno == EINTR); if (nWrite < 0) { int error = errno; #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ error sending message of type %d, %s", mName.c_str(), msg->header.type, strerror(error)); #endif if (error == EAGAIN || error == EWOULDBLOCK) { return WOULD_BLOCK; } if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED || error == ECONNRESET) { return DEAD_OBJECT; } return -error; } if (size_t(nWrite) != msgLength) { #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ error sending message type %d, send was incomplete", mName.c_str(), msg->header.type); #endif return DEAD_OBJECT; } #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ sent message of type %d", mName.c_str(), msg->header.type); #endif return OK; } status_t InputChannel::receiveMessage(InputMessage* msg) { ssize_t nRead; do { nRead = ::recv(getFd(), msg, sizeof(InputMessage), MSG_DONTWAIT); } while (nRead == -1 && errno == EINTR); if (nRead < 0) { int error = errno; #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ receive message failed, errno=%d", mName.c_str(), errno); #endif if (error == EAGAIN || error == EWOULDBLOCK) { return WOULD_BLOCK; } if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED) { return DEAD_OBJECT; } return -error; } if (nRead == 0) { // check for EOF #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ receive message failed because peer was closed", mName.c_str()); #endif return DEAD_OBJECT; } if (!msg->isValid(nRead)) { ALOGE("channel '%s' ~ received invalid message of size %zd", mName.c_str(), nRead); return BAD_VALUE; } #if DEBUG_CHANNEL_MESSAGES ALOGD("channel '%s' ~ received message of type %d", mName.c_str(), msg->header.type); #endif return OK; } std::unique_ptr InputChannel::dup() const { base::unique_fd newFd(dupFd()); return InputChannel::create(getName(), std::move(newFd), getConnectionToken()); } void InputChannel::copyTo(InputChannel& outChannel) const { outChannel.mName = getName(); outChannel.mFd = dupFd(); outChannel.mToken = getConnectionToken(); } status_t InputChannel::writeToParcel(android::Parcel* parcel) const { if (parcel == nullptr) { ALOGE("%s: Null parcel", __func__); return BAD_VALUE; } return parcel->writeStrongBinder(mToken) ?: parcel->writeUtf8AsUtf16(mName) ?: parcel->writeUniqueFileDescriptor(mFd); } status_t InputChannel::readFromParcel(const android::Parcel* parcel) { if (parcel == nullptr) { ALOGE("%s: Null parcel", __func__); return BAD_VALUE; } mToken = parcel->readStrongBinder(); return parcel->readUtf8FromUtf16(&mName) ?: parcel->readUniqueFileDescriptor(&mFd); } sp InputChannel::getConnectionToken() const { return mToken; } base::unique_fd InputChannel::dupFd() const { android::base::unique_fd newFd(::dup(getFd())); if (!newFd.ok()) { ALOGE("Could not duplicate fd %i for channel %s: %s", getFd().get(), getName().c_str(), strerror(errno)); const bool hitFdLimit = errno == EMFILE || errno == ENFILE; // If this process is out of file descriptors, then throwing that might end up exploding // on the other side of a binder call, which isn't really helpful. // Better to just crash here and hope that the FD leak is slow. // Other failures could be client errors, so we still propagate those back to the caller. LOG_ALWAYS_FATAL_IF(hitFdLimit, "Too many open files, could not duplicate input channel %s", getName().c_str()); return {}; } return newFd; } // --- InputPublisher --- InputPublisher::InputPublisher(const std::shared_ptr& channel) : mChannel(channel) {} InputPublisher::~InputPublisher() { } status_t InputPublisher::publishKeyEvent(uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source, int32_t displayId, std::array hmac, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, int32_t repeatCount, nsecs_t downTime, nsecs_t eventTime) { if (ATRACE_ENABLED()) { std::string message = StringPrintf("publishKeyEvent(inputChannel=%s, keyCode=%" PRId32 ")", mChannel->getName().c_str(), keyCode); ATRACE_NAME(message.c_str()); } if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' publisher ~ publishKeyEvent: seq=%u, deviceId=%d, source=0x%x, " "action=0x%x, flags=0x%x, keyCode=%d, scanCode=%d, metaState=0x%x, repeatCount=%d," "downTime=%" PRId64 ", eventTime=%" PRId64, mChannel->getName().c_str(), seq, deviceId, source, action, flags, keyCode, scanCode, metaState, repeatCount, downTime, eventTime); } if (!seq) { ALOGE("Attempted to publish a key event with sequence number 0."); return BAD_VALUE; } InputMessage msg; msg.header.type = InputMessage::Type::KEY; msg.header.seq = seq; msg.body.key.eventId = eventId; msg.body.key.deviceId = deviceId; msg.body.key.source = source; msg.body.key.displayId = displayId; msg.body.key.hmac = std::move(hmac); msg.body.key.action = action; msg.body.key.flags = flags; msg.body.key.keyCode = keyCode; msg.body.key.scanCode = scanCode; msg.body.key.metaState = metaState; msg.body.key.repeatCount = repeatCount; msg.body.key.downTime = downTime; msg.body.key.eventTime = eventTime; return mChannel->sendMessage(&msg); } status_t InputPublisher::publishMotionEvent( uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source, int32_t displayId, std::array hmac, int32_t action, int32_t actionButton, int32_t flags, int32_t edgeFlags, int32_t metaState, int32_t buttonState, MotionClassification classification, const ui::Transform& transform, float xPrecision, float yPrecision, float xCursorPosition, float yCursorPosition, const ui::Transform& rawTransform, nsecs_t downTime, nsecs_t eventTime, uint32_t pointerCount, const PointerProperties* pointerProperties, const PointerCoords* pointerCoords) { if (ATRACE_ENABLED()) { std::string message = StringPrintf( "publishMotionEvent(inputChannel=%s, action=%" PRId32 ")", mChannel->getName().c_str(), action); ATRACE_NAME(message.c_str()); } if (DEBUG_TRANSPORT_ACTIONS) { std::string transformString; transform.dump(transformString, "transform", " "); ALOGD("channel '%s' publisher ~ publishMotionEvent: seq=%u, deviceId=%d, source=0x%x, " "displayId=%" PRId32 ", " "action=0x%x, actionButton=0x%08x, flags=0x%x, edgeFlags=0x%x, " "metaState=0x%x, buttonState=0x%x, classification=%s," "xPrecision=%f, yPrecision=%f, downTime=%" PRId64 ", eventTime=%" PRId64 ", " "pointerCount=%" PRIu32 " \n%s", mChannel->getName().c_str(), seq, deviceId, source, displayId, action, actionButton, flags, edgeFlags, metaState, buttonState, motionClassificationToString(classification), xPrecision, yPrecision, downTime, eventTime, pointerCount, transformString.c_str()); } if (!seq) { ALOGE("Attempted to publish a motion event with sequence number 0."); return BAD_VALUE; } if (pointerCount > MAX_POINTERS || pointerCount < 1) { ALOGE("channel '%s' publisher ~ Invalid number of pointers provided: %" PRIu32 ".", mChannel->getName().c_str(), pointerCount); return BAD_VALUE; } InputMessage msg; msg.header.type = InputMessage::Type::MOTION; msg.header.seq = seq; msg.body.motion.eventId = eventId; msg.body.motion.deviceId = deviceId; msg.body.motion.source = source; msg.body.motion.displayId = displayId; msg.body.motion.hmac = std::move(hmac); msg.body.motion.action = action; msg.body.motion.actionButton = actionButton; msg.body.motion.flags = flags; msg.body.motion.edgeFlags = edgeFlags; msg.body.motion.metaState = metaState; msg.body.motion.buttonState = buttonState; msg.body.motion.classification = classification; msg.body.motion.dsdx = transform.dsdx(); msg.body.motion.dtdx = transform.dtdx(); msg.body.motion.dtdy = transform.dtdy(); msg.body.motion.dsdy = transform.dsdy(); msg.body.motion.tx = transform.tx(); msg.body.motion.ty = transform.ty(); msg.body.motion.xPrecision = xPrecision; msg.body.motion.yPrecision = yPrecision; msg.body.motion.xCursorPosition = xCursorPosition; msg.body.motion.yCursorPosition = yCursorPosition; msg.body.motion.dsdxRaw = rawTransform.dsdx(); msg.body.motion.dtdxRaw = rawTransform.dtdx(); msg.body.motion.dtdyRaw = rawTransform.dtdy(); msg.body.motion.dsdyRaw = rawTransform.dsdy(); msg.body.motion.txRaw = rawTransform.tx(); msg.body.motion.tyRaw = rawTransform.ty(); msg.body.motion.downTime = downTime; msg.body.motion.eventTime = eventTime; msg.body.motion.pointerCount = pointerCount; for (uint32_t i = 0; i < pointerCount; i++) { msg.body.motion.pointers[i].properties.copyFrom(pointerProperties[i]); msg.body.motion.pointers[i].coords.copyFrom(pointerCoords[i]); } return mChannel->sendMessage(&msg); } status_t InputPublisher::publishFocusEvent(uint32_t seq, int32_t eventId, bool hasFocus) { if (ATRACE_ENABLED()) { std::string message = StringPrintf("publishFocusEvent(inputChannel=%s, hasFocus=%s)", mChannel->getName().c_str(), toString(hasFocus)); ATRACE_NAME(message.c_str()); } InputMessage msg; msg.header.type = InputMessage::Type::FOCUS; msg.header.seq = seq; msg.body.focus.eventId = eventId; msg.body.focus.hasFocus = hasFocus; return mChannel->sendMessage(&msg); } status_t InputPublisher::publishCaptureEvent(uint32_t seq, int32_t eventId, bool pointerCaptureEnabled) { if (ATRACE_ENABLED()) { std::string message = StringPrintf("publishCaptureEvent(inputChannel=%s, pointerCaptureEnabled=%s)", mChannel->getName().c_str(), toString(pointerCaptureEnabled)); ATRACE_NAME(message.c_str()); } InputMessage msg; msg.header.type = InputMessage::Type::CAPTURE; msg.header.seq = seq; msg.body.capture.eventId = eventId; msg.body.capture.pointerCaptureEnabled = pointerCaptureEnabled; return mChannel->sendMessage(&msg); } status_t InputPublisher::publishDragEvent(uint32_t seq, int32_t eventId, float x, float y, bool isExiting) { if (ATRACE_ENABLED()) { std::string message = StringPrintf("publishDragEvent(inputChannel=%s, x=%f, y=%f, isExiting=%s)", mChannel->getName().c_str(), x, y, toString(isExiting)); ATRACE_NAME(message.c_str()); } InputMessage msg; msg.header.type = InputMessage::Type::DRAG; msg.header.seq = seq; msg.body.drag.eventId = eventId; msg.body.drag.isExiting = isExiting; msg.body.drag.x = x; msg.body.drag.y = y; return mChannel->sendMessage(&msg); } status_t InputPublisher::publishTouchModeEvent(uint32_t seq, int32_t eventId, bool isInTouchMode) { if (ATRACE_ENABLED()) { std::string message = StringPrintf("publishTouchModeEvent(inputChannel=%s, isInTouchMode=%s)", mChannel->getName().c_str(), toString(isInTouchMode)); ATRACE_NAME(message.c_str()); } InputMessage msg; msg.header.type = InputMessage::Type::TOUCH_MODE; msg.header.seq = seq; msg.body.touchMode.eventId = eventId; msg.body.touchMode.isInTouchMode = isInTouchMode; return mChannel->sendMessage(&msg); } android::base::Result InputPublisher::receiveConsumerResponse() { if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' publisher ~ %s", mChannel->getName().c_str(), __func__); } InputMessage msg; status_t result = mChannel->receiveMessage(&msg); if (result) { return android::base::Error(result); } if (msg.header.type == InputMessage::Type::FINISHED) { return Finished{ .seq = msg.header.seq, .handled = msg.body.finished.handled, .consumeTime = msg.body.finished.consumeTime, }; } if (msg.header.type == InputMessage::Type::TIMELINE) { return Timeline{ .inputEventId = msg.body.timeline.eventId, .graphicsTimeline = msg.body.timeline.graphicsTimeline, }; } ALOGE("channel '%s' publisher ~ Received unexpected %s message from consumer", mChannel->getName().c_str(), ftl::enum_string(msg.header.type).c_str()); return android::base::Error(UNKNOWN_ERROR); } // --- InputConsumer --- InputConsumer::InputConsumer(const std::shared_ptr& channel) : mResampleTouch(isTouchResamplingEnabled()), mChannel(channel), mMsgDeferred(false) {} InputConsumer::~InputConsumer() { } bool InputConsumer::isTouchResamplingEnabled() { return property_get_bool(PROPERTY_RESAMPLING_ENABLED, true); } status_t InputConsumer::consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ consume: consumeBatches=%s, frameTime=%" PRId64, mChannel->getName().c_str(), toString(consumeBatches), frameTime); } *outSeq = 0; *outEvent = nullptr; // Fetch the next input message. // Loop until an event can be returned or no additional events are received. while (!*outEvent) { if (mMsgDeferred) { // mMsg contains a valid input message from the previous call to consume // that has not yet been processed. mMsgDeferred = false; } else { // Receive a fresh message. status_t result = mChannel->receiveMessage(&mMsg); if (result == OK) { mConsumeTimes.emplace(mMsg.header.seq, systemTime(SYSTEM_TIME_MONOTONIC)); } if (result) { // Consume the next batched event unless batches are being held for later. if (consumeBatches || result != WOULD_BLOCK) { result = consumeBatch(factory, frameTime, outSeq, outEvent); if (*outEvent) { if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ consumed batch event, seq=%u", mChannel->getName().c_str(), *outSeq); } break; } } return result; } } switch (mMsg.header.type) { case InputMessage::Type::KEY: { KeyEvent* keyEvent = factory->createKeyEvent(); if (!keyEvent) return NO_MEMORY; initializeKeyEvent(keyEvent, &mMsg); *outSeq = mMsg.header.seq; *outEvent = keyEvent; if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ consumed key event, seq=%u", mChannel->getName().c_str(), *outSeq); } break; } case InputMessage::Type::MOTION: { ssize_t batchIndex = findBatch(mMsg.body.motion.deviceId, mMsg.body.motion.source); if (batchIndex >= 0) { Batch& batch = mBatches[batchIndex]; if (canAddSample(batch, &mMsg)) { batch.samples.push_back(mMsg); if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ appended to batch event", mChannel->getName().c_str()); } break; } else if (isPointerEvent(mMsg.body.motion.source) && mMsg.body.motion.action == AMOTION_EVENT_ACTION_CANCEL) { // No need to process events that we are going to cancel anyways const size_t count = batch.samples.size(); for (size_t i = 0; i < count; i++) { const InputMessage& msg = batch.samples[i]; sendFinishedSignal(msg.header.seq, false); } batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count); mBatches.erase(mBatches.begin() + batchIndex); } else { // We cannot append to the batch in progress, so we need to consume // the previous batch right now and defer the new message until later. mMsgDeferred = true; status_t result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent); mBatches.erase(mBatches.begin() + batchIndex); if (result) { return result; } if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ consumed batch event and " "deferred current event, seq=%u", mChannel->getName().c_str(), *outSeq); } break; } } // Start a new batch if needed. if (mMsg.body.motion.action == AMOTION_EVENT_ACTION_MOVE || mMsg.body.motion.action == AMOTION_EVENT_ACTION_HOVER_MOVE) { Batch batch; batch.samples.push_back(mMsg); mBatches.push_back(batch); if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ started batch event", mChannel->getName().c_str()); } break; } MotionEvent* motionEvent = factory->createMotionEvent(); if (!motionEvent) return NO_MEMORY; updateTouchState(mMsg); initializeMotionEvent(motionEvent, &mMsg); *outSeq = mMsg.header.seq; *outEvent = motionEvent; if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ consumed motion event, seq=%u", mChannel->getName().c_str(), *outSeq); } break; } case InputMessage::Type::FINISHED: case InputMessage::Type::TIMELINE: { LOG_ALWAYS_FATAL("Consumed a %s message, which should never be seen by " "InputConsumer!", ftl::enum_string(mMsg.header.type).c_str()); break; } case InputMessage::Type::FOCUS: { FocusEvent* focusEvent = factory->createFocusEvent(); if (!focusEvent) return NO_MEMORY; initializeFocusEvent(focusEvent, &mMsg); *outSeq = mMsg.header.seq; *outEvent = focusEvent; break; } case InputMessage::Type::CAPTURE: { CaptureEvent* captureEvent = factory->createCaptureEvent(); if (!captureEvent) return NO_MEMORY; initializeCaptureEvent(captureEvent, &mMsg); *outSeq = mMsg.header.seq; *outEvent = captureEvent; break; } case InputMessage::Type::DRAG: { DragEvent* dragEvent = factory->createDragEvent(); if (!dragEvent) return NO_MEMORY; initializeDragEvent(dragEvent, &mMsg); *outSeq = mMsg.header.seq; *outEvent = dragEvent; break; } case InputMessage::Type::TOUCH_MODE: { TouchModeEvent* touchModeEvent = factory->createTouchModeEvent(); if (!touchModeEvent) return NO_MEMORY; initializeTouchModeEvent(touchModeEvent, &mMsg); *outSeq = mMsg.header.seq; *outEvent = touchModeEvent; break; } } } return OK; } status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory, nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) { status_t result; for (size_t i = mBatches.size(); i > 0; ) { i--; Batch& batch = mBatches[i]; if (frameTime < 0) { result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent); mBatches.erase(mBatches.begin() + i); return result; } nsecs_t sampleTime = frameTime; if (mResampleTouch) { sampleTime -= RESAMPLE_LATENCY; } ssize_t split = findSampleNoLaterThan(batch, sampleTime); if (split < 0) { continue; } result = consumeSamples(factory, batch, split + 1, outSeq, outEvent); const InputMessage* next; if (batch.samples.empty()) { mBatches.erase(mBatches.begin() + i); next = nullptr; } else { next = &batch.samples[0]; } if (!result && mResampleTouch) { resampleTouchState(sampleTime, static_cast(*outEvent), next); } return result; } return WOULD_BLOCK; } status_t InputConsumer::consumeSamples(InputEventFactoryInterface* factory, Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent) { MotionEvent* motionEvent = factory->createMotionEvent(); if (! motionEvent) return NO_MEMORY; uint32_t chain = 0; for (size_t i = 0; i < count; i++) { InputMessage& msg = batch.samples[i]; updateTouchState(msg); if (i) { SeqChain seqChain; seqChain.seq = msg.header.seq; seqChain.chain = chain; mSeqChains.push_back(seqChain); addSample(motionEvent, &msg); } else { initializeMotionEvent(motionEvent, &msg); } chain = msg.header.seq; } batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count); *outSeq = chain; *outEvent = motionEvent; return OK; } void InputConsumer::updateTouchState(InputMessage& msg) { if (!mResampleTouch || !isPointerEvent(msg.body.motion.source)) { return; } int32_t deviceId = msg.body.motion.deviceId; int32_t source = msg.body.motion.source; // Update the touch state history to incorporate the new input message. // If the message is in the past relative to the most recently produced resampled // touch, then use the resampled time and coordinates instead. switch (msg.body.motion.action & AMOTION_EVENT_ACTION_MASK) { case AMOTION_EVENT_ACTION_DOWN: { ssize_t index = findTouchState(deviceId, source); if (index < 0) { mTouchStates.push_back({}); index = mTouchStates.size() - 1; } TouchState& touchState = mTouchStates[index]; touchState.initialize(deviceId, source); touchState.addHistory(msg); break; } case AMOTION_EVENT_ACTION_MOVE: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; touchState.addHistory(msg); rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_POINTER_DOWN: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId()); rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_POINTER_UP: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; rewriteMessage(touchState, msg); touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId()); } break; } case AMOTION_EVENT_ACTION_SCROLL: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; rewriteMessage(touchState, msg); } break; } case AMOTION_EVENT_ACTION_UP: case AMOTION_EVENT_ACTION_CANCEL: { ssize_t index = findTouchState(deviceId, source); if (index >= 0) { TouchState& touchState = mTouchStates[index]; rewriteMessage(touchState, msg); mTouchStates.erase(mTouchStates.begin() + index); } break; } } } /** * Replace the coordinates in msg with the coordinates in lastResample, if necessary. * * If lastResample is no longer valid for a specific pointer (i.e. the lastResample time * is in the past relative to msg and the past two events do not contain identical coordinates), * then invalidate the lastResample data for that pointer. * If the two past events have identical coordinates, then lastResample data for that pointer will * remain valid, and will be used to replace these coordinates. Thus, if a certain coordinate x0 is * resampled to the new value x1, then x1 will always be used to replace x0 until some new value * not equal to x0 is received. */ void InputConsumer::rewriteMessage(TouchState& state, InputMessage& msg) { nsecs_t eventTime = msg.body.motion.eventTime; for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) { uint32_t id = msg.body.motion.pointers[i].properties.id; if (state.lastResample.idBits.hasBit(id)) { if (eventTime < state.lastResample.eventTime || state.recentCoordinatesAreIdentical(id)) { PointerCoords& msgCoords = msg.body.motion.pointers[i].coords; const PointerCoords& resampleCoords = state.lastResample.getPointerById(id); #if DEBUG_RESAMPLING ALOGD("[%d] - rewrite (%0.3f, %0.3f), old (%0.3f, %0.3f)", id, resampleCoords.getX(), resampleCoords.getY(), msgCoords.getX(), msgCoords.getY()); #endif msgCoords.setAxisValue(AMOTION_EVENT_AXIS_X, resampleCoords.getX()); msgCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, resampleCoords.getY()); } else { state.lastResample.idBits.clearBit(id); } } } } void InputConsumer::resampleTouchState(nsecs_t sampleTime, MotionEvent* event, const InputMessage* next) { if (!mResampleTouch || !(isPointerEvent(event->getSource())) || event->getAction() != AMOTION_EVENT_ACTION_MOVE) { return; } ssize_t index = findTouchState(event->getDeviceId(), event->getSource()); if (index < 0) { #if DEBUG_RESAMPLING ALOGD("Not resampled, no touch state for device."); #endif return; } TouchState& touchState = mTouchStates[index]; if (touchState.historySize < 1) { #if DEBUG_RESAMPLING ALOGD("Not resampled, no history for device."); #endif return; } // Ensure that the current sample has all of the pointers that need to be reported. const History* current = touchState.getHistory(0); size_t pointerCount = event->getPointerCount(); for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); if (!current->idBits.hasBit(id)) { #if DEBUG_RESAMPLING ALOGD("Not resampled, missing id %d", id); #endif return; } } // Find the data to use for resampling. const History* other; History future; float alpha; if (next) { // Interpolate between current sample and future sample. // So current->eventTime <= sampleTime <= future.eventTime. future.initializeFrom(*next); other = &future; nsecs_t delta = future.eventTime - current->eventTime; if (delta < RESAMPLE_MIN_DELTA) { #if DEBUG_RESAMPLING ALOGD("Not resampled, delta time is too small: %" PRId64 " ns.", delta); #endif return; } alpha = float(sampleTime - current->eventTime) / delta; } else if (touchState.historySize >= 2) { // Extrapolate future sample using current sample and past sample. // So other->eventTime <= current->eventTime <= sampleTime. other = touchState.getHistory(1); nsecs_t delta = current->eventTime - other->eventTime; if (delta < RESAMPLE_MIN_DELTA) { #if DEBUG_RESAMPLING ALOGD("Not resampled, delta time is too small: %" PRId64 " ns.", delta); #endif return; } else if (delta > RESAMPLE_MAX_DELTA) { #if DEBUG_RESAMPLING ALOGD("Not resampled, delta time is too large: %" PRId64 " ns.", delta); #endif return; } nsecs_t maxPredict = current->eventTime + min(delta / 2, RESAMPLE_MAX_PREDICTION); if (sampleTime > maxPredict) { #if DEBUG_RESAMPLING ALOGD("Sample time is too far in the future, adjusting prediction " "from %" PRId64 " to %" PRId64 " ns.", sampleTime - current->eventTime, maxPredict - current->eventTime); #endif sampleTime = maxPredict; } alpha = float(current->eventTime - sampleTime) / delta; } else { #if DEBUG_RESAMPLING ALOGD("Not resampled, insufficient data."); #endif return; } // Resample touch coordinates. History oldLastResample; oldLastResample.initializeFrom(touchState.lastResample); touchState.lastResample.eventTime = sampleTime; touchState.lastResample.idBits.clear(); for (size_t i = 0; i < pointerCount; i++) { uint32_t id = event->getPointerId(i); touchState.lastResample.idToIndex[id] = i; touchState.lastResample.idBits.markBit(id); if (oldLastResample.hasPointerId(id) && touchState.recentCoordinatesAreIdentical(id)) { // We maintain the previously resampled value for this pointer (stored in // oldLastResample) when the coordinates for this pointer haven't changed since then. // This way we don't introduce artificial jitter when pointers haven't actually moved. // We know here that the coordinates for the pointer haven't changed because we // would've cleared the resampled bit in rewriteMessage if they had. We can't modify // lastResample in place becasue the mapping from pointer ID to index may have changed. touchState.lastResample.pointers[i].copyFrom(oldLastResample.getPointerById(id)); continue; } PointerCoords& resampledCoords = touchState.lastResample.pointers[i]; const PointerCoords& currentCoords = current->getPointerById(id); resampledCoords.copyFrom(currentCoords); if (other->idBits.hasBit(id) && shouldResampleTool(event->getToolType(i))) { const PointerCoords& otherCoords = other->getPointerById(id); resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X, lerp(currentCoords.getX(), otherCoords.getX(), alpha)); resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, lerp(currentCoords.getY(), otherCoords.getY(), alpha)); #if DEBUG_RESAMPLING ALOGD("[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f), " "other (%0.3f, %0.3f), alpha %0.3f", id, resampledCoords.getX(), resampledCoords.getY(), currentCoords.getX(), currentCoords.getY(), otherCoords.getX(), otherCoords.getY(), alpha); #endif } else { #if DEBUG_RESAMPLING ALOGD("[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f)", id, resampledCoords.getX(), resampledCoords.getY(), currentCoords.getX(), currentCoords.getY()); #endif } } event->addSample(sampleTime, touchState.lastResample.pointers); } bool InputConsumer::shouldResampleTool(int32_t toolType) { return toolType == AMOTION_EVENT_TOOL_TYPE_FINGER || toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN; } status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) { if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ sendFinishedSignal: seq=%u, handled=%s", mChannel->getName().c_str(), seq, toString(handled)); } if (!seq) { ALOGE("Attempted to send a finished signal with sequence number 0."); return BAD_VALUE; } // Send finished signals for the batch sequence chain first. size_t seqChainCount = mSeqChains.size(); if (seqChainCount) { uint32_t currentSeq = seq; uint32_t chainSeqs[seqChainCount]; size_t chainIndex = 0; for (size_t i = seqChainCount; i > 0; ) { i--; const SeqChain& seqChain = mSeqChains[i]; if (seqChain.seq == currentSeq) { currentSeq = seqChain.chain; chainSeqs[chainIndex++] = currentSeq; mSeqChains.erase(mSeqChains.begin() + i); } } status_t status = OK; while (!status && chainIndex > 0) { chainIndex--; status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled); } if (status) { // An error occurred so at least one signal was not sent, reconstruct the chain. for (;;) { SeqChain seqChain; seqChain.seq = chainIndex != 0 ? chainSeqs[chainIndex - 1] : seq; seqChain.chain = chainSeqs[chainIndex]; mSeqChains.push_back(seqChain); if (!chainIndex) break; chainIndex--; } return status; } } // Send finished signal for the last message in the batch. return sendUnchainedFinishedSignal(seq, handled); } status_t InputConsumer::sendTimeline(int32_t inputEventId, std::array graphicsTimeline) { if (DEBUG_TRANSPORT_ACTIONS) { ALOGD("channel '%s' consumer ~ sendTimeline: inputEventId=%" PRId32 ", gpuCompletedTime=%" PRId64 ", presentTime=%" PRId64, mChannel->getName().c_str(), inputEventId, graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME], graphicsTimeline[GraphicsTimeline::PRESENT_TIME]); } InputMessage msg; msg.header.type = InputMessage::Type::TIMELINE; msg.header.seq = 0; msg.body.timeline.eventId = inputEventId; msg.body.timeline.graphicsTimeline = std::move(graphicsTimeline); return mChannel->sendMessage(&msg); } nsecs_t InputConsumer::getConsumeTime(uint32_t seq) const { auto it = mConsumeTimes.find(seq); // Consume time will be missing if either 'finishInputEvent' is called twice, or if it was // called for the wrong (synthetic?) input event. Either way, it is a bug that should be fixed. LOG_ALWAYS_FATAL_IF(it == mConsumeTimes.end(), "Could not find consume time for seq=%" PRIu32, seq); return it->second; } void InputConsumer::popConsumeTime(uint32_t seq) { mConsumeTimes.erase(seq); } status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) { InputMessage msg; msg.header.type = InputMessage::Type::FINISHED; msg.header.seq = seq; msg.body.finished.handled = handled; msg.body.finished.consumeTime = getConsumeTime(seq); status_t result = mChannel->sendMessage(&msg); if (result == OK) { // Remove the consume time if the socket write succeeded. We will not need to ack this // message anymore. If the socket write did not succeed, we will try again and will still // need consume time. popConsumeTime(seq); } return result; } bool InputConsumer::hasPendingBatch() const { return !mBatches.empty(); } int32_t InputConsumer::getPendingBatchSource() const { if (mBatches.empty()) { return AINPUT_SOURCE_CLASS_NONE; } const Batch& batch = mBatches[0]; const InputMessage& head = batch.samples[0]; return head.body.motion.source; } ssize_t InputConsumer::findBatch(int32_t deviceId, int32_t source) const { for (size_t i = 0; i < mBatches.size(); i++) { const Batch& batch = mBatches[i]; const InputMessage& head = batch.samples[0]; if (head.body.motion.deviceId == deviceId && head.body.motion.source == source) { return i; } } return -1; } ssize_t InputConsumer::findTouchState(int32_t deviceId, int32_t source) const { for (size_t i = 0; i < mTouchStates.size(); i++) { const TouchState& touchState = mTouchStates[i]; if (touchState.deviceId == deviceId && touchState.source == source) { return i; } } return -1; } void InputConsumer::initializeKeyEvent(KeyEvent* event, const InputMessage* msg) { event->initialize(msg->body.key.eventId, msg->body.key.deviceId, msg->body.key.source, msg->body.key.displayId, msg->body.key.hmac, msg->body.key.action, msg->body.key.flags, msg->body.key.keyCode, msg->body.key.scanCode, msg->body.key.metaState, msg->body.key.repeatCount, msg->body.key.downTime, msg->body.key.eventTime); } void InputConsumer::initializeFocusEvent(FocusEvent* event, const InputMessage* msg) { event->initialize(msg->body.focus.eventId, msg->body.focus.hasFocus); } void InputConsumer::initializeCaptureEvent(CaptureEvent* event, const InputMessage* msg) { event->initialize(msg->body.capture.eventId, msg->body.capture.pointerCaptureEnabled); } void InputConsumer::initializeDragEvent(DragEvent* event, const InputMessage* msg) { event->initialize(msg->body.drag.eventId, msg->body.drag.x, msg->body.drag.y, msg->body.drag.isExiting); } void InputConsumer::initializeMotionEvent(MotionEvent* event, const InputMessage* msg) { uint32_t pointerCount = msg->body.motion.pointerCount; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (uint32_t i = 0; i < pointerCount; i++) { pointerProperties[i].copyFrom(msg->body.motion.pointers[i].properties); pointerCoords[i].copyFrom(msg->body.motion.pointers[i].coords); } ui::Transform transform; transform.set({msg->body.motion.dsdx, msg->body.motion.dtdx, msg->body.motion.tx, msg->body.motion.dtdy, msg->body.motion.dsdy, msg->body.motion.ty, 0, 0, 1}); ui::Transform displayTransform; displayTransform.set({msg->body.motion.dsdxRaw, msg->body.motion.dtdxRaw, msg->body.motion.txRaw, msg->body.motion.dtdyRaw, msg->body.motion.dsdyRaw, msg->body.motion.tyRaw, 0, 0, 1}); event->initialize(msg->body.motion.eventId, msg->body.motion.deviceId, msg->body.motion.source, msg->body.motion.displayId, msg->body.motion.hmac, msg->body.motion.action, msg->body.motion.actionButton, msg->body.motion.flags, msg->body.motion.edgeFlags, msg->body.motion.metaState, msg->body.motion.buttonState, msg->body.motion.classification, transform, msg->body.motion.xPrecision, msg->body.motion.yPrecision, msg->body.motion.xCursorPosition, msg->body.motion.yCursorPosition, displayTransform, msg->body.motion.downTime, msg->body.motion.eventTime, pointerCount, pointerProperties, pointerCoords); } void InputConsumer::initializeTouchModeEvent(TouchModeEvent* event, const InputMessage* msg) { event->initialize(msg->body.touchMode.eventId, msg->body.touchMode.isInTouchMode); } void InputConsumer::addSample(MotionEvent* event, const InputMessage* msg) { uint32_t pointerCount = msg->body.motion.pointerCount; PointerCoords pointerCoords[pointerCount]; for (uint32_t i = 0; i < pointerCount; i++) { pointerCoords[i].copyFrom(msg->body.motion.pointers[i].coords); } event->setMetaState(event->getMetaState() | msg->body.motion.metaState); event->addSample(msg->body.motion.eventTime, pointerCoords); } bool InputConsumer::canAddSample(const Batch& batch, const InputMessage *msg) { const InputMessage& head = batch.samples[0]; uint32_t pointerCount = msg->body.motion.pointerCount; if (head.body.motion.pointerCount != pointerCount || head.body.motion.action != msg->body.motion.action) { return false; } for (size_t i = 0; i < pointerCount; i++) { if (head.body.motion.pointers[i].properties != msg->body.motion.pointers[i].properties) { return false; } } return true; } ssize_t InputConsumer::findSampleNoLaterThan(const Batch& batch, nsecs_t time) { size_t numSamples = batch.samples.size(); size_t index = 0; while (index < numSamples && batch.samples[index].body.motion.eventTime <= time) { index += 1; } return ssize_t(index) - 1; } std::string InputConsumer::dump() const { std::string out; out = out + "mResampleTouch = " + toString(mResampleTouch) + "\n"; out = out + "mChannel = " + mChannel->getName() + "\n"; out = out + "mMsgDeferred: " + toString(mMsgDeferred) + "\n"; if (mMsgDeferred) { out = out + "mMsg : " + ftl::enum_string(mMsg.header.type) + "\n"; } out += "Batches:\n"; for (const Batch& batch : mBatches) { out += " Batch:\n"; for (const InputMessage& msg : batch.samples) { out += android::base::StringPrintf(" Message %" PRIu32 ": %s ", msg.header.seq, ftl::enum_string(msg.header.type).c_str()); switch (msg.header.type) { case InputMessage::Type::KEY: { out += android::base::StringPrintf("action=%s keycode=%" PRId32, KeyEvent::actionToString( msg.body.key.action), msg.body.key.keyCode); break; } case InputMessage::Type::MOTION: { out = out + "action=" + MotionEvent::actionToString(msg.body.motion.action); for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) { const float x = msg.body.motion.pointers[i].coords.getX(); const float y = msg.body.motion.pointers[i].coords.getY(); out += android::base::StringPrintf("\n Pointer %" PRIu32 " : x=%.1f y=%.1f", i, x, y); } break; } case InputMessage::Type::FINISHED: { out += android::base::StringPrintf("handled=%s, consumeTime=%" PRId64, toString(msg.body.finished.handled), msg.body.finished.consumeTime); break; } case InputMessage::Type::FOCUS: { out += android::base::StringPrintf("hasFocus=%s", toString(msg.body.focus.hasFocus)); break; } case InputMessage::Type::CAPTURE: { out += android::base::StringPrintf("hasCapture=%s", toString(msg.body.capture .pointerCaptureEnabled)); break; } case InputMessage::Type::DRAG: { out += android::base::StringPrintf("x=%.1f y=%.1f, isExiting=%s", msg.body.drag.x, msg.body.drag.y, toString(msg.body.drag.isExiting)); break; } case InputMessage::Type::TIMELINE: { const nsecs_t gpuCompletedTime = msg.body.timeline .graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME]; const nsecs_t presentTime = msg.body.timeline.graphicsTimeline[GraphicsTimeline::PRESENT_TIME]; out += android::base::StringPrintf("inputEventId=%" PRId32 ", gpuCompletedTime=%" PRId64 ", presentTime=%" PRId64, msg.body.timeline.eventId, gpuCompletedTime, presentTime); break; } case InputMessage::Type::TOUCH_MODE: { out += android::base::StringPrintf("isInTouchMode=%s", toString(msg.body.touchMode.isInTouchMode)); break; } } out += "\n"; } } if (mBatches.empty()) { out += " \n"; } out += "mSeqChains:\n"; for (const SeqChain& chain : mSeqChains) { out += android::base::StringPrintf(" chain: seq = %" PRIu32 " chain=%" PRIu32, chain.seq, chain.chain); } if (mSeqChains.empty()) { out += " \n"; } out += "mConsumeTimes:\n"; for (const auto& [seq, consumeTime] : mConsumeTimes) { out += android::base::StringPrintf(" seq = %" PRIu32 " consumeTime = %" PRId64, seq, consumeTime); } if (mConsumeTimes.empty()) { out += " \n"; } return out; } } // namespace android