/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // clang-format off #include "../Macros.h" // clang-format on #include "TouchInputMapper.h" #include #include "CursorButtonAccumulator.h" #include "CursorScrollAccumulator.h" #include "TouchButtonAccumulator.h" #include "TouchCursorInputMapperCommon.h" namespace android { // --- Constants --- // Maximum amount of latency to add to touch events while waiting for data from an // external stylus. static constexpr nsecs_t EXTERNAL_STYLUS_DATA_TIMEOUT = ms2ns(72); // Maximum amount of time to wait on touch data before pushing out new pressure data. static constexpr nsecs_t TOUCH_DATA_TIMEOUT = ms2ns(20); // Artificial latency on synthetic events created from stylus data without corresponding touch // data. static constexpr nsecs_t STYLUS_DATA_LATENCY = ms2ns(10); // --- Static Definitions --- static const DisplayViewport kUninitializedViewport; template inline static void swap(T& a, T& b) { T temp = a; a = b; b = temp; } static float calculateCommonVector(float a, float b) { if (a > 0 && b > 0) { return a < b ? a : b; } else if (a < 0 && b < 0) { return a > b ? a : b; } else { return 0; } } inline static float distance(float x1, float y1, float x2, float y2) { return hypotf(x1 - x2, y1 - y2); } inline static int32_t signExtendNybble(int32_t value) { return value >= 8 ? value - 16 : value; } // --- RawPointerAxes --- RawPointerAxes::RawPointerAxes() { clear(); } void RawPointerAxes::clear() { x.clear(); y.clear(); pressure.clear(); touchMajor.clear(); touchMinor.clear(); toolMajor.clear(); toolMinor.clear(); orientation.clear(); distance.clear(); tiltX.clear(); tiltY.clear(); trackingId.clear(); slot.clear(); } // --- RawPointerData --- RawPointerData::RawPointerData() { clear(); } void RawPointerData::clear() { pointerCount = 0; clearIdBits(); } void RawPointerData::copyFrom(const RawPointerData& other) { pointerCount = other.pointerCount; hoveringIdBits = other.hoveringIdBits; touchingIdBits = other.touchingIdBits; canceledIdBits = other.canceledIdBits; for (uint32_t i = 0; i < pointerCount; i++) { pointers[i] = other.pointers[i]; int id = pointers[i].id; idToIndex[id] = other.idToIndex[id]; } } void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { float x = 0, y = 0; uint32_t count = touchingIdBits.count(); if (count) { for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); const Pointer& pointer = pointerForId(id); x += pointer.x; y += pointer.y; } x /= count; y /= count; } *outX = x; *outY = y; } // --- CookedPointerData --- CookedPointerData::CookedPointerData() { clear(); } void CookedPointerData::clear() { pointerCount = 0; hoveringIdBits.clear(); touchingIdBits.clear(); canceledIdBits.clear(); validIdBits.clear(); } void CookedPointerData::copyFrom(const CookedPointerData& other) { pointerCount = other.pointerCount; hoveringIdBits = other.hoveringIdBits; touchingIdBits = other.touchingIdBits; validIdBits = other.validIdBits; for (uint32_t i = 0; i < pointerCount; i++) { pointerProperties[i].copyFrom(other.pointerProperties[i]); pointerCoords[i].copyFrom(other.pointerCoords[i]); int id = pointerProperties[i].id; idToIndex[id] = other.idToIndex[id]; } } // --- TouchInputMapper --- TouchInputMapper::TouchInputMapper(InputDeviceContext& deviceContext) : InputMapper(deviceContext), mSource(0), mDeviceMode(DeviceMode::DISABLED), mDisplayWidth(-1), mDisplayHeight(-1), mPhysicalWidth(-1), mPhysicalHeight(-1), mPhysicalLeft(0), mPhysicalTop(0), mInputDeviceOrientation(DISPLAY_ORIENTATION_0) {} TouchInputMapper::~TouchInputMapper() {} uint32_t TouchInputMapper::getSources() const { return mSource; } void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); if (mDeviceMode != DeviceMode::DISABLED) { info->addMotionRange(mOrientedRanges.x); info->addMotionRange(mOrientedRanges.y); info->addMotionRange(mOrientedRanges.pressure); if (mDeviceMode == DeviceMode::UNSCALED && mSource == AINPUT_SOURCE_TOUCHPAD) { // Populate RELATIVE_X and RELATIVE_Y motion ranges for touchpad capture mode. // // RELATIVE_X and RELATIVE_Y motion ranges should be the largest possible relative // motion, i.e. the hardware dimensions, as the finger could move completely across the // touchpad in one sample cycle. const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; info->addMotionRange(AMOTION_EVENT_AXIS_RELATIVE_X, mSource, -x.max, x.max, x.flat, x.fuzz, x.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_RELATIVE_Y, mSource, -y.max, y.max, y.flat, y.fuzz, y.resolution); } if (mOrientedRanges.haveSize) { info->addMotionRange(mOrientedRanges.size); } if (mOrientedRanges.haveTouchSize) { info->addMotionRange(mOrientedRanges.touchMajor); info->addMotionRange(mOrientedRanges.touchMinor); } if (mOrientedRanges.haveToolSize) { info->addMotionRange(mOrientedRanges.toolMajor); info->addMotionRange(mOrientedRanges.toolMinor); } if (mOrientedRanges.haveOrientation) { info->addMotionRange(mOrientedRanges.orientation); } if (mOrientedRanges.haveDistance) { info->addMotionRange(mOrientedRanges.distance); } if (mOrientedRanges.haveTilt) { info->addMotionRange(mOrientedRanges.tilt); } if (mCursorScrollAccumulator.haveRelativeVWheel()) { info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); } if (mCursorScrollAccumulator.haveRelativeHWheel()) { info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); } if (mCalibration.coverageCalibration == Calibration::CoverageCalibration::BOX) { const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_1, mSource, x.min, x.max, x.flat, x.fuzz, x.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_2, mSource, y.min, y.max, y.flat, y.fuzz, y.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_3, mSource, x.min, x.max, x.flat, x.fuzz, x.resolution); info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_4, mSource, y.min, y.max, y.flat, y.fuzz, y.resolution); } info->setButtonUnderPad(mParameters.hasButtonUnderPad); } } void TouchInputMapper::dump(std::string& dump) { dump += StringPrintf(INDENT2 "Touch Input Mapper (mode - %s):\n", ftl::enum_string(mDeviceMode).c_str()); dumpParameters(dump); dumpVirtualKeys(dump); dumpRawPointerAxes(dump); dumpCalibration(dump); dumpAffineTransformation(dump); dumpDisplay(dump); dump += StringPrintf(INDENT3 "Translation and Scaling Factors:\n"); dump += StringPrintf(INDENT4 "XScale: %0.3f\n", mXScale); dump += StringPrintf(INDENT4 "YScale: %0.3f\n", mYScale); dump += StringPrintf(INDENT4 "XPrecision: %0.3f\n", mXPrecision); dump += StringPrintf(INDENT4 "YPrecision: %0.3f\n", mYPrecision); dump += StringPrintf(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); dump += StringPrintf(INDENT4 "PressureScale: %0.3f\n", mPressureScale); dump += StringPrintf(INDENT4 "SizeScale: %0.3f\n", mSizeScale); dump += StringPrintf(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); dump += StringPrintf(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); dump += StringPrintf(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); dump += StringPrintf(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); dump += StringPrintf(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); dump += StringPrintf(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); dump += StringPrintf(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); dump += StringPrintf(INDENT3 "Last Raw Button State: 0x%08x\n", mLastRawState.buttonState); dump += StringPrintf(INDENT3 "Last Raw Touch: pointerCount=%d\n", mLastRawState.rawPointerData.pointerCount); for (uint32_t i = 0; i < mLastRawState.rawPointerData.pointerCount; i++) { const RawPointerData::Pointer& pointer = mLastRawState.rawPointerData.pointers[i]; dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " "toolType=%d, isHovering=%s\n", i, pointer.id, pointer.x, pointer.y, pointer.pressure, pointer.touchMajor, pointer.touchMinor, pointer.toolMajor, pointer.toolMinor, pointer.orientation, pointer.tiltX, pointer.tiltY, pointer.distance, pointer.toolType, toString(pointer.isHovering)); } dump += StringPrintf(INDENT3 "Last Cooked Button State: 0x%08x\n", mLastCookedState.buttonState); dump += StringPrintf(INDENT3 "Last Cooked Touch: pointerCount=%d\n", mLastCookedState.cookedPointerData.pointerCount); for (uint32_t i = 0; i < mLastCookedState.cookedPointerData.pointerCount; i++) { const PointerProperties& pointerProperties = mLastCookedState.cookedPointerData.pointerProperties[i]; const PointerCoords& pointerCoords = mLastCookedState.cookedPointerData.pointerCoords[i]; dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, dx=%0.3f, dy=%0.3f, " "pressure=%0.3f, touchMajor=%0.3f, touchMinor=%0.3f, " "toolMajor=%0.3f, toolMinor=%0.3f, " "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " "toolType=%d, isHovering=%s\n", i, pointerProperties.id, pointerCoords.getX(), pointerCoords.getY(), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), pointerProperties.toolType, toString(mLastCookedState.cookedPointerData.isHovering(i))); } dump += INDENT3 "Stylus Fusion:\n"; dump += StringPrintf(INDENT4 "ExternalStylusConnected: %s\n", toString(mExternalStylusConnected)); dump += StringPrintf(INDENT4 "External Stylus ID: %" PRId64 "\n", mExternalStylusId); dump += StringPrintf(INDENT4 "External Stylus Data Timeout: %" PRId64 "\n", mExternalStylusFusionTimeout); dump += INDENT3 "External Stylus State:\n"; dumpStylusState(dump, mExternalStylusState); if (mDeviceMode == DeviceMode::POINTER) { dump += StringPrintf(INDENT3 "Pointer Gesture Detector:\n"); dump += StringPrintf(INDENT4 "XMovementScale: %0.3f\n", mPointerXMovementScale); dump += StringPrintf(INDENT4 "YMovementScale: %0.3f\n", mPointerYMovementScale); dump += StringPrintf(INDENT4 "XZoomScale: %0.3f\n", mPointerXZoomScale); dump += StringPrintf(INDENT4 "YZoomScale: %0.3f\n", mPointerYZoomScale); dump += StringPrintf(INDENT4 "MaxSwipeWidth: %f\n", mPointerGestureMaxSwipeWidth); } } void TouchInputMapper::configure(nsecs_t when, const InputReaderConfiguration* config, uint32_t changes) { InputMapper::configure(when, config, changes); mConfig = *config; if (!changes) { // first time only // Configure basic parameters. configureParameters(); // Configure common accumulators. mCursorScrollAccumulator.configure(getDeviceContext()); mTouchButtonAccumulator.configure(getDeviceContext()); // Configure absolute axis information. configureRawPointerAxes(); // Prepare input device calibration. parseCalibration(); resolveCalibration(); } if (!changes || (changes & InputReaderConfiguration::CHANGE_TOUCH_AFFINE_TRANSFORMATION)) { // Update location calibration to reflect current settings updateAffineTransformation(); } if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { // Update pointer speed. mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); } bool resetNeeded = false; if (!changes || (changes & (InputReaderConfiguration::CHANGE_DISPLAY_INFO | InputReaderConfiguration::CHANGE_POINTER_CAPTURE | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT | InputReaderConfiguration::CHANGE_SHOW_TOUCHES | InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE))) { // Configure device sources, display dimensions, orientation and // scaling factors. configureInputDevice(when, &resetNeeded); } if (changes && resetNeeded) { // If the device needs to be reset, cancel any ongoing gestures and reset the state. cancelTouch(when, when); reset(when); // Send reset, unless this is the first time the device has been configured, // in which case the reader will call reset itself after all mappers are ready. NotifyDeviceResetArgs args(getContext()->getNextId(), when, getDeviceId()); getListener().notifyDeviceReset(&args); } } void TouchInputMapper::resolveExternalStylusPresence() { std::vector devices; getContext()->getExternalStylusDevices(devices); mExternalStylusConnected = !devices.empty(); if (!mExternalStylusConnected) { resetExternalStylus(); } } void TouchInputMapper::configureParameters() { // Use the pointer presentation mode for devices that do not support distinct // multitouch. The spot-based presentation relies on being able to accurately // locate two or more fingers on the touch pad. mParameters.gestureMode = getDeviceContext().hasInputProperty(INPUT_PROP_SEMI_MT) ? Parameters::GestureMode::SINGLE_TOUCH : Parameters::GestureMode::MULTI_TOUCH; String8 gestureModeString; if (getDeviceContext().getConfiguration().tryGetProperty(String8("touch.gestureMode"), gestureModeString)) { if (gestureModeString == "single-touch") { mParameters.gestureMode = Parameters::GestureMode::SINGLE_TOUCH; } else if (gestureModeString == "multi-touch") { mParameters.gestureMode = Parameters::GestureMode::MULTI_TOUCH; } else if (gestureModeString != "default") { ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.string()); } } if (getDeviceContext().hasInputProperty(INPUT_PROP_DIRECT)) { // The device is a touch screen. mParameters.deviceType = Parameters::DeviceType::TOUCH_SCREEN; } else if (getDeviceContext().hasInputProperty(INPUT_PROP_POINTER)) { // The device is a pointing device like a track pad. mParameters.deviceType = Parameters::DeviceType::POINTER; } else if (getDeviceContext().hasRelativeAxis(REL_X) || getDeviceContext().hasRelativeAxis(REL_Y)) { // The device is a cursor device with a touch pad attached. // By default don't use the touch pad to move the pointer. mParameters.deviceType = Parameters::DeviceType::TOUCH_PAD; } else { // The device is a touch pad of unknown purpose. mParameters.deviceType = Parameters::DeviceType::POINTER; } mParameters.hasButtonUnderPad = getDeviceContext().hasInputProperty(INPUT_PROP_BUTTONPAD); String8 deviceTypeString; if (getDeviceContext().getConfiguration().tryGetProperty(String8("touch.deviceType"), deviceTypeString)) { if (deviceTypeString == "touchScreen") { mParameters.deviceType = Parameters::DeviceType::TOUCH_SCREEN; } else if (deviceTypeString == "touchPad") { mParameters.deviceType = Parameters::DeviceType::TOUCH_PAD; } else if (deviceTypeString == "touchNavigation") { mParameters.deviceType = Parameters::DeviceType::TOUCH_NAVIGATION; } else if (deviceTypeString == "pointer") { mParameters.deviceType = Parameters::DeviceType::POINTER; } else if (deviceTypeString != "default") { ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string()); } } mParameters.orientationAware = mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN; getDeviceContext().getConfiguration().tryGetProperty(String8("touch.orientationAware"), mParameters.orientationAware); mParameters.orientation = Parameters::Orientation::ORIENTATION_0; String8 orientationString; if (getDeviceContext().getConfiguration().tryGetProperty(String8("touch.orientation"), orientationString)) { if (mParameters.deviceType != Parameters::DeviceType::TOUCH_SCREEN) { ALOGW("The configuration 'touch.orientation' is only supported for touchscreens."); } else if (orientationString == "ORIENTATION_90") { mParameters.orientation = Parameters::Orientation::ORIENTATION_90; } else if (orientationString == "ORIENTATION_180") { mParameters.orientation = Parameters::Orientation::ORIENTATION_180; } else if (orientationString == "ORIENTATION_270") { mParameters.orientation = Parameters::Orientation::ORIENTATION_270; } else if (orientationString != "ORIENTATION_0") { ALOGW("Invalid value for touch.orientation: '%s'", orientationString.string()); } } mParameters.hasAssociatedDisplay = false; mParameters.associatedDisplayIsExternal = false; if (mParameters.orientationAware || mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN || mParameters.deviceType == Parameters::DeviceType::POINTER) { mParameters.hasAssociatedDisplay = true; if (mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN) { mParameters.associatedDisplayIsExternal = getDeviceContext().isExternal(); String8 uniqueDisplayId; getDeviceContext().getConfiguration().tryGetProperty(String8("touch.displayId"), uniqueDisplayId); mParameters.uniqueDisplayId = uniqueDisplayId.c_str(); } } if (getDeviceContext().getAssociatedDisplayPort()) { mParameters.hasAssociatedDisplay = true; } // Initial downs on external touch devices should wake the device. // Normally we don't do this for internal touch screens to prevent them from waking // up in your pocket but you can enable it using the input device configuration. mParameters.wake = getDeviceContext().isExternal(); getDeviceContext().getConfiguration().tryGetProperty(String8("touch.wake"), mParameters.wake); } void TouchInputMapper::dumpParameters(std::string& dump) { dump += INDENT3 "Parameters:\n"; dump += INDENT4 "GestureMode: " + ftl::enum_string(mParameters.gestureMode) + "\n"; dump += INDENT4 "DeviceType: " + ftl::enum_string(mParameters.deviceType) + "\n"; dump += StringPrintf(INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s, " "displayId='%s'\n", toString(mParameters.hasAssociatedDisplay), toString(mParameters.associatedDisplayIsExternal), mParameters.uniqueDisplayId.c_str()); dump += StringPrintf(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); dump += INDENT4 "Orientation: " + ftl::enum_string(mParameters.orientation) + "\n"; } void TouchInputMapper::configureRawPointerAxes() { mRawPointerAxes.clear(); } void TouchInputMapper::dumpRawPointerAxes(std::string& dump) { dump += INDENT3 "Raw Touch Axes:\n"; dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); } bool TouchInputMapper::hasExternalStylus() const { return mExternalStylusConnected; } /** * Determine which DisplayViewport to use. * 1. If a device has associated display, get the matching viewport. * 2. Always use the suggested viewport from WindowManagerService for pointers. * 3. Get the matching viewport by either unique id in idc file or by the display type * (internal or external). * 4. Otherwise, use a non-display viewport. */ std::optional TouchInputMapper::findViewport() { if (mParameters.hasAssociatedDisplay && mDeviceMode != DeviceMode::UNSCALED) { if (getDeviceContext().getAssociatedViewport()) { return getDeviceContext().getAssociatedViewport(); } const std::optional associatedDisplayUniqueId = getDeviceContext().getAssociatedDisplayUniqueId(); if (associatedDisplayUniqueId) { return getDeviceContext().getAssociatedViewport(); } if (mDeviceMode == DeviceMode::POINTER) { std::optional viewport = mConfig.getDisplayViewportById(mConfig.defaultPointerDisplayId); if (viewport) { return viewport; } else { ALOGW("Can't find designated display viewport with ID %" PRId32 " for pointers.", mConfig.defaultPointerDisplayId); } } // Check if uniqueDisplayId is specified in idc file. if (!mParameters.uniqueDisplayId.empty()) { return mConfig.getDisplayViewportByUniqueId(mParameters.uniqueDisplayId); } ViewportType viewportTypeToUse; if (mParameters.associatedDisplayIsExternal) { viewportTypeToUse = ViewportType::EXTERNAL; } else { viewportTypeToUse = ViewportType::INTERNAL; } std::optional viewport = mConfig.getDisplayViewportByType(viewportTypeToUse); if (!viewport && viewportTypeToUse == ViewportType::EXTERNAL) { ALOGW("Input device %s should be associated with external display, " "fallback to internal one for the external viewport is not found.", getDeviceName().c_str()); viewport = mConfig.getDisplayViewportByType(ViewportType::INTERNAL); } return viewport; } // No associated display, return a non-display viewport. DisplayViewport newViewport; // Raw width and height in the natural orientation. int32_t rawWidth = mRawPointerAxes.getRawWidth(); int32_t rawHeight = mRawPointerAxes.getRawHeight(); newViewport.setNonDisplayViewport(rawWidth, rawHeight); return std::make_optional(newViewport); } int32_t TouchInputMapper::clampResolution(const char* axisName, int32_t resolution) const { if (resolution < 0) { ALOGE("Invalid %s resolution %" PRId32 " for device %s", axisName, resolution, getDeviceName().c_str()); return 0; } return resolution; } void TouchInputMapper::initializeSizeRanges() { if (mCalibration.sizeCalibration == Calibration::SizeCalibration::NONE) { mSizeScale = 0.0f; return; } // Size of diagonal axis. const float diagonalSize = hypotf(mDisplayWidth, mDisplayHeight); // Size factors. if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.touchMajor.maxValue != 0) { mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; } else if (mRawPointerAxes.toolMajor.valid && mRawPointerAxes.toolMajor.maxValue != 0) { mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; } else { mSizeScale = 0.0f; } mOrientedRanges.haveTouchSize = true; mOrientedRanges.haveToolSize = true; mOrientedRanges.haveSize = true; mOrientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR; mOrientedRanges.touchMajor.source = mSource; mOrientedRanges.touchMajor.min = 0; mOrientedRanges.touchMajor.max = diagonalSize; mOrientedRanges.touchMajor.flat = 0; mOrientedRanges.touchMajor.fuzz = 0; mOrientedRanges.touchMajor.resolution = 0; if (mRawPointerAxes.touchMajor.valid) { mRawPointerAxes.touchMajor.resolution = clampResolution("touchMajor", mRawPointerAxes.touchMajor.resolution); mOrientedRanges.touchMajor.resolution = mRawPointerAxes.touchMajor.resolution; } mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; mOrientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; if (mRawPointerAxes.touchMinor.valid) { mRawPointerAxes.touchMinor.resolution = clampResolution("touchMinor", mRawPointerAxes.touchMinor.resolution); mOrientedRanges.touchMinor.resolution = mRawPointerAxes.touchMinor.resolution; } mOrientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR; mOrientedRanges.toolMajor.source = mSource; mOrientedRanges.toolMajor.min = 0; mOrientedRanges.toolMajor.max = diagonalSize; mOrientedRanges.toolMajor.flat = 0; mOrientedRanges.toolMajor.fuzz = 0; mOrientedRanges.toolMajor.resolution = 0; if (mRawPointerAxes.toolMajor.valid) { mRawPointerAxes.toolMajor.resolution = clampResolution("toolMajor", mRawPointerAxes.toolMajor.resolution); mOrientedRanges.toolMajor.resolution = mRawPointerAxes.toolMajor.resolution; } mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; mOrientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR; if (mRawPointerAxes.toolMinor.valid) { mRawPointerAxes.toolMinor.resolution = clampResolution("toolMinor", mRawPointerAxes.toolMinor.resolution); mOrientedRanges.toolMinor.resolution = mRawPointerAxes.toolMinor.resolution; } if (mCalibration.sizeCalibration == Calibration::SizeCalibration::GEOMETRIC) { mOrientedRanges.touchMajor.resolution *= mGeometricScale; mOrientedRanges.touchMinor.resolution *= mGeometricScale; mOrientedRanges.toolMajor.resolution *= mGeometricScale; mOrientedRanges.toolMinor.resolution *= mGeometricScale; } else { // Support for other calibrations can be added here. ALOGW("%s calibration is not supported for size ranges at the moment. " "Using raw resolution instead", ftl::enum_string(mCalibration.sizeCalibration).c_str()); } mOrientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE; mOrientedRanges.size.source = mSource; mOrientedRanges.size.min = 0; mOrientedRanges.size.max = 1.0; mOrientedRanges.size.flat = 0; mOrientedRanges.size.fuzz = 0; mOrientedRanges.size.resolution = 0; } void TouchInputMapper::initializeOrientedRanges() { // Configure X and Y factors. mXScale = float(mDisplayWidth) / mRawPointerAxes.getRawWidth(); mYScale = float(mDisplayHeight) / mRawPointerAxes.getRawHeight(); mXPrecision = 1.0f / mXScale; mYPrecision = 1.0f / mYScale; mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; mOrientedRanges.x.source = mSource; mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; mOrientedRanges.y.source = mSource; // Scale factor for terms that are not oriented in a particular axis. // If the pixels are square then xScale == yScale otherwise we fake it // by choosing an average. mGeometricScale = avg(mXScale, mYScale); initializeSizeRanges(); // Pressure factors. mPressureScale = 0; float pressureMax = 1.0; if (mCalibration.pressureCalibration == Calibration::PressureCalibration::PHYSICAL || mCalibration.pressureCalibration == Calibration::PressureCalibration::AMPLITUDE) { if (mCalibration.havePressureScale) { mPressureScale = mCalibration.pressureScale; pressureMax = mPressureScale * mRawPointerAxes.pressure.maxValue; } else if (mRawPointerAxes.pressure.valid && mRawPointerAxes.pressure.maxValue != 0) { mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; } } mOrientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE; mOrientedRanges.pressure.source = mSource; mOrientedRanges.pressure.min = 0; mOrientedRanges.pressure.max = pressureMax; mOrientedRanges.pressure.flat = 0; mOrientedRanges.pressure.fuzz = 0; mOrientedRanges.pressure.resolution = 0; // Tilt mTiltXCenter = 0; mTiltXScale = 0; mTiltYCenter = 0; mTiltYScale = 0; mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; if (mHaveTilt) { mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, mRawPointerAxes.tiltX.maxValue); mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, mRawPointerAxes.tiltY.maxValue); mTiltXScale = M_PI / 180; mTiltYScale = M_PI / 180; if (mRawPointerAxes.tiltX.resolution) { mTiltXScale = 1.0 / mRawPointerAxes.tiltX.resolution; } if (mRawPointerAxes.tiltY.resolution) { mTiltYScale = 1.0 / mRawPointerAxes.tiltY.resolution; } mOrientedRanges.haveTilt = true; mOrientedRanges.tilt.axis = AMOTION_EVENT_AXIS_TILT; mOrientedRanges.tilt.source = mSource; mOrientedRanges.tilt.min = 0; mOrientedRanges.tilt.max = M_PI_2; mOrientedRanges.tilt.flat = 0; mOrientedRanges.tilt.fuzz = 0; mOrientedRanges.tilt.resolution = 0; } // Orientation mOrientationScale = 0; if (mHaveTilt) { mOrientedRanges.haveOrientation = true; mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; mOrientedRanges.orientation.source = mSource; mOrientedRanges.orientation.min = -M_PI; mOrientedRanges.orientation.max = M_PI; mOrientedRanges.orientation.flat = 0; mOrientedRanges.orientation.fuzz = 0; mOrientedRanges.orientation.resolution = 0; } else if (mCalibration.orientationCalibration != Calibration::OrientationCalibration::NONE) { if (mCalibration.orientationCalibration == Calibration::OrientationCalibration::INTERPOLATED) { if (mRawPointerAxes.orientation.valid) { if (mRawPointerAxes.orientation.maxValue > 0) { mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue; } else if (mRawPointerAxes.orientation.minValue < 0) { mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue; } else { mOrientationScale = 0; } } } mOrientedRanges.haveOrientation = true; mOrientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; mOrientedRanges.orientation.source = mSource; mOrientedRanges.orientation.min = -M_PI_2; mOrientedRanges.orientation.max = M_PI_2; mOrientedRanges.orientation.flat = 0; mOrientedRanges.orientation.fuzz = 0; mOrientedRanges.orientation.resolution = 0; } // Distance mDistanceScale = 0; if (mCalibration.distanceCalibration != Calibration::DistanceCalibration::NONE) { if (mCalibration.distanceCalibration == Calibration::DistanceCalibration::SCALED) { if (mCalibration.haveDistanceScale) { mDistanceScale = mCalibration.distanceScale; } else { mDistanceScale = 1.0f; } } mOrientedRanges.haveDistance = true; mOrientedRanges.distance.axis = AMOTION_EVENT_AXIS_DISTANCE; mOrientedRanges.distance.source = mSource; mOrientedRanges.distance.min = mRawPointerAxes.distance.minValue * mDistanceScale; mOrientedRanges.distance.max = mRawPointerAxes.distance.maxValue * mDistanceScale; mOrientedRanges.distance.flat = 0; mOrientedRanges.distance.fuzz = mRawPointerAxes.distance.fuzz * mDistanceScale; mOrientedRanges.distance.resolution = 0; } // Compute oriented precision, scales and ranges. // Note that the maximum value reported is an inclusive maximum value so it is one // unit less than the total width or height of the display. switch (mInputDeviceOrientation) { case DISPLAY_ORIENTATION_90: case DISPLAY_ORIENTATION_270: mOrientedXPrecision = mYPrecision; mOrientedYPrecision = mXPrecision; mOrientedRanges.x.min = 0; mOrientedRanges.x.max = mDisplayHeight - 1; mOrientedRanges.x.flat = 0; mOrientedRanges.x.fuzz = 0; mOrientedRanges.x.resolution = mRawPointerAxes.y.resolution * mYScale; mOrientedRanges.y.min = 0; mOrientedRanges.y.max = mDisplayWidth - 1; mOrientedRanges.y.flat = 0; mOrientedRanges.y.fuzz = 0; mOrientedRanges.y.resolution = mRawPointerAxes.x.resolution * mXScale; break; default: mOrientedXPrecision = mXPrecision; mOrientedYPrecision = mYPrecision; mOrientedRanges.x.min = 0; mOrientedRanges.x.max = mDisplayWidth - 1; mOrientedRanges.x.flat = 0; mOrientedRanges.x.fuzz = 0; mOrientedRanges.x.resolution = mRawPointerAxes.x.resolution * mXScale; mOrientedRanges.y.min = 0; mOrientedRanges.y.max = mDisplayHeight - 1; mOrientedRanges.y.flat = 0; mOrientedRanges.y.fuzz = 0; mOrientedRanges.y.resolution = mRawPointerAxes.y.resolution * mYScale; break; } } void TouchInputMapper::configureInputDevice(nsecs_t when, bool* outResetNeeded) { const DeviceMode oldDeviceMode = mDeviceMode; resolveExternalStylusPresence(); // Determine device mode. if (mParameters.deviceType == Parameters::DeviceType::POINTER && mConfig.pointerGesturesEnabled && !mConfig.pointerCaptureRequest.enable) { mSource = AINPUT_SOURCE_MOUSE; mDeviceMode = DeviceMode::POINTER; if (hasStylus()) { mSource |= AINPUT_SOURCE_STYLUS; } } else if (isTouchScreen()) { mSource = AINPUT_SOURCE_TOUCHSCREEN; mDeviceMode = DeviceMode::DIRECT; if (hasStylus()) { mSource |= AINPUT_SOURCE_STYLUS; } if (hasExternalStylus()) { mSource |= AINPUT_SOURCE_BLUETOOTH_STYLUS; } } else if (mParameters.deviceType == Parameters::DeviceType::TOUCH_NAVIGATION) { mSource = AINPUT_SOURCE_TOUCH_NAVIGATION; mDeviceMode = DeviceMode::NAVIGATION; } else { mSource = AINPUT_SOURCE_TOUCHPAD; mDeviceMode = DeviceMode::UNSCALED; } const std::optional newViewportOpt = findViewport(); // Ensure the device is valid and can be used. if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { ALOGW("Touch device '%s' did not report support for X or Y axis! " "The device will be inoperable.", getDeviceName().c_str()); mDeviceMode = DeviceMode::DISABLED; } else if (!newViewportOpt) { ALOGI("Touch device '%s' could not query the properties of its associated " "display. The device will be inoperable until the display size " "becomes available.", getDeviceName().c_str()); mDeviceMode = DeviceMode::DISABLED; } else if (!newViewportOpt->isActive) { ALOGI("Disabling %s (device %i) because the associated viewport is not active", getDeviceName().c_str(), getDeviceId()); mDeviceMode = DeviceMode::DISABLED; } // Raw width and height in the natural orientation. const int32_t rawWidth = mRawPointerAxes.getRawWidth(); const int32_t rawHeight = mRawPointerAxes.getRawHeight(); const DisplayViewport& newViewport = newViewportOpt.value_or(kUninitializedViewport); const bool viewportChanged = mViewport != newViewport; bool skipViewportUpdate = false; if (viewportChanged) { const bool viewportOrientationChanged = mViewport.orientation != newViewport.orientation; const bool viewportDisplayIdChanged = mViewport.displayId != newViewport.displayId; mViewport = newViewport; if (mDeviceMode == DeviceMode::DIRECT || mDeviceMode == DeviceMode::POINTER) { // Convert rotated viewport to the natural orientation. int32_t naturalPhysicalWidth, naturalPhysicalHeight; int32_t naturalPhysicalLeft, naturalPhysicalTop; int32_t naturalDeviceWidth, naturalDeviceHeight; // Apply the inverse of the input device orientation so that the input device is // configured in the same orientation as the viewport. The input device orientation will // be re-applied by mInputDeviceOrientation. const int32_t naturalDeviceOrientation = (mViewport.orientation - static_cast(mParameters.orientation) + 4) % 4; switch (naturalDeviceOrientation) { case DISPLAY_ORIENTATION_90: naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalLeft = mViewport.deviceHeight - mViewport.physicalBottom; naturalPhysicalTop = mViewport.physicalLeft; naturalDeviceWidth = mViewport.deviceHeight; naturalDeviceHeight = mViewport.deviceWidth; break; case DISPLAY_ORIENTATION_180: naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalLeft = mViewport.deviceWidth - mViewport.physicalRight; naturalPhysicalTop = mViewport.deviceHeight - mViewport.physicalBottom; naturalDeviceWidth = mViewport.deviceWidth; naturalDeviceHeight = mViewport.deviceHeight; break; case DISPLAY_ORIENTATION_270: naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalLeft = mViewport.physicalTop; naturalPhysicalTop = mViewport.deviceWidth - mViewport.physicalRight; naturalDeviceWidth = mViewport.deviceHeight; naturalDeviceHeight = mViewport.deviceWidth; break; case DISPLAY_ORIENTATION_0: default: naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; naturalPhysicalLeft = mViewport.physicalLeft; naturalPhysicalTop = mViewport.physicalTop; naturalDeviceWidth = mViewport.deviceWidth; naturalDeviceHeight = mViewport.deviceHeight; break; } if (naturalPhysicalHeight == 0 || naturalPhysicalWidth == 0) { ALOGE("Viewport is not set properly: %s", mViewport.toString().c_str()); naturalPhysicalHeight = naturalPhysicalHeight == 0 ? 1 : naturalPhysicalHeight; naturalPhysicalWidth = naturalPhysicalWidth == 0 ? 1 : naturalPhysicalWidth; } mPhysicalWidth = naturalPhysicalWidth; mPhysicalHeight = naturalPhysicalHeight; mPhysicalLeft = naturalPhysicalLeft; mPhysicalTop = naturalPhysicalTop; const int32_t oldDisplayWidth = mDisplayWidth; const int32_t oldDisplayHeight = mDisplayHeight; mDisplayWidth = naturalDeviceWidth; mDisplayHeight = naturalDeviceHeight; // InputReader works in the un-rotated display coordinate space, so we don't need to do // anything if the device is already orientation-aware. If the device is not // orientation-aware, then we need to apply the inverse rotation of the display so that // when the display rotation is applied later as a part of the per-window transform, we // get the expected screen coordinates. mInputDeviceOrientation = mParameters.orientationAware ? DISPLAY_ORIENTATION_0 : getInverseRotation(mViewport.orientation); // For orientation-aware devices that work in the un-rotated coordinate space, the // viewport update should be skipped if it is only a change in the orientation. skipViewportUpdate = !viewportDisplayIdChanged && mParameters.orientationAware && mDisplayWidth == oldDisplayWidth && mDisplayHeight == oldDisplayHeight && viewportOrientationChanged; // Apply the input device orientation for the device. mInputDeviceOrientation = (mInputDeviceOrientation + static_cast(mParameters.orientation)) % 4; } else { mPhysicalWidth = rawWidth; mPhysicalHeight = rawHeight; mPhysicalLeft = 0; mPhysicalTop = 0; mDisplayWidth = rawWidth; mDisplayHeight = rawHeight; mInputDeviceOrientation = DISPLAY_ORIENTATION_0; } } // If moving between pointer modes, need to reset some state. bool deviceModeChanged = mDeviceMode != oldDeviceMode; if (deviceModeChanged) { mOrientedRanges.clear(); } // Create pointer controller if needed, and keep it around if Pointer Capture is enabled to // preserve the cursor position. if (mDeviceMode == DeviceMode::POINTER || (mDeviceMode == DeviceMode::DIRECT && mConfig.showTouches) || (mParameters.deviceType == Parameters::DeviceType::POINTER && mConfig.pointerCaptureRequest.enable)) { if (mPointerController == nullptr) { mPointerController = getContext()->getPointerController(getDeviceId()); } if (mConfig.pointerCaptureRequest.enable) { mPointerController->fade(PointerControllerInterface::Transition::IMMEDIATE); } } else { mPointerController.reset(); } if ((viewportChanged && !skipViewportUpdate) || deviceModeChanged) { ALOGI("Device reconfigured: id=%d, name='%s', size %dx%d, orientation %d, mode %d, " "display id %d", getDeviceId(), getDeviceName().c_str(), mDisplayWidth, mDisplayHeight, mInputDeviceOrientation, mDeviceMode, mViewport.displayId); configureVirtualKeys(); initializeOrientedRanges(); // Location updateAffineTransformation(); if (mDeviceMode == DeviceMode::POINTER) { // Compute pointer gesture detection parameters. float rawDiagonal = hypotf(rawWidth, rawHeight); float displayDiagonal = hypotf(mDisplayWidth, mDisplayHeight); // Scale movements such that one whole swipe of the touch pad covers a // given area relative to the diagonal size of the display when no acceleration // is applied. // Assume that the touch pad has a square aspect ratio such that movements in // X and Y of the same number of raw units cover the same physical distance. mPointerXMovementScale = mConfig.pointerGestureMovementSpeedRatio * displayDiagonal / rawDiagonal; mPointerYMovementScale = mPointerXMovementScale; // Scale zooms to cover a smaller range of the display than movements do. // This value determines the area around the pointer that is affected by freeform // pointer gestures. mPointerXZoomScale = mConfig.pointerGestureZoomSpeedRatio * displayDiagonal / rawDiagonal; mPointerYZoomScale = mPointerXZoomScale; // Max width between pointers to detect a swipe gesture is more than some fraction // of the diagonal axis of the touch pad. Touches that are wider than this are // translated into freeform gestures. mPointerGestureMaxSwipeWidth = mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal; } // Inform the dispatcher about the changes. *outResetNeeded = true; bumpGeneration(); } } void TouchInputMapper::dumpDisplay(std::string& dump) { dump += StringPrintf(INDENT3 "%s\n", mViewport.toString().c_str()); dump += StringPrintf(INDENT3 "DisplayWidth: %dpx\n", mDisplayWidth); dump += StringPrintf(INDENT3 "DisplayHeight: %dpx\n", mDisplayHeight); dump += StringPrintf(INDENT3 "PhysicalWidth: %dpx\n", mPhysicalWidth); dump += StringPrintf(INDENT3 "PhysicalHeight: %dpx\n", mPhysicalHeight); dump += StringPrintf(INDENT3 "PhysicalLeft: %d\n", mPhysicalLeft); dump += StringPrintf(INDENT3 "PhysicalTop: %d\n", mPhysicalTop); dump += StringPrintf(INDENT3 "InputDeviceOrientation: %d\n", mInputDeviceOrientation); } void TouchInputMapper::configureVirtualKeys() { std::vector virtualKeyDefinitions; getDeviceContext().getVirtualKeyDefinitions(virtualKeyDefinitions); mVirtualKeys.clear(); if (virtualKeyDefinitions.size() == 0) { return; } int32_t touchScreenLeft = mRawPointerAxes.x.minValue; int32_t touchScreenTop = mRawPointerAxes.y.minValue; int32_t touchScreenWidth = mRawPointerAxes.getRawWidth(); int32_t touchScreenHeight = mRawPointerAxes.getRawHeight(); for (const VirtualKeyDefinition& virtualKeyDefinition : virtualKeyDefinitions) { VirtualKey virtualKey; virtualKey.scanCode = virtualKeyDefinition.scanCode; int32_t keyCode; int32_t dummyKeyMetaState; uint32_t flags; if (getDeviceContext().mapKey(virtualKey.scanCode, 0, 0, &keyCode, &dummyKeyMetaState, &flags)) { ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode); continue; // drop the key } virtualKey.keyCode = keyCode; virtualKey.flags = flags; // convert the key definition's display coordinates into touch coordinates for a hit box int32_t halfWidth = virtualKeyDefinition.width / 2; int32_t halfHeight = virtualKeyDefinition.height / 2; virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) * touchScreenWidth / mDisplayWidth + touchScreenLeft; virtualKey.hitRight = (virtualKeyDefinition.centerX + halfWidth) * touchScreenWidth / mDisplayWidth + touchScreenLeft; virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) * touchScreenHeight / mDisplayHeight + touchScreenTop; virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) * touchScreenHeight / mDisplayHeight + touchScreenTop; mVirtualKeys.push_back(virtualKey); } } void TouchInputMapper::dumpVirtualKeys(std::string& dump) { if (!mVirtualKeys.empty()) { dump += INDENT3 "Virtual Keys:\n"; for (size_t i = 0; i < mVirtualKeys.size(); i++) { const VirtualKey& virtualKey = mVirtualKeys[i]; dump += StringPrintf(INDENT4 "%zu: scanCode=%d, keyCode=%d, " "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", i, virtualKey.scanCode, virtualKey.keyCode, virtualKey.hitLeft, virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom); } } } void TouchInputMapper::parseCalibration() { const PropertyMap& in = getDeviceContext().getConfiguration(); Calibration& out = mCalibration; // Size out.sizeCalibration = Calibration::SizeCalibration::DEFAULT; String8 sizeCalibrationString; if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { if (sizeCalibrationString == "none") { out.sizeCalibration = Calibration::SizeCalibration::NONE; } else if (sizeCalibrationString == "geometric") { out.sizeCalibration = Calibration::SizeCalibration::GEOMETRIC; } else if (sizeCalibrationString == "diameter") { out.sizeCalibration = Calibration::SizeCalibration::DIAMETER; } else if (sizeCalibrationString == "box") { out.sizeCalibration = Calibration::SizeCalibration::BOX; } else if (sizeCalibrationString == "area") { out.sizeCalibration = Calibration::SizeCalibration::AREA; } else if (sizeCalibrationString != "default") { ALOGW("Invalid value for touch.size.calibration: '%s'", sizeCalibrationString.string()); } } out.haveSizeScale = in.tryGetProperty(String8("touch.size.scale"), out.sizeScale); out.haveSizeBias = in.tryGetProperty(String8("touch.size.bias"), out.sizeBias); out.haveSizeIsSummed = in.tryGetProperty(String8("touch.size.isSummed"), out.sizeIsSummed); // Pressure out.pressureCalibration = Calibration::PressureCalibration::DEFAULT; String8 pressureCalibrationString; if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { if (pressureCalibrationString == "none") { out.pressureCalibration = Calibration::PressureCalibration::NONE; } else if (pressureCalibrationString == "physical") { out.pressureCalibration = Calibration::PressureCalibration::PHYSICAL; } else if (pressureCalibrationString == "amplitude") { out.pressureCalibration = Calibration::PressureCalibration::AMPLITUDE; } else if (pressureCalibrationString != "default") { ALOGW("Invalid value for touch.pressure.calibration: '%s'", pressureCalibrationString.string()); } } out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), out.pressureScale); // Orientation out.orientationCalibration = Calibration::OrientationCalibration::DEFAULT; String8 orientationCalibrationString; if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { if (orientationCalibrationString == "none") { out.orientationCalibration = Calibration::OrientationCalibration::NONE; } else if (orientationCalibrationString == "interpolated") { out.orientationCalibration = Calibration::OrientationCalibration::INTERPOLATED; } else if (orientationCalibrationString == "vector") { out.orientationCalibration = Calibration::OrientationCalibration::VECTOR; } else if (orientationCalibrationString != "default") { ALOGW("Invalid value for touch.orientation.calibration: '%s'", orientationCalibrationString.string()); } } // Distance out.distanceCalibration = Calibration::DistanceCalibration::DEFAULT; String8 distanceCalibrationString; if (in.tryGetProperty(String8("touch.distance.calibration"), distanceCalibrationString)) { if (distanceCalibrationString == "none") { out.distanceCalibration = Calibration::DistanceCalibration::NONE; } else if (distanceCalibrationString == "scaled") { out.distanceCalibration = Calibration::DistanceCalibration::SCALED; } else if (distanceCalibrationString != "default") { ALOGW("Invalid value for touch.distance.calibration: '%s'", distanceCalibrationString.string()); } } out.haveDistanceScale = in.tryGetProperty(String8("touch.distance.scale"), out.distanceScale); out.coverageCalibration = Calibration::CoverageCalibration::DEFAULT; String8 coverageCalibrationString; if (in.tryGetProperty(String8("touch.coverage.calibration"), coverageCalibrationString)) { if (coverageCalibrationString == "none") { out.coverageCalibration = Calibration::CoverageCalibration::NONE; } else if (coverageCalibrationString == "box") { out.coverageCalibration = Calibration::CoverageCalibration::BOX; } else if (coverageCalibrationString != "default") { ALOGW("Invalid value for touch.coverage.calibration: '%s'", coverageCalibrationString.string()); } } } void TouchInputMapper::resolveCalibration() { // Size if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { if (mCalibration.sizeCalibration == Calibration::SizeCalibration::DEFAULT) { mCalibration.sizeCalibration = Calibration::SizeCalibration::GEOMETRIC; } } else { mCalibration.sizeCalibration = Calibration::SizeCalibration::NONE; } // Pressure if (mRawPointerAxes.pressure.valid) { if (mCalibration.pressureCalibration == Calibration::PressureCalibration::DEFAULT) { mCalibration.pressureCalibration = Calibration::PressureCalibration::PHYSICAL; } } else { mCalibration.pressureCalibration = Calibration::PressureCalibration::NONE; } // Orientation if (mRawPointerAxes.orientation.valid) { if (mCalibration.orientationCalibration == Calibration::OrientationCalibration::DEFAULT) { mCalibration.orientationCalibration = Calibration::OrientationCalibration::INTERPOLATED; } } else { mCalibration.orientationCalibration = Calibration::OrientationCalibration::NONE; } // Distance if (mRawPointerAxes.distance.valid) { if (mCalibration.distanceCalibration == Calibration::DistanceCalibration::DEFAULT) { mCalibration.distanceCalibration = Calibration::DistanceCalibration::SCALED; } } else { mCalibration.distanceCalibration = Calibration::DistanceCalibration::NONE; } // Coverage if (mCalibration.coverageCalibration == Calibration::CoverageCalibration::DEFAULT) { mCalibration.coverageCalibration = Calibration::CoverageCalibration::NONE; } } void TouchInputMapper::dumpCalibration(std::string& dump) { dump += INDENT3 "Calibration:\n"; dump += INDENT4 "touch.size.calibration: "; dump += ftl::enum_string(mCalibration.sizeCalibration) + "\n"; if (mCalibration.haveSizeScale) { dump += StringPrintf(INDENT4 "touch.size.scale: %0.3f\n", mCalibration.sizeScale); } if (mCalibration.haveSizeBias) { dump += StringPrintf(INDENT4 "touch.size.bias: %0.3f\n", mCalibration.sizeBias); } if (mCalibration.haveSizeIsSummed) { dump += StringPrintf(INDENT4 "touch.size.isSummed: %s\n", toString(mCalibration.sizeIsSummed)); } // Pressure switch (mCalibration.pressureCalibration) { case Calibration::PressureCalibration::NONE: dump += INDENT4 "touch.pressure.calibration: none\n"; break; case Calibration::PressureCalibration::PHYSICAL: dump += INDENT4 "touch.pressure.calibration: physical\n"; break; case Calibration::PressureCalibration::AMPLITUDE: dump += INDENT4 "touch.pressure.calibration: amplitude\n"; break; default: ALOG_ASSERT(false); } if (mCalibration.havePressureScale) { dump += StringPrintf(INDENT4 "touch.pressure.scale: %0.3f\n", mCalibration.pressureScale); } // Orientation switch (mCalibration.orientationCalibration) { case Calibration::OrientationCalibration::NONE: dump += INDENT4 "touch.orientation.calibration: none\n"; break; case Calibration::OrientationCalibration::INTERPOLATED: dump += INDENT4 "touch.orientation.calibration: interpolated\n"; break; case Calibration::OrientationCalibration::VECTOR: dump += INDENT4 "touch.orientation.calibration: vector\n"; break; default: ALOG_ASSERT(false); } // Distance switch (mCalibration.distanceCalibration) { case Calibration::DistanceCalibration::NONE: dump += INDENT4 "touch.distance.calibration: none\n"; break; case Calibration::DistanceCalibration::SCALED: dump += INDENT4 "touch.distance.calibration: scaled\n"; break; default: ALOG_ASSERT(false); } if (mCalibration.haveDistanceScale) { dump += StringPrintf(INDENT4 "touch.distance.scale: %0.3f\n", mCalibration.distanceScale); } switch (mCalibration.coverageCalibration) { case Calibration::CoverageCalibration::NONE: dump += INDENT4 "touch.coverage.calibration: none\n"; break; case Calibration::CoverageCalibration::BOX: dump += INDENT4 "touch.coverage.calibration: box\n"; break; default: ALOG_ASSERT(false); } } void TouchInputMapper::dumpAffineTransformation(std::string& dump) { dump += INDENT3 "Affine Transformation:\n"; dump += StringPrintf(INDENT4 "X scale: %0.3f\n", mAffineTransform.x_scale); dump += StringPrintf(INDENT4 "X ymix: %0.3f\n", mAffineTransform.x_ymix); dump += StringPrintf(INDENT4 "X offset: %0.3f\n", mAffineTransform.x_offset); dump += StringPrintf(INDENT4 "Y xmix: %0.3f\n", mAffineTransform.y_xmix); dump += StringPrintf(INDENT4 "Y scale: %0.3f\n", mAffineTransform.y_scale); dump += StringPrintf(INDENT4 "Y offset: %0.3f\n", mAffineTransform.y_offset); } void TouchInputMapper::updateAffineTransformation() { mAffineTransform = getPolicy()->getTouchAffineTransformation(getDeviceContext().getDescriptor(), mInputDeviceOrientation); } void TouchInputMapper::reset(nsecs_t when) { mCursorButtonAccumulator.reset(getDeviceContext()); mCursorScrollAccumulator.reset(getDeviceContext()); mTouchButtonAccumulator.reset(getDeviceContext()); mPointerVelocityControl.reset(); mWheelXVelocityControl.reset(); mWheelYVelocityControl.reset(); mRawStatesPending.clear(); mCurrentRawState.clear(); mCurrentCookedState.clear(); mLastRawState.clear(); mLastCookedState.clear(); mPointerUsage = PointerUsage::NONE; mSentHoverEnter = false; mHavePointerIds = false; mCurrentMotionAborted = false; mDownTime = 0; mCurrentVirtualKey.down = false; mPointerGesture.reset(); mPointerSimple.reset(); resetExternalStylus(); if (mPointerController != nullptr) { mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); mPointerController->clearSpots(); } InputMapper::reset(when); } void TouchInputMapper::resetExternalStylus() { mExternalStylusState.clear(); mExternalStylusId = -1; mExternalStylusFusionTimeout = LLONG_MAX; mExternalStylusDataPending = false; } void TouchInputMapper::clearStylusDataPendingFlags() { mExternalStylusDataPending = false; mExternalStylusFusionTimeout = LLONG_MAX; } void TouchInputMapper::process(const RawEvent* rawEvent) { mCursorButtonAccumulator.process(rawEvent); mCursorScrollAccumulator.process(rawEvent); mTouchButtonAccumulator.process(rawEvent); if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { sync(rawEvent->when, rawEvent->readTime); } } void TouchInputMapper::sync(nsecs_t when, nsecs_t readTime) { if (mDeviceMode == DeviceMode::DISABLED) { // Only save the last pending state when the device is disabled. mRawStatesPending.clear(); } // Push a new state. mRawStatesPending.emplace_back(); RawState& next = mRawStatesPending.back(); next.clear(); next.when = when; next.readTime = readTime; // Sync button state. next.buttonState = mTouchButtonAccumulator.getButtonState() | mCursorButtonAccumulator.getButtonState(); // Sync scroll next.rawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); next.rawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); mCursorScrollAccumulator.finishSync(); // Sync touch syncTouch(when, &next); // The last RawState is the actually second to last, since we just added a new state const RawState& last = mRawStatesPending.size() == 1 ? mCurrentRawState : mRawStatesPending.rbegin()[1]; // Assign pointer ids. if (!mHavePointerIds) { assignPointerIds(last, next); } if (DEBUG_RAW_EVENTS) { ALOGD("syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " "hovering ids 0x%08x -> 0x%08x, canceled ids 0x%08x", last.rawPointerData.pointerCount, next.rawPointerData.pointerCount, last.rawPointerData.touchingIdBits.value, next.rawPointerData.touchingIdBits.value, last.rawPointerData.hoveringIdBits.value, next.rawPointerData.hoveringIdBits.value, next.rawPointerData.canceledIdBits.value); } if (!next.rawPointerData.touchingIdBits.isEmpty() && !next.rawPointerData.hoveringIdBits.isEmpty() && last.rawPointerData.hoveringIdBits != next.rawPointerData.hoveringIdBits) { ALOGI("Multi-touch contains some hovering ids 0x%08x", next.rawPointerData.hoveringIdBits.value); } processRawTouches(false /*timeout*/); } void TouchInputMapper::processRawTouches(bool timeout) { if (mDeviceMode == DeviceMode::DISABLED) { // Drop all input if the device is disabled. cancelTouch(mCurrentRawState.when, mCurrentRawState.readTime); mCurrentCookedState.clear(); updateTouchSpots(); return; } // Drain any pending touch states. The invariant here is that the mCurrentRawState is always // valid and must go through the full cook and dispatch cycle. This ensures that anything // touching the current state will only observe the events that have been dispatched to the // rest of the pipeline. const size_t N = mRawStatesPending.size(); size_t count; for (count = 0; count < N; count++) { const RawState& next = mRawStatesPending[count]; // A failure to assign the stylus id means that we're waiting on stylus data // and so should defer the rest of the pipeline. if (assignExternalStylusId(next, timeout)) { break; } // All ready to go. clearStylusDataPendingFlags(); mCurrentRawState.copyFrom(next); if (mCurrentRawState.when < mLastRawState.when) { mCurrentRawState.when = mLastRawState.when; mCurrentRawState.readTime = mLastRawState.readTime; } cookAndDispatch(mCurrentRawState.when, mCurrentRawState.readTime); } if (count != 0) { mRawStatesPending.erase(mRawStatesPending.begin(), mRawStatesPending.begin() + count); } if (mExternalStylusDataPending) { if (timeout) { nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY; clearStylusDataPendingFlags(); mCurrentRawState.copyFrom(mLastRawState); if (DEBUG_STYLUS_FUSION) { ALOGD("Timeout expired, synthesizing event with new stylus data"); } const nsecs_t readTime = when; // consider this synthetic event to be zero latency cookAndDispatch(when, readTime); } else if (mExternalStylusFusionTimeout == LLONG_MAX) { mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT; getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); } } } void TouchInputMapper::cookAndDispatch(nsecs_t when, nsecs_t readTime) { // Always start with a clean state. mCurrentCookedState.clear(); // Apply stylus buttons to current raw state. applyExternalStylusButtonState(when); // Handle policy on initial down or hover events. bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 && mCurrentRawState.rawPointerData.pointerCount != 0; uint32_t policyFlags = 0; bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState; if (initialDown || buttonsPressed) { // If this is a touch screen, hide the pointer on an initial down. if (mDeviceMode == DeviceMode::DIRECT) { getContext()->fadePointer(); } if (mParameters.wake) { policyFlags |= POLICY_FLAG_WAKE; } } // Consume raw off-screen touches before cooking pointer data. // If touches are consumed, subsequent code will not receive any pointer data. if (consumeRawTouches(when, readTime, policyFlags)) { mCurrentRawState.rawPointerData.clear(); } // Cook pointer data. This call populates the mCurrentCookedState.cookedPointerData structure // with cooked pointer data that has the same ids and indices as the raw data. // The following code can use either the raw or cooked data, as needed. cookPointerData(); // Apply stylus pressure to current cooked state. applyExternalStylusTouchState(when); // Synthesize key down from raw buttons if needed. synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, readTime, getDeviceId(), mSource, mViewport.displayId, policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState); // Dispatch the touches either directly or by translation through a pointer on screen. if (mDeviceMode == DeviceMode::POINTER) { for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { mCurrentCookedState.stylusIdBits.markBit(id); } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { mCurrentCookedState.fingerIdBits.markBit(id); } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) { mCurrentCookedState.mouseIdBits.markBit(id); } } for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS || pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { mCurrentCookedState.stylusIdBits.markBit(id); } } // Stylus takes precedence over all tools, then mouse, then finger. PointerUsage pointerUsage = mPointerUsage; if (!mCurrentCookedState.stylusIdBits.isEmpty()) { mCurrentCookedState.mouseIdBits.clear(); mCurrentCookedState.fingerIdBits.clear(); pointerUsage = PointerUsage::STYLUS; } else if (!mCurrentCookedState.mouseIdBits.isEmpty()) { mCurrentCookedState.fingerIdBits.clear(); pointerUsage = PointerUsage::MOUSE; } else if (!mCurrentCookedState.fingerIdBits.isEmpty() || isPointerDown(mCurrentRawState.buttonState)) { pointerUsage = PointerUsage::GESTURES; } dispatchPointerUsage(when, readTime, policyFlags, pointerUsage); } else { if (!mCurrentMotionAborted) { updateTouchSpots(); dispatchButtonRelease(when, readTime, policyFlags); dispatchHoverExit(when, readTime, policyFlags); dispatchTouches(when, readTime, policyFlags); dispatchHoverEnterAndMove(when, readTime, policyFlags); dispatchButtonPress(when, readTime, policyFlags); } if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { mCurrentMotionAborted = false; } } // Synthesize key up from raw buttons if needed. synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, readTime, getDeviceId(), mSource, mViewport.displayId, policyFlags, mLastCookedState.buttonState, mCurrentCookedState.buttonState); // Clear some transient state. mCurrentRawState.rawVScroll = 0; mCurrentRawState.rawHScroll = 0; // Copy current touch to last touch in preparation for the next cycle. mLastRawState.copyFrom(mCurrentRawState); mLastCookedState.copyFrom(mCurrentCookedState); } void TouchInputMapper::updateTouchSpots() { if (!mConfig.showTouches || mPointerController == nullptr) { return; } // Update touch spots when this is a touchscreen even when it's not enabled so that we can // clear touch spots. if (mDeviceMode != DeviceMode::DIRECT && (mDeviceMode != DeviceMode::DISABLED || !isTouchScreen())) { return; } mPointerController->setPresentation(PointerControllerInterface::Presentation::SPOT); mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); mPointerController->setButtonState(mCurrentRawState.buttonState); mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, mCurrentCookedState.cookedPointerData.touchingIdBits, mViewport.displayId); } bool TouchInputMapper::isTouchScreen() { return mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN && mParameters.hasAssociatedDisplay; } void TouchInputMapper::applyExternalStylusButtonState(nsecs_t when) { if (mDeviceMode == DeviceMode::DIRECT && hasExternalStylus() && mExternalStylusId != -1) { mCurrentRawState.buttonState |= mExternalStylusState.buttons; } } void TouchInputMapper::applyExternalStylusTouchState(nsecs_t when) { CookedPointerData& currentPointerData = mCurrentCookedState.cookedPointerData; const CookedPointerData& lastPointerData = mLastCookedState.cookedPointerData; if (mExternalStylusId != -1 && currentPointerData.isTouching(mExternalStylusId)) { float pressure = mExternalStylusState.pressure; if (pressure == 0.0f && lastPointerData.isTouching(mExternalStylusId)) { const PointerCoords& coords = lastPointerData.pointerCoordsForId(mExternalStylusId); pressure = coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE); } PointerCoords& coords = currentPointerData.editPointerCoordsWithId(mExternalStylusId); coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); PointerProperties& properties = currentPointerData.editPointerPropertiesWithId(mExternalStylusId); if (mExternalStylusState.toolType != AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { properties.toolType = mExternalStylusState.toolType; } } } bool TouchInputMapper::assignExternalStylusId(const RawState& state, bool timeout) { if (mDeviceMode != DeviceMode::DIRECT || !hasExternalStylus()) { return false; } const bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 && state.rawPointerData.pointerCount != 0; if (initialDown) { if (mExternalStylusState.pressure != 0.0f) { if (DEBUG_STYLUS_FUSION) { ALOGD("Have both stylus and touch data, beginning fusion"); } mExternalStylusId = state.rawPointerData.touchingIdBits.firstMarkedBit(); } else if (timeout) { if (DEBUG_STYLUS_FUSION) { ALOGD("Timeout expired, assuming touch is not a stylus."); } resetExternalStylus(); } else { if (mExternalStylusFusionTimeout == LLONG_MAX) { mExternalStylusFusionTimeout = state.when + EXTERNAL_STYLUS_DATA_TIMEOUT; } if (DEBUG_STYLUS_FUSION) { ALOGD("No stylus data but stylus is connected, requesting timeout " "(%" PRId64 "ms)", mExternalStylusFusionTimeout); } getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); return true; } } // Check if the stylus pointer has gone up. if (mExternalStylusId != -1 && !state.rawPointerData.touchingIdBits.hasBit(mExternalStylusId)) { if (DEBUG_STYLUS_FUSION) { ALOGD("Stylus pointer is going up"); } mExternalStylusId = -1; } return false; } void TouchInputMapper::timeoutExpired(nsecs_t when) { if (mDeviceMode == DeviceMode::POINTER) { if (mPointerUsage == PointerUsage::GESTURES) { // Since this is a synthetic event, we can consider its latency to be zero const nsecs_t readTime = when; dispatchPointerGestures(when, readTime, 0 /*policyFlags*/, true /*isTimeout*/); } } else if (mDeviceMode == DeviceMode::DIRECT) { if (mExternalStylusFusionTimeout < when) { processRawTouches(true /*timeout*/); } else if (mExternalStylusFusionTimeout != LLONG_MAX) { getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); } } } void TouchInputMapper::updateExternalStylusState(const StylusState& state) { mExternalStylusState.copyFrom(state); if (mExternalStylusId != -1 || mExternalStylusFusionTimeout != LLONG_MAX) { // We're either in the middle of a fused stream of data or we're waiting on data before // dispatching the initial down, so go ahead and dispatch now that we have fresh stylus // data. mExternalStylusDataPending = true; processRawTouches(false /*timeout*/); } } bool TouchInputMapper::consumeRawTouches(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { // Check for release of a virtual key. if (mCurrentVirtualKey.down) { if (mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { // Pointer went up while virtual key was down. mCurrentVirtualKey.down = false; if (!mCurrentVirtualKey.ignored) { if (DEBUG_VIRTUAL_KEYS) { ALOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); } dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); } return true; } if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { // Pointer is still within the space of the virtual key. return true; } } // Pointer left virtual key area or another pointer also went down. // Send key cancellation but do not consume the touch yet. // This is useful when the user swipes through from the virtual key area // into the main display surface. mCurrentVirtualKey.down = false; if (!mCurrentVirtualKey.ignored) { if (DEBUG_VIRTUAL_KEYS) { ALOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); } dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | AKEY_EVENT_FLAG_CANCELED); } } if (mLastRawState.rawPointerData.touchingIdBits.isEmpty() && !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { // Pointer just went down. Check for virtual key press or off-screen touches. uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); // Skip checking whether the pointer is inside the physical frame if the device is in // unscaled mode. if (!isPointInsidePhysicalFrame(pointer.x, pointer.y) && mDeviceMode != DeviceMode::UNSCALED) { // If exactly one pointer went down, check for virtual key hit. // Otherwise we will drop the entire stroke. if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); if (virtualKey) { mCurrentVirtualKey.down = true; mCurrentVirtualKey.downTime = when; mCurrentVirtualKey.keyCode = virtualKey->keyCode; mCurrentVirtualKey.scanCode = virtualKey->scanCode; mCurrentVirtualKey.ignored = getContext()->shouldDropVirtualKey(when, virtualKey->keyCode, virtualKey->scanCode); if (!mCurrentVirtualKey.ignored) { if (DEBUG_VIRTUAL_KEYS) { ALOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); } dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_DOWN, AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY); } } } return true; } } // Disable all virtual key touches that happen within a short time interval of the // most recent touch within the screen area. The idea is to filter out stray // virtual key presses when interacting with the touch screen. // // Problems we're trying to solve: // // 1. While scrolling a list or dragging the window shade, the user swipes down into a // virtual key area that is implemented by a separate touch panel and accidentally // triggers a virtual key. // // 2. While typing in the on screen keyboard, the user taps slightly outside the screen // area and accidentally triggers a virtual key. This often happens when virtual keys // are layed out below the screen near to where the on screen keyboard's space bar // is displayed. if (mConfig.virtualKeyQuietTime > 0 && !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { getContext()->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); } return false; } void TouchInputMapper::dispatchVirtualKey(nsecs_t when, nsecs_t readTime, uint32_t policyFlags, int32_t keyEventAction, int32_t keyEventFlags) { int32_t keyCode = mCurrentVirtualKey.keyCode; int32_t scanCode = mCurrentVirtualKey.scanCode; nsecs_t downTime = mCurrentVirtualKey.downTime; int32_t metaState = getContext()->getGlobalMetaState(); policyFlags |= POLICY_FLAG_VIRTUAL; NotifyKeyArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), AINPUT_SOURCE_KEYBOARD, mViewport.displayId, policyFlags, keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); getListener().notifyKey(&args); } void TouchInputMapper::abortTouches(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { if (mCurrentMotionAborted) { // Current motion event was already aborted. return; } BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; if (!currentIdBits.isEmpty()) { int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentCookedState.buttonState; dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, currentIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); mCurrentMotionAborted = true; } } void TouchInputMapper::dispatchTouches(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits; int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentCookedState.buttonState; if (currentIdBits == lastIdBits) { if (!currentIdBits.isEmpty()) { // No pointer id changes so this is a move event. // The listener takes care of batching moves so we don't have to deal with that here. dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, currentIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } else { // There may be pointers going up and pointers going down and pointers moving // all at the same time. BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); BitSet32 dispatchedIdBits(lastIdBits.value); // Update last coordinates of pointers that have moved so that we observe the new // pointer positions at the same time as other pointers that have just gone up. bool moveNeeded = updateMovedPointers(mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, mLastCookedState.cookedPointerData.pointerProperties, mLastCookedState.cookedPointerData.pointerCoords, mLastCookedState.cookedPointerData.idToIndex, moveIdBits); if (buttonState != mLastCookedState.buttonState) { moveNeeded = true; } // Dispatch pointer up events. while (!upIdBits.isEmpty()) { uint32_t upId = upIdBits.clearFirstMarkedBit(); bool isCanceled = mCurrentCookedState.cookedPointerData.canceledIdBits.hasBit(upId); if (isCanceled) { ALOGI("Canceling pointer %d for the palm event was detected.", upId); } dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_UP, 0, isCanceled ? AMOTION_EVENT_FLAG_CANCELED : 0, metaState, buttonState, 0, mLastCookedState.cookedPointerData.pointerProperties, mLastCookedState.cookedPointerData.pointerCoords, mLastCookedState.cookedPointerData.idToIndex, dispatchedIdBits, upId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); dispatchedIdBits.clearBit(upId); mCurrentCookedState.cookedPointerData.canceledIdBits.clearBit(upId); } // Dispatch move events if any of the remaining pointers moved from their old locations. // Although applications receive new locations as part of individual pointer up // events, they do not generally handle them except when presented in a move event. if (moveNeeded && !moveIdBits.isEmpty()) { ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, dispatchedIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } // Dispatch pointer down events using the new pointer locations. while (!downIdBits.isEmpty()) { uint32_t downId = downIdBits.clearFirstMarkedBit(); dispatchedIdBits.markBit(downId); if (dispatchedIdBits.count() == 1) { // First pointer is going down. Set down time. mDownTime = when; } dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, 0, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, dispatchedIdBits, downId, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } } void TouchInputMapper::dispatchHoverExit(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { if (mSentHoverEnter && (mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty() || !mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty())) { int32_t metaState = getContext()->getGlobalMetaState(); dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, mLastCookedState.buttonState, 0, mLastCookedState.cookedPointerData.pointerProperties, mLastCookedState.cookedPointerData.pointerCoords, mLastCookedState.cookedPointerData.idToIndex, mLastCookedState.cookedPointerData.hoveringIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); mSentHoverEnter = false; } } void TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { if (mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty() && !mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty()) { int32_t metaState = getContext()->getGlobalMetaState(); if (!mSentHoverEnter) { dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, mCurrentRawState.buttonState, 0, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); mSentHoverEnter = true; } dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, mCurrentRawState.buttonState, 0, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } void TouchInputMapper::dispatchButtonRelease(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { BitSet32 releasedButtons(mLastCookedState.buttonState & ~mCurrentCookedState.buttonState); const BitSet32& idBits = findActiveIdBits(mLastCookedState.cookedPointerData); const int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mLastCookedState.buttonState; while (!releasedButtons.isEmpty()) { int32_t actionButton = BitSet32::valueForBit(releasedButtons.clearFirstMarkedBit()); buttonState &= ~actionButton; dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 0, metaState, buttonState, 0, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } void TouchInputMapper::dispatchButtonPress(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { BitSet32 pressedButtons(mCurrentCookedState.buttonState & ~mLastCookedState.buttonState); const BitSet32& idBits = findActiveIdBits(mCurrentCookedState.cookedPointerData); const int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mLastCookedState.buttonState; while (!pressedButtons.isEmpty()) { int32_t actionButton = BitSet32::valueForBit(pressedButtons.clearFirstMarkedBit()); buttonState |= actionButton; dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 0, metaState, buttonState, 0, mCurrentCookedState.cookedPointerData.pointerProperties, mCurrentCookedState.cookedPointerData.pointerCoords, mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime); } } const BitSet32& TouchInputMapper::findActiveIdBits(const CookedPointerData& cookedPointerData) { if (!cookedPointerData.touchingIdBits.isEmpty()) { return cookedPointerData.touchingIdBits; } return cookedPointerData.hoveringIdBits; } void TouchInputMapper::cookPointerData() { uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount; mCurrentCookedState.cookedPointerData.clear(); mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount; mCurrentCookedState.cookedPointerData.hoveringIdBits = mCurrentRawState.rawPointerData.hoveringIdBits; mCurrentCookedState.cookedPointerData.touchingIdBits = mCurrentRawState.rawPointerData.touchingIdBits; mCurrentCookedState.cookedPointerData.canceledIdBits = mCurrentRawState.rawPointerData.canceledIdBits; if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { mCurrentCookedState.buttonState = 0; } else { mCurrentCookedState.buttonState = mCurrentRawState.buttonState; } // Walk through the the active pointers and map device coordinates onto // display coordinates and adjust for display orientation. for (uint32_t i = 0; i < currentPointerCount; i++) { const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i]; // Size float touchMajor, touchMinor, toolMajor, toolMinor, size; switch (mCalibration.sizeCalibration) { case Calibration::SizeCalibration::GEOMETRIC: case Calibration::SizeCalibration::DIAMETER: case Calibration::SizeCalibration::BOX: case Calibration::SizeCalibration::AREA: if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { touchMajor = in.touchMajor; touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; toolMajor = in.toolMajor; toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; } else if (mRawPointerAxes.touchMajor.valid) { toolMajor = touchMajor = in.touchMajor; toolMinor = touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) : in.touchMajor; } else if (mRawPointerAxes.toolMajor.valid) { touchMajor = toolMajor = in.toolMajor; touchMinor = toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; size = mRawPointerAxes.toolMinor.valid ? avg(in.toolMajor, in.toolMinor) : in.toolMajor; } else { ALOG_ASSERT(false, "No touch or tool axes. " "Size calibration should have been resolved to NONE."); touchMajor = 0; touchMinor = 0; toolMajor = 0; toolMinor = 0; size = 0; } if (mCalibration.haveSizeIsSummed && mCalibration.sizeIsSummed) { uint32_t touchingCount = mCurrentRawState.rawPointerData.touchingIdBits.count(); if (touchingCount > 1) { touchMajor /= touchingCount; touchMinor /= touchingCount; toolMajor /= touchingCount; toolMinor /= touchingCount; size /= touchingCount; } } if (mCalibration.sizeCalibration == Calibration::SizeCalibration::GEOMETRIC) { touchMajor *= mGeometricScale; touchMinor *= mGeometricScale; toolMajor *= mGeometricScale; toolMinor *= mGeometricScale; } else if (mCalibration.sizeCalibration == Calibration::SizeCalibration::AREA) { touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; touchMinor = touchMajor; toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; toolMinor = toolMajor; } else if (mCalibration.sizeCalibration == Calibration::SizeCalibration::DIAMETER) { touchMinor = touchMajor; toolMinor = toolMajor; } mCalibration.applySizeScaleAndBias(&touchMajor); mCalibration.applySizeScaleAndBias(&touchMinor); mCalibration.applySizeScaleAndBias(&toolMajor); mCalibration.applySizeScaleAndBias(&toolMinor); size *= mSizeScale; break; default: touchMajor = 0; touchMinor = 0; toolMajor = 0; toolMinor = 0; size = 0; break; } // Pressure float pressure; switch (mCalibration.pressureCalibration) { case Calibration::PressureCalibration::PHYSICAL: case Calibration::PressureCalibration::AMPLITUDE: pressure = in.pressure * mPressureScale; break; default: pressure = in.isHovering ? 0 : 1; break; } // Tilt and Orientation float tilt; float orientation; if (mHaveTilt) { float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); } else { tilt = 0; switch (mCalibration.orientationCalibration) { case Calibration::OrientationCalibration::INTERPOLATED: orientation = in.orientation * mOrientationScale; break; case Calibration::OrientationCalibration::VECTOR: { int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); int32_t c2 = signExtendNybble(in.orientation & 0x0f); if (c1 != 0 || c2 != 0) { orientation = atan2f(c1, c2) * 0.5f; float confidence = hypotf(c1, c2); float scale = 1.0f + confidence / 16.0f; touchMajor *= scale; touchMinor /= scale; toolMajor *= scale; toolMinor /= scale; } else { orientation = 0; } break; } default: orientation = 0; } } // Distance float distance; switch (mCalibration.distanceCalibration) { case Calibration::DistanceCalibration::SCALED: distance = in.distance * mDistanceScale; break; default: distance = 0; } // Coverage int32_t rawLeft, rawTop, rawRight, rawBottom; switch (mCalibration.coverageCalibration) { case Calibration::CoverageCalibration::BOX: rawLeft = (in.toolMinor & 0xffff0000) >> 16; rawRight = in.toolMinor & 0x0000ffff; rawBottom = in.toolMajor & 0x0000ffff; rawTop = (in.toolMajor & 0xffff0000) >> 16; break; default: rawLeft = rawTop = rawRight = rawBottom = 0; break; } // Adjust X,Y coords for device calibration // TODO: Adjust coverage coords? float xTransformed = in.x, yTransformed = in.y; mAffineTransform.applyTo(xTransformed, yTransformed); rotateAndScale(xTransformed, yTransformed); // Adjust X, Y, and coverage coords for input device orientation. float left, top, right, bottom; switch (mInputDeviceOrientation) { case DISPLAY_ORIENTATION_90: left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale; right = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale; bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale; top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale; orientation -= M_PI_2; if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) { orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); } break; case DISPLAY_ORIENTATION_180: left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale; right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale; bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale; top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale; orientation -= M_PI; if (mOrientedRanges.haveOrientation && orientation < mOrientedRanges.orientation.min) { orientation += (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); } break; case DISPLAY_ORIENTATION_270: left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale; right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale; bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale; top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale; orientation += M_PI_2; if (mOrientedRanges.haveOrientation && orientation > mOrientedRanges.orientation.max) { orientation -= (mOrientedRanges.orientation.max - mOrientedRanges.orientation.min); } break; default: left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale; right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale; bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale; top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale; break; } // Write output coords. PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i]; out.clear(); out.setAxisValue(AMOTION_EVENT_AXIS_X, xTransformed); out.setAxisValue(AMOTION_EVENT_AXIS_Y, yTransformed); out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); if (mCalibration.coverageCalibration == Calibration::CoverageCalibration::BOX) { out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left); out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top); out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right); out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom); } else { out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); } // Write output relative fields if applicable. uint32_t id = in.id; if (mSource == AINPUT_SOURCE_TOUCHPAD && mLastCookedState.cookedPointerData.hasPointerCoordsForId(id)) { const PointerCoords& p = mLastCookedState.cookedPointerData.pointerCoordsForId(id); float dx = xTransformed - p.getAxisValue(AMOTION_EVENT_AXIS_X); float dy = yTransformed - p.getAxisValue(AMOTION_EVENT_AXIS_Y); out.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, dx); out.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, dy); } // Write output properties. PointerProperties& properties = mCurrentCookedState.cookedPointerData.pointerProperties[i]; properties.clear(); properties.id = id; properties.toolType = in.toolType; // Write id index and mark id as valid. mCurrentCookedState.cookedPointerData.idToIndex[id] = i; mCurrentCookedState.cookedPointerData.validIdBits.markBit(id); } } void TouchInputMapper::dispatchPointerUsage(nsecs_t when, nsecs_t readTime, uint32_t policyFlags, PointerUsage pointerUsage) { if (pointerUsage != mPointerUsage) { abortPointerUsage(when, readTime, policyFlags); mPointerUsage = pointerUsage; } switch (mPointerUsage) { case PointerUsage::GESTURES: dispatchPointerGestures(when, readTime, policyFlags, false /*isTimeout*/); break; case PointerUsage::STYLUS: dispatchPointerStylus(when, readTime, policyFlags); break; case PointerUsage::MOUSE: dispatchPointerMouse(when, readTime, policyFlags); break; case PointerUsage::NONE: break; } } void TouchInputMapper::abortPointerUsage(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { switch (mPointerUsage) { case PointerUsage::GESTURES: abortPointerGestures(when, readTime, policyFlags); break; case PointerUsage::STYLUS: abortPointerStylus(when, readTime, policyFlags); break; case PointerUsage::MOUSE: abortPointerMouse(when, readTime, policyFlags); break; case PointerUsage::NONE: break; } mPointerUsage = PointerUsage::NONE; } void TouchInputMapper::dispatchPointerGestures(nsecs_t when, nsecs_t readTime, uint32_t policyFlags, bool isTimeout) { // Update current gesture coordinates. bool cancelPreviousGesture, finishPreviousGesture; bool sendEvents = preparePointerGestures(when, &cancelPreviousGesture, &finishPreviousGesture, isTimeout); if (!sendEvents) { return; } if (finishPreviousGesture) { cancelPreviousGesture = false; } // Update the pointer presentation and spots. if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH) { mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); if (finishPreviousGesture || cancelPreviousGesture) { mPointerController->clearSpots(); } if (mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM) { mPointerController->setSpots(mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.currentGestureIdBits, mPointerController->getDisplayId()); } } else { mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); } // Show or hide the pointer if needed. switch (mPointerGesture.currentGestureMode) { case PointerGesture::Mode::NEUTRAL: case PointerGesture::Mode::QUIET: if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH && mPointerGesture.lastGestureMode == PointerGesture::Mode::FREEFORM) { // Remind the user of where the pointer is after finishing a gesture with spots. mPointerController->unfade(PointerControllerInterface::Transition::GRADUAL); } break; case PointerGesture::Mode::TAP: case PointerGesture::Mode::TAP_DRAG: case PointerGesture::Mode::BUTTON_CLICK_OR_DRAG: case PointerGesture::Mode::HOVER: case PointerGesture::Mode::PRESS: case PointerGesture::Mode::SWIPE: // Unfade the pointer when the current gesture manipulates the // area directly under the pointer. mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); break; case PointerGesture::Mode::FREEFORM: // Fade the pointer when the current gesture manipulates a different // area and there are spots to guide the user experience. if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH) { mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); } else { mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); } break; } // Send events! int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentCookedState.buttonState; uint32_t flags = 0; if (!PointerGesture::canGestureAffectWindowFocus(mPointerGesture.currentGestureMode)) { flags |= AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE; } // Update last coordinates of pointers that have moved so that we observe the new // pointer positions at the same time as other pointers that have just gone up. bool down = mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP || mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP_DRAG || mPointerGesture.currentGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG || mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS || mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE || mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM; bool moveNeeded = false; if (down && !cancelPreviousGesture && !finishPreviousGesture && !mPointerGesture.lastGestureIdBits.isEmpty() && !mPointerGesture.currentGestureIdBits.isEmpty()) { BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value & mPointerGesture.lastGestureIdBits.value); moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, movedGestureIdBits); if (buttonState != mLastCookedState.buttonState) { moveNeeded = true; } } // Send motion events for all pointers that went up or were canceled. BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); if (!dispatchedGestureIdBits.isEmpty()) { if (cancelPreviousGesture) { dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, flags, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, dispatchedGestureIdBits, -1, 0, 0, mPointerGesture.downTime); dispatchedGestureIdBits.clear(); } else { BitSet32 upGestureIdBits; if (finishPreviousGesture) { upGestureIdBits = dispatchedGestureIdBits; } else { upGestureIdBits.value = dispatchedGestureIdBits.value & ~mPointerGesture.currentGestureIdBits.value; } while (!upGestureIdBits.isEmpty()) { uint32_t id = upGestureIdBits.clearFirstMarkedBit(); dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_UP, 0, flags, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, dispatchedGestureIdBits, id, 0, 0, mPointerGesture.downTime); dispatchedGestureIdBits.clearBit(id); } } } // Send motion events for all pointers that moved. if (moveNeeded) { dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, flags, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } // Send motion events for all pointers that went down. if (down) { BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value & ~dispatchedGestureIdBits.value); while (!downGestureIdBits.isEmpty()) { uint32_t id = downGestureIdBits.clearFirstMarkedBit(); dispatchedGestureIdBits.markBit(id); if (dispatchedGestureIdBits.count() == 1) { mPointerGesture.downTime = when; } dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_POINTER_DOWN, 0, flags, metaState, buttonState, 0, mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, id, 0, 0, mPointerGesture.downTime); } } // Send motion events for hover. if (mPointerGesture.currentGestureMode == PointerGesture::Mode::HOVER) { dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, flags, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.currentGestureProperties, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.currentGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } else if (dispatchedGestureIdBits.isEmpty() && !mPointerGesture.lastGestureIdBits.isEmpty()) { // Synthesize a hover move event after all pointers go up to indicate that // the pointer is hovering again even if the user is not currently touching // the touch pad. This ensures that a view will receive a fresh hover enter // event after a tap. float x, y; mPointerController->getPosition(&x, &y); PointerProperties pointerProperties; pointerProperties.clear(); pointerProperties.id = 0; pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; PointerCoords pointerCoords; pointerCoords.clear(); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); const int32_t displayId = mPointerController->getDisplayId(); NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, flags, metaState, buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &pointerProperties, &pointerCoords, 0, 0, x, y, mPointerGesture.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } // Update state. mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; if (!down) { mPointerGesture.lastGestureIdBits.clear(); } else { mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; mPointerGesture.lastGestureProperties[index].copyFrom( mPointerGesture.currentGestureProperties[index]); mPointerGesture.lastGestureCoords[index].copyFrom( mPointerGesture.currentGestureCoords[index]); mPointerGesture.lastGestureIdToIndex[id] = index; } } } void TouchInputMapper::abortPointerGestures(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { // Cancel previously dispatches pointers. if (!mPointerGesture.lastGestureIdBits.isEmpty()) { int32_t metaState = getContext()->getGlobalMetaState(); int32_t buttonState = mCurrentRawState.buttonState; dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_CANCEL, 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureProperties, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, mPointerGesture.lastGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } // Reset the current pointer gesture. mPointerGesture.reset(); mPointerVelocityControl.reset(); // Remove any current spots. if (mPointerController != nullptr) { mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); mPointerController->clearSpots(); } } bool TouchInputMapper::preparePointerGestures(nsecs_t when, bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) { *outCancelPreviousGesture = false; *outFinishPreviousGesture = false; // Handle TAP timeout. if (isTimeout) { if (DEBUG_GESTURES) { ALOGD("Gestures: Processing timeout"); } if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP) { if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { // The tap/drag timeout has not yet expired. getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval); } else { // The tap is finished. if (DEBUG_GESTURES) { ALOGD("Gestures: TAP finished"); } *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::Mode::NEUTRAL; mPointerGesture.currentGestureIdBits.clear(); mPointerVelocityControl.reset(); return true; } } // We did not handle this timeout. return false; } const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); // Update the velocity tracker. { std::vector positions; for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); float x = pointer.x * mPointerXMovementScale; float y = pointer.y * mPointerYMovementScale; positions.push_back({x, y}); } mPointerGesture.velocityTracker.addMovement(when, mCurrentCookedState.fingerIdBits, positions); } // If the gesture ever enters a mode other than TAP, HOVER or TAP_DRAG, without first returning // to NEUTRAL, then we should not generate tap event. if (mPointerGesture.lastGestureMode != PointerGesture::Mode::HOVER && mPointerGesture.lastGestureMode != PointerGesture::Mode::TAP && mPointerGesture.lastGestureMode != PointerGesture::Mode::TAP_DRAG) { mPointerGesture.resetTap(); } // Pick a new active touch id if needed. // Choose an arbitrary pointer that just went down, if there is one. // Otherwise choose an arbitrary remaining pointer. // This guarantees we always have an active touch id when there is at least one pointer. // We keep the same active touch id for as long as possible. int32_t lastActiveTouchId = mPointerGesture.activeTouchId; int32_t activeTouchId = lastActiveTouchId; if (activeTouchId < 0) { if (!mCurrentCookedState.fingerIdBits.isEmpty()) { activeTouchId = mPointerGesture.activeTouchId = mCurrentCookedState.fingerIdBits.firstMarkedBit(); mPointerGesture.firstTouchTime = when; } } else if (!mCurrentCookedState.fingerIdBits.hasBit(activeTouchId)) { if (!mCurrentCookedState.fingerIdBits.isEmpty()) { activeTouchId = mPointerGesture.activeTouchId = mCurrentCookedState.fingerIdBits.firstMarkedBit(); } else { activeTouchId = mPointerGesture.activeTouchId = -1; } } // Determine whether we are in quiet time. bool isQuietTime = false; if (activeTouchId < 0) { mPointerGesture.resetQuietTime(); } else { isQuietTime = when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval; if (!isQuietTime) { if ((mPointerGesture.lastGestureMode == PointerGesture::Mode::PRESS || mPointerGesture.lastGestureMode == PointerGesture::Mode::SWIPE || mPointerGesture.lastGestureMode == PointerGesture::Mode::FREEFORM) && currentFingerCount < 2) { // Enter quiet time when exiting swipe or freeform state. // This is to prevent accidentally entering the hover state and flinging the // pointer when finishing a swipe and there is still one pointer left onscreen. isQuietTime = true; } else if (mPointerGesture.lastGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG && currentFingerCount >= 2 && !isPointerDown(mCurrentRawState.buttonState)) { // Enter quiet time when releasing the button and there are still two or more // fingers down. This may indicate that one finger was used to press the button // but it has not gone up yet. isQuietTime = true; } if (isQuietTime) { mPointerGesture.quietTime = when; } } } // Switch states based on button and pointer state. if (isQuietTime) { // Case 1: Quiet time. (QUIET) if (DEBUG_GESTURES) { ALOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval - when) * 0.000001f); } if (mPointerGesture.lastGestureMode != PointerGesture::Mode::QUIET) { *outFinishPreviousGesture = true; } mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::Mode::QUIET; mPointerGesture.currentGestureIdBits.clear(); mPointerVelocityControl.reset(); } else if (isPointerDown(mCurrentRawState.buttonState)) { // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) // The pointer follows the active touch point. // Emit DOWN, MOVE, UP events at the pointer location. // // Only the active touch matters; other fingers are ignored. This policy helps // to handle the case where the user places a second finger on the touch pad // to apply the necessary force to depress an integrated button below the surface. // We don't want the second finger to be delivered to applications. // // For this to work well, we need to make sure to track the pointer that is really // active. If the user first puts one finger down to click then adds another // finger to drag then the active pointer should switch to the finger that is // being dragged. if (DEBUG_GESTURES) { ALOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, " "currentFingerCount=%d", activeTouchId, currentFingerCount); } // Reset state when just starting. if (mPointerGesture.lastGestureMode != PointerGesture::Mode::BUTTON_CLICK_OR_DRAG) { *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = 0; } // Switch pointers if needed. // Find the fastest pointer and follow it. if (activeTouchId >= 0 && currentFingerCount > 1) { int32_t bestId = -1; float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); float vx, vy; if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) { float speed = hypotf(vx, vy); if (speed > bestSpeed) { bestId = id; bestSpeed = speed; } } } if (bestId >= 0 && bestId != activeTouchId) { mPointerGesture.activeTouchId = activeTouchId = bestId; if (DEBUG_GESTURES) { ALOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, " "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed); } } } float deltaX = 0, deltaY = 0; if (activeTouchId >= 0 && mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { const RawPointerData::Pointer& currentPointer = mCurrentRawState.rawPointerData.pointerForId(activeTouchId); const RawPointerData::Pointer& lastPointer = mLastRawState.rawPointerData.pointerForId(activeTouchId); deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); mPointerVelocityControl.move(when, &deltaX, &deltaY); // Move the pointer using a relative motion. // When using spots, the click will occur at the position of the anchor // spot and all other spots will move there. mPointerController->move(deltaX, deltaY); } else { mPointerVelocityControl.reset(); } float x, y; mPointerController->getPosition(&x, &y); mPointerGesture.currentGestureMode = PointerGesture::Mode::BUTTON_CLICK_OR_DRAG; mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } else if (currentFingerCount == 0) { // Case 3. No fingers down and button is not pressed. (NEUTRAL) if (mPointerGesture.lastGestureMode != PointerGesture::Mode::NEUTRAL) { *outFinishPreviousGesture = true; } // Watch for taps coming out of HOVER or TAP_DRAG mode. // Checking for taps after TAP_DRAG allows us to detect double-taps. bool tapped = false; if ((mPointerGesture.lastGestureMode == PointerGesture::Mode::HOVER || mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP_DRAG) && lastFingerCount == 1) { if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { float x, y; mPointerController->getPosition(&x, &y); if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { if (DEBUG_GESTURES) { ALOGD("Gestures: TAP"); } mPointerGesture.tapUpTime = when; getContext()->requestTimeoutAtTime(when + mConfig.pointerGestureTapDragInterval); mPointerGesture.activeGestureId = 0; mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP; mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, mPointerGesture.tapX); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY); mPointerGesture.currentGestureCoords[0] .setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); tapped = true; } else { if (DEBUG_GESTURES) { ALOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f", x - mPointerGesture.tapX, y - mPointerGesture.tapY); } } } else { if (DEBUG_GESTURES) { if (mPointerGesture.tapDownTime != LLONG_MIN) { ALOGD("Gestures: Not a TAP, %0.3fms since down", (when - mPointerGesture.tapDownTime) * 0.000001f); } else { ALOGD("Gestures: Not a TAP, incompatible mode transitions"); } } } } mPointerVelocityControl.reset(); if (!tapped) { if (DEBUG_GESTURES) { ALOGD("Gestures: NEUTRAL"); } mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::Mode::NEUTRAL; mPointerGesture.currentGestureIdBits.clear(); } } else if (currentFingerCount == 1) { // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) // The pointer follows the active touch point. // When in HOVER, emit HOVER_MOVE events at the pointer location. // When in TAP_DRAG, emit MOVE events at the pointer location. ALOG_ASSERT(activeTouchId >= 0); mPointerGesture.currentGestureMode = PointerGesture::Mode::HOVER; if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP) { if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { float x, y; mPointerController->getPosition(&x, &y); if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP_DRAG; } else { if (DEBUG_GESTURES) { ALOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", x - mPointerGesture.tapX, y - mPointerGesture.tapY); } } } else { if (DEBUG_GESTURES) { ALOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up", (when - mPointerGesture.tapUpTime) * 0.000001f); } } } else if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP_DRAG) { mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP_DRAG; } float deltaX = 0, deltaY = 0; if (mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { const RawPointerData::Pointer& currentPointer = mCurrentRawState.rawPointerData.pointerForId(activeTouchId); const RawPointerData::Pointer& lastPointer = mLastRawState.rawPointerData.pointerForId(activeTouchId); deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); mPointerVelocityControl.move(when, &deltaX, &deltaY); // Move the pointer using a relative motion. // When using spots, the hover or drag will occur at the position of the anchor spot. mPointerController->move(deltaX, deltaY); } else { mPointerVelocityControl.reset(); } bool down; if (mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP_DRAG) { if (DEBUG_GESTURES) { ALOGD("Gestures: TAP_DRAG"); } down = true; } else { if (DEBUG_GESTURES) { ALOGD("Gestures: HOVER"); } if (mPointerGesture.lastGestureMode != PointerGesture::Mode::HOVER) { *outFinishPreviousGesture = true; } mPointerGesture.activeGestureId = 0; down = false; } float x, y; mPointerController->getPosition(&x, &y); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); if (lastFingerCount == 0 && currentFingerCount != 0) { mPointerGesture.resetTap(); mPointerGesture.tapDownTime = when; mPointerGesture.tapX = x; mPointerGesture.tapY = y; } } else { // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) // We need to provide feedback for each finger that goes down so we cannot wait // for the fingers to move before deciding what to do. // // The ambiguous case is deciding what to do when there are two fingers down but they // have not moved enough to determine whether they are part of a drag or part of a // freeform gesture, or just a press or long-press at the pointer location. // // When there are two fingers we start with the PRESS hypothesis and we generate a // down at the pointer location. // // When the two fingers move enough or when additional fingers are added, we make // a decision to transition into SWIPE or FREEFORM mode accordingly. ALOG_ASSERT(activeTouchId >= 0); bool settled = when >= mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval; if (mPointerGesture.lastGestureMode != PointerGesture::Mode::PRESS && mPointerGesture.lastGestureMode != PointerGesture::Mode::SWIPE && mPointerGesture.lastGestureMode != PointerGesture::Mode::FREEFORM) { *outFinishPreviousGesture = true; } else if (!settled && currentFingerCount > lastFingerCount) { // Additional pointers have gone down but not yet settled. // Reset the gesture. if (DEBUG_GESTURES) { ALOGD("Gestures: Resetting gesture since additional pointers went down for " "MULTITOUCH, settle time remaining %0.3fms", (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - when) * 0.000001f); } *outCancelPreviousGesture = true; } else { // Continue previous gesture. mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; } if (*outFinishPreviousGesture || *outCancelPreviousGesture) { mPointerGesture.currentGestureMode = PointerGesture::Mode::PRESS; mPointerGesture.activeGestureId = 0; mPointerGesture.referenceIdBits.clear(); mPointerVelocityControl.reset(); // Use the centroid and pointer location as the reference points for the gesture. if (DEBUG_GESTURES) { ALOGD("Gestures: Using centroid as reference for MULTITOUCH, " "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - when) * 0.000001f); } mCurrentRawState.rawPointerData .getCentroidOfTouchingPointers(&mPointerGesture.referenceTouchX, &mPointerGesture.referenceTouchY); mPointerController->getPosition(&mPointerGesture.referenceGestureX, &mPointerGesture.referenceGestureY); } // Clear the reference deltas for fingers not yet included in the reference calculation. for (BitSet32 idBits(mCurrentCookedState.fingerIdBits.value & ~mPointerGesture.referenceIdBits.value); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); mPointerGesture.referenceDeltas[id].dx = 0; mPointerGesture.referenceDeltas[id].dy = 0; } mPointerGesture.referenceIdBits = mCurrentCookedState.fingerIdBits; // Add delta for all fingers and calculate a common movement delta. float commonDeltaX = 0, commonDeltaY = 0; BitSet32 commonIdBits(mLastCookedState.fingerIdBits.value & mCurrentCookedState.fingerIdBits.value); for (BitSet32 idBits(commonIdBits); !idBits.isEmpty();) { bool first = (idBits == commonIdBits); uint32_t id = idBits.clearFirstMarkedBit(); const RawPointerData::Pointer& cpd = mCurrentRawState.rawPointerData.pointerForId(id); const RawPointerData::Pointer& lpd = mLastRawState.rawPointerData.pointerForId(id); PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; delta.dx += cpd.x - lpd.x; delta.dy += cpd.y - lpd.y; if (first) { commonDeltaX = delta.dx; commonDeltaY = delta.dy; } else { commonDeltaX = calculateCommonVector(commonDeltaX, delta.dx); commonDeltaY = calculateCommonVector(commonDeltaY, delta.dy); } } // Consider transitions from PRESS to SWIPE or MULTITOUCH. if (mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS) { float dist[MAX_POINTER_ID + 1]; int32_t distOverThreshold = 0; for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; dist[id] = hypotf(delta.dx * mPointerXZoomScale, delta.dy * mPointerYZoomScale); if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { distOverThreshold += 1; } } // Only transition when at least two pointers have moved further than // the minimum distance threshold. if (distOverThreshold >= 2) { if (currentFingerCount > 2) { // There are more than two pointers, switch to FREEFORM. if (DEBUG_GESTURES) { ALOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", currentFingerCount); } *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; } else { // There are exactly two pointers. BitSet32 idBits(mCurrentCookedState.fingerIdBits); uint32_t id1 = idBits.clearFirstMarkedBit(); uint32_t id2 = idBits.firstMarkedBit(); const RawPointerData::Pointer& p1 = mCurrentRawState.rawPointerData.pointerForId(id1); const RawPointerData::Pointer& p2 = mCurrentRawState.rawPointerData.pointerForId(id2); float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); if (mutualDistance > mPointerGestureMaxSwipeWidth) { // There are two pointers but they are too far apart for a SWIPE, // switch to FREEFORM. if (DEBUG_GESTURES) { ALOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > " "%0.3f", mutualDistance, mPointerGestureMaxSwipeWidth); } *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; } else { // There are two pointers. Wait for both pointers to start moving // before deciding whether this is a SWIPE or FREEFORM gesture. float dist1 = dist[id1]; float dist2 = dist[id2]; if (dist1 >= mConfig.pointerGestureMultitouchMinDistance && dist2 >= mConfig.pointerGestureMultitouchMinDistance) { // Calculate the dot product of the displacement vectors. // When the vectors are oriented in approximately the same direction, // the angle betweeen them is near zero and the cosine of the angle // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * // mag(v2). PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; float dx1 = delta1.dx * mPointerXZoomScale; float dy1 = delta1.dy * mPointerYZoomScale; float dx2 = delta2.dx * mPointerXZoomScale; float dy2 = delta2.dy * mPointerYZoomScale; float dot = dx1 * dx2 + dy1 * dy2; float cosine = dot / (dist1 * dist2); // denominator always > 0 if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { // Pointers are moving in the same direction. Switch to SWIPE. if (DEBUG_GESTURES) { ALOGD("Gestures: PRESS transitioned to SWIPE, " "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " "cosine %0.3f >= %0.3f", dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, mConfig.pointerGestureMultitouchMinDistance, cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); } mPointerGesture.currentGestureMode = PointerGesture::Mode::SWIPE; } else { // Pointers are moving in different directions. Switch to FREEFORM. if (DEBUG_GESTURES) { ALOGD("Gestures: PRESS transitioned to FREEFORM, " "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " "cosine %0.3f < %0.3f", dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, mConfig.pointerGestureMultitouchMinDistance, cosine, mConfig.pointerGestureSwipeTransitionAngleCosine); } *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; } } } } } } else if (mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { // Switch from SWIPE to FREEFORM if additional pointers go down. // Cancel previous gesture. if (currentFingerCount > 2) { if (DEBUG_GESTURES) { ALOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", currentFingerCount); } *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; } } // Move the reference points based on the overall group motion of the fingers // except in PRESS mode while waiting for a transition to occur. if (mPointerGesture.currentGestureMode != PointerGesture::Mode::PRESS && (commonDeltaX || commonDeltaY)) { for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; delta.dx = 0; delta.dy = 0; } mPointerGesture.referenceTouchX += commonDeltaX; mPointerGesture.referenceTouchY += commonDeltaY; commonDeltaX *= mPointerXMovementScale; commonDeltaY *= mPointerYMovementScale; rotateDelta(mInputDeviceOrientation, &commonDeltaX, &commonDeltaY); mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); mPointerGesture.referenceGestureX += commonDeltaX; mPointerGesture.referenceGestureY += commonDeltaY; } // Report gestures. if (mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS || mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { // PRESS or SWIPE mode. if (DEBUG_GESTURES) { ALOGD("Gestures: PRESS or SWIPE activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); } ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureProperties[0].clear(); mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } else if (mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM) { // FREEFORM mode. if (DEBUG_GESTURES) { ALOGD("Gestures: FREEFORM activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); } ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); BitSet32 mappedTouchIdBits; BitSet32 usedGestureIdBits; if (mPointerGesture.lastGestureMode != PointerGesture::Mode::FREEFORM) { // Initially, assign the active gesture id to the active touch point // if there is one. No other touch id bits are mapped yet. if (!*outCancelPreviousGesture) { mappedTouchIdBits.markBit(activeTouchId); usedGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = mPointerGesture.activeGestureId; } else { mPointerGesture.activeGestureId = -1; } } else { // Otherwise, assume we mapped all touches from the previous frame. // Reuse all mappings that are still applicable. mappedTouchIdBits.value = mLastCookedState.fingerIdBits.value & mCurrentCookedState.fingerIdBits.value; usedGestureIdBits = mPointerGesture.lastGestureIdBits; // Check whether we need to choose a new active gesture id because the // current went went up. for (BitSet32 upTouchIdBits(mLastCookedState.fingerIdBits.value & ~mCurrentCookedState.fingerIdBits.value); !upTouchIdBits.isEmpty();) { uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { mPointerGesture.activeGestureId = -1; break; } } } if (DEBUG_GESTURES) { ALOGD("Gestures: FREEFORM follow up " "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " "activeGestureId=%d", mappedTouchIdBits.value, usedGestureIdBits.value, mPointerGesture.activeGestureId); } BitSet32 idBits(mCurrentCookedState.fingerIdBits); for (uint32_t i = 0; i < currentFingerCount; i++) { uint32_t touchId = idBits.clearFirstMarkedBit(); uint32_t gestureId; if (!mappedTouchIdBits.hasBit(touchId)) { gestureId = usedGestureIdBits.markFirstUnmarkedBit(); mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; if (DEBUG_GESTURES) { ALOGD("Gestures: FREEFORM " "new mapping for touch id %d -> gesture id %d", touchId, gestureId); } } else { gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; if (DEBUG_GESTURES) { ALOGD("Gestures: FREEFORM " "existing mapping for touch id %d -> gesture id %d", touchId, gestureId); } } mPointerGesture.currentGestureIdBits.markBit(gestureId); mPointerGesture.currentGestureIdToIndex[gestureId] = i; const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(touchId); float deltaX = (pointer.x - mPointerGesture.referenceTouchX) * mPointerXZoomScale; float deltaY = (pointer.y - mPointerGesture.referenceTouchY) * mPointerYZoomScale; rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); mPointerGesture.currentGestureProperties[i].clear(); mPointerGesture.currentGestureProperties[i].id = gestureId; mPointerGesture.currentGestureProperties[i].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; mPointerGesture.currentGestureCoords[i].clear(); mPointerGesture.currentGestureCoords[i] .setAxisValue(AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX + deltaX); mPointerGesture.currentGestureCoords[i] .setAxisValue(AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY + deltaY); mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } if (mPointerGesture.activeGestureId < 0) { mPointerGesture.activeGestureId = mPointerGesture.currentGestureIdBits.firstMarkedBit(); if (DEBUG_GESTURES) { ALOGD("Gestures: FREEFORM new activeGestureId=%d", mPointerGesture.activeGestureId); } } } } mPointerController->setButtonState(mCurrentRawState.buttonState); if (DEBUG_GESTURES) { ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " "currentGestureMode=%d, currentGestureIdBits=0x%08x, " "lastGestureMode=%d, lastGestureIdBits=0x%08x", toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; ALOGD(" currentGesture[%d]: index=%d, toolType=%d, " "x=%0.3f, y=%0.3f, pressure=%0.3f", id, index, properties.toolType, coords.getAxisValue(AMOTION_EVENT_AXIS_X), coords.getAxisValue(AMOTION_EVENT_AXIS_Y), coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); } for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty();) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; ALOGD(" lastGesture[%d]: index=%d, toolType=%d, " "x=%0.3f, y=%0.3f, pressure=%0.3f", id, index, properties.toolType, coords.getAxisValue(AMOTION_EVENT_AXIS_X), coords.getAxisValue(AMOTION_EVENT_AXIS_Y), coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); } } return true; } void TouchInputMapper::dispatchPointerStylus(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { mPointerSimple.currentCoords.clear(); mPointerSimple.currentProperties.clear(); bool down, hovering; if (!mCurrentCookedState.stylusIdBits.isEmpty()) { uint32_t id = mCurrentCookedState.stylusIdBits.firstMarkedBit(); uint32_t index = mCurrentCookedState.cookedPointerData.idToIndex[id]; mPointerController ->setPosition(mCurrentCookedState.cookedPointerData.pointerCoords[index].getX(), mCurrentCookedState.cookedPointerData.pointerCoords[index].getY()); hovering = mCurrentCookedState.cookedPointerData.hoveringIdBits.hasBit(id); down = !hovering; float x, y; mPointerController->getPosition(&x, &y); mPointerSimple.currentCoords.copyFrom( mCurrentCookedState.cookedPointerData.pointerCoords[index]); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerSimple.currentProperties.id = 0; mPointerSimple.currentProperties.toolType = mCurrentCookedState.cookedPointerData.pointerProperties[index].toolType; } else { down = false; hovering = false; } dispatchPointerSimple(when, readTime, policyFlags, down, hovering); } void TouchInputMapper::abortPointerStylus(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { abortPointerSimple(when, readTime, policyFlags); } void TouchInputMapper::dispatchPointerMouse(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { mPointerSimple.currentCoords.clear(); mPointerSimple.currentProperties.clear(); bool down, hovering; if (!mCurrentCookedState.mouseIdBits.isEmpty()) { uint32_t id = mCurrentCookedState.mouseIdBits.firstMarkedBit(); uint32_t currentIndex = mCurrentRawState.rawPointerData.idToIndex[id]; float deltaX = 0, deltaY = 0; if (mLastCookedState.mouseIdBits.hasBit(id)) { uint32_t lastIndex = mCurrentRawState.rawPointerData.idToIndex[id]; deltaX = (mCurrentRawState.rawPointerData.pointers[currentIndex].x - mLastRawState.rawPointerData.pointers[lastIndex].x) * mPointerXMovementScale; deltaY = (mCurrentRawState.rawPointerData.pointers[currentIndex].y - mLastRawState.rawPointerData.pointers[lastIndex].y) * mPointerYMovementScale; rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); mPointerVelocityControl.move(when, &deltaX, &deltaY); mPointerController->move(deltaX, deltaY); } else { mPointerVelocityControl.reset(); } down = isPointerDown(mCurrentRawState.buttonState); hovering = !down; float x, y; mPointerController->getPosition(&x, &y); mPointerSimple.currentCoords.copyFrom( mCurrentCookedState.cookedPointerData.pointerCoords[currentIndex]); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, hovering ? 0.0f : 1.0f); mPointerSimple.currentProperties.id = 0; mPointerSimple.currentProperties.toolType = mCurrentCookedState.cookedPointerData.pointerProperties[currentIndex].toolType; } else { mPointerVelocityControl.reset(); down = false; hovering = false; } dispatchPointerSimple(when, readTime, policyFlags, down, hovering); } void TouchInputMapper::abortPointerMouse(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { abortPointerSimple(when, readTime, policyFlags); mPointerVelocityControl.reset(); } void TouchInputMapper::dispatchPointerSimple(nsecs_t when, nsecs_t readTime, uint32_t policyFlags, bool down, bool hovering) { LOG_ALWAYS_FATAL_IF(mDeviceMode != DeviceMode::POINTER, "%s cannot be used when the device is not in POINTER mode.", __func__); int32_t metaState = getContext()->getGlobalMetaState(); if (down || hovering) { mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); mPointerController->clearSpots(); mPointerController->setButtonState(mCurrentRawState.buttonState); mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); } int32_t displayId = mPointerController->getDisplayId(); float xCursorPosition, yCursorPosition; mPointerController->getPosition(&xCursorPosition, &yCursorPosition); if (mPointerSimple.down && !down) { mPointerSimple.down = false; // Send up. NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_UP, 0, 0, metaState, mLastRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } if (mPointerSimple.hovering && !hovering) { mPointerSimple.hovering = false; // Send hover exit. NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, mLastRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } if (down) { if (!mPointerSimple.down) { mPointerSimple.down = true; mPointerSimple.downTime = when; // Send down. NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_DOWN, 0, 0, metaState, mCurrentRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } // Send move. NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, mCurrentRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } if (hovering) { if (!mPointerSimple.hovering) { mPointerSimple.hovering = true; // Send hover enter. NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, mCurrentRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } // Send hover move. NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, mCurrentRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } if (mCurrentRawState.rawVScroll || mCurrentRawState.rawHScroll) { float vscroll = mCurrentRawState.rawVScroll; float hscroll = mCurrentRawState.rawHScroll; mWheelYVelocityControl.move(when, nullptr, &vscroll); mWheelXVelocityControl.move(when, &hscroll, nullptr); // Send scroll. PointerCoords pointerCoords; pointerCoords.copyFrom(mPointerSimple.currentCoords); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_SCROLL, 0, 0, metaState, mCurrentRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.currentProperties, &pointerCoords, mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); } // Save state. if (down || hovering) { mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); mPointerSimple.displayId = displayId; mPointerSimple.source = mSource; mPointerSimple.lastCursorX = xCursorPosition; mPointerSimple.lastCursorY = yCursorPosition; } else { mPointerSimple.reset(); } } void TouchInputMapper::abortPointerSimple(nsecs_t when, nsecs_t readTime, uint32_t policyFlags) { mPointerSimple.currentCoords.clear(); mPointerSimple.currentProperties.clear(); if (mPointerSimple.down || mPointerSimple.hovering) { int32_t metaState = getContext()->getGlobalMetaState(); NotifyMotionArgs args(getContext()->getNextId(), when, readTime, getDeviceId(), mPointerSimple.source, mPointerSimple.displayId, policyFlags, AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, metaState, mLastRawState.buttonState, MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, mOrientedXPrecision, mOrientedYPrecision, mPointerSimple.lastCursorX, mPointerSimple.lastCursorY, mPointerSimple.downTime, /* videoFrames */ {}); getListener().notifyMotion(&args); if (mPointerController != nullptr) { mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); } } mPointerSimple.reset(); } void TouchInputMapper::dispatchMotion(nsecs_t when, nsecs_t readTime, uint32_t policyFlags, uint32_t source, int32_t action, int32_t actionButton, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, const PointerProperties* properties, const PointerCoords* coords, const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) { PointerCoords pointerCoords[MAX_POINTERS]; PointerProperties pointerProperties[MAX_POINTERS]; uint32_t pointerCount = 0; while (!idBits.isEmpty()) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t index = idToIndex[id]; pointerProperties[pointerCount].copyFrom(properties[index]); pointerCoords[pointerCount].copyFrom(coords[index]); if (changedId >= 0 && id == uint32_t(changedId)) { action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; } pointerCount += 1; } ALOG_ASSERT(pointerCount != 0); if (changedId >= 0 && pointerCount == 1) { // Replace initial down and final up action. // We can compare the action without masking off the changed pointer index // because we know the index is 0. if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { action = AMOTION_EVENT_ACTION_DOWN; } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { if ((flags & AMOTION_EVENT_FLAG_CANCELED) != 0) { action = AMOTION_EVENT_ACTION_CANCEL; } else { action = AMOTION_EVENT_ACTION_UP; } } else { // Can't happen. ALOG_ASSERT(false); } } float xCursorPosition = AMOTION_EVENT_INVALID_CURSOR_POSITION; float yCursorPosition = AMOTION_EVENT_INVALID_CURSOR_POSITION; if (mDeviceMode == DeviceMode::POINTER) { mPointerController->getPosition(&xCursorPosition, &yCursorPosition); } const int32_t displayId = getAssociatedDisplayId().value_or(ADISPLAY_ID_NONE); const int32_t deviceId = getDeviceId(); std::vector frames = getDeviceContext().getVideoFrames(); std::for_each(frames.begin(), frames.end(), [this](TouchVideoFrame& frame) { frame.rotate(this->mInputDeviceOrientation); }); NotifyMotionArgs args(getContext()->getNextId(), when, readTime, deviceId, source, displayId, policyFlags, action, actionButton, flags, metaState, buttonState, MotionClassification::NONE, edgeFlags, pointerCount, pointerProperties, pointerCoords, xPrecision, yPrecision, xCursorPosition, yCursorPosition, downTime, std::move(frames)); getListener().notifyMotion(&args); } bool TouchInputMapper::updateMovedPointers(const PointerProperties* inProperties, const PointerCoords* inCoords, const uint32_t* inIdToIndex, PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex, BitSet32 idBits) const { bool changed = false; while (!idBits.isEmpty()) { uint32_t id = idBits.clearFirstMarkedBit(); uint32_t inIndex = inIdToIndex[id]; uint32_t outIndex = outIdToIndex[id]; const PointerProperties& curInProperties = inProperties[inIndex]; const PointerCoords& curInCoords = inCoords[inIndex]; PointerProperties& curOutProperties = outProperties[outIndex]; PointerCoords& curOutCoords = outCoords[outIndex]; if (curInProperties != curOutProperties) { curOutProperties.copyFrom(curInProperties); changed = true; } if (curInCoords != curOutCoords) { curOutCoords.copyFrom(curInCoords); changed = true; } } return changed; } void TouchInputMapper::cancelTouch(nsecs_t when, nsecs_t readTime) { abortPointerUsage(when, readTime, 0 /*policyFlags*/); abortTouches(when, readTime, 0 /* policyFlags*/); } // Transform input device coordinates to display panel coordinates. void TouchInputMapper::rotateAndScale(float& x, float& y) const { const float xScaled = float(x - mRawPointerAxes.x.minValue) * mXScale; const float yScaled = float(y - mRawPointerAxes.y.minValue) * mYScale; const float xScaledMax = float(mRawPointerAxes.x.maxValue - x) * mXScale; const float yScaledMax = float(mRawPointerAxes.y.maxValue - y) * mYScale; // Rotate to display coordinate. // 0 - no swap and reverse. // 90 - swap x/y and reverse y. // 180 - reverse x, y. // 270 - swap x/y and reverse x. switch (mInputDeviceOrientation) { case DISPLAY_ORIENTATION_0: x = xScaled; y = yScaled; break; case DISPLAY_ORIENTATION_90: y = xScaledMax; x = yScaled; break; case DISPLAY_ORIENTATION_180: x = xScaledMax; y = yScaledMax; break; case DISPLAY_ORIENTATION_270: y = xScaled; x = yScaledMax; break; default: assert(false); } } bool TouchInputMapper::isPointInsidePhysicalFrame(int32_t x, int32_t y) const { const float xScaled = (x - mRawPointerAxes.x.minValue) * mXScale; const float yScaled = (y - mRawPointerAxes.y.minValue) * mYScale; return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue && xScaled >= mPhysicalLeft && xScaled <= (mPhysicalLeft + mPhysicalWidth) && y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue && yScaled >= mPhysicalTop && yScaled <= (mPhysicalTop + mPhysicalHeight); } const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit(int32_t x, int32_t y) { for (const VirtualKey& virtualKey : mVirtualKeys) { if (DEBUG_VIRTUAL_KEYS) { ALOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " "left=%d, top=%d, right=%d, bottom=%d", x, y, virtualKey.keyCode, virtualKey.scanCode, virtualKey.hitLeft, virtualKey.hitTop, virtualKey.hitRight, virtualKey.hitBottom); } if (virtualKey.isHit(x, y)) { return &virtualKey; } } return nullptr; } void TouchInputMapper::assignPointerIds(const RawState& last, RawState& current) { uint32_t currentPointerCount = current.rawPointerData.pointerCount; uint32_t lastPointerCount = last.rawPointerData.pointerCount; current.rawPointerData.clearIdBits(); if (currentPointerCount == 0) { // No pointers to assign. return; } if (lastPointerCount == 0) { // All pointers are new. for (uint32_t i = 0; i < currentPointerCount; i++) { uint32_t id = i; current.rawPointerData.pointers[i].id = id; current.rawPointerData.idToIndex[id] = i; current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(i)); } return; } if (currentPointerCount == 1 && lastPointerCount == 1 && current.rawPointerData.pointers[0].toolType == last.rawPointerData.pointers[0].toolType) { // Only one pointer and no change in count so it must have the same id as before. uint32_t id = last.rawPointerData.pointers[0].id; current.rawPointerData.pointers[0].id = id; current.rawPointerData.idToIndex[id] = 0; current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(0)); return; } // General case. // We build a heap of squared euclidean distances between current and last pointers // associated with the current and last pointer indices. Then, we find the best // match (by distance) for each current pointer. // The pointers must have the same tool type but it is possible for them to // transition from hovering to touching or vice-versa while retaining the same id. PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; uint32_t heapSize = 0; for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; currentPointerIndex++) { for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; lastPointerIndex++) { const RawPointerData::Pointer& currentPointer = current.rawPointerData.pointers[currentPointerIndex]; const RawPointerData::Pointer& lastPointer = last.rawPointerData.pointers[lastPointerIndex]; if (currentPointer.toolType == lastPointer.toolType) { int64_t deltaX = currentPointer.x - lastPointer.x; int64_t deltaY = currentPointer.y - lastPointer.y; uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); // Insert new element into the heap (sift up). heap[heapSize].currentPointerIndex = currentPointerIndex; heap[heapSize].lastPointerIndex = lastPointerIndex; heap[heapSize].distance = distance; heapSize += 1; } } } // Heapify for (uint32_t startIndex = heapSize / 2; startIndex != 0;) { startIndex -= 1; for (uint32_t parentIndex = startIndex;;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } } if (DEBUG_POINTER_ASSIGNMENT) { ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } } // Pull matches out by increasing order of distance. // To avoid reassigning pointers that have already been matched, the loop keeps track // of which last and current pointers have been matched using the matchedXXXBits variables. // It also tracks the used pointer id bits. BitSet32 matchedLastBits(0); BitSet32 matchedCurrentBits(0); BitSet32 usedIdBits(0); bool first = true; for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { while (heapSize > 0) { if (first) { // The first time through the loop, we just consume the root element of // the heap (the one with smallest distance). first = false; } else { // Previous iterations consumed the root element of the heap. // Pop root element off of the heap (sift down). heap[0] = heap[heapSize]; for (uint32_t parentIndex = 0;;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } if (DEBUG_POINTER_ASSIGNMENT) { ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); for (size_t j = 0; j < heapSize; j++) { ALOGD(" heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, j, heap[j].currentPointerIndex, heap[j].lastPointerIndex, heap[j].distance); } } } heapSize -= 1; uint32_t currentPointerIndex = heap[0].currentPointerIndex; if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched uint32_t lastPointerIndex = heap[0].lastPointerIndex; if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched matchedCurrentBits.markBit(currentPointerIndex); matchedLastBits.markBit(lastPointerIndex); uint32_t id = last.rawPointerData.pointers[lastPointerIndex].id; current.rawPointerData.pointers[currentPointerIndex].id = id; current.rawPointerData.idToIndex[id] = currentPointerIndex; current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering( currentPointerIndex)); usedIdBits.markBit(id); if (DEBUG_POINTER_ASSIGNMENT) { ALOGD("assignPointerIds - matched: cur=%" PRIu32 ", last=%" PRIu32 ", id=%" PRIu32 ", distance=%" PRIu64, lastPointerIndex, currentPointerIndex, id, heap[0].distance); } break; } } // Assign fresh ids to pointers that were not matched in the process. for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); uint32_t id = usedIdBits.markFirstUnmarkedBit(); current.rawPointerData.pointers[currentPointerIndex].id = id; current.rawPointerData.idToIndex[id] = currentPointerIndex; current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(currentPointerIndex)); if (DEBUG_POINTER_ASSIGNMENT) { ALOGD("assignPointerIds - assigned: cur=%" PRIu32 ", id=%" PRIu32, currentPointerIndex, id); } } } int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { return AKEY_STATE_VIRTUAL; } for (const VirtualKey& virtualKey : mVirtualKeys) { if (virtualKey.keyCode == keyCode) { return AKEY_STATE_UP; } } return AKEY_STATE_UNKNOWN; } int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { return AKEY_STATE_VIRTUAL; } for (const VirtualKey& virtualKey : mVirtualKeys) { if (virtualKey.scanCode == scanCode) { return AKEY_STATE_UP; } } return AKEY_STATE_UNKNOWN; } bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { for (const VirtualKey& virtualKey : mVirtualKeys) { for (size_t i = 0; i < numCodes; i++) { if (virtualKey.keyCode == keyCodes[i]) { outFlags[i] = 1; } } } return true; } std::optional TouchInputMapper::getAssociatedDisplayId() { if (mParameters.hasAssociatedDisplay) { if (mDeviceMode == DeviceMode::POINTER) { return std::make_optional(mPointerController->getDisplayId()); } else { return std::make_optional(mViewport.displayId); } } return std::nullopt; } } // namespace android