• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mutex.h"
18 
19 #include <errno.h>
20 #include <sys/time.h>
21 
22 #include <sstream>
23 
24 #include "android-base/stringprintf.h"
25 
26 #include "base/atomic.h"
27 #include "base/logging.h"
28 #include "base/systrace.h"
29 #include "base/time_utils.h"
30 #include "base/value_object.h"
31 #include "mutex-inl.h"
32 #include "scoped_thread_state_change-inl.h"
33 #include "thread-inl.h"
34 #include "thread.h"
35 #include "thread_list.h"
36 
37 namespace art {
38 
39 using android::base::StringPrintf;
40 
41 static constexpr uint64_t kIntervalMillis = 50;
42 static constexpr int kMonitorTimeoutTryMax = 5;
43 
44 static const char* kLastDumpStackTime = "LastDumpStackTime";
45 
46 struct AllMutexData {
47   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
48   Atomic<const BaseMutex*> all_mutexes_guard;
49   // All created mutexes guarded by all_mutexes_guard_.
50   std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData51   AllMutexData() : all_mutexes(nullptr) {}
52 };
53 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
54 
55 struct DumpStackLastTimeTLSData : public art::TLSData {
DumpStackLastTimeTLSDataart::DumpStackLastTimeTLSData56   explicit DumpStackLastTimeTLSData(uint64_t last_dump_time_ms)
57       : last_dump_time_ms_(last_dump_time_ms) {}
58   std::atomic<uint64_t> last_dump_time_ms_;
59 };
60 
61 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)62 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
63   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
64   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
65   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
66   if (result_ts->tv_nsec < 0) {
67     result_ts->tv_sec--;
68     result_ts->tv_nsec += one_sec;
69   } else if (result_ts->tv_nsec > one_sec) {
70     result_ts->tv_sec++;
71     result_ts->tv_nsec -= one_sec;
72   }
73   return result_ts->tv_sec < 0;
74 }
75 #endif
76 
77 #if ART_USE_FUTEXES
78 // If we wake up from a futex wake, and the runtime disappeared while we were asleep,
79 // it's important to stop in our tracks before we touch deallocated memory.
SleepIfRuntimeDeleted(Thread * self)80 static inline void SleepIfRuntimeDeleted(Thread* self) {
81   if (self != nullptr) {
82     JNIEnvExt* const env = self->GetJniEnv();
83     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
84       DCHECK(self->IsDaemon());
85       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
86       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
87       // --host and --gdb.
88       // After we wake up, the runtime may have been shutdown, which means that this condition may
89       // have been deleted. It is not safe to retry the wait.
90       SleepForever();
91     }
92   }
93 }
94 #else
95 // We should be doing this for pthreads to, but it seems to be impossible for something
96 // like a condition variable wait. Thus we don't bother trying.
97 #endif
98 
99 // Wait for an amount of time that roughly increases in the argument i.
100 // Spin for small arguments and yield/sleep for longer ones.
BackOff(uint32_t i)101 static void BackOff(uint32_t i) {
102   static constexpr uint32_t kSpinMax = 10;
103   static constexpr uint32_t kYieldMax = 20;
104   if (i <= kSpinMax) {
105     // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
106     // test-and-test-and-set loop in the caller.  Possibly skip entirely on a uniprocessor.
107     volatile uint32_t x = 0;
108     const uint32_t spin_count = 10 * i;
109     for (uint32_t spin = 0; spin < spin_count; ++spin) {
110       ++x;  // Volatile; hence should not be optimized away.
111     }
112     // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
113   } else if (i <= kYieldMax) {
114     sched_yield();
115   } else {
116     NanoSleep(1000ull * (i - kYieldMax));
117   }
118 }
119 
120 // Wait until pred(testLoc->load(std::memory_order_relaxed)) holds, or until a
121 // short time interval, on the order of kernel context-switch time, passes.
122 // Return true if the predicate test succeeded, false if we timed out.
123 template<typename Pred>
WaitBrieflyFor(AtomicInteger * testLoc,Thread * self,Pred pred)124 static inline bool WaitBrieflyFor(AtomicInteger* testLoc, Thread* self, Pred pred) {
125   // TODO: Tune these parameters correctly. BackOff(3) should take on the order of 100 cycles. So
126   // this should result in retrying <= 10 times, usually waiting around 100 cycles each. The
127   // maximum delay should be significantly less than the expected futex() context switch time, so
128   // there should be little danger of this worsening things appreciably. If the lock was only
129   // held briefly by a running thread, this should help immensely.
130   static constexpr uint32_t kMaxBackOff = 3;  // Should probably be <= kSpinMax above.
131   static constexpr uint32_t kMaxIters = 50;
132   JNIEnvExt* const env = self == nullptr ? nullptr : self->GetJniEnv();
133   for (uint32_t i = 1; i <= kMaxIters; ++i) {
134     BackOff(std::min(i, kMaxBackOff));
135     if (pred(testLoc->load(std::memory_order_relaxed))) {
136       return true;
137     }
138     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
139       // This returns true once we've started shutting down. We then try to reach a quiescent
140       // state as soon as possible to avoid touching data that may be deallocated by the shutdown
141       // process. It currently relies on a timeout.
142       return false;
143     }
144   }
145   return false;
146 }
147 
148 class ScopedAllMutexesLock final {
149  public:
ScopedAllMutexesLock(const BaseMutex * mutex)150   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
151     for (uint32_t i = 0;
152          !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(nullptr, mutex);
153          ++i) {
154       BackOff(i);
155     }
156   }
157 
~ScopedAllMutexesLock()158   ~ScopedAllMutexesLock() {
159     DCHECK_EQ(gAllMutexData->all_mutexes_guard.load(std::memory_order_relaxed), mutex_);
160     gAllMutexData->all_mutexes_guard.store(nullptr, std::memory_order_release);
161   }
162 
163  private:
164   const BaseMutex* const mutex_;
165 };
166 
167 // Scoped class that generates events at the beginning and end of lock contention.
168 class ScopedContentionRecorder final : public ValueObject {
169  public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)170   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
171       : mutex_(kLogLockContentions ? mutex : nullptr),
172         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
173         owner_tid_(kLogLockContentions ? owner_tid : 0),
174         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
175     if (ATraceEnabled()) {
176       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
177                                      mutex->GetName(), owner_tid);
178       ATraceBegin(msg.c_str());
179     }
180   }
181 
~ScopedContentionRecorder()182   ~ScopedContentionRecorder() {
183     ATraceEnd();
184     if (kLogLockContentions) {
185       uint64_t end_nano_time = NanoTime();
186       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
187     }
188   }
189 
190  private:
191   BaseMutex* const mutex_;
192   const uint64_t blocked_tid_;
193   const uint64_t owner_tid_;
194   const uint64_t start_nano_time_;
195 };
196 
BaseMutex(const char * name,LockLevel level)197 BaseMutex::BaseMutex(const char* name, LockLevel level)
198     : name_(name),
199       level_(level),
200       should_respond_to_empty_checkpoint_request_(false) {
201   if (kLogLockContentions) {
202     ScopedAllMutexesLock mu(this);
203     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
204     if (*all_mutexes_ptr == nullptr) {
205       // We leak the global set of all mutexes to avoid ordering issues in global variable
206       // construction/destruction.
207       *all_mutexes_ptr = new std::set<BaseMutex*>();
208     }
209     (*all_mutexes_ptr)->insert(this);
210   }
211 }
212 
~BaseMutex()213 BaseMutex::~BaseMutex() {
214   if (kLogLockContentions) {
215     ScopedAllMutexesLock mu(this);
216     gAllMutexData->all_mutexes->erase(this);
217   }
218 }
219 
DumpAll(std::ostream & os)220 void BaseMutex::DumpAll(std::ostream& os) {
221   if (kLogLockContentions) {
222     os << "Mutex logging:\n";
223     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
224     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
225     if (all_mutexes == nullptr) {
226       // No mutexes have been created yet during at startup.
227       return;
228     }
229     os << "(Contended)\n";
230     for (const BaseMutex* mutex : *all_mutexes) {
231       if (mutex->HasEverContended()) {
232         mutex->Dump(os);
233         os << "\n";
234       }
235     }
236     os << "(Never contented)\n";
237     for (const BaseMutex* mutex : *all_mutexes) {
238       if (!mutex->HasEverContended()) {
239         mutex->Dump(os);
240         os << "\n";
241       }
242     }
243   }
244 }
245 
CheckSafeToWait(Thread * self)246 void BaseMutex::CheckSafeToWait(Thread* self) {
247   if (self == nullptr) {
248     CheckUnattachedThread(level_);
249     return;
250   }
251   if (kDebugLocking) {
252     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
253         << "Waiting on unacquired mutex: " << name_;
254     bool bad_mutexes_held = false;
255     std::string error_msg;
256     for (int i = kLockLevelCount - 1; i >= 0; --i) {
257       if (i != level_) {
258         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
259         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long. This
260         // just means that gc or some other internal process is suspending the thread while it is
261         // trying to suspend some other thread. So long as the current thread is not being suspended
262         // by a SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear)
263         // this is fine. This is needed due to user_code_suspension_lock_ being the way untrusted
264         // code interacts with suspension. One holds the lock to prevent user-code-suspension from
265         // occurring. Since this is only initiated from user-supplied native-code this is safe.
266         if (held_mutex == Locks::user_code_suspension_lock_) {
267           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
268           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
269           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
270           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
271             return self->GetUserCodeSuspendCount() != 0;
272           };
273           if (is_suspending_for_user_code()) {
274             std::ostringstream oss;
275             oss << "Holding \"" << held_mutex->name_ << "\" "
276                 << "(level " << LockLevel(i) << ") while performing wait on "
277                 << "\"" << name_ << "\" (level " << level_ << ") "
278                 << "with SuspendReason::kForUserCode pending suspensions";
279             error_msg = oss.str();
280             LOG(ERROR) << error_msg;
281             bad_mutexes_held = true;
282           }
283         } else if (held_mutex != nullptr) {
284           std::ostringstream oss;
285           oss << "Holding \"" << held_mutex->name_ << "\" "
286               << "(level " << LockLevel(i) << ") while performing wait on "
287               << "\"" << name_ << "\" (level " << level_ << ")";
288           error_msg = oss.str();
289           LOG(ERROR) << error_msg;
290           bad_mutexes_held = true;
291         }
292       }
293     }
294     if (gAborting == 0) {  // Avoid recursive aborts.
295       CHECK(!bad_mutexes_held) << error_msg;
296     }
297   }
298 }
299 
AddToWaitTime(uint64_t value)300 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
301   if (kLogLockContentions) {
302     // Atomically add value to wait_time.
303     wait_time.fetch_add(value, std::memory_order_seq_cst);
304   }
305 }
306 
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)307 void BaseMutex::RecordContention(uint64_t blocked_tid,
308                                  uint64_t owner_tid,
309                                  uint64_t nano_time_blocked) {
310   if (kLogLockContentions) {
311     ContentionLogData* data = contention_log_data_;
312     ++(data->contention_count);
313     data->AddToWaitTime(nano_time_blocked);
314     ContentionLogEntry* log = data->contention_log;
315     // This code is intentionally racy as it is only used for diagnostics.
316     int32_t slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
317     if (log[slot].blocked_tid == blocked_tid &&
318         log[slot].owner_tid == blocked_tid) {
319       ++log[slot].count;
320     } else {
321       uint32_t new_slot;
322       do {
323         slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
324         new_slot = (slot + 1) % kContentionLogSize;
325       } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
326       log[new_slot].blocked_tid = blocked_tid;
327       log[new_slot].owner_tid = owner_tid;
328       log[new_slot].count.store(1, std::memory_order_relaxed);
329     }
330   }
331 }
332 
DumpContention(std::ostream & os) const333 void BaseMutex::DumpContention(std::ostream& os) const {
334   if (kLogLockContentions) {
335     const ContentionLogData* data = contention_log_data_;
336     const ContentionLogEntry* log = data->contention_log;
337     uint64_t wait_time = data->wait_time.load(std::memory_order_relaxed);
338     uint32_t contention_count = data->contention_count.load(std::memory_order_relaxed);
339     if (contention_count == 0) {
340       os << "never contended";
341     } else {
342       os << "contended " << contention_count
343          << " total wait of contender " << PrettyDuration(wait_time)
344          << " average " << PrettyDuration(wait_time / contention_count);
345       SafeMap<uint64_t, size_t> most_common_blocker;
346       SafeMap<uint64_t, size_t> most_common_blocked;
347       for (size_t i = 0; i < kContentionLogSize; ++i) {
348         uint64_t blocked_tid = log[i].blocked_tid;
349         uint64_t owner_tid = log[i].owner_tid;
350         uint32_t count = log[i].count.load(std::memory_order_relaxed);
351         if (count > 0) {
352           auto it = most_common_blocked.find(blocked_tid);
353           if (it != most_common_blocked.end()) {
354             most_common_blocked.Overwrite(blocked_tid, it->second + count);
355           } else {
356             most_common_blocked.Put(blocked_tid, count);
357           }
358           it = most_common_blocker.find(owner_tid);
359           if (it != most_common_blocker.end()) {
360             most_common_blocker.Overwrite(owner_tid, it->second + count);
361           } else {
362             most_common_blocker.Put(owner_tid, count);
363           }
364         }
365       }
366       uint64_t max_tid = 0;
367       size_t max_tid_count = 0;
368       for (const auto& pair : most_common_blocked) {
369         if (pair.second > max_tid_count) {
370           max_tid = pair.first;
371           max_tid_count = pair.second;
372         }
373       }
374       if (max_tid != 0) {
375         os << " sample shows most blocked tid=" << max_tid;
376       }
377       max_tid = 0;
378       max_tid_count = 0;
379       for (const auto& pair : most_common_blocker) {
380         if (pair.second > max_tid_count) {
381           max_tid = pair.first;
382           max_tid_count = pair.second;
383         }
384       }
385       if (max_tid != 0) {
386         os << " sample shows tid=" << max_tid << " owning during this time";
387       }
388     }
389   }
390 }
391 
392 
Mutex(const char * name,LockLevel level,bool recursive)393 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
394     : BaseMutex(name, level), exclusive_owner_(0), recursion_count_(0), recursive_(recursive) {
395 #if ART_USE_FUTEXES
396   DCHECK_EQ(0, state_and_contenders_.load(std::memory_order_relaxed));
397 #else
398   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
399 #endif
400 }
401 
402 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()403 static bool IsSafeToCallAbortSafe() {
404   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
405   return Locks::IsSafeToCallAbortRacy();
406 }
407 
~Mutex()408 Mutex::~Mutex() {
409   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
410 #if ART_USE_FUTEXES
411   if (state_and_contenders_.load(std::memory_order_relaxed) != 0) {
412     LOG(safe_to_call_abort ? FATAL : WARNING)
413         << "destroying mutex with owner or contenders. Owner:" << GetExclusiveOwnerTid();
414   } else {
415     if (GetExclusiveOwnerTid() != 0) {
416       LOG(safe_to_call_abort ? FATAL : WARNING)
417           << "unexpectedly found an owner on unlocked mutex " << name_;
418     }
419   }
420 #else
421   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
422   // may still be using locks.
423   int rc = pthread_mutex_destroy(&mutex_);
424   if (rc != 0) {
425     errno = rc;
426     PLOG(safe_to_call_abort ? FATAL : WARNING)
427         << "pthread_mutex_destroy failed for " << name_;
428   }
429 #endif
430 }
431 
ExclusiveLock(Thread * self)432 void Mutex::ExclusiveLock(Thread* self) {
433   DCHECK(self == nullptr || self == Thread::Current());
434   if (kDebugLocking && !recursive_) {
435     AssertNotHeld(self);
436   }
437   if (!recursive_ || !IsExclusiveHeld(self)) {
438 #if ART_USE_FUTEXES
439     bool done = false;
440     do {
441       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
442       if (LIKELY((cur_state & kHeldMask) == 0) /* lock not held */) {
443         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
444       } else {
445         // Failed to acquire, hang up.
446         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
447         // Empirically, it appears important to spin again each time through the loop; if we
448         // bother to go to sleep and wake up, we should be fairly persistent in trying for the
449         // lock.
450         if (!WaitBrieflyFor(&state_and_contenders_, self,
451                             [](int32_t v) { return (v & kHeldMask) == 0; })) {
452           // Increment contender count. We can't create enough threads for this to overflow.
453           increment_contenders();
454           // Make cur_state again reflect the expected value of state_and_contenders.
455           cur_state += kContenderIncrement;
456           if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
457             self->CheckEmptyCheckpointFromMutex();
458           }
459 
460           uint64_t wait_start_ms = enable_monitor_timeout_ ? MilliTime() : 0;
461           uint64_t try_times = 0;
462           do {
463             timespec timeout_ts;
464             timeout_ts.tv_sec = 0;
465             timeout_ts.tv_nsec = Runtime::Current()->GetMonitorTimeoutNs();
466             if (futex(state_and_contenders_.Address(), FUTEX_WAIT_PRIVATE, cur_state,
467                       enable_monitor_timeout_ ? &timeout_ts : nullptr , nullptr, 0) != 0) {
468               // We only went to sleep after incrementing and contenders and checking that the
469               // lock is still held by someone else.  EAGAIN and EINTR both indicate a spurious
470               // failure, try again from the beginning.  We don't use TEMP_FAILURE_RETRY so we can
471               // intentionally retry to acquire the lock.
472               if ((errno != EAGAIN) && (errno != EINTR)) {
473                 if (errno == ETIMEDOUT) {
474                   try_times++;
475                   if (try_times <= kMonitorTimeoutTryMax) {
476                     DumpStack(self, wait_start_ms, try_times);
477                   }
478                 } else {
479                   PLOG(FATAL) << "futex wait failed for " << name_;
480                 }
481               }
482             }
483             SleepIfRuntimeDeleted(self);
484             // Retry until not held. In heavy contention situations we otherwise get redundant
485             // futex wakeups as a result of repeatedly decrementing and incrementing contenders.
486             cur_state = state_and_contenders_.load(std::memory_order_relaxed);
487           } while ((cur_state & kHeldMask) != 0);
488           decrement_contenders();
489         }
490       }
491     } while (!done);
492     // Confirm that lock is now held.
493     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
494 #else
495     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
496 #endif
497     DCHECK_EQ(GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self)
498                                          << " recursive_ = " << recursive_;
499     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
500     RegisterAsLocked(self);
501   }
502   recursion_count_++;
503   if (kDebugLocking) {
504     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
505         << name_ << " " << recursion_count_;
506     AssertHeld(self);
507   }
508 }
509 
DumpStack(Thread * self,uint64_t wait_start_ms,uint64_t try_times)510 void Mutex::DumpStack(Thread* self, uint64_t wait_start_ms, uint64_t try_times) {
511   ScopedObjectAccess soa(self);
512   Locks::thread_list_lock_->ExclusiveLock(self);
513   std::string owner_stack_dump;
514   pid_t owner_tid = GetExclusiveOwnerTid();
515   Thread *owner = Runtime::Current()->GetThreadList()->FindThreadByTid(owner_tid);
516   if (owner != nullptr) {
517     if (IsDumpFrequent(owner, try_times)) {
518       Locks::thread_list_lock_->ExclusiveUnlock(self);
519       LOG(WARNING) << "Contention with tid " << owner_tid << ", monitor id " << monitor_id_;
520       return;
521     }
522     struct CollectStackTrace : public Closure {
523       void Run(art::Thread* thread) override
524         REQUIRES_SHARED(art::Locks::mutator_lock_) {
525         if (IsDumpFrequent(thread)) {
526           return;
527         }
528         DumpStackLastTimeTLSData* tls_data =
529             reinterpret_cast<DumpStackLastTimeTLSData*>(thread->GetCustomTLS(kLastDumpStackTime));
530         if (tls_data == nullptr) {
531           thread->SetCustomTLS(kLastDumpStackTime, new DumpStackLastTimeTLSData(MilliTime()));
532         } else {
533           tls_data->last_dump_time_ms_.store(MilliTime());
534         }
535         thread->DumpJavaStack(oss);
536       }
537       std::ostringstream oss;
538     };
539     CollectStackTrace owner_trace;
540     owner->RequestSynchronousCheckpoint(&owner_trace);
541     owner_stack_dump = owner_trace.oss.str();
542     uint64_t wait_ms = MilliTime() - wait_start_ms;
543     LOG(WARNING) << "Monitor contention with tid " << owner_tid << ", wait time: " << wait_ms
544                  << "ms, monitor id: " << monitor_id_
545                  << "\nPerfMonitor owner thread(" << owner_tid << ") stack is:\n"
546                  << owner_stack_dump;
547   } else {
548     Locks::thread_list_lock_->ExclusiveUnlock(self);
549   }
550 }
551 
IsDumpFrequent(Thread * thread,uint64_t try_times)552 bool Mutex::IsDumpFrequent(Thread* thread, uint64_t try_times) {
553   uint64_t last_dump_time_ms = 0;
554   DumpStackLastTimeTLSData* tls_data =
555       reinterpret_cast<DumpStackLastTimeTLSData*>(thread->GetCustomTLS(kLastDumpStackTime));
556   if (tls_data != nullptr) {
557      last_dump_time_ms = tls_data->last_dump_time_ms_.load();
558   }
559   uint64_t interval = MilliTime() - last_dump_time_ms;
560   if (interval < kIntervalMillis * try_times) {
561     return true;
562   } else {
563     return false;
564   }
565 }
566 
ExclusiveTryLock(Thread * self)567 bool Mutex::ExclusiveTryLock(Thread* self) {
568   DCHECK(self == nullptr || self == Thread::Current());
569   if (kDebugLocking && !recursive_) {
570     AssertNotHeld(self);
571   }
572   if (!recursive_ || !IsExclusiveHeld(self)) {
573 #if ART_USE_FUTEXES
574     bool done = false;
575     do {
576       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
577       if ((cur_state & kHeldMask) == 0) {
578         // Change state to held and impose load/store ordering appropriate for lock acquisition.
579         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
580       } else {
581         return false;
582       }
583     } while (!done);
584     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
585 #else
586     int result = pthread_mutex_trylock(&mutex_);
587     if (result == EBUSY) {
588       return false;
589     }
590     if (result != 0) {
591       errno = result;
592       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
593     }
594 #endif
595     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
596     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
597     RegisterAsLocked(self);
598   }
599   recursion_count_++;
600   if (kDebugLocking) {
601     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
602         << name_ << " " << recursion_count_;
603     AssertHeld(self);
604   }
605   return true;
606 }
607 
ExclusiveTryLockWithSpinning(Thread * self)608 bool Mutex::ExclusiveTryLockWithSpinning(Thread* self) {
609   // Spin a small number of times, since this affects our ability to respond to suspension
610   // requests. We spin repeatedly only if the mutex repeatedly becomes available and unavailable
611   // in rapid succession, and then we will typically not spin for the maximal period.
612   const int kMaxSpins = 5;
613   for (int i = 0; i < kMaxSpins; ++i) {
614     if (ExclusiveTryLock(self)) {
615       return true;
616     }
617 #if ART_USE_FUTEXES
618     if (!WaitBrieflyFor(&state_and_contenders_, self,
619             [](int32_t v) { return (v & kHeldMask) == 0; })) {
620       return false;
621     }
622 #endif
623   }
624   return ExclusiveTryLock(self);
625 }
626 
627 #if ART_USE_FUTEXES
ExclusiveLockUncontendedFor(Thread * new_owner)628 void Mutex::ExclusiveLockUncontendedFor(Thread* new_owner) {
629   DCHECK_EQ(level_, kMonitorLock);
630   DCHECK(!recursive_);
631   state_and_contenders_.store(kHeldMask, std::memory_order_relaxed);
632   recursion_count_ = 1;
633   exclusive_owner_.store(SafeGetTid(new_owner), std::memory_order_relaxed);
634   // Don't call RegisterAsLocked(). It wouldn't register anything anyway.  And
635   // this happens as we're inflating a monitor, which doesn't logically affect
636   // held "locks"; it effectively just converts a thin lock to a mutex.  By doing
637   // this while the lock is already held, we're delaying the acquisition of a
638   // logically held mutex, which can introduce bogus lock order violations.
639 }
640 
ExclusiveUnlockUncontended()641 void Mutex::ExclusiveUnlockUncontended() {
642   DCHECK_EQ(level_, kMonitorLock);
643   state_and_contenders_.store(0, std::memory_order_relaxed);
644   recursion_count_ = 0;
645   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
646   // Skip RegisterAsUnlocked(), which wouldn't do anything anyway.
647 }
648 #endif  // ART_USE_FUTEXES
649 
ExclusiveUnlock(Thread * self)650 void Mutex::ExclusiveUnlock(Thread* self) {
651   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
652     std::string name1 = "<null>";
653     std::string name2 = "<null>";
654     if (self != nullptr) {
655       self->GetThreadName(name1);
656     }
657     if (Thread::Current() != nullptr) {
658       Thread::Current()->GetThreadName(name2);
659     }
660     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
661                << " Thread::Current()=" << name2;
662   }
663   AssertHeld(self);
664   DCHECK_NE(GetExclusiveOwnerTid(), 0);
665   recursion_count_--;
666   if (!recursive_ || recursion_count_ == 0) {
667     if (kDebugLocking) {
668       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
669           << name_ << " " << recursion_count_;
670     }
671     RegisterAsUnlocked(self);
672 #if ART_USE_FUTEXES
673     bool done = false;
674     do {
675       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
676       if (LIKELY((cur_state & kHeldMask) != 0)) {
677         // We're no longer the owner.
678         exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
679         // Change state to not held and impose load/store ordering appropriate for lock release.
680         uint32_t new_state = cur_state & ~kHeldMask;  // Same number of contenders.
681         done = state_and_contenders_.CompareAndSetWeakRelease(cur_state, new_state);
682         if (LIKELY(done)) {  // Spurious fail or waiters changed ?
683           if (UNLIKELY(new_state != 0) /* have contenders */) {
684             futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeOne,
685                   nullptr, nullptr, 0);
686           }
687           // We only do a futex wait after incrementing contenders and verifying the lock was
688           // still held. If we didn't see waiters, then there couldn't have been any futexes
689           // waiting on this lock when we did the CAS. New arrivals after that cannot wait for us,
690           // since the futex wait call would see the lock available and immediately return.
691         }
692       } else {
693         // Logging acquires the logging lock, avoid infinite recursion in that case.
694         if (this != Locks::logging_lock_) {
695           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
696         } else {
697           LogHelper::LogLineLowStack(__FILE__,
698                                      __LINE__,
699                                      ::android::base::FATAL_WITHOUT_ABORT,
700                                      StringPrintf("Unexpected state_ %d in unlock for %s",
701                                                   cur_state, name_).c_str());
702           _exit(1);
703         }
704       }
705     } while (!done);
706 #else
707     exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
708     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
709 #endif
710   }
711 }
712 
Dump(std::ostream & os) const713 void Mutex::Dump(std::ostream& os) const {
714   os << (recursive_ ? "recursive " : "non-recursive ")
715       << name_
716       << " level=" << static_cast<int>(level_)
717       << " rec=" << recursion_count_
718       << " owner=" << GetExclusiveOwnerTid() << " ";
719   DumpContention(os);
720 }
721 
operator <<(std::ostream & os,const Mutex & mu)722 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
723   mu.Dump(os);
724   return os;
725 }
726 
WakeupToRespondToEmptyCheckpoint()727 void Mutex::WakeupToRespondToEmptyCheckpoint() {
728 #if ART_USE_FUTEXES
729   // Wake up all the waiters so they will respond to the emtpy checkpoint.
730   DCHECK(should_respond_to_empty_checkpoint_request_);
731   if (UNLIKELY(get_contenders() != 0)) {
732     futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
733   }
734 #else
735   LOG(FATAL) << "Non futex case isn't supported.";
736 #endif
737 }
738 
ReaderWriterMutex(const char * name,LockLevel level)739 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
740     : BaseMutex(name, level)
741 #if ART_USE_FUTEXES
742     , state_(0), exclusive_owner_(0), num_contenders_(0)
743 #endif
744 {
745 #if !ART_USE_FUTEXES
746   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
747 #endif
748 }
749 
~ReaderWriterMutex()750 ReaderWriterMutex::~ReaderWriterMutex() {
751 #if ART_USE_FUTEXES
752   CHECK_EQ(state_.load(std::memory_order_relaxed), 0);
753   CHECK_EQ(GetExclusiveOwnerTid(), 0);
754   CHECK_EQ(num_contenders_.load(std::memory_order_relaxed), 0);
755 #else
756   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
757   // may still be using locks.
758   int rc = pthread_rwlock_destroy(&rwlock_);
759   if (rc != 0) {
760     errno = rc;
761     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
762     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
763   }
764 #endif
765 }
766 
ExclusiveLock(Thread * self)767 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
768   DCHECK(self == nullptr || self == Thread::Current());
769   AssertNotExclusiveHeld(self);
770 #if ART_USE_FUTEXES
771   bool done = false;
772   do {
773     int32_t cur_state = state_.load(std::memory_order_relaxed);
774     if (LIKELY(cur_state == 0)) {
775       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
776       done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
777     } else {
778       // Failed to acquire, hang up.
779       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
780       if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v == 0; })) {
781         num_contenders_.fetch_add(1);
782         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
783           self->CheckEmptyCheckpointFromMutex();
784         }
785         if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
786           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
787           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
788           if ((errno != EAGAIN) && (errno != EINTR)) {
789             PLOG(FATAL) << "futex wait failed for " << name_;
790           }
791         }
792         SleepIfRuntimeDeleted(self);
793         num_contenders_.fetch_sub(1);
794       }
795     }
796   } while (!done);
797   DCHECK_EQ(state_.load(std::memory_order_relaxed), -1);
798 #else
799   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
800 #endif
801   DCHECK_EQ(GetExclusiveOwnerTid(), 0);
802   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
803   RegisterAsLocked(self);
804   AssertExclusiveHeld(self);
805 }
806 
ExclusiveUnlock(Thread * self)807 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
808   DCHECK(self == nullptr || self == Thread::Current());
809   AssertExclusiveHeld(self);
810   RegisterAsUnlocked(self);
811   DCHECK_NE(GetExclusiveOwnerTid(), 0);
812 #if ART_USE_FUTEXES
813   bool done = false;
814   do {
815     int32_t cur_state = state_.load(std::memory_order_relaxed);
816     if (LIKELY(cur_state == -1)) {
817       // We're no longer the owner.
818       exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
819       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
820       // Note, the num_contenders_ load below musn't reorder before the CompareAndSet.
821       done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
822       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
823         // Wake any waiters.
824         if (UNLIKELY(num_contenders_.load(std::memory_order_seq_cst) > 0)) {
825           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
826         }
827       }
828     } else {
829       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
830     }
831   } while (!done);
832 #else
833   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
834   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
835 #endif
836 }
837 
838 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)839 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
840   DCHECK(self == nullptr || self == Thread::Current());
841 #if ART_USE_FUTEXES
842   bool done = false;
843   timespec end_abs_ts;
844   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
845   do {
846     int32_t cur_state = state_.load(std::memory_order_relaxed);
847     if (cur_state == 0) {
848       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
849       done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
850     } else {
851       // Failed to acquire, hang up.
852       timespec now_abs_ts;
853       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
854       timespec rel_ts;
855       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
856         return false;  // Timed out.
857       }
858       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
859       if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v == 0; })) {
860         num_contenders_.fetch_add(1);
861         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
862           self->CheckEmptyCheckpointFromMutex();
863         }
864         if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, &rel_ts, nullptr, 0) != 0) {
865           if (errno == ETIMEDOUT) {
866             num_contenders_.fetch_sub(1);
867             return false;  // Timed out.
868           } else if ((errno != EAGAIN) && (errno != EINTR)) {
869             // EAGAIN and EINTR both indicate a spurious failure,
870             // recompute the relative time out from now and try again.
871             // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
872             PLOG(FATAL) << "timed futex wait failed for " << name_;
873           }
874         }
875         SleepIfRuntimeDeleted(self);
876         num_contenders_.fetch_sub(1);
877       }
878     }
879   } while (!done);
880 #else
881   timespec ts;
882   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
883   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
884   if (result == ETIMEDOUT) {
885     return false;
886   }
887   if (result != 0) {
888     errno = result;
889     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
890   }
891 #endif
892   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
893   RegisterAsLocked(self);
894   AssertSharedHeld(self);
895   return true;
896 }
897 #endif
898 
899 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)900 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
901   // Owner holds it exclusively, hang up.
902   ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
903   if (!WaitBrieflyFor(&state_, self, [](int32_t v) { return v >= 0; })) {
904     num_contenders_.fetch_add(1);
905     if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
906       self->CheckEmptyCheckpointFromMutex();
907     }
908     if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
909       if (errno != EAGAIN && errno != EINTR) {
910         PLOG(FATAL) << "futex wait failed for " << name_;
911       }
912     }
913     SleepIfRuntimeDeleted(self);
914     num_contenders_.fetch_sub(1);
915   }
916 }
917 #endif
918 
SharedTryLock(Thread * self)919 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
920   DCHECK(self == nullptr || self == Thread::Current());
921 #if ART_USE_FUTEXES
922   bool done = false;
923   do {
924     int32_t cur_state = state_.load(std::memory_order_relaxed);
925     if (cur_state >= 0) {
926       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
927       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
928     } else {
929       // Owner holds it exclusively.
930       return false;
931     }
932   } while (!done);
933 #else
934   int result = pthread_rwlock_tryrdlock(&rwlock_);
935   if (result == EBUSY) {
936     return false;
937   }
938   if (result != 0) {
939     errno = result;
940     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
941   }
942 #endif
943   RegisterAsLocked(self);
944   AssertSharedHeld(self);
945   return true;
946 }
947 
IsSharedHeld(const Thread * self) const948 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
949   DCHECK(self == nullptr || self == Thread::Current());
950   bool result;
951   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
952     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
953   } else {
954     result = (self->GetHeldMutex(level_) == this);
955   }
956   return result;
957 }
958 
Dump(std::ostream & os) const959 void ReaderWriterMutex::Dump(std::ostream& os) const {
960   os << name_
961       << " level=" << static_cast<int>(level_)
962       << " owner=" << GetExclusiveOwnerTid()
963 #if ART_USE_FUTEXES
964       << " state=" << state_.load(std::memory_order_seq_cst)
965       << " num_contenders=" << num_contenders_.load(std::memory_order_seq_cst)
966 #endif
967       << " ";
968   DumpContention(os);
969 }
970 
operator <<(std::ostream & os,const ReaderWriterMutex & mu)971 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
972   mu.Dump(os);
973   return os;
974 }
975 
operator <<(std::ostream & os,const MutatorMutex & mu)976 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
977   mu.Dump(os);
978   return os;
979 }
980 
WakeupToRespondToEmptyCheckpoint()981 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
982 #if ART_USE_FUTEXES
983   // Wake up all the waiters so they will respond to the emtpy checkpoint.
984   DCHECK(should_respond_to_empty_checkpoint_request_);
985   if (UNLIKELY(num_contenders_.load(std::memory_order_relaxed) > 0)) {
986     futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
987   }
988 #else
989   LOG(FATAL) << "Non futex case isn't supported.";
990 #endif
991 }
992 
ConditionVariable(const char * name,Mutex & guard)993 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
994     : name_(name), guard_(guard) {
995 #if ART_USE_FUTEXES
996   DCHECK_EQ(0, sequence_.load(std::memory_order_relaxed));
997   num_waiters_ = 0;
998 #else
999   pthread_condattr_t cond_attrs;
1000   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
1001 #if !defined(__APPLE__)
1002   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
1003   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
1004 #endif
1005   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
1006 #endif
1007 }
1008 
~ConditionVariable()1009 ConditionVariable::~ConditionVariable() {
1010 #if ART_USE_FUTEXES
1011   if (num_waiters_!= 0) {
1012     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
1013     LOG(is_safe_to_call_abort ? FATAL : WARNING)
1014         << "ConditionVariable::~ConditionVariable for " << name_
1015         << " called with " << num_waiters_ << " waiters.";
1016   }
1017 #else
1018   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
1019   // may still be using condition variables.
1020   int rc = pthread_cond_destroy(&cond_);
1021   if (rc != 0) {
1022     errno = rc;
1023     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
1024     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
1025   }
1026 #endif
1027 }
1028 
Broadcast(Thread * self)1029 void ConditionVariable::Broadcast(Thread* self) {
1030   DCHECK(self == nullptr || self == Thread::Current());
1031   // TODO: enable below, there's a race in thread creation that causes false failures currently.
1032   // guard_.AssertExclusiveHeld(self);
1033   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
1034 #if ART_USE_FUTEXES
1035   RequeueWaiters(std::numeric_limits<int32_t>::max());
1036 #else
1037   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
1038 #endif
1039 }
1040 
1041 #if ART_USE_FUTEXES
RequeueWaiters(int32_t count)1042 void ConditionVariable::RequeueWaiters(int32_t count) {
1043   if (num_waiters_ > 0) {
1044     sequence_++;  // Indicate a signal occurred.
1045     // Move waiters from the condition variable's futex to the guard's futex,
1046     // so that they will be woken up when the mutex is released.
1047     bool done = futex(sequence_.Address(),
1048                       FUTEX_REQUEUE_PRIVATE,
1049                       /* Threads to wake */ 0,
1050                       /* Threads to requeue*/ reinterpret_cast<const timespec*>(count),
1051                       guard_.state_and_contenders_.Address(),
1052                       0) != -1;
1053     if (!done && errno != EAGAIN && errno != EINTR) {
1054       PLOG(FATAL) << "futex requeue failed for " << name_;
1055     }
1056   }
1057 }
1058 #endif
1059 
1060 
Signal(Thread * self)1061 void ConditionVariable::Signal(Thread* self) {
1062   DCHECK(self == nullptr || self == Thread::Current());
1063   guard_.AssertExclusiveHeld(self);
1064 #if ART_USE_FUTEXES
1065   RequeueWaiters(1);
1066 #else
1067   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
1068 #endif
1069 }
1070 
Wait(Thread * self)1071 void ConditionVariable::Wait(Thread* self) {
1072   guard_.CheckSafeToWait(self);
1073   WaitHoldingLocks(self);
1074 }
1075 
WaitHoldingLocks(Thread * self)1076 void ConditionVariable::WaitHoldingLocks(Thread* self) {
1077   DCHECK(self == nullptr || self == Thread::Current());
1078   guard_.AssertExclusiveHeld(self);
1079   unsigned int old_recursion_count = guard_.recursion_count_;
1080 #if ART_USE_FUTEXES
1081   num_waiters_++;
1082   // Ensure the Mutex is contended so that requeued threads are awoken.
1083   guard_.increment_contenders();
1084   guard_.recursion_count_ = 1;
1085   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
1086   guard_.ExclusiveUnlock(self);
1087   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, nullptr, nullptr, 0) != 0) {
1088     // Futex failed, check it is an expected error.
1089     // EAGAIN == EWOULDBLK, so we let the caller try again.
1090     // EINTR implies a signal was sent to this thread.
1091     if ((errno != EINTR) && (errno != EAGAIN)) {
1092       PLOG(FATAL) << "futex wait failed for " << name_;
1093     }
1094   }
1095   SleepIfRuntimeDeleted(self);
1096   guard_.ExclusiveLock(self);
1097   CHECK_GT(num_waiters_, 0);
1098   num_waiters_--;
1099   // We awoke and so no longer require awakes from the guard_'s unlock.
1100   CHECK_GT(guard_.get_contenders(), 0);
1101   guard_.decrement_contenders();
1102 #else
1103   pid_t old_owner = guard_.GetExclusiveOwnerTid();
1104   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
1105   guard_.recursion_count_ = 0;
1106   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
1107   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
1108 #endif
1109   guard_.recursion_count_ = old_recursion_count;
1110 }
1111 
TimedWait(Thread * self,int64_t ms,int32_t ns)1112 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
1113   DCHECK(self == nullptr || self == Thread::Current());
1114   bool timed_out = false;
1115   guard_.AssertExclusiveHeld(self);
1116   guard_.CheckSafeToWait(self);
1117   unsigned int old_recursion_count = guard_.recursion_count_;
1118 #if ART_USE_FUTEXES
1119   timespec rel_ts;
1120   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
1121   num_waiters_++;
1122   // Ensure the Mutex is contended so that requeued threads are awoken.
1123   guard_.increment_contenders();
1124   guard_.recursion_count_ = 1;
1125   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
1126   guard_.ExclusiveUnlock(self);
1127   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, &rel_ts, nullptr, 0) != 0) {
1128     if (errno == ETIMEDOUT) {
1129       // Timed out we're done.
1130       timed_out = true;
1131     } else if ((errno == EAGAIN) || (errno == EINTR)) {
1132       // A signal or ConditionVariable::Signal/Broadcast has come in.
1133     } else {
1134       PLOG(FATAL) << "timed futex wait failed for " << name_;
1135     }
1136   }
1137   SleepIfRuntimeDeleted(self);
1138   guard_.ExclusiveLock(self);
1139   CHECK_GT(num_waiters_, 0);
1140   num_waiters_--;
1141   // We awoke and so no longer require awakes from the guard_'s unlock.
1142   CHECK_GT(guard_.get_contenders(), 0);
1143   guard_.decrement_contenders();
1144 #else
1145 #if !defined(__APPLE__)
1146   int clock = CLOCK_MONOTONIC;
1147 #else
1148   int clock = CLOCK_REALTIME;
1149 #endif
1150   pid_t old_owner = guard_.GetExclusiveOwnerTid();
1151   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
1152   guard_.recursion_count_ = 0;
1153   timespec ts;
1154   InitTimeSpec(true, clock, ms, ns, &ts);
1155   int rc;
1156   while ((rc = pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts)) == EINTR) {
1157     continue;
1158   }
1159 
1160   if (rc == ETIMEDOUT) {
1161     timed_out = true;
1162   } else if (rc != 0) {
1163     errno = rc;
1164     PLOG(FATAL) << "TimedWait failed for " << name_;
1165   }
1166   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
1167 #endif
1168   guard_.recursion_count_ = old_recursion_count;
1169   return timed_out;
1170 }
1171 
1172 }  // namespace art
1173