• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/CL/functions/CLGenerateProposalsLayer.h"
25 
26 #include "arm_compute/core/CL/ICLTensor.h"
27 #include "arm_compute/core/Types.h"
28 #include "src/core/CL/kernels/CLBoundingBoxTransformKernel.h"
29 #include "src/core/CL/kernels/CLDequantizationLayerKernel.h"
30 #include "src/core/CL/kernels/CLGenerateProposalsLayerKernel.h"
31 #include "src/core/CL/kernels/CLPadLayerKernel.h"
32 #include "src/core/CL/kernels/CLPermuteKernel.h"
33 #include "src/core/CL/kernels/CLQuantizationLayerKernel.h"
34 #include "src/core/helpers/AutoConfiguration.h"
35 #include "support/MemorySupport.h"
36 
37 namespace arm_compute
38 {
CLGenerateProposalsLayer(std::shared_ptr<IMemoryManager> memory_manager)39 CLGenerateProposalsLayer::CLGenerateProposalsLayer(std::shared_ptr<IMemoryManager> memory_manager)
40     : _memory_group(memory_manager),
41       _permute_deltas_kernel(support::cpp14::make_unique<CLPermuteKernel>()),
42       _flatten_deltas(),
43       _permute_scores_kernel(support::cpp14::make_unique<CLPermuteKernel>()),
44       _flatten_scores(),
45       _compute_anchors_kernel(support::cpp14::make_unique<CLComputeAllAnchorsKernel>()),
46       _bounding_box_kernel(support::cpp14::make_unique<CLBoundingBoxTransformKernel>()),
47       _pad_kernel(support::cpp14::make_unique<CLPadLayerKernel>()),
48       _dequantize_anchors(support::cpp14::make_unique<CLDequantizationLayerKernel>()),
49       _dequantize_deltas(support::cpp14::make_unique<CLDequantizationLayerKernel>()),
50       _quantize_all_proposals(support::cpp14::make_unique<CLQuantizationLayerKernel>()),
51       _cpp_nms(memory_manager),
52       _is_nhwc(false),
53       _is_qasymm8(false),
54       _deltas_permuted(),
55       _deltas_flattened(),
56       _deltas_flattened_f32(),
57       _scores_permuted(),
58       _scores_flattened(),
59       _all_anchors(),
60       _all_anchors_f32(),
61       _all_proposals(),
62       _all_proposals_quantized(),
63       _keeps_nms_unused(),
64       _classes_nms_unused(),
65       _proposals_4_roi_values(),
66       _all_proposals_to_use(nullptr),
67       _num_valid_proposals(nullptr),
68       _scores_out(nullptr)
69 {
70 }
71 
72 CLGenerateProposalsLayer::~CLGenerateProposalsLayer() = default;
73 
configure(const ICLTensor * scores,const ICLTensor * deltas,const ICLTensor * anchors,ICLTensor * proposals,ICLTensor * scores_out,ICLTensor * num_valid_proposals,const GenerateProposalsInfo & info)74 void CLGenerateProposalsLayer::configure(const ICLTensor *scores, const ICLTensor *deltas, const ICLTensor *anchors, ICLTensor *proposals, ICLTensor *scores_out, ICLTensor *num_valid_proposals,
75                                          const GenerateProposalsInfo &info)
76 {
77     configure(CLKernelLibrary::get().get_compile_context(), scores, deltas, anchors, proposals, scores_out, num_valid_proposals, info);
78 }
79 
configure(const CLCompileContext & compile_context,const ICLTensor * scores,const ICLTensor * deltas,const ICLTensor * anchors,ICLTensor * proposals,ICLTensor * scores_out,ICLTensor * num_valid_proposals,const GenerateProposalsInfo & info)80 void CLGenerateProposalsLayer::configure(const CLCompileContext &compile_context, const ICLTensor *scores, const ICLTensor *deltas, const ICLTensor *anchors, ICLTensor *proposals,
81                                          ICLTensor *scores_out,
82                                          ICLTensor *num_valid_proposals, const GenerateProposalsInfo &info)
83 {
84     ARM_COMPUTE_ERROR_ON_NULLPTR(scores, deltas, anchors, proposals, scores_out, num_valid_proposals);
85     ARM_COMPUTE_ERROR_THROW_ON(CLGenerateProposalsLayer::validate(scores->info(), deltas->info(), anchors->info(), proposals->info(), scores_out->info(), num_valid_proposals->info(), info));
86 
87     _is_nhwc                        = scores->info()->data_layout() == DataLayout::NHWC;
88     const DataType scores_data_type = scores->info()->data_type();
89     _is_qasymm8                     = scores_data_type == DataType::QASYMM8;
90     const int    num_anchors        = scores->info()->dimension(get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::CHANNEL));
91     const int    feat_width         = scores->info()->dimension(get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::WIDTH));
92     const int    feat_height        = scores->info()->dimension(get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::HEIGHT));
93     const int    total_num_anchors  = num_anchors * feat_width * feat_height;
94     const int    pre_nms_topN       = info.pre_nms_topN();
95     const int    post_nms_topN      = info.post_nms_topN();
96     const size_t values_per_roi     = info.values_per_roi();
97 
98     const QuantizationInfo scores_qinfo   = scores->info()->quantization_info();
99     const DataType         rois_data_type = (_is_qasymm8) ? DataType::QASYMM16 : scores_data_type;
100     const QuantizationInfo rois_qinfo     = (_is_qasymm8) ? QuantizationInfo(0.125f, 0) : scores->info()->quantization_info();
101 
102     // Compute all the anchors
103     _memory_group.manage(&_all_anchors);
104     _compute_anchors_kernel->configure(compile_context, anchors, &_all_anchors, ComputeAnchorsInfo(feat_width, feat_height, info.spatial_scale()));
105 
106     const TensorShape flatten_shape_deltas(values_per_roi, total_num_anchors);
107     _deltas_flattened.allocator()->init(TensorInfo(flatten_shape_deltas, 1, scores_data_type, deltas->info()->quantization_info()));
108 
109     // Permute and reshape deltas
110     _memory_group.manage(&_deltas_flattened);
111     if(!_is_nhwc)
112     {
113         _memory_group.manage(&_deltas_permuted);
114         _permute_deltas_kernel->configure(compile_context, deltas, &_deltas_permuted, PermutationVector{ 2, 0, 1 });
115         _flatten_deltas.configure(compile_context, &_deltas_permuted, &_deltas_flattened);
116         _deltas_permuted.allocator()->allocate();
117     }
118     else
119     {
120         _flatten_deltas.configure(compile_context, deltas, &_deltas_flattened);
121     }
122 
123     const TensorShape flatten_shape_scores(1, total_num_anchors);
124     _scores_flattened.allocator()->init(TensorInfo(flatten_shape_scores, 1, scores_data_type, scores_qinfo));
125 
126     // Permute and reshape scores
127     _memory_group.manage(&_scores_flattened);
128     if(!_is_nhwc)
129     {
130         _memory_group.manage(&_scores_permuted);
131         _permute_scores_kernel->configure(compile_context, scores, &_scores_permuted, PermutationVector{ 2, 0, 1 });
132         _flatten_scores.configure(compile_context, &_scores_permuted, &_scores_flattened);
133         _scores_permuted.allocator()->allocate();
134     }
135     else
136     {
137         _flatten_scores.configure(compile_context, scores, &_scores_flattened);
138     }
139 
140     CLTensor *anchors_to_use = &_all_anchors;
141     CLTensor *deltas_to_use  = &_deltas_flattened;
142     if(_is_qasymm8)
143     {
144         _all_anchors_f32.allocator()->init(TensorInfo(_all_anchors.info()->tensor_shape(), 1, DataType::F32));
145         _deltas_flattened_f32.allocator()->init(TensorInfo(_deltas_flattened.info()->tensor_shape(), 1, DataType::F32));
146         _memory_group.manage(&_all_anchors_f32);
147         _memory_group.manage(&_deltas_flattened_f32);
148         // Dequantize anchors to float
149         _dequantize_anchors->configure(compile_context, &_all_anchors, &_all_anchors_f32);
150         _all_anchors.allocator()->allocate();
151         anchors_to_use = &_all_anchors_f32;
152         // Dequantize deltas to float
153         _dequantize_deltas->configure(compile_context, &_deltas_flattened, &_deltas_flattened_f32);
154         _deltas_flattened.allocator()->allocate();
155         deltas_to_use = &_deltas_flattened_f32;
156     }
157     // Bounding box transform
158     _memory_group.manage(&_all_proposals);
159     BoundingBoxTransformInfo bbox_info(info.im_width(), info.im_height(), 1.f);
160     _bounding_box_kernel->configure(compile_context, anchors_to_use, &_all_proposals, deltas_to_use, bbox_info);
161     deltas_to_use->allocator()->allocate();
162     anchors_to_use->allocator()->allocate();
163 
164     _all_proposals_to_use = &_all_proposals;
165     if(_is_qasymm8)
166     {
167         _memory_group.manage(&_all_proposals_quantized);
168         // Requantize all_proposals to QASYMM16 with 0.125 scale and 0 offset
169         _all_proposals_quantized.allocator()->init(TensorInfo(_all_proposals.info()->tensor_shape(), 1, DataType::QASYMM16, QuantizationInfo(0.125f, 0)));
170         _quantize_all_proposals->configure(compile_context, &_all_proposals, &_all_proposals_quantized);
171         _all_proposals.allocator()->allocate();
172         _all_proposals_to_use = &_all_proposals_quantized;
173     }
174     // The original layer implementation first selects the best pre_nms_topN anchors (thus having a lightweight sort)
175     // that are then transformed by bbox_transform. The boxes generated are then fed into a non-sorting NMS operation.
176     // Since we are reusing the NMS layer and we don't implement any CL/sort, we let NMS do the sorting (of all the input)
177     // and the filtering
178     const int   scores_nms_size = std::min<int>(std::min<int>(post_nms_topN, pre_nms_topN), total_num_anchors);
179     const float min_size_scaled = info.min_size() * info.im_scale();
180     _memory_group.manage(&_classes_nms_unused);
181     _memory_group.manage(&_keeps_nms_unused);
182 
183     // Note that NMS needs outputs preinitialized.
184     auto_init_if_empty(*scores_out->info(), TensorShape(scores_nms_size), 1, scores_data_type, scores_qinfo);
185     auto_init_if_empty(*_proposals_4_roi_values.info(), TensorShape(values_per_roi, scores_nms_size), 1, rois_data_type, rois_qinfo);
186     auto_init_if_empty(*num_valid_proposals->info(), TensorShape(1), 1, DataType::U32);
187 
188     // Initialize temporaries (unused) outputs
189     _classes_nms_unused.allocator()->init(TensorInfo(TensorShape(scores_nms_size), 1, scores_data_type, scores_qinfo));
190     _keeps_nms_unused.allocator()->init(*scores_out->info());
191 
192     // Save the output (to map and unmap them at run)
193     _scores_out          = scores_out;
194     _num_valid_proposals = num_valid_proposals;
195 
196     _memory_group.manage(&_proposals_4_roi_values);
197     _cpp_nms.configure(&_scores_flattened, _all_proposals_to_use, nullptr, scores_out, &_proposals_4_roi_values, &_classes_nms_unused, nullptr, &_keeps_nms_unused, num_valid_proposals,
198                        BoxNMSLimitInfo(0.0f, info.nms_thres(), scores_nms_size, false, NMSType::LINEAR, 0.5f, 0.001f, true, min_size_scaled, info.im_width(), info.im_height()));
199     _keeps_nms_unused.allocator()->allocate();
200     _classes_nms_unused.allocator()->allocate();
201     _all_proposals_to_use->allocator()->allocate();
202     _scores_flattened.allocator()->allocate();
203 
204     // Add the first column that represents the batch id. This will be all zeros, as we don't support multiple images
205     _pad_kernel->configure(compile_context, &_proposals_4_roi_values, proposals, PaddingList{ { 1, 0 } });
206     _proposals_4_roi_values.allocator()->allocate();
207 }
208 
validate(const ITensorInfo * scores,const ITensorInfo * deltas,const ITensorInfo * anchors,const ITensorInfo * proposals,const ITensorInfo * scores_out,const ITensorInfo * num_valid_proposals,const GenerateProposalsInfo & info)209 Status CLGenerateProposalsLayer::validate(const ITensorInfo *scores, const ITensorInfo *deltas, const ITensorInfo *anchors, const ITensorInfo *proposals, const ITensorInfo *scores_out,
210                                           const ITensorInfo *num_valid_proposals, const GenerateProposalsInfo &info)
211 {
212     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(scores, deltas, anchors, proposals, scores_out, num_valid_proposals);
213     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(scores, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
214     ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(scores, DataLayout::NCHW, DataLayout::NHWC);
215     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(scores, deltas);
216     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(scores, deltas);
217 
218     const int num_anchors       = scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::CHANNEL));
219     const int feat_width        = scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::WIDTH));
220     const int feat_height       = scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::HEIGHT));
221     const int num_images        = scores->dimension(3);
222     const int total_num_anchors = num_anchors * feat_width * feat_height;
223     const int values_per_roi    = info.values_per_roi();
224 
225     const bool is_qasymm8 = scores->data_type() == DataType::QASYMM8;
226 
227     ARM_COMPUTE_RETURN_ERROR_ON(num_images > 1);
228 
229     if(is_qasymm8)
230     {
231         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(anchors, 1, DataType::QSYMM16);
232         const UniformQuantizationInfo anchors_qinfo = anchors->quantization_info().uniform();
233         ARM_COMPUTE_RETURN_ERROR_ON(anchors_qinfo.scale != 0.125f);
234     }
235 
236     TensorInfo all_anchors_info(anchors->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
237     ARM_COMPUTE_RETURN_ON_ERROR(CLComputeAllAnchorsKernel::validate(anchors, &all_anchors_info, ComputeAnchorsInfo(feat_width, feat_height, info.spatial_scale())));
238 
239     TensorInfo deltas_permuted_info = deltas->clone()->set_tensor_shape(TensorShape(values_per_roi * num_anchors, feat_width, feat_height)).set_is_resizable(true);
240     TensorInfo scores_permuted_info = scores->clone()->set_tensor_shape(TensorShape(num_anchors, feat_width, feat_height)).set_is_resizable(true);
241     if(scores->data_layout() == DataLayout::NHWC)
242     {
243         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(deltas, &deltas_permuted_info);
244         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(scores, &scores_permuted_info);
245     }
246     else
247     {
248         ARM_COMPUTE_RETURN_ON_ERROR(CLPermuteKernel::validate(deltas, &deltas_permuted_info, PermutationVector{ 2, 0, 1 }));
249         ARM_COMPUTE_RETURN_ON_ERROR(CLPermuteKernel::validate(scores, &scores_permuted_info, PermutationVector{ 2, 0, 1 }));
250     }
251 
252     TensorInfo deltas_flattened_info(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
253     ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(&deltas_permuted_info, &deltas_flattened_info));
254 
255     TensorInfo scores_flattened_info(scores->clone()->set_tensor_shape(TensorShape(1, total_num_anchors)).set_is_resizable(true));
256     TensorInfo proposals_4_roi_values(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
257 
258     ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(&scores_permuted_info, &scores_flattened_info));
259 
260     TensorInfo *proposals_4_roi_values_to_use = &proposals_4_roi_values;
261     TensorInfo  proposals_4_roi_values_quantized(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
262     proposals_4_roi_values_quantized.set_data_type(DataType::QASYMM16).set_quantization_info(QuantizationInfo(0.125f, 0));
263     if(is_qasymm8)
264     {
265         TensorInfo all_anchors_f32_info(anchors->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true).set_data_type(DataType::F32));
266         ARM_COMPUTE_RETURN_ON_ERROR(CLDequantizationLayerKernel::validate(&all_anchors_info, &all_anchors_f32_info));
267 
268         TensorInfo deltas_flattened_f32_info(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true).set_data_type(DataType::F32));
269         ARM_COMPUTE_RETURN_ON_ERROR(CLDequantizationLayerKernel::validate(&deltas_flattened_info, &deltas_flattened_f32_info));
270 
271         TensorInfo proposals_4_roi_values_f32(deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true).set_data_type(DataType::F32));
272         ARM_COMPUTE_RETURN_ON_ERROR(CLBoundingBoxTransformKernel::validate(&all_anchors_f32_info, &proposals_4_roi_values_f32, &deltas_flattened_f32_info,
273                                                                            BoundingBoxTransformInfo(info.im_width(), info.im_height(), 1.f)));
274 
275         ARM_COMPUTE_RETURN_ON_ERROR(CLQuantizationLayerKernel::validate(&proposals_4_roi_values_f32, &proposals_4_roi_values_quantized));
276         proposals_4_roi_values_to_use = &proposals_4_roi_values_quantized;
277     }
278     else
279     {
280         ARM_COMPUTE_RETURN_ON_ERROR(CLBoundingBoxTransformKernel::validate(&all_anchors_info, &proposals_4_roi_values, &deltas_flattened_info,
281                                                                            BoundingBoxTransformInfo(info.im_width(), info.im_height(), 1.f)));
282     }
283 
284     ARM_COMPUTE_RETURN_ON_ERROR(CLPadLayerKernel::validate(proposals_4_roi_values_to_use, proposals, PaddingList{ { 1, 0 } }));
285 
286     if(num_valid_proposals->total_size() > 0)
287     {
288         ARM_COMPUTE_RETURN_ERROR_ON(num_valid_proposals->num_dimensions() > 1);
289         ARM_COMPUTE_RETURN_ERROR_ON(num_valid_proposals->dimension(0) > 1);
290         ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(num_valid_proposals, 1, DataType::U32);
291     }
292 
293     if(proposals->total_size() > 0)
294     {
295         ARM_COMPUTE_RETURN_ERROR_ON(proposals->num_dimensions() > 2);
296         ARM_COMPUTE_RETURN_ERROR_ON(proposals->dimension(0) != size_t(values_per_roi) + 1);
297         ARM_COMPUTE_RETURN_ERROR_ON(proposals->dimension(1) != size_t(total_num_anchors));
298         if(is_qasymm8)
299         {
300             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(proposals, 1, DataType::QASYMM16);
301             const UniformQuantizationInfo proposals_qinfo = proposals->quantization_info().uniform();
302             ARM_COMPUTE_RETURN_ERROR_ON(proposals_qinfo.scale != 0.125f);
303             ARM_COMPUTE_RETURN_ERROR_ON(proposals_qinfo.offset != 0);
304         }
305         else
306         {
307             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(proposals, scores);
308         }
309     }
310 
311     if(scores_out->total_size() > 0)
312     {
313         ARM_COMPUTE_RETURN_ERROR_ON(scores_out->num_dimensions() > 1);
314         ARM_COMPUTE_RETURN_ERROR_ON(scores_out->dimension(0) != size_t(total_num_anchors));
315         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(scores_out, scores);
316     }
317 
318     return Status{};
319 }
320 
run_cpp_nms_kernel()321 void CLGenerateProposalsLayer::run_cpp_nms_kernel()
322 {
323     // Map inputs
324     _scores_flattened.map(true);
325     _all_proposals_to_use->map(true);
326 
327     // Map outputs
328     _scores_out->map(CLScheduler::get().queue(), true);
329     _proposals_4_roi_values.map(CLScheduler::get().queue(), true);
330     _num_valid_proposals->map(CLScheduler::get().queue(), true);
331     _keeps_nms_unused.map(true);
332     _classes_nms_unused.map(true);
333 
334     // Run nms
335     _cpp_nms.run();
336 
337     // Unmap outputs
338     _keeps_nms_unused.unmap();
339     _classes_nms_unused.unmap();
340     _scores_out->unmap(CLScheduler::get().queue());
341     _proposals_4_roi_values.unmap(CLScheduler::get().queue());
342     _num_valid_proposals->unmap(CLScheduler::get().queue());
343 
344     // Unmap inputs
345     _scores_flattened.unmap();
346     _all_proposals_to_use->unmap();
347 }
348 
run()349 void CLGenerateProposalsLayer::run()
350 {
351     // Acquire all the temporaries
352     MemoryGroupResourceScope scope_mg(_memory_group);
353 
354     // Compute all the anchors
355     CLScheduler::get().enqueue(*_compute_anchors_kernel, false);
356 
357     // Transpose and reshape the inputs
358     if(!_is_nhwc)
359     {
360         CLScheduler::get().enqueue(*_permute_deltas_kernel, false);
361         CLScheduler::get().enqueue(*_permute_scores_kernel, false);
362     }
363     _flatten_deltas.run();
364     _flatten_scores.run();
365 
366     if(_is_qasymm8)
367     {
368         CLScheduler::get().enqueue(*_dequantize_anchors, false);
369         CLScheduler::get().enqueue(*_dequantize_deltas, false);
370     }
371 
372     // Build the boxes
373     CLScheduler::get().enqueue(*_bounding_box_kernel, false);
374 
375     if(_is_qasymm8)
376     {
377         CLScheduler::get().enqueue(*_quantize_all_proposals, false);
378     }
379 
380     // Non maxima suppression
381     run_cpp_nms_kernel();
382     // Add dummy batch indexes
383     CLScheduler::get().enqueue(*_pad_kernel, true);
384 }
385 } // namespace arm_compute
386