• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "async_manager.h"
18 
19 #include <algorithm>
20 #include <atomic>
21 #include <condition_variable>
22 #include <mutex>
23 #include <thread>
24 #include <vector>
25 
26 #include "fcntl.h"
27 #include "log.h"
28 #include "sys/select.h"
29 #include "unistd.h"
30 
31 namespace rootcanal {
32 // Implementation of AsyncManager is divided between two classes, three if
33 // AsyncManager itself is taken into account, but its only responsability
34 // besides being a proxy for the other two classes is to provide a global
35 // synchronization mechanism for callbacks and client code to use.
36 
37 // The watching of file descriptors is done through AsyncFdWatcher. Several
38 // objects of this class may coexist simultaneosly as they share no state.
39 // After construction of this objects nothing happens beyond some very simple
40 // member initialization. When the first FD is set up for watching the object
41 // starts a new thread which watches the given (and later provided) FDs using
42 // select() inside a loop. A special FD (a pipe) is also watched which is
43 // used to notify the thread of internal changes on the object state (like
44 // the addition of new FDs to watch on). Every access to internal state is
45 // synchronized using a single internal mutex. The thread is only stopped on
46 // destruction of the object, by modifying a flag, which is the only member
47 // variable accessed without acquiring the lock (because the notification to
48 // the thread is done later by writing to a pipe which means the thread will
49 // be notified regardless of what phase of the loop it is in that moment)
50 
51 // The scheduling of asynchronous tasks, periodic or not, is handled by the
52 // AsyncTaskManager class. Like the one for FDs, this class shares no internal
53 // state between different instances so it is safe to use several objects of
54 // this class, also nothing interesting happens upon construction, but only
55 // after a Task has been scheduled and access to internal state is synchronized
56 // using a single internal mutex. When the first task is scheduled a thread
57 // is started which monitors a queue of tasks. The queue is peeked to see
58 // when the next task should be carried out and then the thread performs a
59 // (absolute) timed wait on a condition variable. The wait ends because of a
60 // time out or a notify on the cond var, the former means a task is due
61 // for execution while the later means there has been a change in internal
62 // state, like a task has been scheduled/canceled or the flag to stop has
63 // been set. Setting and querying the stop flag or modifying the task queue
64 // and subsequent notification on the cond var is done atomically (e.g while
65 // holding the lock on the internal mutex) to ensure that the thread never
66 // misses the notification, since notifying a cond var is not persistent as
67 // writing on a pipe (if not done this way, the thread could query the
68 // stopping flag and be put aside by the OS scheduler right after, then the
69 // 'stop thread' procedure could run, setting the flag, notifying a cond
70 // var that no one is waiting on and joining the thread, the thread then
71 // resumes execution believing that it needs to continue and waits on the
72 // cond var possibly forever if there are no tasks scheduled, efectively
73 // causing a deadlock).
74 
75 // This number also states the maximum number of scheduled tasks we can handle
76 // at a given time
77 static const uint16_t kMaxTaskId =
78     -1; /* 2^16 - 1, permisible ids are {1..2^16-1}*/
NextAsyncTaskId(const AsyncTaskId id)79 static inline AsyncTaskId NextAsyncTaskId(const AsyncTaskId id) {
80   return (id == kMaxTaskId) ? 1 : id + 1;
81 }
82 // The buffer is only 10 bytes because the expected number of bytes
83 // written on this socket is 1. It is possible that the thread is notified
84 // more than once but highly unlikely, so a buffer of size 10 seems enough
85 // and the reads are performed inside a while just in case it isn't. From
86 // the thread routine's point of view it is the same to have been notified
87 // just once or 100 times so it just tries to consume the entire buffer.
88 // In the cases where an interrupt would cause read to return without
89 // having read everything that was available a new iteration of the thread
90 // loop will bring execution to this point almost immediately, so there is
91 // no need to treat that case.
92 static const int kNotificationBufferSize = 10;
93 
94 // Async File Descriptor Watcher Implementation:
95 class AsyncManager::AsyncFdWatcher {
96  public:
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)97   int WatchFdForNonBlockingReads(
98       int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
99     // add file descriptor and callback
100     {
101       std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
102       watched_shared_fds_[file_descriptor] = on_read_fd_ready_callback;
103     }
104 
105     // start the thread if not started yet
106     int started = tryStartThread();
107     if (started != 0) {
108       LOG_ERROR("%s: Unable to start thread", __func__);
109       return started;
110     }
111 
112     // notify the thread so that it knows of the new FD
113     notifyThread();
114 
115     return 0;
116   }
117 
StopWatchingFileDescriptor(int file_descriptor)118   void StopWatchingFileDescriptor(int file_descriptor) {
119     std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
120     watched_shared_fds_.erase(file_descriptor);
121   }
122 
123   AsyncFdWatcher() = default;
124   AsyncFdWatcher(const AsyncFdWatcher&) = delete;
125   AsyncFdWatcher& operator=(const AsyncFdWatcher&) = delete;
126 
127   ~AsyncFdWatcher() = default;
128 
stopThread()129   int stopThread() {
130     if (!std::atomic_exchange(&running_, false)) {
131       return 0;  // if not running already
132     }
133 
134     notifyThread();
135 
136     if (std::this_thread::get_id() != thread_.get_id()) {
137       thread_.join();
138     } else {
139       LOG_WARN("%s: Starting thread stop from inside the reading thread itself",
140                __func__);
141     }
142 
143     {
144       std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
145       watched_shared_fds_.clear();
146     }
147 
148     return 0;
149   }
150 
151  private:
152   // Make sure to call this with at least one file descriptor ready to be
153   // watched upon or the thread routine will return immediately
tryStartThread()154   int tryStartThread() {
155     if (std::atomic_exchange(&running_, true)) {
156       return 0;  // if already running
157     }
158     // set up the communication channel
159     int pipe_fds[2];
160     if (pipe2(pipe_fds, O_NONBLOCK)) {
161       LOG_ERROR(
162           "%s:Unable to establish a communication channel to the reading "
163           "thread",
164           __func__);
165       return -1;
166     }
167     notification_listen_fd_ = pipe_fds[0];
168     notification_write_fd_ = pipe_fds[1];
169 
170     thread_ = std::thread([this]() { ThreadRoutine(); });
171     if (!thread_.joinable()) {
172       LOG_ERROR("%s: Unable to start reading thread", __func__);
173       return -1;
174     }
175     return 0;
176   }
177 
notifyThread()178   int notifyThread() {
179     char buffer = '0';
180     if (TEMP_FAILURE_RETRY(write(notification_write_fd_, &buffer, 1)) < 0) {
181       LOG_ERROR("%s: Unable to send message to reading thread", __func__);
182       return -1;
183     }
184     return 0;
185   }
186 
setUpFileDescriptorSet(fd_set & read_fds)187   int setUpFileDescriptorSet(fd_set& read_fds) {
188     // add comm channel to the set
189     FD_SET(notification_listen_fd_, &read_fds);
190     int nfds = notification_listen_fd_;
191 
192     // add watched FDs to the set
193     {
194       std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
195       for (auto& fdp : watched_shared_fds_) {
196         FD_SET(fdp.first, &read_fds);
197         nfds = std::max(fdp.first, nfds);
198       }
199     }
200     return nfds;
201   }
202 
203   // check the comm channel and read everything there
consumeThreadNotifications(fd_set & read_fds)204   bool consumeThreadNotifications(fd_set& read_fds) {
205     if (FD_ISSET(notification_listen_fd_, &read_fds)) {
206       char buffer[kNotificationBufferSize];
207       while (TEMP_FAILURE_RETRY(read(notification_listen_fd_, buffer,
208                                      kNotificationBufferSize)) ==
209              kNotificationBufferSize) {
210       }
211       return true;
212     }
213     return false;
214   }
215 
216   // check all file descriptors and call callbacks if necesary
runAppropriateCallbacks(fd_set & read_fds)217   void runAppropriateCallbacks(fd_set& read_fds) {
218     std::vector<decltype(watched_shared_fds_)::value_type> fds;
219     std::unique_lock<std::recursive_mutex> guard(internal_mutex_);
220     for (auto& fdc : watched_shared_fds_) {
221       if (FD_ISSET(fdc.first, &read_fds)) {
222         fds.push_back(fdc);
223       }
224     }
225     for (auto& p : fds) {
226       p.second(p.first);
227     }
228   }
229 
ThreadRoutine()230   void ThreadRoutine() {
231     while (running_) {
232       fd_set read_fds;
233       FD_ZERO(&read_fds);
234       int nfds = setUpFileDescriptorSet(read_fds);
235 
236       // wait until there is data available to read on some FD
237       int retval = select(nfds + 1, &read_fds, NULL, NULL, NULL);
238       if (retval <= 0) {  // there was some error or a timeout
239         LOG_ERROR(
240             "%s: There was an error while waiting for data on the file "
241             "descriptors: %s",
242             __func__, strerror(errno));
243         continue;
244       }
245 
246       consumeThreadNotifications(read_fds);
247 
248       // Do not read if there was a call to stop running
249       if (!running_) {
250         break;
251       }
252 
253       runAppropriateCallbacks(read_fds);
254     }
255   }
256 
257   std::atomic_bool running_{false};
258   std::thread thread_;
259   std::recursive_mutex internal_mutex_;
260 
261   std::map<int, ReadCallback> watched_shared_fds_;
262 
263   // A pair of FD to send information to the reading thread
264   int notification_listen_fd_{};
265   int notification_write_fd_{};
266 };
267 
268 // Async task manager implementation
269 class AsyncManager::AsyncTaskManager {
270  public:
GetNextUserId()271   AsyncUserId GetNextUserId() { return lastUserId_++; }
272 
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)273   AsyncTaskId ExecAsync(AsyncUserId user_id, std::chrono::milliseconds delay,
274                         const TaskCallback& callback) {
275     return scheduleTask(std::make_shared<Task>(
276         std::chrono::steady_clock::now() + delay, callback, user_id));
277   }
278 
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)279   AsyncTaskId ExecAsyncPeriodically(AsyncUserId user_id,
280                                     std::chrono::milliseconds delay,
281                                     std::chrono::milliseconds period,
282                                     const TaskCallback& callback) {
283     return scheduleTask(std::make_shared<Task>(
284         std::chrono::steady_clock::now() + delay, period, callback, user_id));
285   }
286 
CancelAsyncTask(AsyncTaskId async_task_id)287   bool CancelAsyncTask(AsyncTaskId async_task_id) {
288     // remove task from queue (and task id association) while holding lock
289     std::unique_lock<std::mutex> guard(internal_mutex_);
290     return cancel_task_with_lock_held(async_task_id);
291   }
292 
CancelAsyncTasksFromUser(AsyncUserId user_id)293   bool CancelAsyncTasksFromUser(AsyncUserId user_id) {
294     // remove task from queue (and task id association) while holding lock
295     std::unique_lock<std::mutex> guard(internal_mutex_);
296     if (tasks_by_user_id_.count(user_id) == 0) {
297       return false;
298     }
299     for (auto task : tasks_by_user_id_[user_id]) {
300       cancel_task_with_lock_held(task);
301     }
302     tasks_by_user_id_.erase(user_id);
303     return true;
304   }
305 
306   AsyncTaskManager() = default;
307   AsyncTaskManager(const AsyncTaskManager&) = delete;
308   AsyncTaskManager& operator=(const AsyncTaskManager&) = delete;
309 
310   ~AsyncTaskManager() = default;
311 
stopThread()312   int stopThread() {
313     {
314       std::unique_lock<std::mutex> guard(internal_mutex_);
315       tasks_by_id_.clear();
316       task_queue_.clear();
317       if (!running_) {
318         return 0;
319       }
320       running_ = false;
321       // notify the thread
322       internal_cond_var_.notify_one();
323     }  // release the lock before joining a thread that is likely waiting for it
324     if (std::this_thread::get_id() != thread_.get_id()) {
325       thread_.join();
326     } else {
327       LOG_WARN("%s: Starting thread stop from inside the task thread itself",
328                __func__);
329     }
330     return 0;
331   }
332 
333  private:
334   // Holds the data for each task
335   class Task {
336    public:
Task(std::chrono::steady_clock::time_point time,std::chrono::milliseconds period,const TaskCallback & callback,AsyncUserId user)337     Task(std::chrono::steady_clock::time_point time,
338          std::chrono::milliseconds period, const TaskCallback& callback,
339          AsyncUserId user)
340         : time(time),
341           periodic(true),
342           period(period),
343           callback(callback),
344           task_id(kInvalidTaskId),
345           user_id(user) {}
Task(std::chrono::steady_clock::time_point time,const TaskCallback & callback,AsyncUserId user)346     Task(std::chrono::steady_clock::time_point time,
347          const TaskCallback& callback, AsyncUserId user)
348         : time(time),
349           periodic(false),
350           callback(callback),
351           task_id(kInvalidTaskId),
352           user_id(user) {}
353 
354     // Operators needed to be in a collection
operator <(const Task & another) const355     bool operator<(const Task& another) const {
356       return std::make_pair(time, task_id) <
357              std::make_pair(another.time, another.task_id);
358     }
359 
isPeriodic() const360     bool isPeriodic() const { return periodic; }
361 
362     // These fields should no longer be public if the class ever becomes
363     // public or gets more complex
364     std::chrono::steady_clock::time_point time;
365     bool periodic;
366     std::chrono::milliseconds period{};
367     std::mutex in_callback; // Taken when the callback is active
368     TaskCallback callback;
369     AsyncTaskId task_id;
370     AsyncUserId user_id;
371   };
372 
373   // A comparator class to put shared pointers to tasks in an ordered set
374   struct task_p_comparator {
operator ()rootcanal::AsyncManager::AsyncTaskManager::task_p_comparator375     bool operator()(const std::shared_ptr<Task>& t1,
376                     const std::shared_ptr<Task>& t2) const {
377       return *t1 < *t2;
378     }
379   };
380 
cancel_task_with_lock_held(AsyncTaskId async_task_id)381   bool cancel_task_with_lock_held(AsyncTaskId async_task_id) {
382     if (tasks_by_id_.count(async_task_id) == 0) {
383       return false;
384     }
385 
386     // Now make sure we are not running this task.
387     // 2 cases:
388     // - This is called from thread_, this means a running
389     //   scheduled task is actually unregistering. All bets are off.
390     // - Another thread is calling us, let's make sure the task is not active.
391     if (thread_.get_id() != std::this_thread::get_id()) {
392       auto task = tasks_by_id_[async_task_id];
393       const std::lock_guard<std::mutex> lock(task->in_callback);
394       task_queue_.erase(task);
395       tasks_by_id_.erase(async_task_id);
396     } else {
397       task_queue_.erase(tasks_by_id_[async_task_id]);
398       tasks_by_id_.erase(async_task_id);
399     }
400 
401     return true;
402   }
403 
scheduleTask(const std::shared_ptr<Task> & task)404   AsyncTaskId scheduleTask(const std::shared_ptr<Task>& task) {
405     {
406       std::unique_lock<std::mutex> guard(internal_mutex_);
407       // no more room for new tasks, we need a larger type for IDs
408       if (tasks_by_id_.size() == kMaxTaskId)  // TODO potentially type unsafe
409         return kInvalidTaskId;
410       do {
411         lastTaskId_ = NextAsyncTaskId(lastTaskId_);
412       } while (isTaskIdInUse(lastTaskId_));
413       task->task_id = lastTaskId_;
414       // add task to the queue and map
415       tasks_by_id_[lastTaskId_] = task;
416       tasks_by_user_id_[task->user_id].insert(task->task_id);
417       task_queue_.insert(task);
418     }
419     // start thread if necessary
420     int started = tryStartThread();
421     if (started != 0) {
422       LOG_ERROR("%s: Unable to start thread", __func__);
423       return kInvalidTaskId;
424     }
425     // notify the thread so that it knows of the new task
426     internal_cond_var_.notify_one();
427     // return task id
428     return task->task_id;
429   }
430 
isTaskIdInUse(const AsyncTaskId & task_id) const431   bool isTaskIdInUse(const AsyncTaskId& task_id) const {
432     return tasks_by_id_.count(task_id) != 0;
433   }
434 
tryStartThread()435   int tryStartThread() {
436     // need the lock because of the running flag and the cond var
437     std::unique_lock<std::mutex> guard(internal_mutex_);
438     // check that the thread is not yet running
439     if (running_) {
440       return 0;
441     }
442     // start the thread
443     running_ = true;
444     thread_ = std::thread([this]() { ThreadRoutine(); });
445     if (!thread_.joinable()) {
446       LOG_ERROR("%s: Unable to start task thread", __func__);
447       return -1;
448     }
449     return 0;
450   }
451 
ThreadRoutine()452   void ThreadRoutine() {
453     while (running_) {
454       TaskCallback callback;
455       std::shared_ptr<Task> task_p;
456       bool run_it = false;
457       {
458         std::unique_lock<std::mutex> guard(internal_mutex_);
459         if (!task_queue_.empty()) {
460           task_p = *(task_queue_.begin());
461           if (task_p->time < std::chrono::steady_clock::now()) {
462             run_it = true;
463             callback = task_p->callback;
464             task_queue_.erase(task_p);  // need to remove and add again if
465                                         // periodic to update order
466             if (task_p->isPeriodic()) {
467               task_p->time += task_p->period;
468               task_queue_.insert(task_p);
469             } else {
470               tasks_by_user_id_[task_p->user_id].erase(task_p->task_id);
471               tasks_by_id_.erase(task_p->task_id);
472             }
473           }
474         }
475       }
476       if (run_it) {
477         const std::lock_guard<std::mutex> lock(task_p->in_callback);
478         callback();
479       }
480       {
481         std::unique_lock<std::mutex> guard(internal_mutex_);
482         // check for termination right before waiting
483         if (!running_) break;
484         // wait until time for the next task (if any)
485         if (task_queue_.size() > 0) {
486           // Make a copy of the time_point because wait_until takes a reference
487           // to it and may read it after waiting, by which time the task may
488           // have been freed (e.g. via CancelAsyncTask).
489           std::chrono::steady_clock::time_point time =
490               (*task_queue_.begin())->time;
491           internal_cond_var_.wait_until(guard, time);
492         } else {
493           internal_cond_var_.wait(guard);
494         }
495       }
496     }
497   }
498 
499   bool running_ = false;
500   std::thread thread_;
501   std::mutex internal_mutex_;
502   std::condition_variable internal_cond_var_;
503 
504   AsyncTaskId lastTaskId_ = kInvalidTaskId;
505   AsyncUserId lastUserId_{1};
506   std::map<AsyncTaskId, std::shared_ptr<Task>> tasks_by_id_;
507   std::map<AsyncUserId, std::set<AsyncTaskId>> tasks_by_user_id_;
508   std::set<std::shared_ptr<Task>, task_p_comparator> task_queue_;
509 };
510 
511 // Async Manager Implementation:
AsyncManager()512 AsyncManager::AsyncManager()
513     : fdWatcher_p_(new AsyncFdWatcher()),
514       taskManager_p_(new AsyncTaskManager()) {}
515 
~AsyncManager()516 AsyncManager::~AsyncManager() {
517   // Make sure the threads are stopped before destroying the object.
518   // The threads need to be stopped here and not in each internal class'
519   // destructor because unique_ptr's reset() first assigns nullptr to the
520   // pointer and only then calls the destructor, so any callback running
521   // on these threads would dereference a null pointer if they called a member
522   // function of this class.
523   fdWatcher_p_->stopThread();
524   taskManager_p_->stopThread();
525 }
526 
WatchFdForNonBlockingReads(int file_descriptor,const ReadCallback & on_read_fd_ready_callback)527 int AsyncManager::WatchFdForNonBlockingReads(
528     int file_descriptor, const ReadCallback& on_read_fd_ready_callback) {
529   return fdWatcher_p_->WatchFdForNonBlockingReads(file_descriptor,
530                                                   on_read_fd_ready_callback);
531 }
532 
StopWatchingFileDescriptor(int file_descriptor)533 void AsyncManager::StopWatchingFileDescriptor(int file_descriptor) {
534   fdWatcher_p_->StopWatchingFileDescriptor(file_descriptor);
535 }
536 
GetNextUserId()537 AsyncUserId AsyncManager::GetNextUserId() {
538   return taskManager_p_->GetNextUserId();
539 }
540 
ExecAsync(AsyncUserId user_id,std::chrono::milliseconds delay,const TaskCallback & callback)541 AsyncTaskId AsyncManager::ExecAsync(AsyncUserId user_id,
542                                     std::chrono::milliseconds delay,
543                                     const TaskCallback& callback) {
544   return taskManager_p_->ExecAsync(user_id, delay, callback);
545 }
546 
ExecAsyncPeriodically(AsyncUserId user_id,std::chrono::milliseconds delay,std::chrono::milliseconds period,const TaskCallback & callback)547 AsyncTaskId AsyncManager::ExecAsyncPeriodically(
548     AsyncUserId user_id, std::chrono::milliseconds delay,
549     std::chrono::milliseconds period, const TaskCallback& callback) {
550   return taskManager_p_->ExecAsyncPeriodically(user_id, delay, period,
551                                                callback);
552 }
553 
CancelAsyncTask(AsyncTaskId async_task_id)554 bool AsyncManager::CancelAsyncTask(AsyncTaskId async_task_id) {
555   return taskManager_p_->CancelAsyncTask(async_task_id);
556 }
557 
CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id)558 bool AsyncManager::CancelAsyncTasksFromUser(rootcanal::AsyncUserId user_id) {
559   return taskManager_p_->CancelAsyncTasksFromUser(user_id);
560 }
561 
Synchronize(const CriticalCallback & critical)562 void AsyncManager::Synchronize(const CriticalCallback& critical) {
563   std::unique_lock<std::mutex> guard(synchronization_mutex_);
564   critical();
565 }
566 }  // namespace rootcanal
567