• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2018-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/core/CL/kernels/CLElementwiseOperationKernel.h"
25 
26 #include "arm_compute/core/CL/CLHelpers.h"
27 #include "arm_compute/core/CL/ICLTensor.h"
28 #include "src/core/CL/CLValidate.h"
29 #include "src/core/common/Validate.h"
30 #include "src/core/helpers/AutoConfiguration.h"
31 #include "src/core/helpers/WindowHelpers.h"
32 #include "support/Cast.h"
33 #include "support/StringSupport.h"
34 #include <map>
35 
36 namespace arm_compute
37 {
38 namespace
39 {
40 constexpr unsigned int vector_size_byte_opencl = 16;
41 
42 std::map<ArithmeticOperation, std::string> supported_arithmetic_ops =
43 {
44     { ArithmeticOperation::ADD, "ADD" },
45     { ArithmeticOperation::SUB, "SUB" },
46     { ArithmeticOperation::DIV, "DIV" },
47     { ArithmeticOperation::SQUARED_DIFF, "SQUARED_DIFF" },
48     { ArithmeticOperation::MIN, "MIN" },
49     { ArithmeticOperation::MAX, "MAX" },
50     { ArithmeticOperation::POWER, "POWER" },
51     { ArithmeticOperation::PRELU, "PRELU" },
52 };
53 
54 std::map<ArithmeticOperation, std::string> supported_sat_arithmetic_ops =
55 {
56     { ArithmeticOperation::ADD, "ADD" },
57     { ArithmeticOperation::SUB, "SUB" },
58 };
59 
generate_id_for_tuning_common(const std::string & kernel_name,const ITensorInfo & input1,const ITensorInfo & output)60 std::string generate_id_for_tuning_common(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
61 {
62     std::string config_id;
63     // Set config_id for enabling LWS tuning
64     config_id = kernel_name;
65     config_id += "_";
66     config_id += lower_string(string_from_data_type(input1.data_type()));
67     config_id += "_";
68     config_id += support::cpp11::to_string(output.dimension(0));
69     config_id += "_";
70     config_id += support::cpp11::to_string(output.dimension(1));
71     return config_id;
72 }
73 
validate_arguments_with_float_only_supported_rules(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)74 Status validate_arguments_with_float_only_supported_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
75 {
76     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(&input1, &input2, &output);
77     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1);
78     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32);
79     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
80 
81     const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
82 
83     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
84 
85     // Validate in case of configured output
86     if(output.total_size() > 0)
87     {
88         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::F16, DataType::F32);
89         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
90         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
91                                         "Wrong shape for output");
92     }
93 
94     return Status{};
95 }
96 
validate_arguments_with_arithmetic_rules(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)97 Status validate_arguments_with_arithmetic_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
98 {
99     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input1);
100     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
101                                                          DataType::S16, DataType::QSYMM16, DataType::F16,
102                                                          DataType::S32, DataType::F32);
103     ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&input2);
104     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
105                                                          DataType::S16, DataType::QSYMM16, DataType::F16,
106                                                          DataType::S32, DataType::F32);
107 
108     const bool is_quantized = is_data_type_quantized(input1.data_type()) || is_data_type_quantized(input2.data_type());
109     if(is_quantized)
110     {
111         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
112 
113         if(is_data_type_quantized_symmetric(input1.data_type()))
114         {
115             const int32_t in1_offset = input1.quantization_info().uniform().offset;
116             const int32_t in2_offset = input2.quantization_info().uniform().offset;
117             ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_offset != 0, "For quantized symmetric, offset must be zero");
118             ARM_COMPUTE_RETURN_ERROR_ON_MSG(in2_offset != 0, "For quantized symmetric, offset must be zero");
119         }
120     }
121 
122     const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
123 
124     ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
125 
126     // Validate in case of configured output
127     if(output.total_size() > 0)
128     {
129         ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&output);
130         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
131                                                              DataType::S16, DataType::QSYMM16, DataType::F16,
132                                                              DataType::S32, DataType::F32);
133         ARM_COMPUTE_RETURN_ERROR_ON_MSG((output.data_type() == DataType::U8) && ((input1.data_type() != DataType::U8) || (input2.data_type() != DataType::U8)),
134                                         "Output can only be U8 if both inputs are U8");
135         ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
136                                         "Wrong shape for output");
137 
138         if(is_quantized)
139         {
140             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
141 
142             if(is_data_type_quantized_symmetric(output.data_type()))
143             {
144                 const int32_t offset = output.quantization_info().uniform().offset;
145                 ARM_COMPUTE_RETURN_ERROR_ON_MSG(offset != 0, "For quantized symmetric, offset must be zero");
146             }
147         }
148     }
149     return Status{};
150 }
151 
generate_build_options_with_arithmetic_rules(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output,const std::string & operation_string)152 CLBuildOptions generate_build_options_with_arithmetic_rules(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, const std::string &operation_string)
153 {
154     CLBuildOptions build_opts;
155 
156     const unsigned int num_elems_processed_per_iteration = adjust_vec_size(vector_size_byte_opencl / output.element_size(), output.dimension(0));
157 
158     build_opts.add_option("-DDATA_TYPE_IN1=" + get_cl_type_from_data_type(input1.data_type()));
159     build_opts.add_option("-DDATA_TYPE_IN2=" + get_cl_type_from_data_type(input2.data_type()));
160     build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output.data_type()));
161     build_opts.add_option("-DVEC_SIZE_IN1=" + support::cpp11::to_string(input1.dimension(0) == 1 ? 1 : num_elems_processed_per_iteration));
162     build_opts.add_option("-DVEC_SIZE_IN2=" + support::cpp11::to_string(input2.dimension(0) == 1 ? 1 : num_elems_processed_per_iteration));
163     build_opts.add_option("-DVEC_SIZE_OUT=" + support::cpp11::to_string(num_elems_processed_per_iteration));
164     build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(output.dimension(0) % num_elems_processed_per_iteration));
165     build_opts.add_option("-DOP=" + operation_string);
166     if(is_data_type_quantized(input1.data_type()))
167     {
168         const UniformQuantizationInfo iq1info = input1.quantization_info().uniform();
169         const UniformQuantizationInfo iq2info = input2.quantization_info().uniform();
170         const UniformQuantizationInfo oqinfo  = output.quantization_info().uniform();
171 
172         build_opts.add_option("-DOFFSET_IN1=" + support::cpp11::to_string(iq1info.offset));
173         build_opts.add_option("-DOFFSET_IN2=" + support::cpp11::to_string(iq2info.offset));
174         build_opts.add_option("-DOFFSET_OUT=" + support::cpp11::to_string(oqinfo.offset));
175         build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq1info.scale));
176         build_opts.add_option("-DSCALE_IN2=" + float_to_string_with_full_precision(iq2info.scale));
177         build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oqinfo.scale));
178     }
179     return build_opts;
180 }
181 
configure_window_arithmetic_common(ITensorInfo & output)182 std::pair<Status, Window> configure_window_arithmetic_common(ITensorInfo &output)
183 {
184     const unsigned int num_elems_processed_per_iteration = adjust_vec_size(vector_size_byte_opencl / output.element_size(), output.dimension(0));
185     Window             win                               = calculate_max_window(output, Steps(num_elems_processed_per_iteration));
186     return std::make_pair(Status{}, win);
187 }
188 
validate_and_configure_window_for_arithmetic_operators(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)189 std::pair<Status, Window> validate_and_configure_window_for_arithmetic_operators(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
190 {
191     const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
192     const TensorShape &out_shape = broadcast_pair.first;
193 
194     set_shape_if_empty(output, out_shape);
195 
196     if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16)
197     {
198         set_format_if_unknown(output, Format::S16);
199     }
200     else if(input1.data_type() == DataType::F16 || input2.data_type() == DataType::F16)
201     {
202         set_format_if_unknown(output, Format::F16);
203     }
204     else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32)
205     {
206         set_format_if_unknown(output, Format::F32);
207     }
208     else if(input1.data_type() == DataType::QASYMM8 || input2.data_type() == DataType::QASYMM8)
209     {
210         set_data_type_if_unknown(output, DataType::QASYMM8);
211     }
212     else if(input1.data_type() == DataType::QASYMM8_SIGNED || input2.data_type() == DataType::QASYMM8_SIGNED)
213     {
214         set_data_type_if_unknown(output, DataType::QASYMM8_SIGNED);
215     }
216     else if(input1.data_type() == DataType::QSYMM16 || input2.data_type() == DataType::QSYMM16)
217     {
218         set_data_type_if_unknown(output, DataType::QSYMM16);
219     }
220 
221     return configure_window_arithmetic_common(output);
222 }
223 
validate_and_configure_window_for_logical_binary_operators(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)224 std::pair<Status, Window> validate_and_configure_window_for_logical_binary_operators(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
225 {
226     const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
227     const TensorShape &out_shape = broadcast_pair.first;
228 
229     set_shape_if_empty(output, out_shape);
230     set_data_type_if_unknown(output, DataType::U8);
231 
232     // The arithmetic utility functions can be share
233     return configure_window_arithmetic_common(output);
234 }
235 
validate_and_configure_window_for_division(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)236 std::pair<Status, Window> validate_and_configure_window_for_division(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
237 {
238     const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
239     const TensorShape &out_shape = broadcast_pair.first;
240     auto_init_if_empty(output, out_shape, 1, input1.data_type());
241     return configure_window_arithmetic_common(output);
242 }
243 } // namespace
244 
CLElementwiseOperationKernel()245 CLElementwiseOperationKernel::CLElementwiseOperationKernel()
246     : _act_info(), _input1(nullptr), _input2(nullptr), _output(nullptr)
247 {
248 }
249 
configure_common(ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output)250 void CLElementwiseOperationKernel::configure_common(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
251 {
252     configure_common(CLKernelLibrary::get().get_compile_context(), input1, input2, output);
253 }
254 
configure_common(const CLCompileContext & compile_context,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output)255 void CLElementwiseOperationKernel::configure_common(const CLCompileContext &compile_context, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
256 {
257     // Configure kernel window
258     auto win_config = validate_and_configure_window(*input1, *input2, *output);
259     ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
260 
261     _input1 = input1;
262     _input2 = input2;
263     _output = output;
264 
265     std::string kernel_name = "elementwise_operation_" + name();
266     if(is_data_type_quantized(input1->data_type()))
267     {
268         kernel_name += "_quantized";
269     }
270 
271     // Set kernel build options
272     CLBuildOptions build_opts = generate_build_options(*input1, *input2, *output);
273     if(_act_info.enabled())
274     {
275         build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(_act_info.activation())));
276         build_opts.add_option("-DA_VAL=" + float_to_string_with_full_precision(_act_info.a()));
277         build_opts.add_option("-DB_VAL=" + float_to_string_with_full_precision(_act_info.b()));
278     }
279 
280     // Create kernel
281     _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
282 
283     ICLKernel::configure_internal(win_config.second);
284 
285     _config_id = generate_id_for_tuning(kernel_name, *input1, *output);
286 }
287 
run_op(ITensorPack & tensors,const Window & window,cl::CommandQueue & queue)288 void CLElementwiseOperationKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
289 {
290     ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
291     ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
292 
293     const auto src_0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
294     const auto src_1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
295     auto       dst   = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
296 
297     const TensorShape &in_shape1 = src_0->info()->tensor_shape();
298     const TensorShape &in_shape2 = src_1->info()->tensor_shape();
299     const TensorShape &out_shape = dst->info()->tensor_shape();
300 
301     bool       can_collapse = true;
302     const bool is_vector    = in_shape1.num_dimensions() == 1 || in_shape2.num_dimensions() == 1;
303     if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1 && !is_vector)
304     {
305         can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
306         for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); d++)
307         {
308             can_collapse = (in_shape1[d] == in_shape2[d]);
309         }
310     }
311 
312     bool   has_collapsed = false;
313     Window collapsed     = can_collapse ? window.collapse_if_possible(ICLKernel::window(), Window::DimZ, &has_collapsed) : window;
314 
315     const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
316     const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
317 
318     Window slice        = collapsed.first_slice_window_3D();
319     Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
320     Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
321     do
322     {
323         unsigned int idx = 0;
324         add_3D_tensor_argument(idx, src_0, slice_input1);
325         add_3D_tensor_argument(idx, src_1, slice_input2);
326         add_3D_tensor_argument(idx, dst, slice);
327 
328         enqueue(queue, *this, slice, lws_hint());
329         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
330         ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
331     }
332     while(collapsed.slide_window_slice_3D(slice));
333 }
334 
335 /** Logical binary */
configure(const CLCompileContext & compile_context,kernels::LogicalOperation op,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output)336 void CLLogicalBinaryKernel::configure(const CLCompileContext &compile_context, kernels::LogicalOperation op, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
337 {
338     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
339     ARM_COMPUTE_ERROR_THROW_ON(CLLogicalBinaryKernel::validate(op, input1, input2, output));
340     _op = op;
341     configure_common(compile_context, input1, input2, output);
342 }
343 
validate(kernels::LogicalOperation op,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output)344 Status CLLogicalBinaryKernel::validate(kernels::LogicalOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
345 {
346     ARM_COMPUTE_UNUSED(op);
347     ARM_COMPUTE_ASSERT(op != kernels::LogicalOperation::Unknown && op != kernels::LogicalOperation::Not);
348     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
349 
350     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8);
351     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
352 
353     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
354     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_logical_binary_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
355 
356     return Status{};
357 }
358 
name()359 std::string CLLogicalBinaryKernel::name()
360 {
361     switch(_op)
362     {
363         case kernels::LogicalOperation::And:
364             return "AND";
365         case kernels::LogicalOperation::Or:
366             return "OR";
367         case kernels::LogicalOperation::Not:
368         /* fall through */
369         default:
370             ARM_COMPUTE_ASSERT(true);
371     }
372     return "";
373 }
374 
validate_and_configure_window(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)375 std::pair<Status, Window> CLLogicalBinaryKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
376 {
377     return validate_and_configure_window_for_logical_binary_operators(input1, input2, output);
378 }
379 
generate_build_options(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)380 CLBuildOptions CLLogicalBinaryKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
381 {
382     // The arithmetic utility functions can be share
383     return generate_build_options_with_arithmetic_rules(input1, input2, output, name());
384 }
385 
generate_id_for_tuning(const std::string & kernel_name,const ITensorInfo & input1,const ITensorInfo & output)386 std::string CLLogicalBinaryKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
387 {
388     return generate_id_for_tuning_common(kernel_name, input1, output);
389 }
390 
391 /** Arithmetic operations with saturation*/
392 
configure(ArithmeticOperation op,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const ConvertPolicy & policy,const ActivationLayerInfo & act_info)393 void CLSaturatedArithmeticOperationKernel::configure(ArithmeticOperation op, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ConvertPolicy &policy,
394                                                      const ActivationLayerInfo &act_info)
395 {
396     configure(CLKernelLibrary::get().get_compile_context(), op, input1, input2, output, policy, act_info);
397 }
398 
configure(const CLCompileContext & compile_context,ArithmeticOperation op,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const ConvertPolicy & policy,const ActivationLayerInfo & act_info)399 void CLSaturatedArithmeticOperationKernel::configure(const CLCompileContext &compile_context, ArithmeticOperation op, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output,
400                                                      const ConvertPolicy       &policy,
401                                                      const ActivationLayerInfo &act_info)
402 {
403     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
404     ARM_COMPUTE_ERROR_THROW_ON(CLSaturatedArithmeticOperationKernel::validate(op, input1, input2, output, policy, act_info));
405     auto padding_info = get_padding_info({ input1, input2, output });
406 
407     _policy   = policy;
408     _op       = op;
409     _act_info = act_info;
410     configure_common(compile_context, input1, input2, output);
411     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
412 }
413 
validate(ArithmeticOperation op,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,const ConvertPolicy & policy,const ActivationLayerInfo & act_info)414 Status CLSaturatedArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ConvertPolicy &policy,
415                                                       const ActivationLayerInfo &act_info)
416 {
417     ARM_COMPUTE_UNUSED(op, policy);
418     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
419     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
420     ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
421     ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
422 
423     return Status{};
424 }
425 
validate_and_configure_window(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)426 std::pair<Status, Window> CLSaturatedArithmeticOperationKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
427 {
428     return validate_and_configure_window_for_arithmetic_operators(input1, input2, output);
429 }
430 
generate_build_options(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)431 CLBuildOptions CLSaturatedArithmeticOperationKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
432 {
433     const bool has_float_out = is_data_type_float(output.data_type());
434     auto       build_options = generate_build_options_with_arithmetic_rules(input1, input2, output, name());
435     build_options.add_option((_policy == ConvertPolicy::WRAP || has_float_out) ? "-DWRAP" : "-DSATURATE");
436     return build_options;
437 }
generate_id_for_tuning(const std::string & kernel_name,const ITensorInfo & input1,const ITensorInfo & output)438 std::string CLSaturatedArithmeticOperationKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
439 {
440     auto config_id = generate_id_for_tuning_common(kernel_name, input1, output);
441     config_id += (_policy == ConvertPolicy::WRAP) ? "_wrap_" : "_saturate_";
442     config_id += lower_string(string_from_data_layout(input1.data_layout()));
443     return config_id;
444 }
445 
name()446 std::string CLSaturatedArithmeticOperationKernel::name()
447 {
448     return supported_sat_arithmetic_ops[_op];
449 }
450 
451 /** Arithmetic operations*/
452 
configure(ArithmeticOperation op,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const ActivationLayerInfo & act_info)453 void CLArithmeticOperationKernel::configure(ArithmeticOperation op, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, const ActivationLayerInfo &act_info)
454 {
455     configure(CLKernelLibrary::get().get_compile_context(), op, input1, input2, output, act_info);
456 }
457 
configure(const CLCompileContext & compile_context,ArithmeticOperation op,ITensorInfo * input1,ITensorInfo * input2,ITensorInfo * output,const ActivationLayerInfo & act_info)458 void CLArithmeticOperationKernel::configure(const CLCompileContext &compile_context, ArithmeticOperation op, ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output,
459                                             const ActivationLayerInfo &act_info)
460 {
461     ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
462     ARM_COMPUTE_ERROR_THROW_ON(CLArithmeticOperationKernel::validate(op, input1, input2, output, act_info));
463     auto padding_info = get_padding_info({ input1, input2, output });
464 
465     _op       = op;
466     _act_info = act_info;
467     configure_common(compile_context, input1, input2, output);
468     ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
469 }
470 
validate(ArithmeticOperation op,const ITensorInfo * input1,const ITensorInfo * input2,const ITensorInfo * output,const ActivationLayerInfo & act_info)471 Status CLArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info)
472 {
473     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
474     if(op == ArithmeticOperation::DIV || op == ArithmeticOperation::POWER)
475     {
476         // Division and Power operators don't support integer arithmetic
477         ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_float_only_supported_rules(*input1, *input2, *output));
478         ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_division(*input1->clone(), *input2->clone(), *output->clone()).first);
479     }
480     else
481     {
482         ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_with_arithmetic_rules(*input1, *input2, *output));
483         ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_for_arithmetic_operators(*input1->clone(), *input2->clone(), *output->clone()).first);
484     }
485     ARM_COMPUTE_RETURN_ERROR_ON(act_info.enabled() && !is_data_type_float(output->data_type()));
486 
487     return Status{};
488 }
validate_and_configure_window(ITensorInfo & input1,ITensorInfo & input2,ITensorInfo & output)489 std::pair<Status, Window> CLArithmeticOperationKernel::validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
490 {
491     if(_op == ArithmeticOperation::DIV || _op == ArithmeticOperation::POWER)
492     {
493         // Division and Power operators don't support integer arithmetic
494         return validate_and_configure_window_for_division(input1, input2, output);
495     }
496     else
497     {
498         return validate_and_configure_window_for_arithmetic_operators(input1, input2, output);
499     }
500 }
501 
generate_build_options(const ITensorInfo & input1,const ITensorInfo & input2,const ITensorInfo & output)502 CLBuildOptions CLArithmeticOperationKernel::generate_build_options(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
503 {
504     return generate_build_options_with_arithmetic_rules(input1, input2, output, name());
505 }
generate_id_for_tuning(const std::string & kernel_name,const ITensorInfo & input1,const ITensorInfo & output)506 std::string CLArithmeticOperationKernel::generate_id_for_tuning(const std::string &kernel_name, const ITensorInfo &input1, const ITensorInfo &output)
507 {
508     return generate_id_for_tuning_common(kernel_name, input1, output);
509 }
510 
name()511 std::string CLArithmeticOperationKernel::name()
512 {
513     return supported_arithmetic_ops[_op];
514 }
515 } // namespace arm_compute
516